1/*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 *	Tom Stellard <thomas.stellard@amd.com>
25 *	Michel Dänzer <michel.daenzer@amd.com>
26 *      Christian König <christian.koenig@amd.com>
27 */
28
29#include "gallivm/lp_bld_const.h"
30#include "gallivm/lp_bld_gather.h"
31#include "gallivm/lp_bld_intr.h"
32#include "gallivm/lp_bld_logic.h"
33#include "gallivm/lp_bld_arit.h"
34#include "gallivm/lp_bld_flow.h"
35#include "gallivm/lp_bld_misc.h"
36#include "radeon/radeon_elf_util.h"
37#include "util/u_memory.h"
38#include "util/u_string.h"
39#include "tgsi/tgsi_build.h"
40#include "tgsi/tgsi_util.h"
41#include "tgsi/tgsi_dump.h"
42
43#include "ac_llvm_util.h"
44#include "si_shader_internal.h"
45#include "si_pipe.h"
46#include "sid.h"
47
48
49static const char *scratch_rsrc_dword0_symbol =
50	"SCRATCH_RSRC_DWORD0";
51
52static const char *scratch_rsrc_dword1_symbol =
53	"SCRATCH_RSRC_DWORD1";
54
55struct si_shader_output_values
56{
57	LLVMValueRef values[4];
58	unsigned semantic_name;
59	unsigned semantic_index;
60	ubyte vertex_stream[4];
61};
62
63static void si_init_shader_ctx(struct si_shader_context *ctx,
64			       struct si_screen *sscreen,
65			       struct si_shader *shader,
66			       LLVMTargetMachineRef tm);
67
68static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
69				 struct lp_build_tgsi_context *bld_base,
70				 struct lp_build_emit_data *emit_data);
71
72static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
73			       FILE *f);
74
75static void si_build_vs_prolog_function(struct si_shader_context *ctx,
76					union si_shader_part_key *key);
77static void si_build_vs_epilog_function(struct si_shader_context *ctx,
78					union si_shader_part_key *key);
79static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
80					 union si_shader_part_key *key);
81static void si_build_ps_prolog_function(struct si_shader_context *ctx,
82					union si_shader_part_key *key);
83static void si_build_ps_epilog_function(struct si_shader_context *ctx,
84					union si_shader_part_key *key);
85
86/* Ideally pass the sample mask input to the PS epilog as v13, which
87 * is its usual location, so that the shader doesn't have to add v_mov.
88 */
89#define PS_EPILOG_SAMPLEMASK_MIN_LOC 13
90
91/* The VS location of the PrimitiveID input is the same in the epilog,
92 * so that the main shader part doesn't have to move it.
93 */
94#define VS_EPILOG_PRIMID_LOC 2
95
96enum {
97	CONST_ADDR_SPACE = 2,
98	LOCAL_ADDR_SPACE = 3,
99};
100
101#define SENDMSG_GS 2
102#define SENDMSG_GS_DONE 3
103
104#define SENDMSG_GS_OP_NOP      (0 << 4)
105#define SENDMSG_GS_OP_CUT      (1 << 4)
106#define SENDMSG_GS_OP_EMIT     (2 << 4)
107#define SENDMSG_GS_OP_EMIT_CUT (3 << 4)
108
109/**
110 * Returns a unique index for a semantic name and index. The index must be
111 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
112 * calculated.
113 */
114unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
115{
116	switch (semantic_name) {
117	case TGSI_SEMANTIC_POSITION:
118		return 0;
119	case TGSI_SEMANTIC_PSIZE:
120		return 1;
121	case TGSI_SEMANTIC_CLIPDIST:
122		assert(index <= 1);
123		return 2 + index;
124	case TGSI_SEMANTIC_GENERIC:
125		if (index <= 63-4)
126			return 4 + index;
127
128		assert(!"invalid generic index");
129		return 0;
130
131	/* patch indices are completely separate and thus start from 0 */
132	case TGSI_SEMANTIC_TESSOUTER:
133		return 0;
134	case TGSI_SEMANTIC_TESSINNER:
135		return 1;
136	case TGSI_SEMANTIC_PATCH:
137		return 2 + index;
138
139	default:
140		assert(!"invalid semantic name");
141		return 0;
142	}
143}
144
145unsigned si_shader_io_get_unique_index2(unsigned name, unsigned index)
146{
147	switch (name) {
148	case TGSI_SEMANTIC_FOG:
149		return 0;
150	case TGSI_SEMANTIC_LAYER:
151		return 1;
152	case TGSI_SEMANTIC_VIEWPORT_INDEX:
153		return 2;
154	case TGSI_SEMANTIC_PRIMID:
155		return 3;
156	case TGSI_SEMANTIC_COLOR: /* these alias */
157	case TGSI_SEMANTIC_BCOLOR:
158		return 4 + index;
159	case TGSI_SEMANTIC_TEXCOORD:
160		return 6 + index;
161	default:
162		assert(!"invalid semantic name");
163		return 0;
164	}
165}
166
167/**
168 * Get the value of a shader input parameter and extract a bitfield.
169 */
170static LLVMValueRef unpack_param(struct si_shader_context *ctx,
171				 unsigned param, unsigned rshift,
172				 unsigned bitwidth)
173{
174	struct gallivm_state *gallivm = &ctx->gallivm;
175	LLVMValueRef value = LLVMGetParam(ctx->main_fn,
176					  param);
177
178	if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
179		value = bitcast(&ctx->bld_base,
180				TGSI_TYPE_UNSIGNED, value);
181
182	if (rshift)
183		value = LLVMBuildLShr(gallivm->builder, value,
184				      lp_build_const_int32(gallivm, rshift), "");
185
186	if (rshift + bitwidth < 32) {
187		unsigned mask = (1 << bitwidth) - 1;
188		value = LLVMBuildAnd(gallivm->builder, value,
189				     lp_build_const_int32(gallivm, mask), "");
190	}
191
192	return value;
193}
194
195static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
196{
197	switch (ctx->type) {
198	case PIPE_SHADER_TESS_CTRL:
199		return unpack_param(ctx, SI_PARAM_REL_IDS, 0, 8);
200
201	case PIPE_SHADER_TESS_EVAL:
202		return LLVMGetParam(ctx->main_fn,
203				    ctx->param_tes_rel_patch_id);
204
205	default:
206		assert(0);
207		return NULL;
208	}
209}
210
211/* Tessellation shaders pass outputs to the next shader using LDS.
212 *
213 * LS outputs = TCS inputs
214 * TCS outputs = TES inputs
215 *
216 * The LDS layout is:
217 * - TCS inputs for patch 0
218 * - TCS inputs for patch 1
219 * - TCS inputs for patch 2		= get_tcs_in_current_patch_offset (if RelPatchID==2)
220 * - ...
221 * - TCS outputs for patch 0            = get_tcs_out_patch0_offset
222 * - Per-patch TCS outputs for patch 0  = get_tcs_out_patch0_patch_data_offset
223 * - TCS outputs for patch 1
224 * - Per-patch TCS outputs for patch 1
225 * - TCS outputs for patch 2            = get_tcs_out_current_patch_offset (if RelPatchID==2)
226 * - Per-patch TCS outputs for patch 2  = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
227 * - ...
228 *
229 * All three shaders VS(LS), TCS, TES share the same LDS space.
230 */
231
232static LLVMValueRef
233get_tcs_in_patch_stride(struct si_shader_context *ctx)
234{
235	if (ctx->type == PIPE_SHADER_VERTEX)
236		return unpack_param(ctx, SI_PARAM_LS_OUT_LAYOUT, 0, 13);
237	else if (ctx->type == PIPE_SHADER_TESS_CTRL)
238		return unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 0, 13);
239	else {
240		assert(0);
241		return NULL;
242	}
243}
244
245static LLVMValueRef
246get_tcs_out_patch_stride(struct si_shader_context *ctx)
247{
248	return unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 0, 13);
249}
250
251static LLVMValueRef
252get_tcs_out_patch0_offset(struct si_shader_context *ctx)
253{
254	return lp_build_mul_imm(&ctx->bld_base.uint_bld,
255				unpack_param(ctx,
256					     SI_PARAM_TCS_OUT_OFFSETS,
257					     0, 16),
258				4);
259}
260
261static LLVMValueRef
262get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
263{
264	return lp_build_mul_imm(&ctx->bld_base.uint_bld,
265				unpack_param(ctx,
266					     SI_PARAM_TCS_OUT_OFFSETS,
267					     16, 16),
268				4);
269}
270
271static LLVMValueRef
272get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
273{
274	struct gallivm_state *gallivm = &ctx->gallivm;
275	LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
276	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
277
278	return LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, "");
279}
280
281static LLVMValueRef
282get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
283{
284	struct gallivm_state *gallivm = &ctx->gallivm;
285	LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
286	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
287	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
288
289	return LLVMBuildAdd(gallivm->builder, patch0_offset,
290			    LLVMBuildMul(gallivm->builder, patch_stride,
291					 rel_patch_id, ""),
292			    "");
293}
294
295static LLVMValueRef
296get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
297{
298	struct gallivm_state *gallivm = &ctx->gallivm;
299	LLVMValueRef patch0_patch_data_offset =
300		get_tcs_out_patch0_patch_data_offset(ctx);
301	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
302	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
303
304	return LLVMBuildAdd(gallivm->builder, patch0_patch_data_offset,
305			    LLVMBuildMul(gallivm->builder, patch_stride,
306					 rel_patch_id, ""),
307			    "");
308}
309
310static LLVMValueRef build_gep0(struct si_shader_context *ctx,
311			       LLVMValueRef base_ptr, LLVMValueRef index)
312{
313	LLVMValueRef indices[2] = {
314		LLVMConstInt(ctx->i32, 0, 0),
315		index,
316	};
317	return LLVMBuildGEP(ctx->gallivm.builder, base_ptr,
318			    indices, 2, "");
319}
320
321static void build_indexed_store(struct si_shader_context *ctx,
322				LLVMValueRef base_ptr, LLVMValueRef index,
323				LLVMValueRef value)
324{
325	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
326	struct gallivm_state *gallivm = bld_base->base.gallivm;
327
328	LLVMBuildStore(gallivm->builder, value,
329		       build_gep0(ctx, base_ptr, index));
330}
331
332/**
333 * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
334 * It's equivalent to doing a load from &base_ptr[index].
335 *
336 * \param base_ptr  Where the array starts.
337 * \param index     The element index into the array.
338 * \param uniform   Whether the base_ptr and index can be assumed to be
339 *                  dynamically uniform
340 */
341static LLVMValueRef build_indexed_load(struct si_shader_context *ctx,
342				       LLVMValueRef base_ptr, LLVMValueRef index,
343				       bool uniform)
344{
345	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
346	struct gallivm_state *gallivm = bld_base->base.gallivm;
347	LLVMValueRef pointer;
348
349	pointer = build_gep0(ctx, base_ptr, index);
350	if (uniform)
351		LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
352	return LLVMBuildLoad(gallivm->builder, pointer, "");
353}
354
355/**
356 * Do a load from &base_ptr[index], but also add a flag that it's loading
357 * a constant from a dynamically uniform index.
358 */
359static LLVMValueRef build_indexed_load_const(
360	struct si_shader_context *ctx,
361	LLVMValueRef base_ptr, LLVMValueRef index)
362{
363	LLVMValueRef result = build_indexed_load(ctx, base_ptr, index, true);
364	LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
365	return result;
366}
367
368static LLVMValueRef get_instance_index_for_fetch(
369	struct si_shader_context *radeon_bld,
370	unsigned param_start_instance, unsigned divisor)
371{
372	struct si_shader_context *ctx =
373		si_shader_context(&radeon_bld->bld_base);
374	struct gallivm_state *gallivm = radeon_bld->bld_base.base.gallivm;
375
376	LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn,
377					   ctx->param_instance_id);
378
379	/* The division must be done before START_INSTANCE is added. */
380	if (divisor > 1)
381		result = LLVMBuildUDiv(gallivm->builder, result,
382				lp_build_const_int32(gallivm, divisor), "");
383
384	return LLVMBuildAdd(gallivm->builder, result,
385			    LLVMGetParam(radeon_bld->main_fn, param_start_instance), "");
386}
387
388static void declare_input_vs(
389	struct si_shader_context *ctx,
390	unsigned input_index,
391	const struct tgsi_full_declaration *decl,
392	LLVMValueRef out[4])
393{
394	struct lp_build_context *base = &ctx->bld_base.base;
395	struct gallivm_state *gallivm = base->gallivm;
396
397	unsigned chan;
398	unsigned fix_fetch;
399
400	LLVMValueRef t_list_ptr;
401	LLVMValueRef t_offset;
402	LLVMValueRef t_list;
403	LLVMValueRef attribute_offset;
404	LLVMValueRef buffer_index;
405	LLVMValueRef args[3];
406	LLVMValueRef input;
407
408	/* Load the T list */
409	t_list_ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_VERTEX_BUFFERS);
410
411	t_offset = lp_build_const_int32(gallivm, input_index);
412
413	t_list = build_indexed_load_const(ctx, t_list_ptr, t_offset);
414
415	/* Build the attribute offset */
416	attribute_offset = lp_build_const_int32(gallivm, 0);
417
418	buffer_index = LLVMGetParam(ctx->main_fn,
419				    ctx->param_vertex_index0 +
420				    input_index);
421
422	args[0] = t_list;
423	args[1] = attribute_offset;
424	args[2] = buffer_index;
425	input = lp_build_intrinsic(gallivm->builder,
426		"llvm.SI.vs.load.input", ctx->v4f32, args, 3,
427		LP_FUNC_ATTR_READNONE);
428
429	/* Break up the vec4 into individual components */
430	for (chan = 0; chan < 4; chan++) {
431		LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
432		out[chan] = LLVMBuildExtractElement(gallivm->builder,
433						    input, llvm_chan, "");
434	}
435
436	fix_fetch = (ctx->shader->key.mono.vs.fix_fetch >> (4 * input_index)) & 0xf;
437
438	switch (fix_fetch) {
439	case SI_FIX_FETCH_A2_SNORM:
440	case SI_FIX_FETCH_A2_SSCALED:
441	case SI_FIX_FETCH_A2_SINT: {
442		/* The hardware returns an unsigned value; convert it to a
443		 * signed one.
444		 */
445		LLVMValueRef tmp = out[3];
446		LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
447
448		/* First, recover the sign-extended signed integer value. */
449		if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
450			tmp = LLVMBuildFPToUI(gallivm->builder, tmp, ctx->i32, "");
451		else
452			tmp = LLVMBuildBitCast(gallivm->builder, tmp, ctx->i32, "");
453
454		/* For the integer-like cases, do a natural sign extension.
455		 *
456		 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
457		 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
458		 * exponent.
459		 */
460		tmp = LLVMBuildShl(gallivm->builder, tmp,
461				   fix_fetch == SI_FIX_FETCH_A2_SNORM ?
462				   LLVMConstInt(ctx->i32, 7, 0) : c30, "");
463		tmp = LLVMBuildAShr(gallivm->builder, tmp, c30, "");
464
465		/* Convert back to the right type. */
466		if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
467			LLVMValueRef clamp;
468			LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
469			tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
470			clamp = LLVMBuildFCmp(gallivm->builder, LLVMRealULT, tmp, neg_one, "");
471			tmp = LLVMBuildSelect(gallivm->builder, clamp, neg_one, tmp, "");
472		} else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
473			tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
474		}
475
476		out[3] = tmp;
477		break;
478	}
479	case SI_FIX_FETCH_RGBA_32_UNORM:
480	case SI_FIX_FETCH_RGBX_32_UNORM:
481		for (chan = 0; chan < 4; chan++) {
482			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
483						     ctx->i32, "");
484			out[chan] = LLVMBuildUIToFP(gallivm->builder,
485						    out[chan], ctx->f32, "");
486			out[chan] = LLVMBuildFMul(gallivm->builder, out[chan],
487						  LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
488		}
489		/* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
490		if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
491			out[3] = LLVMConstReal(ctx->f32, 1);
492		break;
493	case SI_FIX_FETCH_RGBA_32_SNORM:
494	case SI_FIX_FETCH_RGBX_32_SNORM:
495	case SI_FIX_FETCH_RGBA_32_FIXED:
496	case SI_FIX_FETCH_RGBX_32_FIXED: {
497		double scale;
498		if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
499			scale = 1.0 / 0x10000;
500		else
501			scale = 1.0 / INT_MAX;
502
503		for (chan = 0; chan < 4; chan++) {
504			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
505						     ctx->i32, "");
506			out[chan] = LLVMBuildSIToFP(gallivm->builder,
507						    out[chan], ctx->f32, "");
508			out[chan] = LLVMBuildFMul(gallivm->builder, out[chan],
509						  LLVMConstReal(ctx->f32, scale), "");
510		}
511		/* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
512		if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
513		    fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
514			out[3] = LLVMConstReal(ctx->f32, 1);
515		break;
516	}
517	case SI_FIX_FETCH_RGBA_32_USCALED:
518		for (chan = 0; chan < 4; chan++) {
519			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
520						     ctx->i32, "");
521			out[chan] = LLVMBuildUIToFP(gallivm->builder,
522						    out[chan], ctx->f32, "");
523		}
524		break;
525	case SI_FIX_FETCH_RGBA_32_SSCALED:
526		for (chan = 0; chan < 4; chan++) {
527			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
528						     ctx->i32, "");
529			out[chan] = LLVMBuildSIToFP(gallivm->builder,
530						    out[chan], ctx->f32, "");
531		}
532		break;
533	}
534}
535
536static LLVMValueRef get_primitive_id(struct lp_build_tgsi_context *bld_base,
537				     unsigned swizzle)
538{
539	struct si_shader_context *ctx = si_shader_context(bld_base);
540
541	if (swizzle > 0)
542		return bld_base->uint_bld.zero;
543
544	switch (ctx->type) {
545	case PIPE_SHADER_VERTEX:
546		return LLVMGetParam(ctx->main_fn,
547				    ctx->param_vs_prim_id);
548	case PIPE_SHADER_TESS_CTRL:
549		return LLVMGetParam(ctx->main_fn,
550				    SI_PARAM_PATCH_ID);
551	case PIPE_SHADER_TESS_EVAL:
552		return LLVMGetParam(ctx->main_fn,
553				    ctx->param_tes_patch_id);
554	case PIPE_SHADER_GEOMETRY:
555		return LLVMGetParam(ctx->main_fn,
556				    SI_PARAM_PRIMITIVE_ID);
557	default:
558		assert(0);
559		return bld_base->uint_bld.zero;
560	}
561}
562
563/**
564 * Return the value of tgsi_ind_register for indexing.
565 * This is the indirect index with the constant offset added to it.
566 */
567static LLVMValueRef get_indirect_index(struct si_shader_context *ctx,
568				       const struct tgsi_ind_register *ind,
569				       int rel_index)
570{
571	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
572	LLVMValueRef result;
573
574	result = ctx->addrs[ind->Index][ind->Swizzle];
575	result = LLVMBuildLoad(gallivm->builder, result, "");
576	result = LLVMBuildAdd(gallivm->builder, result,
577			      lp_build_const_int32(gallivm, rel_index), "");
578	return result;
579}
580
581/**
582 * Like get_indirect_index, but restricts the return value to a (possibly
583 * undefined) value inside [0..num).
584 */
585static LLVMValueRef get_bounded_indirect_index(struct si_shader_context *ctx,
586					       const struct tgsi_ind_register *ind,
587					       int rel_index, unsigned num)
588{
589	LLVMValueRef result = get_indirect_index(ctx, ind, rel_index);
590
591	/* LLVM 3.8: If indirect resource indexing is used:
592	 * - SI & CIK hang
593	 * - VI crashes
594	 */
595	if (HAVE_LLVM <= 0x0308)
596		return LLVMGetUndef(ctx->i32);
597
598	return si_llvm_bound_index(ctx, result, num);
599}
600
601
602/**
603 * Calculate a dword address given an input or output register and a stride.
604 */
605static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
606				   const struct tgsi_full_dst_register *dst,
607				   const struct tgsi_full_src_register *src,
608				   LLVMValueRef vertex_dw_stride,
609				   LLVMValueRef base_addr)
610{
611	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
612	struct tgsi_shader_info *info = &ctx->shader->selector->info;
613	ubyte *name, *index, *array_first;
614	int first, param;
615	struct tgsi_full_dst_register reg;
616
617	/* Set the register description. The address computation is the same
618	 * for sources and destinations. */
619	if (src) {
620		reg.Register.File = src->Register.File;
621		reg.Register.Index = src->Register.Index;
622		reg.Register.Indirect = src->Register.Indirect;
623		reg.Register.Dimension = src->Register.Dimension;
624		reg.Indirect = src->Indirect;
625		reg.Dimension = src->Dimension;
626		reg.DimIndirect = src->DimIndirect;
627	} else
628		reg = *dst;
629
630	/* If the register is 2-dimensional (e.g. an array of vertices
631	 * in a primitive), calculate the base address of the vertex. */
632	if (reg.Register.Dimension) {
633		LLVMValueRef index;
634
635		if (reg.Dimension.Indirect)
636			index = get_indirect_index(ctx, &reg.DimIndirect,
637						   reg.Dimension.Index);
638		else
639			index = lp_build_const_int32(gallivm, reg.Dimension.Index);
640
641		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
642					 LLVMBuildMul(gallivm->builder, index,
643						      vertex_dw_stride, ""), "");
644	}
645
646	/* Get information about the register. */
647	if (reg.Register.File == TGSI_FILE_INPUT) {
648		name = info->input_semantic_name;
649		index = info->input_semantic_index;
650		array_first = info->input_array_first;
651	} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
652		name = info->output_semantic_name;
653		index = info->output_semantic_index;
654		array_first = info->output_array_first;
655	} else {
656		assert(0);
657		return NULL;
658	}
659
660	if (reg.Register.Indirect) {
661		/* Add the relative address of the element. */
662		LLVMValueRef ind_index;
663
664		if (reg.Indirect.ArrayID)
665			first = array_first[reg.Indirect.ArrayID];
666		else
667			first = reg.Register.Index;
668
669		ind_index = get_indirect_index(ctx, &reg.Indirect,
670					   reg.Register.Index - first);
671
672		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
673				    LLVMBuildMul(gallivm->builder, ind_index,
674						 lp_build_const_int32(gallivm, 4), ""), "");
675
676		param = si_shader_io_get_unique_index(name[first], index[first]);
677	} else {
678		param = si_shader_io_get_unique_index(name[reg.Register.Index],
679						      index[reg.Register.Index]);
680	}
681
682	/* Add the base address of the element. */
683	return LLVMBuildAdd(gallivm->builder, base_addr,
684			    lp_build_const_int32(gallivm, param * 4), "");
685}
686
687/* The offchip buffer layout for TCS->TES is
688 *
689 * - attribute 0 of patch 0 vertex 0
690 * - attribute 0 of patch 0 vertex 1
691 * - attribute 0 of patch 0 vertex 2
692 *   ...
693 * - attribute 0 of patch 1 vertex 0
694 * - attribute 0 of patch 1 vertex 1
695 *   ...
696 * - attribute 1 of patch 0 vertex 0
697 * - attribute 1 of patch 0 vertex 1
698 *   ...
699 * - per patch attribute 0 of patch 0
700 * - per patch attribute 0 of patch 1
701 *   ...
702 *
703 * Note that every attribute has 4 components.
704 */
705static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
706                                               LLVMValueRef vertex_index,
707                                               LLVMValueRef param_index)
708{
709	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
710	LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
711	LLVMValueRef param_stride, constant16;
712
713	vertices_per_patch = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 6);
714	num_patches = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 0, 9);
715	total_vertices = LLVMBuildMul(gallivm->builder, vertices_per_patch,
716	                              num_patches, "");
717
718	constant16 = lp_build_const_int32(gallivm, 16);
719	if (vertex_index) {
720		base_addr = LLVMBuildMul(gallivm->builder, get_rel_patch_id(ctx),
721		                         vertices_per_patch, "");
722
723		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
724		                         vertex_index, "");
725
726		param_stride = total_vertices;
727	} else {
728		base_addr = get_rel_patch_id(ctx);
729		param_stride = num_patches;
730	}
731
732	base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
733	                         LLVMBuildMul(gallivm->builder, param_index,
734	                                      param_stride, ""), "");
735
736	base_addr = LLVMBuildMul(gallivm->builder, base_addr, constant16, "");
737
738	if (!vertex_index) {
739		LLVMValueRef patch_data_offset =
740		           unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 16, 16);
741
742		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
743		                         patch_data_offset, "");
744	}
745	return base_addr;
746}
747
748static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
749                                       struct si_shader_context *ctx,
750                                       const struct tgsi_full_dst_register *dst,
751                                       const struct tgsi_full_src_register *src)
752{
753	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
754	struct tgsi_shader_info *info = &ctx->shader->selector->info;
755	ubyte *name, *index, *array_first;
756	struct tgsi_full_src_register reg;
757	LLVMValueRef vertex_index = NULL;
758	LLVMValueRef param_index = NULL;
759	unsigned param_index_base, param_base;
760
761	reg = src ? *src : tgsi_full_src_register_from_dst(dst);
762
763	if (reg.Register.Dimension) {
764
765		if (reg.Dimension.Indirect)
766			vertex_index = get_indirect_index(ctx, &reg.DimIndirect,
767			                                  reg.Dimension.Index);
768		else
769			vertex_index = lp_build_const_int32(gallivm,
770			                                    reg.Dimension.Index);
771	}
772
773	/* Get information about the register. */
774	if (reg.Register.File == TGSI_FILE_INPUT) {
775		name = info->input_semantic_name;
776		index = info->input_semantic_index;
777		array_first = info->input_array_first;
778	} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
779		name = info->output_semantic_name;
780		index = info->output_semantic_index;
781		array_first = info->output_array_first;
782	} else {
783		assert(0);
784		return NULL;
785	}
786
787	if (reg.Register.Indirect) {
788		if (reg.Indirect.ArrayID)
789			param_base = array_first[reg.Indirect.ArrayID];
790		else
791			param_base = reg.Register.Index;
792
793		param_index = get_indirect_index(ctx, &reg.Indirect,
794		                                 reg.Register.Index - param_base);
795
796	} else {
797		param_base = reg.Register.Index;
798		param_index = lp_build_const_int32(gallivm, 0);
799	}
800
801	param_index_base = si_shader_io_get_unique_index(name[param_base],
802	                                                 index[param_base]);
803
804	param_index = LLVMBuildAdd(gallivm->builder, param_index,
805	                           lp_build_const_int32(gallivm, param_index_base),
806	                           "");
807
808	return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
809}
810
811/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
812 * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
813 * or v4i32 (num_channels=3,4). */
814static void build_tbuffer_store(struct si_shader_context *ctx,
815				LLVMValueRef rsrc,
816				LLVMValueRef vdata,
817				unsigned num_channels,
818				LLVMValueRef vaddr,
819				LLVMValueRef soffset,
820				unsigned inst_offset,
821				unsigned dfmt,
822				unsigned nfmt,
823				unsigned offen,
824				unsigned idxen,
825				unsigned glc,
826				unsigned slc,
827				unsigned tfe)
828{
829	struct gallivm_state *gallivm = &ctx->gallivm;
830	LLVMValueRef args[] = {
831		rsrc,
832		vdata,
833		LLVMConstInt(ctx->i32, num_channels, 0),
834		vaddr,
835		soffset,
836		LLVMConstInt(ctx->i32, inst_offset, 0),
837		LLVMConstInt(ctx->i32, dfmt, 0),
838		LLVMConstInt(ctx->i32, nfmt, 0),
839		LLVMConstInt(ctx->i32, offen, 0),
840		LLVMConstInt(ctx->i32, idxen, 0),
841		LLVMConstInt(ctx->i32, glc, 0),
842		LLVMConstInt(ctx->i32, slc, 0),
843		LLVMConstInt(ctx->i32, tfe, 0)
844	};
845
846	/* The instruction offset field has 12 bits */
847	assert(offen || inst_offset < (1 << 12));
848
849	/* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
850	unsigned func = CLAMP(num_channels, 1, 3) - 1;
851	const char *types[] = {"i32", "v2i32", "v4i32"};
852	char name[256];
853	snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
854
855	lp_build_intrinsic(gallivm->builder, name, ctx->voidt,
856			   args, ARRAY_SIZE(args), 0);
857}
858
859static void build_tbuffer_store_dwords(struct si_shader_context *ctx,
860				     LLVMValueRef rsrc,
861				     LLVMValueRef vdata,
862				     unsigned num_channels,
863				     LLVMValueRef vaddr,
864				     LLVMValueRef soffset,
865				     unsigned inst_offset)
866{
867	static unsigned dfmt[] = {
868		V_008F0C_BUF_DATA_FORMAT_32,
869		V_008F0C_BUF_DATA_FORMAT_32_32,
870		V_008F0C_BUF_DATA_FORMAT_32_32_32,
871		V_008F0C_BUF_DATA_FORMAT_32_32_32_32
872	};
873	assert(num_channels >= 1 && num_channels <= 4);
874
875	build_tbuffer_store(ctx, rsrc, vdata, num_channels, vaddr, soffset,
876			    inst_offset, dfmt[num_channels-1],
877			    V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0);
878}
879
880static LLVMValueRef build_buffer_load(struct si_shader_context *ctx,
881                                      LLVMValueRef rsrc,
882                                      int num_channels,
883                                      LLVMValueRef vindex,
884                                      LLVMValueRef voffset,
885                                      LLVMValueRef soffset,
886                                      unsigned inst_offset,
887                                      unsigned glc,
888                                      unsigned slc)
889{
890	struct gallivm_state *gallivm = &ctx->gallivm;
891	unsigned func = CLAMP(num_channels, 1, 3) - 1;
892
893	if (HAVE_LLVM >= 0x309) {
894		LLVMValueRef args[] = {
895			LLVMBuildBitCast(gallivm->builder, rsrc, ctx->v4i32, ""),
896			vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
897			LLVMConstInt(ctx->i32, inst_offset, 0),
898			LLVMConstInt(ctx->i1, glc, 0),
899			LLVMConstInt(ctx->i1, slc, 0)
900		};
901
902		LLVMTypeRef types[] = {ctx->f32, LLVMVectorType(ctx->f32, 2),
903		                       ctx->v4f32};
904		const char *type_names[] = {"f32", "v2f32", "v4f32"};
905		char name[256];
906
907		if (voffset) {
908			args[2] = LLVMBuildAdd(gallivm->builder, args[2], voffset,
909			                       "");
910		}
911
912		if (soffset) {
913			args[2] = LLVMBuildAdd(gallivm->builder, args[2], soffset,
914			                       "");
915		}
916
917		snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
918		         type_names[func]);
919
920		return lp_build_intrinsic(gallivm->builder, name, types[func], args,
921		                          ARRAY_SIZE(args), LP_FUNC_ATTR_READONLY);
922	} else {
923		LLVMValueRef args[] = {
924			LLVMBuildBitCast(gallivm->builder, rsrc, ctx->v16i8, ""),
925			voffset ? voffset : vindex,
926			soffset,
927			LLVMConstInt(ctx->i32, inst_offset, 0),
928			LLVMConstInt(ctx->i32, voffset ? 1 : 0, 0), // offen
929			LLVMConstInt(ctx->i32, vindex ? 1 : 0, 0), //idxen
930			LLVMConstInt(ctx->i32, glc, 0),
931			LLVMConstInt(ctx->i32, slc, 0),
932			LLVMConstInt(ctx->i32, 0, 0), // TFE
933		};
934
935		LLVMTypeRef types[] = {ctx->i32, LLVMVectorType(ctx->i32, 2),
936		                       ctx->v4i32};
937		const char *type_names[] = {"i32", "v2i32", "v4i32"};
938		const char *arg_type = "i32";
939		char name[256];
940
941		if (voffset && vindex) {
942			LLVMValueRef vaddr[] = {vindex, voffset};
943
944			arg_type = "v2i32";
945			args[1] = lp_build_gather_values(gallivm, vaddr, 2);
946		}
947
948		snprintf(name, sizeof(name), "llvm.SI.buffer.load.dword.%s.%s",
949		         type_names[func], arg_type);
950
951		return lp_build_intrinsic(gallivm->builder, name, types[func], args,
952		                          ARRAY_SIZE(args), LP_FUNC_ATTR_READONLY);
953	}
954}
955
956static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
957                                enum tgsi_opcode_type type, unsigned swizzle,
958                                LLVMValueRef buffer, LLVMValueRef offset,
959                                LLVMValueRef base)
960{
961	struct si_shader_context *ctx = si_shader_context(bld_base);
962	struct gallivm_state *gallivm = bld_base->base.gallivm;
963	LLVMValueRef value, value2;
964	LLVMTypeRef llvm_type = tgsi2llvmtype(bld_base, type);
965	LLVMTypeRef vec_type = LLVMVectorType(llvm_type, 4);
966
967	if (swizzle == ~0) {
968		value = build_buffer_load(ctx, buffer, 4, NULL, base, offset,
969		                          0, 1, 0);
970
971		return LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
972	}
973
974	if (!tgsi_type_is_64bit(type)) {
975		value = build_buffer_load(ctx, buffer, 4, NULL, base, offset,
976		                          0, 1, 0);
977
978		value = LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
979		return LLVMBuildExtractElement(gallivm->builder, value,
980		                    lp_build_const_int32(gallivm, swizzle), "");
981	}
982
983	value = build_buffer_load(ctx, buffer, 1, NULL, base, offset,
984	                          swizzle * 4, 1, 0);
985
986	value2 = build_buffer_load(ctx, buffer, 1, NULL, base, offset,
987	                           swizzle * 4 + 4, 1, 0);
988
989	return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
990}
991
992/**
993 * Load from LDS.
994 *
995 * \param type		output value type
996 * \param swizzle	offset (typically 0..3); it can be ~0, which loads a vec4
997 * \param dw_addr	address in dwords
998 */
999static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1000			     enum tgsi_opcode_type type, unsigned swizzle,
1001			     LLVMValueRef dw_addr)
1002{
1003	struct si_shader_context *ctx = si_shader_context(bld_base);
1004	struct gallivm_state *gallivm = bld_base->base.gallivm;
1005	LLVMValueRef value;
1006
1007	if (swizzle == ~0) {
1008		LLVMValueRef values[TGSI_NUM_CHANNELS];
1009
1010		for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1011			values[chan] = lds_load(bld_base, type, chan, dw_addr);
1012
1013		return lp_build_gather_values(bld_base->base.gallivm, values,
1014					      TGSI_NUM_CHANNELS);
1015	}
1016
1017	dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
1018			    lp_build_const_int32(gallivm, swizzle));
1019
1020	value = build_indexed_load(ctx, ctx->lds, dw_addr, false);
1021	if (tgsi_type_is_64bit(type)) {
1022		LLVMValueRef value2;
1023		dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
1024				       lp_build_const_int32(gallivm, 1));
1025		value2 = build_indexed_load(ctx, ctx->lds, dw_addr, false);
1026		return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1027	}
1028
1029	return LLVMBuildBitCast(gallivm->builder, value,
1030				tgsi2llvmtype(bld_base, type), "");
1031}
1032
1033/**
1034 * Store to LDS.
1035 *
1036 * \param swizzle	offset (typically 0..3)
1037 * \param dw_addr	address in dwords
1038 * \param value		value to store
1039 */
1040static void lds_store(struct lp_build_tgsi_context *bld_base,
1041		      unsigned swizzle, LLVMValueRef dw_addr,
1042		      LLVMValueRef value)
1043{
1044	struct si_shader_context *ctx = si_shader_context(bld_base);
1045	struct gallivm_state *gallivm = bld_base->base.gallivm;
1046
1047	dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
1048			    lp_build_const_int32(gallivm, swizzle));
1049
1050	value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
1051	build_indexed_store(ctx, ctx->lds,
1052			    dw_addr, value);
1053}
1054
1055static LLVMValueRef fetch_input_tcs(
1056	struct lp_build_tgsi_context *bld_base,
1057	const struct tgsi_full_src_register *reg,
1058	enum tgsi_opcode_type type, unsigned swizzle)
1059{
1060	struct si_shader_context *ctx = si_shader_context(bld_base);
1061	LLVMValueRef dw_addr, stride;
1062
1063	stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
1064	dw_addr = get_tcs_in_current_patch_offset(ctx);
1065	dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1066
1067	return lds_load(bld_base, type, swizzle, dw_addr);
1068}
1069
1070static LLVMValueRef fetch_output_tcs(
1071		struct lp_build_tgsi_context *bld_base,
1072		const struct tgsi_full_src_register *reg,
1073		enum tgsi_opcode_type type, unsigned swizzle)
1074{
1075	struct si_shader_context *ctx = si_shader_context(bld_base);
1076	LLVMValueRef dw_addr, stride;
1077
1078	if (reg->Register.Dimension) {
1079		stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
1080		dw_addr = get_tcs_out_current_patch_offset(ctx);
1081		dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1082	} else {
1083		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1084		dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1085	}
1086
1087	return lds_load(bld_base, type, swizzle, dw_addr);
1088}
1089
1090static LLVMValueRef fetch_input_tes(
1091	struct lp_build_tgsi_context *bld_base,
1092	const struct tgsi_full_src_register *reg,
1093	enum tgsi_opcode_type type, unsigned swizzle)
1094{
1095	struct si_shader_context *ctx = si_shader_context(bld_base);
1096	struct gallivm_state *gallivm = bld_base->base.gallivm;
1097	LLVMValueRef rw_buffers, buffer, base, addr;
1098
1099	rw_buffers = LLVMGetParam(ctx->main_fn,
1100				  SI_PARAM_RW_BUFFERS);
1101	buffer = build_indexed_load_const(ctx, rw_buffers,
1102			lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
1103
1104	base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1105	addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1106
1107	return buffer_load(bld_base, type, swizzle, buffer, base, addr);
1108}
1109
1110static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1111			     const struct tgsi_full_instruction *inst,
1112			     const struct tgsi_opcode_info *info,
1113			     LLVMValueRef dst[4])
1114{
1115	struct si_shader_context *ctx = si_shader_context(bld_base);
1116	struct gallivm_state *gallivm = bld_base->base.gallivm;
1117	const struct tgsi_full_dst_register *reg = &inst->Dst[0];
1118	unsigned chan_index;
1119	LLVMValueRef dw_addr, stride;
1120	LLVMValueRef rw_buffers, buffer, base, buf_addr;
1121	LLVMValueRef values[4];
1122
1123	/* Only handle per-patch and per-vertex outputs here.
1124	 * Vectors will be lowered to scalars and this function will be called again.
1125	 */
1126	if (reg->Register.File != TGSI_FILE_OUTPUT ||
1127	    (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1128		si_llvm_emit_store(bld_base, inst, info, dst);
1129		return;
1130	}
1131
1132	if (reg->Register.Dimension) {
1133		stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
1134		dw_addr = get_tcs_out_current_patch_offset(ctx);
1135		dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1136	} else {
1137		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1138		dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1139	}
1140
1141	rw_buffers = LLVMGetParam(ctx->main_fn,
1142				  SI_PARAM_RW_BUFFERS);
1143	buffer = build_indexed_load_const(ctx, rw_buffers,
1144			lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
1145
1146	base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1147	buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1148
1149
1150	TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
1151		LLVMValueRef value = dst[chan_index];
1152
1153		if (inst->Instruction.Saturate)
1154			value = si_llvm_saturate(bld_base, value);
1155
1156		lds_store(bld_base, chan_index, dw_addr, value);
1157
1158		value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
1159		values[chan_index] = value;
1160
1161		if (inst->Dst[0].Register.WriteMask != 0xF) {
1162			build_tbuffer_store_dwords(ctx, buffer, value, 1,
1163			                           buf_addr, base,
1164			                           4 * chan_index);
1165		}
1166	}
1167
1168	if (inst->Dst[0].Register.WriteMask == 0xF) {
1169		LLVMValueRef value = lp_build_gather_values(bld_base->base.gallivm,
1170		                                            values, 4);
1171		build_tbuffer_store_dwords(ctx, buffer, value, 4, buf_addr,
1172		                           base, 0);
1173	}
1174}
1175
1176static LLVMValueRef fetch_input_gs(
1177	struct lp_build_tgsi_context *bld_base,
1178	const struct tgsi_full_src_register *reg,
1179	enum tgsi_opcode_type type,
1180	unsigned swizzle)
1181{
1182	struct lp_build_context *base = &bld_base->base;
1183	struct si_shader_context *ctx = si_shader_context(bld_base);
1184	struct si_shader *shader = ctx->shader;
1185	struct lp_build_context *uint =	&ctx->bld_base.uint_bld;
1186	struct gallivm_state *gallivm = base->gallivm;
1187	LLVMValueRef vtx_offset;
1188	LLVMValueRef args[9];
1189	unsigned vtx_offset_param;
1190	struct tgsi_shader_info *info = &shader->selector->info;
1191	unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1192	unsigned semantic_index = info->input_semantic_index[reg->Register.Index];
1193	unsigned param;
1194	LLVMValueRef value;
1195
1196	if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1197		return get_primitive_id(bld_base, swizzle);
1198
1199	if (!reg->Register.Dimension)
1200		return NULL;
1201
1202	if (swizzle == ~0) {
1203		LLVMValueRef values[TGSI_NUM_CHANNELS];
1204		unsigned chan;
1205		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1206			values[chan] = fetch_input_gs(bld_base, reg, type, chan);
1207		}
1208		return lp_build_gather_values(bld_base->base.gallivm, values,
1209					      TGSI_NUM_CHANNELS);
1210	}
1211
1212	/* Get the vertex offset parameter */
1213	vtx_offset_param = reg->Dimension.Index;
1214	if (vtx_offset_param < 2) {
1215		vtx_offset_param += SI_PARAM_VTX0_OFFSET;
1216	} else {
1217		assert(vtx_offset_param < 6);
1218		vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2;
1219	}
1220	vtx_offset = lp_build_mul_imm(uint,
1221				      LLVMGetParam(ctx->main_fn,
1222						   vtx_offset_param),
1223				      4);
1224
1225	param = si_shader_io_get_unique_index(semantic_name, semantic_index);
1226	args[0] = ctx->esgs_ring;
1227	args[1] = vtx_offset;
1228	args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle) * 256);
1229	args[3] = uint->zero;
1230	args[4] = uint->one;  /* OFFEN */
1231	args[5] = uint->zero; /* IDXEN */
1232	args[6] = uint->one;  /* GLC */
1233	args[7] = uint->zero; /* SLC */
1234	args[8] = uint->zero; /* TFE */
1235
1236	value = lp_build_intrinsic(gallivm->builder,
1237				   "llvm.SI.buffer.load.dword.i32.i32",
1238				   ctx->i32, args, 9,
1239				   LP_FUNC_ATTR_READONLY);
1240	if (tgsi_type_is_64bit(type)) {
1241		LLVMValueRef value2;
1242		args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle + 1) * 256);
1243		value2 = lp_build_intrinsic(gallivm->builder,
1244					    "llvm.SI.buffer.load.dword.i32.i32",
1245					    ctx->i32, args, 9,
1246					    LP_FUNC_ATTR_READONLY);
1247		return si_llvm_emit_fetch_64bit(bld_base, type,
1248						value, value2);
1249	}
1250	return LLVMBuildBitCast(gallivm->builder,
1251				value,
1252				tgsi2llvmtype(bld_base, type), "");
1253}
1254
1255static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1256{
1257	switch (interpolate) {
1258	case TGSI_INTERPOLATE_CONSTANT:
1259		return 0;
1260
1261	case TGSI_INTERPOLATE_LINEAR:
1262		if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1263			return SI_PARAM_LINEAR_SAMPLE;
1264		else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1265			return SI_PARAM_LINEAR_CENTROID;
1266		else
1267			return SI_PARAM_LINEAR_CENTER;
1268		break;
1269	case TGSI_INTERPOLATE_COLOR:
1270	case TGSI_INTERPOLATE_PERSPECTIVE:
1271		if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1272			return SI_PARAM_PERSP_SAMPLE;
1273		else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1274			return SI_PARAM_PERSP_CENTROID;
1275		else
1276			return SI_PARAM_PERSP_CENTER;
1277		break;
1278	default:
1279		fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1280		return -1;
1281	}
1282}
1283
1284static LLVMValueRef build_fs_interp(
1285	struct lp_build_tgsi_context *bld_base,
1286	LLVMValueRef llvm_chan,
1287	LLVMValueRef attr_number,
1288	LLVMValueRef params,
1289	LLVMValueRef i,
1290	LLVMValueRef j) {
1291
1292	struct si_shader_context *ctx = si_shader_context(bld_base);
1293	struct gallivm_state *gallivm = bld_base->base.gallivm;
1294	LLVMValueRef args[5];
1295	LLVMValueRef p1;
1296	if (HAVE_LLVM < 0x0400) {
1297		LLVMValueRef ij[2];
1298		ij[0] = LLVMBuildBitCast(gallivm->builder, i, ctx->i32, "");
1299		ij[1] = LLVMBuildBitCast(gallivm->builder, j, ctx->i32, "");
1300
1301		args[0] = llvm_chan;
1302		args[1] = attr_number;
1303		args[2] = params;
1304		args[3] = lp_build_gather_values(gallivm, ij, 2);
1305		return lp_build_intrinsic(gallivm->builder, "llvm.SI.fs.interp",
1306					  ctx->f32, args, 4,
1307					  LP_FUNC_ATTR_READNONE);
1308	}
1309
1310	args[0] = i;
1311	args[1] = llvm_chan;
1312	args[2] = attr_number;
1313	args[3] = params;
1314
1315	p1 = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.p1",
1316				ctx->f32, args, 4, LP_FUNC_ATTR_READNONE);
1317
1318	args[0] = p1;
1319	args[1] = j;
1320	args[2] = llvm_chan;
1321	args[3] = attr_number;
1322	args[4] = params;
1323
1324	return lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.p2",
1325				  ctx->f32, args, 5, LP_FUNC_ATTR_READNONE);
1326}
1327
1328static LLVMValueRef build_fs_interp_mov(
1329	struct lp_build_tgsi_context *bld_base,
1330	LLVMValueRef parameter,
1331	LLVMValueRef llvm_chan,
1332	LLVMValueRef attr_number,
1333	LLVMValueRef params) {
1334
1335	struct si_shader_context *ctx = si_shader_context(bld_base);
1336	struct gallivm_state *gallivm = bld_base->base.gallivm;
1337	LLVMValueRef args[4];
1338	if (HAVE_LLVM < 0x0400) {
1339		args[0] = llvm_chan;
1340		args[1] = attr_number;
1341		args[2] = params;
1342
1343		return lp_build_intrinsic(gallivm->builder,
1344					  "llvm.SI.fs.constant",
1345					  ctx->f32, args, 3,
1346					  LP_FUNC_ATTR_READNONE);
1347	}
1348
1349	args[0] = parameter;
1350	args[1] = llvm_chan;
1351	args[2] = attr_number;
1352	args[3] = params;
1353
1354	return lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.mov",
1355				  ctx->f32, args, 4, LP_FUNC_ATTR_READNONE);
1356}
1357
1358/**
1359 * Interpolate a fragment shader input.
1360 *
1361 * @param ctx		context
1362 * @param input_index		index of the input in hardware
1363 * @param semantic_name		TGSI_SEMANTIC_*
1364 * @param semantic_index	semantic index
1365 * @param num_interp_inputs	number of all interpolated inputs (= BCOLOR offset)
1366 * @param colors_read_mask	color components read (4 bits for each color, 8 bits in total)
1367 * @param interp_param		interpolation weights (i,j)
1368 * @param prim_mask		SI_PARAM_PRIM_MASK
1369 * @param face			SI_PARAM_FRONT_FACE
1370 * @param result		the return value (4 components)
1371 */
1372static void interp_fs_input(struct si_shader_context *ctx,
1373			    unsigned input_index,
1374			    unsigned semantic_name,
1375			    unsigned semantic_index,
1376			    unsigned num_interp_inputs,
1377			    unsigned colors_read_mask,
1378			    LLVMValueRef interp_param,
1379			    LLVMValueRef prim_mask,
1380			    LLVMValueRef face,
1381			    LLVMValueRef result[4])
1382{
1383	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1384	struct lp_build_context *base = &bld_base->base;
1385	struct lp_build_context *uint =	&bld_base->uint_bld;
1386	struct gallivm_state *gallivm = base->gallivm;
1387	LLVMValueRef attr_number;
1388	LLVMValueRef i, j;
1389
1390	unsigned chan;
1391
1392	/* fs.constant returns the param from the middle vertex, so it's not
1393	 * really useful for flat shading. It's meant to be used for custom
1394	 * interpolation (but the intrinsic can't fetch from the other two
1395	 * vertices).
1396	 *
1397	 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1398	 * to do the right thing. The only reason we use fs.constant is that
1399	 * fs.interp cannot be used on integers, because they can be equal
1400	 * to NaN.
1401	 *
1402	 * When interp is false we will use fs.constant or for newer llvm,
1403         * amdgcn.interp.mov.
1404	 */
1405	bool interp = interp_param != NULL;
1406
1407	attr_number = lp_build_const_int32(gallivm, input_index);
1408
1409	if (interp) {
1410		interp_param = LLVMBuildBitCast(gallivm->builder, interp_param,
1411						LLVMVectorType(ctx->f32, 2), "");
1412
1413		i = LLVMBuildExtractElement(gallivm->builder, interp_param,
1414						uint->zero, "");
1415		j = LLVMBuildExtractElement(gallivm->builder, interp_param,
1416						uint->one, "");
1417	}
1418
1419	if (semantic_name == TGSI_SEMANTIC_COLOR &&
1420	    ctx->shader->key.part.ps.prolog.color_two_side) {
1421		LLVMValueRef is_face_positive;
1422		LLVMValueRef back_attr_number;
1423
1424		/* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1425		 * otherwise it's at offset "num_inputs".
1426		 */
1427		unsigned back_attr_offset = num_interp_inputs;
1428		if (semantic_index == 1 && colors_read_mask & 0xf)
1429			back_attr_offset += 1;
1430
1431		back_attr_number = lp_build_const_int32(gallivm, back_attr_offset);
1432
1433		is_face_positive = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
1434						 face, uint->zero, "");
1435
1436		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1437			LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
1438			LLVMValueRef front, back;
1439
1440			if (interp) {
1441				front = build_fs_interp(bld_base, llvm_chan,
1442							attr_number, prim_mask,
1443							i, j);
1444				back = build_fs_interp(bld_base, llvm_chan,
1445							back_attr_number, prim_mask,
1446							i, j);
1447			} else {
1448				front = build_fs_interp_mov(bld_base,
1449					lp_build_const_int32(gallivm, 2), /* P0 */
1450					llvm_chan, attr_number, prim_mask);
1451				back = build_fs_interp_mov(bld_base,
1452					lp_build_const_int32(gallivm, 2), /* P0 */
1453					llvm_chan, back_attr_number, prim_mask);
1454			}
1455
1456			result[chan] = LLVMBuildSelect(gallivm->builder,
1457						is_face_positive,
1458						front,
1459						back,
1460						"");
1461		}
1462	} else if (semantic_name == TGSI_SEMANTIC_FOG) {
1463		if (interp) {
1464			result[0] = build_fs_interp(bld_base, uint->zero,
1465						attr_number, prim_mask, i, j);
1466		} else {
1467			result[0] = build_fs_interp_mov(bld_base, uint->zero,
1468				lp_build_const_int32(gallivm, 2), /* P0 */
1469				attr_number, prim_mask);
1470		}
1471		result[1] =
1472		result[2] = lp_build_const_float(gallivm, 0.0f);
1473		result[3] = lp_build_const_float(gallivm, 1.0f);
1474	} else {
1475		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1476			LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
1477
1478			if (interp) {
1479				result[chan] = build_fs_interp(bld_base,
1480					llvm_chan, attr_number, prim_mask, i, j);
1481			} else {
1482				result[chan] = build_fs_interp_mov(bld_base,
1483					lp_build_const_int32(gallivm, 2), /* P0 */
1484					llvm_chan, attr_number, prim_mask);
1485			}
1486		}
1487	}
1488}
1489
1490static void declare_input_fs(
1491	struct si_shader_context *radeon_bld,
1492	unsigned input_index,
1493	const struct tgsi_full_declaration *decl,
1494	LLVMValueRef out[4])
1495{
1496	struct lp_build_context *base = &radeon_bld->bld_base.base;
1497	struct si_shader_context *ctx =
1498		si_shader_context(&radeon_bld->bld_base);
1499	struct si_shader *shader = ctx->shader;
1500	LLVMValueRef main_fn = radeon_bld->main_fn;
1501	LLVMValueRef interp_param = NULL;
1502	int interp_param_idx;
1503
1504	/* Get colors from input VGPRs (set by the prolog). */
1505	if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR) {
1506		unsigned i = decl->Semantic.Index;
1507		unsigned colors_read = shader->selector->info.colors_read;
1508		unsigned mask = colors_read >> (i * 4);
1509		unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1510				  (i ? util_bitcount(colors_read & 0xf) : 0);
1511
1512		out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : base->undef;
1513		out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : base->undef;
1514		out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : base->undef;
1515		out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : base->undef;
1516		return;
1517	}
1518
1519	interp_param_idx = lookup_interp_param_index(decl->Interp.Interpolate,
1520						     decl->Interp.Location);
1521	if (interp_param_idx == -1)
1522		return;
1523	else if (interp_param_idx) {
1524		interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1525	}
1526
1527	if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR &&
1528	    decl->Interp.Interpolate == TGSI_INTERPOLATE_COLOR &&
1529	    ctx->shader->key.part.ps.prolog.flatshade_colors)
1530		interp_param = NULL; /* load the constant color */
1531
1532	interp_fs_input(ctx, input_index, decl->Semantic.Name,
1533			decl->Semantic.Index, shader->selector->info.num_inputs,
1534			shader->selector->info.colors_read, interp_param,
1535			LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
1536			LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1537			&out[0]);
1538}
1539
1540static LLVMValueRef get_sample_id(struct si_shader_context *radeon_bld)
1541{
1542	return unpack_param(si_shader_context(&radeon_bld->bld_base),
1543			    SI_PARAM_ANCILLARY, 8, 4);
1544}
1545
1546/**
1547 * Set range metadata on an instruction.  This can only be used on load and
1548 * call instructions.  If you know an instruction can only produce the values
1549 * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
1550 * \p lo is the minimum value inclusive.
1551 * \p hi is the maximum value exclusive.
1552 */
1553static void set_range_metadata(struct si_shader_context *ctx,
1554			       LLVMValueRef value, unsigned lo, unsigned hi)
1555{
1556	LLVMValueRef range_md, md_args[2];
1557	LLVMTypeRef type = LLVMTypeOf(value);
1558	LLVMContextRef context = LLVMGetTypeContext(type);
1559
1560	md_args[0] = LLVMConstInt(type, lo, false);
1561	md_args[1] = LLVMConstInt(type, hi, false);
1562	range_md = LLVMMDNodeInContext(context, md_args, 2);
1563	LLVMSetMetadata(value, ctx->range_md_kind, range_md);
1564}
1565
1566static LLVMValueRef get_thread_id(struct si_shader_context *ctx)
1567{
1568	struct gallivm_state *gallivm = &ctx->gallivm;
1569	LLVMValueRef tid;
1570
1571	if (HAVE_LLVM < 0x0308) {
1572		tid = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid",
1573				ctx->i32,   NULL, 0, LP_FUNC_ATTR_READNONE);
1574	} else {
1575		LLVMValueRef tid_args[2];
1576		tid_args[0] = lp_build_const_int32(gallivm, 0xffffffff);
1577		tid_args[1] = lp_build_const_int32(gallivm, 0);
1578		tid_args[1] = lp_build_intrinsic(gallivm->builder,
1579					"llvm.amdgcn.mbcnt.lo", ctx->i32,
1580					tid_args, 2, LP_FUNC_ATTR_READNONE);
1581
1582		tid = lp_build_intrinsic(gallivm->builder,
1583					"llvm.amdgcn.mbcnt.hi", ctx->i32,
1584					tid_args, 2, LP_FUNC_ATTR_READNONE);
1585	}
1586	set_range_metadata(ctx, tid, 0, 64);
1587	return tid;
1588}
1589
1590/**
1591 * Load a dword from a constant buffer.
1592 */
1593static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1594				      LLVMValueRef resource,
1595				      LLVMValueRef offset)
1596{
1597	LLVMBuilderRef builder = ctx->gallivm.builder;
1598	LLVMValueRef args[2] = {resource, offset};
1599
1600	return lp_build_intrinsic(builder, "llvm.SI.load.const", ctx->f32, args, 2,
1601			       LP_FUNC_ATTR_READNONE);
1602}
1603
1604static LLVMValueRef load_sample_position(struct si_shader_context *radeon_bld, LLVMValueRef sample_id)
1605{
1606	struct si_shader_context *ctx =
1607		si_shader_context(&radeon_bld->bld_base);
1608	struct lp_build_context *uint_bld = &radeon_bld->bld_base.uint_bld;
1609	struct gallivm_state *gallivm = &radeon_bld->gallivm;
1610	LLVMBuilderRef builder = gallivm->builder;
1611	LLVMValueRef desc = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
1612	LLVMValueRef buf_index = lp_build_const_int32(gallivm, SI_PS_CONST_SAMPLE_POSITIONS);
1613	LLVMValueRef resource = build_indexed_load_const(ctx, desc, buf_index);
1614
1615	/* offset = sample_id * 8  (8 = 2 floats containing samplepos.xy) */
1616	LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
1617	LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, lp_build_const_int32(gallivm, 4), "");
1618
1619	LLVMValueRef pos[4] = {
1620		buffer_load_const(ctx, resource, offset0),
1621		buffer_load_const(ctx, resource, offset1),
1622		lp_build_const_float(gallivm, 0),
1623		lp_build_const_float(gallivm, 0)
1624	};
1625
1626	return lp_build_gather_values(gallivm, pos, 4);
1627}
1628
1629static void declare_system_value(
1630	struct si_shader_context *radeon_bld,
1631	unsigned index,
1632	const struct tgsi_full_declaration *decl)
1633{
1634	struct si_shader_context *ctx =
1635		si_shader_context(&radeon_bld->bld_base);
1636	struct lp_build_context *bld = &radeon_bld->bld_base.base;
1637	struct gallivm_state *gallivm = &radeon_bld->gallivm;
1638	LLVMValueRef value = 0;
1639
1640	switch (decl->Semantic.Name) {
1641	case TGSI_SEMANTIC_INSTANCEID:
1642		value = LLVMGetParam(radeon_bld->main_fn,
1643				     ctx->param_instance_id);
1644		break;
1645
1646	case TGSI_SEMANTIC_VERTEXID:
1647		value = LLVMBuildAdd(gallivm->builder,
1648				     LLVMGetParam(radeon_bld->main_fn,
1649						  ctx->param_vertex_id),
1650				     LLVMGetParam(radeon_bld->main_fn,
1651						  SI_PARAM_BASE_VERTEX), "");
1652		break;
1653
1654	case TGSI_SEMANTIC_VERTEXID_NOBASE:
1655		value = LLVMGetParam(radeon_bld->main_fn,
1656				     ctx->param_vertex_id);
1657		break;
1658
1659	case TGSI_SEMANTIC_BASEVERTEX:
1660		value = LLVMGetParam(radeon_bld->main_fn,
1661				     SI_PARAM_BASE_VERTEX);
1662		break;
1663
1664	case TGSI_SEMANTIC_BASEINSTANCE:
1665		value = LLVMGetParam(radeon_bld->main_fn,
1666				     SI_PARAM_START_INSTANCE);
1667		break;
1668
1669	case TGSI_SEMANTIC_DRAWID:
1670		value = LLVMGetParam(radeon_bld->main_fn,
1671				     SI_PARAM_DRAWID);
1672		break;
1673
1674	case TGSI_SEMANTIC_INVOCATIONID:
1675		if (ctx->type == PIPE_SHADER_TESS_CTRL)
1676			value = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
1677		else if (ctx->type == PIPE_SHADER_GEOMETRY)
1678			value = LLVMGetParam(radeon_bld->main_fn,
1679					     SI_PARAM_GS_INSTANCE_ID);
1680		else
1681			assert(!"INVOCATIONID not implemented");
1682		break;
1683
1684	case TGSI_SEMANTIC_POSITION:
1685	{
1686		LLVMValueRef pos[4] = {
1687			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
1688			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
1689			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Z_FLOAT),
1690			lp_build_emit_llvm_unary(&radeon_bld->bld_base, TGSI_OPCODE_RCP,
1691						 LLVMGetParam(radeon_bld->main_fn,
1692							      SI_PARAM_POS_W_FLOAT)),
1693		};
1694		value = lp_build_gather_values(gallivm, pos, 4);
1695		break;
1696	}
1697
1698	case TGSI_SEMANTIC_FACE:
1699		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_FRONT_FACE);
1700		break;
1701
1702	case TGSI_SEMANTIC_SAMPLEID:
1703		value = get_sample_id(radeon_bld);
1704		break;
1705
1706	case TGSI_SEMANTIC_SAMPLEPOS: {
1707		LLVMValueRef pos[4] = {
1708			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
1709			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
1710			lp_build_const_float(gallivm, 0),
1711			lp_build_const_float(gallivm, 0)
1712		};
1713		pos[0] = lp_build_emit_llvm_unary(&radeon_bld->bld_base,
1714						  TGSI_OPCODE_FRC, pos[0]);
1715		pos[1] = lp_build_emit_llvm_unary(&radeon_bld->bld_base,
1716						  TGSI_OPCODE_FRC, pos[1]);
1717		value = lp_build_gather_values(gallivm, pos, 4);
1718		break;
1719	}
1720
1721	case TGSI_SEMANTIC_SAMPLEMASK:
1722		/* This can only occur with the OpenGL Core profile, which
1723		 * doesn't support smoothing.
1724		 */
1725		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_SAMPLE_COVERAGE);
1726		break;
1727
1728	case TGSI_SEMANTIC_TESSCOORD:
1729	{
1730		LLVMValueRef coord[4] = {
1731			LLVMGetParam(radeon_bld->main_fn, ctx->param_tes_u),
1732			LLVMGetParam(radeon_bld->main_fn, ctx->param_tes_v),
1733			bld->zero,
1734			bld->zero
1735		};
1736
1737		/* For triangles, the vector should be (u, v, 1-u-v). */
1738		if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1739		    PIPE_PRIM_TRIANGLES)
1740			coord[2] = lp_build_sub(bld, bld->one,
1741						lp_build_add(bld, coord[0], coord[1]));
1742
1743		value = lp_build_gather_values(gallivm, coord, 4);
1744		break;
1745	}
1746
1747	case TGSI_SEMANTIC_VERTICESIN:
1748		if (ctx->type == PIPE_SHADER_TESS_CTRL)
1749			value = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 26, 6);
1750		else if (ctx->type == PIPE_SHADER_TESS_EVAL)
1751			value = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 7);
1752		else
1753			assert(!"invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
1754		break;
1755
1756	case TGSI_SEMANTIC_TESSINNER:
1757	case TGSI_SEMANTIC_TESSOUTER:
1758	{
1759		LLVMValueRef rw_buffers, buffer, base, addr;
1760		int param = si_shader_io_get_unique_index(decl->Semantic.Name, 0);
1761
1762		rw_buffers = LLVMGetParam(ctx->main_fn,
1763					SI_PARAM_RW_BUFFERS);
1764		buffer = build_indexed_load_const(ctx, rw_buffers,
1765		        lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
1766
1767		base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
1768		addr = get_tcs_tes_buffer_address(ctx, NULL,
1769		                          lp_build_const_int32(gallivm, param));
1770
1771		value = buffer_load(&radeon_bld->bld_base, TGSI_TYPE_FLOAT,
1772		                    ~0, buffer, base, addr);
1773
1774		break;
1775	}
1776
1777	case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
1778	case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
1779	{
1780		LLVMValueRef buf, slot, val[4];
1781		int i, offset;
1782
1783		slot = lp_build_const_int32(gallivm, SI_HS_CONST_DEFAULT_TESS_LEVELS);
1784		buf = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
1785		buf = build_indexed_load_const(ctx, buf, slot);
1786		offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
1787
1788		for (i = 0; i < 4; i++)
1789			val[i] = buffer_load_const(ctx, buf,
1790						   lp_build_const_int32(gallivm, (offset + i) * 4));
1791		value = lp_build_gather_values(gallivm, val, 4);
1792		break;
1793	}
1794
1795	case TGSI_SEMANTIC_PRIMID:
1796		value = get_primitive_id(&radeon_bld->bld_base, 0);
1797		break;
1798
1799	case TGSI_SEMANTIC_GRID_SIZE:
1800		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_GRID_SIZE);
1801		break;
1802
1803	case TGSI_SEMANTIC_BLOCK_SIZE:
1804	{
1805		LLVMValueRef values[3];
1806		unsigned i;
1807		unsigned *properties = ctx->shader->selector->info.properties;
1808
1809		if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1810			unsigned sizes[3] = {
1811				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1812				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1813				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1814			};
1815
1816			for (i = 0; i < 3; ++i)
1817				values[i] = lp_build_const_int32(gallivm, sizes[i]);
1818
1819			value = lp_build_gather_values(gallivm, values, 3);
1820		} else {
1821			value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BLOCK_SIZE);
1822		}
1823		break;
1824	}
1825
1826	case TGSI_SEMANTIC_BLOCK_ID:
1827		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BLOCK_ID);
1828		break;
1829
1830	case TGSI_SEMANTIC_THREAD_ID:
1831		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_THREAD_ID);
1832		break;
1833
1834	case TGSI_SEMANTIC_HELPER_INVOCATION:
1835		if (HAVE_LLVM >= 0x0309) {
1836			value = lp_build_intrinsic(gallivm->builder,
1837						   "llvm.amdgcn.ps.live",
1838						   ctx->i1, NULL, 0,
1839						   LP_FUNC_ATTR_READNONE);
1840			value = LLVMBuildNot(gallivm->builder, value, "");
1841			value = LLVMBuildSExt(gallivm->builder, value, ctx->i32, "");
1842		} else {
1843			assert(!"TGSI_SEMANTIC_HELPER_INVOCATION unsupported");
1844			return;
1845		}
1846		break;
1847
1848	default:
1849		assert(!"unknown system value");
1850		return;
1851	}
1852
1853	radeon_bld->system_values[index] = value;
1854}
1855
1856static void declare_compute_memory(struct si_shader_context *radeon_bld,
1857                                   const struct tgsi_full_declaration *decl)
1858{
1859	struct si_shader_context *ctx =
1860		si_shader_context(&radeon_bld->bld_base);
1861	struct si_shader_selector *sel = ctx->shader->selector;
1862	struct gallivm_state *gallivm = &radeon_bld->gallivm;
1863
1864	LLVMTypeRef i8p = LLVMPointerType(ctx->i8, LOCAL_ADDR_SPACE);
1865	LLVMValueRef var;
1866
1867	assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
1868	assert(decl->Range.First == decl->Range.Last);
1869	assert(!ctx->shared_memory);
1870
1871	var = LLVMAddGlobalInAddressSpace(gallivm->module,
1872	                                  LLVMArrayType(ctx->i8, sel->local_size),
1873	                                  "compute_lds",
1874	                                  LOCAL_ADDR_SPACE);
1875	LLVMSetAlignment(var, 4);
1876
1877	ctx->shared_memory = LLVMBuildBitCast(gallivm->builder, var, i8p, "");
1878}
1879
1880static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
1881{
1882	LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
1883					     SI_PARAM_CONST_BUFFERS);
1884
1885	return build_indexed_load_const(ctx, list_ptr,
1886					LLVMConstInt(ctx->i32, i, 0));
1887}
1888
1889static LLVMValueRef fetch_constant(
1890	struct lp_build_tgsi_context *bld_base,
1891	const struct tgsi_full_src_register *reg,
1892	enum tgsi_opcode_type type,
1893	unsigned swizzle)
1894{
1895	struct si_shader_context *ctx = si_shader_context(bld_base);
1896	struct lp_build_context *base = &bld_base->base;
1897	const struct tgsi_ind_register *ireg = &reg->Indirect;
1898	unsigned buf, idx;
1899
1900	LLVMValueRef addr, bufp;
1901	LLVMValueRef result;
1902
1903	if (swizzle == LP_CHAN_ALL) {
1904		unsigned chan;
1905		LLVMValueRef values[4];
1906		for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
1907			values[chan] = fetch_constant(bld_base, reg, type, chan);
1908
1909		return lp_build_gather_values(bld_base->base.gallivm, values, 4);
1910	}
1911
1912	buf = reg->Register.Dimension ? reg->Dimension.Index : 0;
1913	idx = reg->Register.Index * 4 + swizzle;
1914
1915	if (reg->Register.Dimension && reg->Dimension.Indirect) {
1916		LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_CONST_BUFFERS);
1917		LLVMValueRef index;
1918		index = get_bounded_indirect_index(ctx, &reg->DimIndirect,
1919						   reg->Dimension.Index,
1920						   SI_NUM_CONST_BUFFERS);
1921		bufp = build_indexed_load_const(ctx, ptr, index);
1922	} else
1923		bufp = load_const_buffer_desc(ctx, buf);
1924
1925	if (reg->Register.Indirect) {
1926		addr = ctx->addrs[ireg->Index][ireg->Swizzle];
1927		addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg");
1928		addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16);
1929		addr = lp_build_add(&bld_base->uint_bld, addr,
1930				    lp_build_const_int32(base->gallivm, idx * 4));
1931	} else {
1932		addr = LLVMConstInt(ctx->i32, idx * 4, 0);
1933	}
1934
1935	result = buffer_load_const(ctx, bufp, addr);
1936
1937	if (!tgsi_type_is_64bit(type))
1938		result = bitcast(bld_base, type, result);
1939	else {
1940		LLVMValueRef addr2, result2;
1941
1942		addr2 = lp_build_add(&bld_base->uint_bld, addr,
1943				     LLVMConstInt(ctx->i32, 4, 0));
1944		result2 = buffer_load_const(ctx, bufp, addr2);
1945
1946		result = si_llvm_emit_fetch_64bit(bld_base, type,
1947						  result, result2);
1948	}
1949	return result;
1950}
1951
1952/* Upper 16 bits must be zero. */
1953static LLVMValueRef si_llvm_pack_two_int16(struct gallivm_state *gallivm,
1954					   LLVMValueRef val[2])
1955{
1956	return LLVMBuildOr(gallivm->builder, val[0],
1957			   LLVMBuildShl(gallivm->builder, val[1],
1958					lp_build_const_int32(gallivm, 16),
1959					""), "");
1960}
1961
1962/* Upper 16 bits are ignored and will be dropped. */
1963static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct gallivm_state *gallivm,
1964						    LLVMValueRef val[2])
1965{
1966	LLVMValueRef v[2] = {
1967		LLVMBuildAnd(gallivm->builder, val[0],
1968			     lp_build_const_int32(gallivm, 0xffff), ""),
1969		val[1],
1970	};
1971	return si_llvm_pack_two_int16(gallivm, v);
1972}
1973
1974/* Initialize arguments for the shader export intrinsic */
1975static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
1976				     LLVMValueRef *values,
1977				     unsigned target,
1978				     LLVMValueRef *args)
1979{
1980	struct si_shader_context *ctx = si_shader_context(bld_base);
1981	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
1982	struct lp_build_context *base = &bld_base->base;
1983	struct gallivm_state *gallivm = base->gallivm;
1984	LLVMBuilderRef builder = base->gallivm->builder;
1985	LLVMValueRef val[4];
1986	unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
1987	unsigned chan;
1988	bool is_int8, is_int10;
1989
1990	/* Default is 0xf. Adjusted below depending on the format. */
1991	args[0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
1992
1993	/* Specify whether the EXEC mask represents the valid mask */
1994	args[1] = uint->zero;
1995
1996	/* Specify whether this is the last export */
1997	args[2] = uint->zero;
1998
1999	/* Specify the target we are exporting */
2000	args[3] = lp_build_const_int32(base->gallivm, target);
2001
2002	if (ctx->type == PIPE_SHADER_FRAGMENT) {
2003		const struct si_shader_key *key = &ctx->shader->key;
2004		unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2005		int cbuf = target - V_008DFC_SQ_EXP_MRT;
2006
2007		assert(cbuf >= 0 && cbuf < 8);
2008		spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2009		is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2010		is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2011	}
2012
2013	args[4] = uint->zero; /* COMPR flag */
2014	args[5] = base->undef;
2015	args[6] = base->undef;
2016	args[7] = base->undef;
2017	args[8] = base->undef;
2018
2019	switch (spi_shader_col_format) {
2020	case V_028714_SPI_SHADER_ZERO:
2021		args[0] = uint->zero; /* writemask */
2022		args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
2023		break;
2024
2025	case V_028714_SPI_SHADER_32_R:
2026		args[0] = uint->one; /* writemask */
2027		args[5] = values[0];
2028		break;
2029
2030	case V_028714_SPI_SHADER_32_GR:
2031		args[0] = lp_build_const_int32(base->gallivm, 0x3); /* writemask */
2032		args[5] = values[0];
2033		args[6] = values[1];
2034		break;
2035
2036	case V_028714_SPI_SHADER_32_AR:
2037		args[0] = lp_build_const_int32(base->gallivm, 0x9); /* writemask */
2038		args[5] = values[0];
2039		args[8] = values[3];
2040		break;
2041
2042	case V_028714_SPI_SHADER_FP16_ABGR:
2043		args[4] = uint->one; /* COMPR flag */
2044
2045		for (chan = 0; chan < 2; chan++) {
2046			LLVMValueRef pack_args[2] = {
2047				values[2 * chan],
2048				values[2 * chan + 1]
2049			};
2050			LLVMValueRef packed;
2051
2052			packed = lp_build_intrinsic(base->gallivm->builder,
2053						    "llvm.SI.packf16",
2054						    ctx->i32, pack_args, 2,
2055						    LP_FUNC_ATTR_READNONE);
2056			args[chan + 5] =
2057				LLVMBuildBitCast(base->gallivm->builder,
2058						 packed, ctx->f32, "");
2059		}
2060		break;
2061
2062	case V_028714_SPI_SHADER_UNORM16_ABGR:
2063		for (chan = 0; chan < 4; chan++) {
2064			val[chan] = si_llvm_saturate(bld_base, values[chan]);
2065			val[chan] = LLVMBuildFMul(builder, val[chan],
2066						  lp_build_const_float(gallivm, 65535), "");
2067			val[chan] = LLVMBuildFAdd(builder, val[chan],
2068						  lp_build_const_float(gallivm, 0.5), "");
2069			val[chan] = LLVMBuildFPToUI(builder, val[chan],
2070						    ctx->i32, "");
2071		}
2072
2073		args[4] = uint->one; /* COMPR flag */
2074		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2075				  si_llvm_pack_two_int16(gallivm, val));
2076		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2077				  si_llvm_pack_two_int16(gallivm, val+2));
2078		break;
2079
2080	case V_028714_SPI_SHADER_SNORM16_ABGR:
2081		for (chan = 0; chan < 4; chan++) {
2082			/* Clamp between [-1, 1]. */
2083			val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MIN,
2084							      values[chan],
2085							      lp_build_const_float(gallivm, 1));
2086			val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MAX,
2087							      val[chan],
2088							      lp_build_const_float(gallivm, -1));
2089			/* Convert to a signed integer in [-32767, 32767]. */
2090			val[chan] = LLVMBuildFMul(builder, val[chan],
2091						  lp_build_const_float(gallivm, 32767), "");
2092			/* If positive, add 0.5, else add -0.5. */
2093			val[chan] = LLVMBuildFAdd(builder, val[chan],
2094					LLVMBuildSelect(builder,
2095						LLVMBuildFCmp(builder, LLVMRealOGE,
2096							      val[chan], base->zero, ""),
2097						lp_build_const_float(gallivm, 0.5),
2098						lp_build_const_float(gallivm, -0.5), ""), "");
2099			val[chan] = LLVMBuildFPToSI(builder, val[chan], ctx->i32, "");
2100		}
2101
2102		args[4] = uint->one; /* COMPR flag */
2103		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2104				  si_llvm_pack_two_int32_as_int16(gallivm, val));
2105		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2106				  si_llvm_pack_two_int32_as_int16(gallivm, val+2));
2107		break;
2108
2109	case V_028714_SPI_SHADER_UINT16_ABGR: {
2110		LLVMValueRef max_rgb = lp_build_const_int32(gallivm,
2111			is_int8 ? 255 : is_int10 ? 1023 : 65535);
2112		LLVMValueRef max_alpha =
2113			!is_int10 ? max_rgb : lp_build_const_int32(gallivm, 3);
2114
2115		/* Clamp. */
2116		for (chan = 0; chan < 4; chan++) {
2117			val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
2118			val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_UMIN,
2119					val[chan],
2120					chan == 3 ? max_alpha : max_rgb);
2121		}
2122
2123		args[4] = uint->one; /* COMPR flag */
2124		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2125				  si_llvm_pack_two_int16(gallivm, val));
2126		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2127				  si_llvm_pack_two_int16(gallivm, val+2));
2128		break;
2129	}
2130
2131	case V_028714_SPI_SHADER_SINT16_ABGR: {
2132		LLVMValueRef max_rgb = lp_build_const_int32(gallivm,
2133			is_int8 ? 127 : is_int10 ? 511 : 32767);
2134		LLVMValueRef min_rgb = lp_build_const_int32(gallivm,
2135			is_int8 ? -128 : is_int10 ? -512 : -32768);
2136		LLVMValueRef max_alpha =
2137			!is_int10 ? max_rgb : lp_build_const_int32(gallivm, 1);
2138		LLVMValueRef min_alpha =
2139			!is_int10 ? min_rgb : lp_build_const_int32(gallivm, -2);
2140
2141		/* Clamp. */
2142		for (chan = 0; chan < 4; chan++) {
2143			val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
2144			val[chan] = lp_build_emit_llvm_binary(bld_base,
2145					TGSI_OPCODE_IMIN,
2146					val[chan], chan == 3 ? max_alpha : max_rgb);
2147			val[chan] = lp_build_emit_llvm_binary(bld_base,
2148					TGSI_OPCODE_IMAX,
2149					val[chan], chan == 3 ? min_alpha : min_rgb);
2150		}
2151
2152		args[4] = uint->one; /* COMPR flag */
2153		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2154				  si_llvm_pack_two_int32_as_int16(gallivm, val));
2155		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2156				  si_llvm_pack_two_int32_as_int16(gallivm, val+2));
2157		break;
2158	}
2159
2160	case V_028714_SPI_SHADER_32_ABGR:
2161		memcpy(&args[5], values, sizeof(values[0]) * 4);
2162		break;
2163	}
2164}
2165
2166static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2167			  LLVMValueRef alpha)
2168{
2169	struct si_shader_context *ctx = si_shader_context(bld_base);
2170	struct gallivm_state *gallivm = bld_base->base.gallivm;
2171
2172	if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2173		LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2174				SI_PARAM_ALPHA_REF);
2175
2176		LLVMValueRef alpha_pass =
2177			lp_build_cmp(&bld_base->base,
2178				     ctx->shader->key.part.ps.epilog.alpha_func,
2179				     alpha, alpha_ref);
2180		LLVMValueRef arg =
2181			lp_build_select(&bld_base->base,
2182					alpha_pass,
2183					lp_build_const_float(gallivm, 1.0f),
2184					lp_build_const_float(gallivm, -1.0f));
2185
2186		lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
2187				   ctx->voidt, &arg, 1, 0);
2188	} else {
2189		lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kilp",
2190				   ctx->voidt, NULL, 0, 0);
2191	}
2192}
2193
2194static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2195						  LLVMValueRef alpha,
2196						  unsigned samplemask_param)
2197{
2198	struct si_shader_context *ctx = si_shader_context(bld_base);
2199	struct gallivm_state *gallivm = bld_base->base.gallivm;
2200	LLVMValueRef coverage;
2201
2202	/* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2203	coverage = LLVMGetParam(ctx->main_fn,
2204				samplemask_param);
2205	coverage = bitcast(bld_base, TGSI_TYPE_SIGNED, coverage);
2206
2207	coverage = lp_build_intrinsic(gallivm->builder, "llvm.ctpop.i32",
2208				   ctx->i32,
2209				   &coverage, 1, LP_FUNC_ATTR_READNONE);
2210
2211	coverage = LLVMBuildUIToFP(gallivm->builder, coverage,
2212				   ctx->f32, "");
2213
2214	coverage = LLVMBuildFMul(gallivm->builder, coverage,
2215				 lp_build_const_float(gallivm,
2216					1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2217
2218	return LLVMBuildFMul(gallivm->builder, alpha, coverage, "");
2219}
2220
2221static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context *bld_base,
2222				    LLVMValueRef (*pos)[9], LLVMValueRef *out_elts)
2223{
2224	struct si_shader_context *ctx = si_shader_context(bld_base);
2225	struct lp_build_context *base = &bld_base->base;
2226	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
2227	unsigned reg_index;
2228	unsigned chan;
2229	unsigned const_chan;
2230	LLVMValueRef base_elt;
2231	LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
2232	LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm,
2233							   SI_VS_CONST_CLIP_PLANES);
2234	LLVMValueRef const_resource = build_indexed_load_const(ctx, ptr, constbuf_index);
2235
2236	for (reg_index = 0; reg_index < 2; reg_index ++) {
2237		LLVMValueRef *args = pos[2 + reg_index];
2238
2239		args[5] =
2240		args[6] =
2241		args[7] =
2242		args[8] = lp_build_const_float(base->gallivm, 0.0f);
2243
2244		/* Compute dot products of position and user clip plane vectors */
2245		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2246			for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2247				args[1] = lp_build_const_int32(base->gallivm,
2248							       ((reg_index * 4 + chan) * 4 +
2249								const_chan) * 4);
2250				base_elt = buffer_load_const(ctx, const_resource,
2251							     args[1]);
2252				args[5 + chan] =
2253					lp_build_add(base, args[5 + chan],
2254						     lp_build_mul(base, base_elt,
2255								  out_elts[const_chan]));
2256			}
2257		}
2258
2259		args[0] = lp_build_const_int32(base->gallivm, 0xf);
2260		args[1] = uint->zero;
2261		args[2] = uint->zero;
2262		args[3] = lp_build_const_int32(base->gallivm,
2263					       V_008DFC_SQ_EXP_POS + 2 + reg_index);
2264		args[4] = uint->zero;
2265	}
2266}
2267
2268static void si_dump_streamout(struct pipe_stream_output_info *so)
2269{
2270	unsigned i;
2271
2272	if (so->num_outputs)
2273		fprintf(stderr, "STREAMOUT\n");
2274
2275	for (i = 0; i < so->num_outputs; i++) {
2276		unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2277				so->output[i].start_component;
2278		fprintf(stderr, "  %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2279			i, so->output[i].output_buffer,
2280			so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2281			so->output[i].register_index,
2282			mask & 1 ? "x" : "",
2283		        mask & 2 ? "y" : "",
2284		        mask & 4 ? "z" : "",
2285		        mask & 8 ? "w" : "");
2286	}
2287}
2288
2289static void emit_streamout_output(struct si_shader_context *ctx,
2290				  LLVMValueRef const *so_buffers,
2291				  LLVMValueRef const *so_write_offsets,
2292				  struct pipe_stream_output *stream_out,
2293				  struct si_shader_output_values *shader_out)
2294{
2295	struct gallivm_state *gallivm = &ctx->gallivm;
2296	LLVMBuilderRef builder = gallivm->builder;
2297	unsigned buf_idx = stream_out->output_buffer;
2298	unsigned start = stream_out->start_component;
2299	unsigned num_comps = stream_out->num_components;
2300	LLVMValueRef out[4];
2301
2302	assert(num_comps && num_comps <= 4);
2303	if (!num_comps || num_comps > 4)
2304		return;
2305
2306	/* Load the output as int. */
2307	for (int j = 0; j < num_comps; j++) {
2308		assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2309
2310		out[j] = LLVMBuildBitCast(builder,
2311					  shader_out->values[start + j],
2312				ctx->i32, "");
2313	}
2314
2315	/* Pack the output. */
2316	LLVMValueRef vdata = NULL;
2317
2318	switch (num_comps) {
2319	case 1: /* as i32 */
2320		vdata = out[0];
2321		break;
2322	case 2: /* as v2i32 */
2323	case 3: /* as v4i32 (aligned to 4) */
2324	case 4: /* as v4i32 */
2325		vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2326		for (int j = 0; j < num_comps; j++) {
2327			vdata = LLVMBuildInsertElement(builder, vdata, out[j],
2328						       LLVMConstInt(ctx->i32, j, 0), "");
2329		}
2330		break;
2331	}
2332
2333	build_tbuffer_store_dwords(ctx, so_buffers[buf_idx],
2334				   vdata, num_comps,
2335				   so_write_offsets[buf_idx],
2336				   LLVMConstInt(ctx->i32, 0, 0),
2337				   stream_out->dst_offset * 4);
2338}
2339
2340/**
2341 * Write streamout data to buffers for vertex stream @p stream (different
2342 * vertex streams can occur for GS copy shaders).
2343 */
2344static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2345				   struct si_shader_output_values *outputs,
2346				   unsigned noutput, unsigned stream)
2347{
2348	struct si_shader_selector *sel = ctx->shader->selector;
2349	struct pipe_stream_output_info *so = &sel->so;
2350	struct gallivm_state *gallivm = &ctx->gallivm;
2351	LLVMBuilderRef builder = gallivm->builder;
2352	int i;
2353	struct lp_build_if_state if_ctx;
2354
2355	/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2356	LLVMValueRef so_vtx_count =
2357		unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2358
2359	LLVMValueRef tid = get_thread_id(ctx);
2360
2361	/* can_emit = tid < so_vtx_count; */
2362	LLVMValueRef can_emit =
2363		LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2364
2365	/* Emit the streamout code conditionally. This actually avoids
2366	 * out-of-bounds buffer access. The hw tells us via the SGPR
2367	 * (so_vtx_count) which threads are allowed to emit streamout data. */
2368	lp_build_if(&if_ctx, gallivm, can_emit);
2369	{
2370		/* The buffer offset is computed as follows:
2371		 *   ByteOffset = streamout_offset[buffer_id]*4 +
2372		 *                (streamout_write_index + thread_id)*stride[buffer_id] +
2373		 *                attrib_offset
2374                 */
2375
2376		LLVMValueRef so_write_index =
2377			LLVMGetParam(ctx->main_fn,
2378				     ctx->param_streamout_write_index);
2379
2380		/* Compute (streamout_write_index + thread_id). */
2381		so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2382
2383		/* Load the descriptor and compute the write offset for each
2384		 * enabled buffer. */
2385		LLVMValueRef so_write_offset[4] = {};
2386		LLVMValueRef so_buffers[4];
2387		LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2388						    SI_PARAM_RW_BUFFERS);
2389
2390		for (i = 0; i < 4; i++) {
2391			if (!so->stride[i])
2392				continue;
2393
2394			LLVMValueRef offset = lp_build_const_int32(gallivm,
2395								   SI_VS_STREAMOUT_BUF0 + i);
2396
2397			so_buffers[i] = build_indexed_load_const(ctx, buf_ptr, offset);
2398
2399			LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2400							      ctx->param_streamout_offset[i]);
2401			so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2402
2403			so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2404							  LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2405			so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2406		}
2407
2408		/* Write streamout data. */
2409		for (i = 0; i < so->num_outputs; i++) {
2410			unsigned reg = so->output[i].register_index;
2411
2412			if (reg >= noutput)
2413				continue;
2414
2415			if (stream != so->output[i].stream)
2416				continue;
2417
2418			emit_streamout_output(ctx, so_buffers, so_write_offset,
2419					      &so->output[i], &outputs[reg]);
2420		}
2421	}
2422	lp_build_endif(&if_ctx);
2423}
2424
2425
2426/* Generate export instructions for hardware VS shader stage */
2427static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base,
2428			      struct si_shader_output_values *outputs,
2429			      unsigned noutput)
2430{
2431	struct si_shader_context *ctx = si_shader_context(bld_base);
2432	struct si_shader *shader = ctx->shader;
2433	struct lp_build_context *base = &bld_base->base;
2434	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
2435	LLVMValueRef args[9];
2436	LLVMValueRef pos_args[4][9] = { { 0 } };
2437	LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2438	unsigned semantic_name, semantic_index;
2439	unsigned target;
2440	unsigned param_count = 0;
2441	unsigned pos_idx;
2442	int i;
2443
2444	for (i = 0; i < noutput; i++) {
2445		semantic_name = outputs[i].semantic_name;
2446		semantic_index = outputs[i].semantic_index;
2447		bool export_param = true;
2448
2449		switch (semantic_name) {
2450		case TGSI_SEMANTIC_POSITION: /* ignore these */
2451		case TGSI_SEMANTIC_PSIZE:
2452		case TGSI_SEMANTIC_CLIPVERTEX:
2453		case TGSI_SEMANTIC_EDGEFLAG:
2454			break;
2455		case TGSI_SEMANTIC_GENERIC:
2456		case TGSI_SEMANTIC_CLIPDIST:
2457			if (shader->key.opt.hw_vs.kill_outputs &
2458			    (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index)))
2459				export_param = false;
2460			break;
2461		default:
2462			if (shader->key.opt.hw_vs.kill_outputs2 &
2463			    (1u << si_shader_io_get_unique_index2(semantic_name, semantic_index)))
2464				export_param = false;
2465			break;
2466		}
2467
2468		if (outputs[i].vertex_stream[0] != 0 &&
2469		    outputs[i].vertex_stream[1] != 0 &&
2470		    outputs[i].vertex_stream[2] != 0 &&
2471		    outputs[i].vertex_stream[3] != 0)
2472			export_param = false;
2473
2474handle_semantic:
2475		/* Select the correct target */
2476		switch(semantic_name) {
2477		case TGSI_SEMANTIC_PSIZE:
2478			psize_value = outputs[i].values[0];
2479			continue;
2480		case TGSI_SEMANTIC_EDGEFLAG:
2481			edgeflag_value = outputs[i].values[0];
2482			continue;
2483		case TGSI_SEMANTIC_LAYER:
2484			layer_value = outputs[i].values[0];
2485			semantic_name = TGSI_SEMANTIC_GENERIC;
2486			goto handle_semantic;
2487		case TGSI_SEMANTIC_VIEWPORT_INDEX:
2488			viewport_index_value = outputs[i].values[0];
2489			semantic_name = TGSI_SEMANTIC_GENERIC;
2490			goto handle_semantic;
2491		case TGSI_SEMANTIC_POSITION:
2492			target = V_008DFC_SQ_EXP_POS;
2493			break;
2494		case TGSI_SEMANTIC_CLIPDIST:
2495			if (shader->key.opt.hw_vs.clip_disable) {
2496				semantic_name = TGSI_SEMANTIC_GENERIC;
2497				goto handle_semantic;
2498			}
2499			target = V_008DFC_SQ_EXP_POS + 2 + semantic_index;
2500			break;
2501		case TGSI_SEMANTIC_CLIPVERTEX:
2502			if (shader->key.opt.hw_vs.clip_disable)
2503				continue;
2504			si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values);
2505			continue;
2506		case TGSI_SEMANTIC_COLOR:
2507		case TGSI_SEMANTIC_BCOLOR:
2508		case TGSI_SEMANTIC_PRIMID:
2509		case TGSI_SEMANTIC_FOG:
2510		case TGSI_SEMANTIC_TEXCOORD:
2511		case TGSI_SEMANTIC_GENERIC:
2512			if (!export_param)
2513				continue;
2514			target = V_008DFC_SQ_EXP_PARAM + param_count;
2515			assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2516			shader->info.vs_output_param_offset[i] = param_count;
2517			param_count++;
2518			break;
2519		default:
2520			target = 0;
2521			fprintf(stderr,
2522				"Warning: SI unhandled vs output type:%d\n",
2523				semantic_name);
2524		}
2525
2526		si_llvm_init_export_args(bld_base, outputs[i].values, target, args);
2527
2528		if (target >= V_008DFC_SQ_EXP_POS &&
2529		    target <= (V_008DFC_SQ_EXP_POS + 3)) {
2530			memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
2531			       args, sizeof(args));
2532		} else {
2533			lp_build_intrinsic(base->gallivm->builder,
2534					   "llvm.SI.export", ctx->voidt,
2535					   args, 9, 0);
2536		}
2537
2538		if (semantic_name == TGSI_SEMANTIC_CLIPDIST) {
2539			semantic_name = TGSI_SEMANTIC_GENERIC;
2540			goto handle_semantic;
2541		}
2542	}
2543
2544	shader->info.nr_param_exports = param_count;
2545
2546	/* We need to add the position output manually if it's missing. */
2547	if (!pos_args[0][0]) {
2548		pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
2549		pos_args[0][1] = uint->zero; /* EXEC mask */
2550		pos_args[0][2] = uint->zero; /* last export? */
2551		pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS);
2552		pos_args[0][4] = uint->zero; /* COMPR flag */
2553		pos_args[0][5] = base->zero; /* X */
2554		pos_args[0][6] = base->zero; /* Y */
2555		pos_args[0][7] = base->zero; /* Z */
2556		pos_args[0][8] = base->one;  /* W */
2557	}
2558
2559	/* Write the misc vector (point size, edgeflag, layer, viewport). */
2560	if (shader->selector->info.writes_psize ||
2561	    shader->selector->info.writes_edgeflag ||
2562	    shader->selector->info.writes_viewport_index ||
2563	    shader->selector->info.writes_layer) {
2564		pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */
2565						      shader->selector->info.writes_psize |
2566						      (shader->selector->info.writes_edgeflag << 1) |
2567						      (shader->selector->info.writes_layer << 2) |
2568						      (shader->selector->info.writes_viewport_index << 3));
2569		pos_args[1][1] = uint->zero; /* EXEC mask */
2570		pos_args[1][2] = uint->zero; /* last export? */
2571		pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1);
2572		pos_args[1][4] = uint->zero; /* COMPR flag */
2573		pos_args[1][5] = base->zero; /* X */
2574		pos_args[1][6] = base->zero; /* Y */
2575		pos_args[1][7] = base->zero; /* Z */
2576		pos_args[1][8] = base->zero; /* W */
2577
2578		if (shader->selector->info.writes_psize)
2579			pos_args[1][5] = psize_value;
2580
2581		if (shader->selector->info.writes_edgeflag) {
2582			/* The output is a float, but the hw expects an integer
2583			 * with the first bit containing the edge flag. */
2584			edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder,
2585							 edgeflag_value,
2586							 ctx->i32, "");
2587			edgeflag_value = lp_build_min(&bld_base->int_bld,
2588						      edgeflag_value,
2589						      bld_base->int_bld.one);
2590
2591			/* The LLVM intrinsic expects a float. */
2592			pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder,
2593							  edgeflag_value,
2594							  ctx->f32, "");
2595		}
2596
2597		if (shader->selector->info.writes_layer)
2598			pos_args[1][7] = layer_value;
2599
2600		if (shader->selector->info.writes_viewport_index)
2601			pos_args[1][8] = viewport_index_value;
2602	}
2603
2604	for (i = 0; i < 4; i++)
2605		if (pos_args[i][0])
2606			shader->info.nr_pos_exports++;
2607
2608	pos_idx = 0;
2609	for (i = 0; i < 4; i++) {
2610		if (!pos_args[i][0])
2611			continue;
2612
2613		/* Specify the target we are exporting */
2614		pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++);
2615
2616		if (pos_idx == shader->info.nr_pos_exports)
2617			/* Specify that this is the last export */
2618			pos_args[i][2] = uint->one;
2619
2620		lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
2621				   ctx->voidt, pos_args[i], 9, 0);
2622	}
2623}
2624
2625/**
2626 * Forward all outputs from the vertex shader to the TES. This is only used
2627 * for the fixed function TCS.
2628 */
2629static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
2630{
2631	struct si_shader_context *ctx = si_shader_context(bld_base);
2632	struct gallivm_state *gallivm = bld_base->base.gallivm;
2633	LLVMValueRef invocation_id, rw_buffers, buffer, buffer_offset;
2634	LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
2635	uint64_t inputs;
2636
2637	invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
2638
2639	rw_buffers = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
2640	buffer = build_indexed_load_const(ctx, rw_buffers,
2641	                lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
2642
2643	buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
2644
2645	lds_vertex_stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
2646	lds_vertex_offset = LLVMBuildMul(gallivm->builder, invocation_id,
2647	                                 lds_vertex_stride, "");
2648	lds_base = get_tcs_in_current_patch_offset(ctx);
2649	lds_base = LLVMBuildAdd(gallivm->builder, lds_base, lds_vertex_offset, "");
2650
2651	inputs = ctx->shader->key.mono.tcs.inputs_to_copy;
2652	while (inputs) {
2653		unsigned i = u_bit_scan64(&inputs);
2654
2655		LLVMValueRef lds_ptr = LLVMBuildAdd(gallivm->builder, lds_base,
2656		                            lp_build_const_int32(gallivm, 4 * i),
2657		                             "");
2658
2659		LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
2660		                              invocation_id,
2661		                              lp_build_const_int32(gallivm, i));
2662
2663		LLVMValueRef value = lds_load(bld_base, TGSI_TYPE_SIGNED, ~0,
2664		                              lds_ptr);
2665
2666		build_tbuffer_store_dwords(ctx, buffer, value, 4, buffer_addr,
2667		                           buffer_offset, 0);
2668	}
2669}
2670
2671static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
2672				  LLVMValueRef rel_patch_id,
2673				  LLVMValueRef invocation_id,
2674				  LLVMValueRef tcs_out_current_patch_data_offset)
2675{
2676	struct si_shader_context *ctx = si_shader_context(bld_base);
2677	struct gallivm_state *gallivm = bld_base->base.gallivm;
2678	struct si_shader *shader = ctx->shader;
2679	unsigned tess_inner_index, tess_outer_index;
2680	LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
2681	LLVMValueRef out[6], vec0, vec1, rw_buffers, tf_base;
2682	unsigned stride, outer_comps, inner_comps, i;
2683	struct lp_build_if_state if_ctx, inner_if_ctx;
2684
2685	si_llvm_emit_barrier(NULL, bld_base, NULL);
2686
2687	/* Do this only for invocation 0, because the tess levels are per-patch,
2688	 * not per-vertex.
2689	 *
2690	 * This can't jump, because invocation 0 executes this. It should
2691	 * at least mask out the loads and stores for other invocations.
2692	 */
2693	lp_build_if(&if_ctx, gallivm,
2694		    LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
2695				  invocation_id, bld_base->uint_bld.zero, ""));
2696
2697	/* Determine the layout of one tess factor element in the buffer. */
2698	switch (shader->key.part.tcs.epilog.prim_mode) {
2699	case PIPE_PRIM_LINES:
2700		stride = 2; /* 2 dwords, 1 vec2 store */
2701		outer_comps = 2;
2702		inner_comps = 0;
2703		break;
2704	case PIPE_PRIM_TRIANGLES:
2705		stride = 4; /* 4 dwords, 1 vec4 store */
2706		outer_comps = 3;
2707		inner_comps = 1;
2708		break;
2709	case PIPE_PRIM_QUADS:
2710		stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
2711		outer_comps = 4;
2712		inner_comps = 2;
2713		break;
2714	default:
2715		assert(0);
2716		return;
2717	}
2718
2719	/* Load tess_inner and tess_outer from LDS.
2720	 * Any invocation can write them, so we can't get them from a temporary.
2721	 */
2722	tess_inner_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0);
2723	tess_outer_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0);
2724
2725	lds_base = tcs_out_current_patch_data_offset;
2726	lds_inner = LLVMBuildAdd(gallivm->builder, lds_base,
2727				 lp_build_const_int32(gallivm,
2728						      tess_inner_index * 4), "");
2729	lds_outer = LLVMBuildAdd(gallivm->builder, lds_base,
2730				 lp_build_const_int32(gallivm,
2731						      tess_outer_index * 4), "");
2732
2733	if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
2734		/* For isolines, the hardware expects tess factors in the
2735		 * reverse order from what GLSL / TGSI specify.
2736		 */
2737		out[0] = lds_load(bld_base, TGSI_TYPE_SIGNED, 1, lds_outer);
2738		out[1] = lds_load(bld_base, TGSI_TYPE_SIGNED, 0, lds_outer);
2739	} else {
2740		for (i = 0; i < outer_comps; i++)
2741			out[i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_outer);
2742		for (i = 0; i < inner_comps; i++)
2743			out[outer_comps+i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_inner);
2744	}
2745
2746	/* Convert the outputs to vectors for stores. */
2747	vec0 = lp_build_gather_values(gallivm, out, MIN2(stride, 4));
2748	vec1 = NULL;
2749
2750	if (stride > 4)
2751		vec1 = lp_build_gather_values(gallivm, out+4, stride - 4);
2752
2753	/* Get the buffer. */
2754	rw_buffers = LLVMGetParam(ctx->main_fn,
2755				  SI_PARAM_RW_BUFFERS);
2756	buffer = build_indexed_load_const(ctx, rw_buffers,
2757			lp_build_const_int32(gallivm, SI_HS_RING_TESS_FACTOR));
2758
2759	/* Get the offset. */
2760	tf_base = LLVMGetParam(ctx->main_fn,
2761			       SI_PARAM_TESS_FACTOR_OFFSET);
2762	byteoffset = LLVMBuildMul(gallivm->builder, rel_patch_id,
2763				  lp_build_const_int32(gallivm, 4 * stride), "");
2764
2765	lp_build_if(&inner_if_ctx, gallivm,
2766		    LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
2767				  rel_patch_id, bld_base->uint_bld.zero, ""));
2768
2769	/* Store the dynamic HS control word. */
2770	build_tbuffer_store_dwords(ctx, buffer,
2771	                           lp_build_const_int32(gallivm, 0x80000000),
2772	                           1, lp_build_const_int32(gallivm, 0), tf_base, 0);
2773
2774	lp_build_endif(&inner_if_ctx);
2775
2776	/* Store the tessellation factors. */
2777	build_tbuffer_store_dwords(ctx, buffer, vec0,
2778				   MIN2(stride, 4), byteoffset, tf_base, 4);
2779	if (vec1)
2780		build_tbuffer_store_dwords(ctx, buffer, vec1,
2781					   stride - 4, byteoffset, tf_base, 20);
2782	lp_build_endif(&if_ctx);
2783}
2784
2785/* This only writes the tessellation factor levels. */
2786static void si_llvm_emit_tcs_epilogue(struct lp_build_tgsi_context *bld_base)
2787{
2788	struct si_shader_context *ctx = si_shader_context(bld_base);
2789	LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
2790
2791	si_copy_tcs_inputs(bld_base);
2792
2793	rel_patch_id = get_rel_patch_id(ctx);
2794	invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
2795	tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
2796
2797	/* Return epilog parameters from this function. */
2798	LLVMBuilderRef builder = bld_base->base.gallivm->builder;
2799	LLVMValueRef ret = ctx->return_value;
2800	LLVMValueRef rw_buffers, rw0, rw1, tf_soffset;
2801	unsigned vgpr;
2802
2803	/* RW_BUFFERS pointer */
2804	rw_buffers = LLVMGetParam(ctx->main_fn,
2805				  SI_PARAM_RW_BUFFERS);
2806	rw_buffers = LLVMBuildPtrToInt(builder, rw_buffers, ctx->i64, "");
2807	rw_buffers = LLVMBuildBitCast(builder, rw_buffers, ctx->v2i32, "");
2808	rw0 = LLVMBuildExtractElement(builder, rw_buffers,
2809				      bld_base->uint_bld.zero, "");
2810	rw1 = LLVMBuildExtractElement(builder, rw_buffers,
2811				      bld_base->uint_bld.one, "");
2812	ret = LLVMBuildInsertValue(builder, ret, rw0, 0, "");
2813	ret = LLVMBuildInsertValue(builder, ret, rw1, 1, "");
2814
2815	/* Tess factor buffer soffset is after user SGPRs. */
2816	tf_soffset = LLVMGetParam(ctx->main_fn,
2817				  SI_PARAM_TESS_FACTOR_OFFSET);
2818	ret = LLVMBuildInsertValue(builder, ret, tf_soffset,
2819				   SI_TCS_NUM_USER_SGPR + 1, "");
2820
2821	/* VGPRs */
2822	rel_patch_id = bitcast(bld_base, TGSI_TYPE_FLOAT, rel_patch_id);
2823	invocation_id = bitcast(bld_base, TGSI_TYPE_FLOAT, invocation_id);
2824	tf_lds_offset = bitcast(bld_base, TGSI_TYPE_FLOAT, tf_lds_offset);
2825
2826	vgpr = SI_TCS_NUM_USER_SGPR + 2;
2827	ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
2828	ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
2829	ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
2830	ctx->return_value = ret;
2831}
2832
2833static void si_llvm_emit_ls_epilogue(struct lp_build_tgsi_context *bld_base)
2834{
2835	struct si_shader_context *ctx = si_shader_context(bld_base);
2836	struct si_shader *shader = ctx->shader;
2837	struct tgsi_shader_info *info = &shader->selector->info;
2838	struct gallivm_state *gallivm = bld_base->base.gallivm;
2839	unsigned i, chan;
2840	LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
2841					      ctx->param_rel_auto_id);
2842	LLVMValueRef vertex_dw_stride =
2843		unpack_param(ctx, SI_PARAM_LS_OUT_LAYOUT, 13, 8);
2844	LLVMValueRef base_dw_addr = LLVMBuildMul(gallivm->builder, vertex_id,
2845						 vertex_dw_stride, "");
2846
2847	/* Write outputs to LDS. The next shader (TCS aka HS) will read
2848	 * its inputs from it. */
2849	for (i = 0; i < info->num_outputs; i++) {
2850		LLVMValueRef *out_ptr = ctx->outputs[i];
2851		unsigned name = info->output_semantic_name[i];
2852		unsigned index = info->output_semantic_index[i];
2853		int param = si_shader_io_get_unique_index(name, index);
2854		LLVMValueRef dw_addr = LLVMBuildAdd(gallivm->builder, base_dw_addr,
2855					lp_build_const_int32(gallivm, param * 4), "");
2856
2857		for (chan = 0; chan < 4; chan++) {
2858			lds_store(bld_base, chan, dw_addr,
2859				  LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""));
2860		}
2861	}
2862}
2863
2864static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context *bld_base)
2865{
2866	struct si_shader_context *ctx = si_shader_context(bld_base);
2867	struct gallivm_state *gallivm = bld_base->base.gallivm;
2868	struct si_shader *es = ctx->shader;
2869	struct tgsi_shader_info *info = &es->selector->info;
2870	LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
2871					    ctx->param_es2gs_offset);
2872	unsigned chan;
2873	int i;
2874
2875	for (i = 0; i < info->num_outputs; i++) {
2876		LLVMValueRef *out_ptr = ctx->outputs[i];
2877		int param_index;
2878
2879		if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
2880		    info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
2881			continue;
2882
2883		param_index = si_shader_io_get_unique_index(info->output_semantic_name[i],
2884							    info->output_semantic_index[i]);
2885
2886		for (chan = 0; chan < 4; chan++) {
2887			LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
2888			out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
2889
2890			build_tbuffer_store(ctx,
2891					    ctx->esgs_ring,
2892					    out_val, 1,
2893					    LLVMGetUndef(ctx->i32), soffset,
2894					    (4 * param_index + chan) * 4,
2895					    V_008F0C_BUF_DATA_FORMAT_32,
2896					    V_008F0C_BUF_NUM_FORMAT_UINT,
2897					    0, 0, 1, 1, 0);
2898		}
2899	}
2900}
2901
2902static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
2903{
2904	struct si_shader_context *ctx = si_shader_context(bld_base);
2905	struct gallivm_state *gallivm = bld_base->base.gallivm;
2906	LLVMValueRef args[2];
2907
2908	args[0] = lp_build_const_int32(gallivm,	SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE);
2909	args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
2910	lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
2911			   ctx->voidt, args, 2, 0);
2912}
2913
2914static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context *bld_base)
2915{
2916	struct si_shader_context *ctx = si_shader_context(bld_base);
2917	struct gallivm_state *gallivm = bld_base->base.gallivm;
2918	struct tgsi_shader_info *info = &ctx->shader->selector->info;
2919	struct si_shader_output_values *outputs = NULL;
2920	int i,j;
2921
2922	assert(!ctx->shader->is_gs_copy_shader);
2923
2924	outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
2925
2926	/* Vertex color clamping.
2927	 *
2928	 * This uses a state constant loaded in a user data SGPR and
2929	 * an IF statement is added that clamps all colors if the constant
2930	 * is true.
2931	 */
2932	if (ctx->type == PIPE_SHADER_VERTEX) {
2933		struct lp_build_if_state if_ctx;
2934		LLVMValueRef cond = NULL;
2935		LLVMValueRef addr, val;
2936
2937		for (i = 0; i < info->num_outputs; i++) {
2938			if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
2939			    info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
2940				continue;
2941
2942			/* We've found a color. */
2943			if (!cond) {
2944				/* The state is in the first bit of the user SGPR. */
2945				cond = LLVMGetParam(ctx->main_fn,
2946						    SI_PARAM_VS_STATE_BITS);
2947				cond = LLVMBuildTrunc(gallivm->builder, cond,
2948						      ctx->i1, "");
2949				lp_build_if(&if_ctx, gallivm, cond);
2950			}
2951
2952			for (j = 0; j < 4; j++) {
2953				addr = ctx->outputs[i][j];
2954				val = LLVMBuildLoad(gallivm->builder, addr, "");
2955				val = si_llvm_saturate(bld_base, val);
2956				LLVMBuildStore(gallivm->builder, val, addr);
2957			}
2958		}
2959
2960		if (cond)
2961			lp_build_endif(&if_ctx);
2962	}
2963
2964	for (i = 0; i < info->num_outputs; i++) {
2965		outputs[i].semantic_name = info->output_semantic_name[i];
2966		outputs[i].semantic_index = info->output_semantic_index[i];
2967
2968		for (j = 0; j < 4; j++) {
2969			outputs[i].values[j] =
2970				LLVMBuildLoad(gallivm->builder,
2971					      ctx->outputs[i][j],
2972					      "");
2973			outputs[i].vertex_stream[j] =
2974				(info->output_streams[i] >> (2 * j)) & 3;
2975		}
2976
2977	}
2978
2979	/* Return the primitive ID from the LLVM function. */
2980	ctx->return_value =
2981		LLVMBuildInsertValue(gallivm->builder,
2982				     ctx->return_value,
2983				     bitcast(bld_base, TGSI_TYPE_FLOAT,
2984					     get_primitive_id(bld_base, 0)),
2985				     VS_EPILOG_PRIMID_LOC, "");
2986
2987	if (ctx->shader->selector->so.num_outputs)
2988		si_llvm_emit_streamout(ctx, outputs, i, 0);
2989	si_llvm_export_vs(bld_base, outputs, i);
2990	FREE(outputs);
2991}
2992
2993struct si_ps_exports {
2994	unsigned num;
2995	LLVMValueRef args[10][9];
2996};
2997
2998unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil,
2999				    bool writes_samplemask)
3000{
3001	if (writes_z) {
3002		/* Z needs 32 bits. */
3003		if (writes_samplemask)
3004			return V_028710_SPI_SHADER_32_ABGR;
3005		else if (writes_stencil)
3006			return V_028710_SPI_SHADER_32_GR;
3007		else
3008			return V_028710_SPI_SHADER_32_R;
3009	} else if (writes_stencil || writes_samplemask) {
3010		/* Both stencil and sample mask need only 16 bits. */
3011		return V_028710_SPI_SHADER_UINT16_ABGR;
3012	} else {
3013		return V_028710_SPI_SHADER_ZERO;
3014	}
3015}
3016
3017static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3018			    LLVMValueRef depth, LLVMValueRef stencil,
3019			    LLVMValueRef samplemask, struct si_ps_exports *exp)
3020{
3021	struct si_shader_context *ctx = si_shader_context(bld_base);
3022	struct lp_build_context *base = &bld_base->base;
3023	struct lp_build_context *uint = &bld_base->uint_bld;
3024	LLVMValueRef args[9];
3025	unsigned mask = 0;
3026	unsigned format = si_get_spi_shader_z_format(depth != NULL,
3027						     stencil != NULL,
3028						     samplemask != NULL);
3029
3030	assert(depth || stencil || samplemask);
3031
3032	args[1] = uint->one; /* whether the EXEC mask is valid */
3033	args[2] = uint->one; /* DONE bit */
3034
3035	/* Specify the target we are exporting */
3036	args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ);
3037
3038	args[4] = uint->zero; /* COMP flag */
3039	args[5] = base->undef; /* R, depth */
3040	args[6] = base->undef; /* G, stencil test value[0:7], stencil op value[8:15] */
3041	args[7] = base->undef; /* B, sample mask */
3042	args[8] = base->undef; /* A, alpha to mask */
3043
3044	if (format == V_028710_SPI_SHADER_UINT16_ABGR) {
3045		assert(!depth);
3046		args[4] = uint->one; /* COMPR flag */
3047
3048		if (stencil) {
3049			/* Stencil should be in X[23:16]. */
3050			stencil = bitcast(bld_base, TGSI_TYPE_UNSIGNED, stencil);
3051			stencil = LLVMBuildShl(base->gallivm->builder, stencil,
3052					       LLVMConstInt(ctx->i32, 16, 0), "");
3053			args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT, stencil);
3054			mask |= 0x3;
3055		}
3056		if (samplemask) {
3057			/* SampleMask should be in Y[15:0]. */
3058			args[6] = samplemask;
3059			mask |= 0xc;
3060		}
3061	} else {
3062		if (depth) {
3063			args[5] = depth;
3064			mask |= 0x1;
3065		}
3066		if (stencil) {
3067			args[6] = stencil;
3068			mask |= 0x2;
3069		}
3070		if (samplemask) {
3071			args[7] = samplemask;
3072			mask |= 0x4;
3073		}
3074	}
3075
3076	/* SI (except OLAND and HAINAN) has a bug that it only looks
3077	 * at the X writemask component. */
3078	if (ctx->screen->b.chip_class == SI &&
3079	    ctx->screen->b.family != CHIP_OLAND &&
3080	    ctx->screen->b.family != CHIP_HAINAN)
3081		mask |= 0x1;
3082
3083	/* Specify which components to enable */
3084	args[0] = lp_build_const_int32(base->gallivm, mask);
3085
3086	memcpy(exp->args[exp->num++], args, sizeof(args));
3087}
3088
3089static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3090				LLVMValueRef *color, unsigned index,
3091				unsigned samplemask_param,
3092				bool is_last, struct si_ps_exports *exp)
3093{
3094	struct si_shader_context *ctx = si_shader_context(bld_base);
3095	struct lp_build_context *base = &bld_base->base;
3096	int i;
3097
3098	/* Clamp color */
3099	if (ctx->shader->key.part.ps.epilog.clamp_color)
3100		for (i = 0; i < 4; i++)
3101			color[i] = si_llvm_saturate(bld_base, color[i]);
3102
3103	/* Alpha to one */
3104	if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3105		color[3] = base->one;
3106
3107	/* Alpha test */
3108	if (index == 0 &&
3109	    ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3110		si_alpha_test(bld_base, color[3]);
3111
3112	/* Line & polygon smoothing */
3113	if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3114		color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3115							 samplemask_param);
3116
3117	/* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3118	if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3119		LLVMValueRef args[8][9];
3120		int c, last = -1;
3121
3122		/* Get the export arguments, also find out what the last one is. */
3123		for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3124			si_llvm_init_export_args(bld_base, color,
3125						 V_008DFC_SQ_EXP_MRT + c, args[c]);
3126			if (args[c][0] != bld_base->uint_bld.zero)
3127				last = c;
3128		}
3129
3130		/* Emit all exports. */
3131		for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3132			if (is_last && last == c) {
3133				args[c][1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
3134				args[c][2] = bld_base->uint_bld.one; /* DONE bit */
3135			} else if (args[c][0] == bld_base->uint_bld.zero)
3136				continue; /* unnecessary NULL export */
3137
3138			memcpy(exp->args[exp->num++], args[c], sizeof(args[c]));
3139		}
3140	} else {
3141		LLVMValueRef args[9];
3142
3143		/* Export */
3144		si_llvm_init_export_args(bld_base, color, V_008DFC_SQ_EXP_MRT + index,
3145					 args);
3146		if (is_last) {
3147			args[1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
3148			args[2] = bld_base->uint_bld.one; /* DONE bit */
3149		} else if (args[0] == bld_base->uint_bld.zero)
3150			return; /* unnecessary NULL export */
3151
3152		memcpy(exp->args[exp->num++], args, sizeof(args));
3153	}
3154}
3155
3156static void si_emit_ps_exports(struct si_shader_context *ctx,
3157			       struct si_ps_exports *exp)
3158{
3159	for (unsigned i = 0; i < exp->num; i++)
3160		lp_build_intrinsic(ctx->gallivm.builder,
3161				   "llvm.SI.export", ctx->voidt,
3162				   exp->args[i], 9, 0);
3163}
3164
3165static void si_export_null(struct lp_build_tgsi_context *bld_base)
3166{
3167	struct si_shader_context *ctx = si_shader_context(bld_base);
3168	struct lp_build_context *base = &bld_base->base;
3169	struct lp_build_context *uint = &bld_base->uint_bld;
3170	LLVMValueRef args[9];
3171
3172	args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
3173	args[1] = uint->one; /* whether the EXEC mask is valid */
3174	args[2] = uint->one; /* DONE bit */
3175	args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
3176	args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
3177	args[5] = base->undef; /* R */
3178	args[6] = base->undef; /* G */
3179	args[7] = base->undef; /* B */
3180	args[8] = base->undef; /* A */
3181
3182	lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
3183			   ctx->voidt, args, 9, 0);
3184}
3185
3186/**
3187 * Return PS outputs in this order:
3188 *
3189 * v[0:3] = color0.xyzw
3190 * v[4:7] = color1.xyzw
3191 * ...
3192 * vN+0 = Depth
3193 * vN+1 = Stencil
3194 * vN+2 = SampleMask
3195 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3196 *
3197 * The alpha-ref SGPR is returned via its original location.
3198 */
3199static void si_llvm_return_fs_outputs(struct lp_build_tgsi_context *bld_base)
3200{
3201	struct si_shader_context *ctx = si_shader_context(bld_base);
3202	struct si_shader *shader = ctx->shader;
3203	struct lp_build_context *base = &bld_base->base;
3204	struct tgsi_shader_info *info = &shader->selector->info;
3205	LLVMBuilderRef builder = base->gallivm->builder;
3206	unsigned i, j, first_vgpr, vgpr;
3207
3208	LLVMValueRef color[8][4] = {};
3209	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3210	LLVMValueRef ret;
3211
3212	/* Read the output values. */
3213	for (i = 0; i < info->num_outputs; i++) {
3214		unsigned semantic_name = info->output_semantic_name[i];
3215		unsigned semantic_index = info->output_semantic_index[i];
3216
3217		switch (semantic_name) {
3218		case TGSI_SEMANTIC_COLOR:
3219			assert(semantic_index < 8);
3220			for (j = 0; j < 4; j++) {
3221				LLVMValueRef ptr = ctx->outputs[i][j];
3222				LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3223				color[semantic_index][j] = result;
3224			}
3225			break;
3226		case TGSI_SEMANTIC_POSITION:
3227			depth = LLVMBuildLoad(builder,
3228					      ctx->outputs[i][2], "");
3229			break;
3230		case TGSI_SEMANTIC_STENCIL:
3231			stencil = LLVMBuildLoad(builder,
3232						ctx->outputs[i][1], "");
3233			break;
3234		case TGSI_SEMANTIC_SAMPLEMASK:
3235			samplemask = LLVMBuildLoad(builder,
3236						   ctx->outputs[i][0], "");
3237			break;
3238		default:
3239			fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3240				semantic_name);
3241		}
3242	}
3243
3244	/* Fill the return structure. */
3245	ret = ctx->return_value;
3246
3247	/* Set SGPRs. */
3248	ret = LLVMBuildInsertValue(builder, ret,
3249				   bitcast(bld_base, TGSI_TYPE_SIGNED,
3250					   LLVMGetParam(ctx->main_fn,
3251							SI_PARAM_ALPHA_REF)),
3252				   SI_SGPR_ALPHA_REF, "");
3253
3254	/* Set VGPRs */
3255	first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3256	for (i = 0; i < ARRAY_SIZE(color); i++) {
3257		if (!color[i][0])
3258			continue;
3259
3260		for (j = 0; j < 4; j++)
3261			ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3262	}
3263	if (depth)
3264		ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3265	if (stencil)
3266		ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3267	if (samplemask)
3268		ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3269
3270	/* Add the input sample mask for smoothing at the end. */
3271	if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3272		vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3273	ret = LLVMBuildInsertValue(builder, ret,
3274				   LLVMGetParam(ctx->main_fn,
3275						SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3276
3277	ctx->return_value = ret;
3278}
3279
3280/**
3281 * Given a v8i32 resource descriptor for a buffer, extract the size of the
3282 * buffer in number of elements and return it as an i32.
3283 */
3284static LLVMValueRef get_buffer_size(
3285	struct lp_build_tgsi_context *bld_base,
3286	LLVMValueRef descriptor)
3287{
3288	struct si_shader_context *ctx = si_shader_context(bld_base);
3289	struct gallivm_state *gallivm = bld_base->base.gallivm;
3290	LLVMBuilderRef builder = gallivm->builder;
3291	LLVMValueRef size =
3292		LLVMBuildExtractElement(builder, descriptor,
3293					lp_build_const_int32(gallivm, 2), "");
3294
3295	if (ctx->screen->b.chip_class >= VI) {
3296		/* On VI, the descriptor contains the size in bytes,
3297		 * but TXQ must return the size in elements.
3298		 * The stride is always non-zero for resources using TXQ.
3299		 */
3300		LLVMValueRef stride =
3301			LLVMBuildExtractElement(builder, descriptor,
3302						lp_build_const_int32(gallivm, 1), "");
3303		stride = LLVMBuildLShr(builder, stride,
3304				       lp_build_const_int32(gallivm, 16), "");
3305		stride = LLVMBuildAnd(builder, stride,
3306				      lp_build_const_int32(gallivm, 0x3FFF), "");
3307
3308		size = LLVMBuildUDiv(builder, size, stride, "");
3309	}
3310
3311	return size;
3312}
3313
3314/**
3315 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
3316 * intrinsic names).
3317 */
3318static void build_type_name_for_intr(
3319	LLVMTypeRef type,
3320	char *buf, unsigned bufsize)
3321{
3322	LLVMTypeRef elem_type = type;
3323
3324	assert(bufsize >= 8);
3325
3326	if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
3327		int ret = snprintf(buf, bufsize, "v%u",
3328					LLVMGetVectorSize(type));
3329		if (ret < 0) {
3330			char *type_name = LLVMPrintTypeToString(type);
3331			fprintf(stderr, "Error building type name for: %s\n",
3332				type_name);
3333			return;
3334		}
3335		elem_type = LLVMGetElementType(type);
3336		buf += ret;
3337		bufsize -= ret;
3338	}
3339	switch (LLVMGetTypeKind(elem_type)) {
3340	default: break;
3341	case LLVMIntegerTypeKind:
3342		snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
3343		break;
3344	case LLVMFloatTypeKind:
3345		snprintf(buf, bufsize, "f32");
3346		break;
3347	case LLVMDoubleTypeKind:
3348		snprintf(buf, bufsize, "f64");
3349		break;
3350	}
3351}
3352
3353static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
3354				struct lp_build_tgsi_context *bld_base,
3355				struct lp_build_emit_data *emit_data);
3356
3357/* Prevent optimizations (at least of memory accesses) across the current
3358 * point in the program by emitting empty inline assembly that is marked as
3359 * having side effects.
3360 */
3361#if 0 /* unused currently */
3362static void emit_optimization_barrier(struct si_shader_context *ctx)
3363{
3364	LLVMBuilderRef builder = ctx->gallivm.builder;
3365	LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
3366	LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, "", "", true, false);
3367	LLVMBuildCall(builder, inlineasm, NULL, 0, "");
3368}
3369#endif
3370
3371/* Combine these with & instead of |. */
3372#define NOOP_WAITCNT 0xf7f
3373#define LGKM_CNT 0x07f
3374#define VM_CNT 0xf70
3375
3376static void emit_waitcnt(struct si_shader_context *ctx, unsigned simm16)
3377{
3378	struct gallivm_state *gallivm = &ctx->gallivm;
3379	LLVMBuilderRef builder = gallivm->builder;
3380	LLVMValueRef args[1] = {
3381		lp_build_const_int32(gallivm, simm16)
3382	};
3383	lp_build_intrinsic(builder, "llvm.amdgcn.s.waitcnt",
3384			   ctx->voidt, args, 1, 0);
3385}
3386
3387static void membar_emit(
3388		const struct lp_build_tgsi_action *action,
3389		struct lp_build_tgsi_context *bld_base,
3390		struct lp_build_emit_data *emit_data)
3391{
3392	struct si_shader_context *ctx = si_shader_context(bld_base);
3393	LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3394	unsigned flags = LLVMConstIntGetZExtValue(src0);
3395	unsigned waitcnt = NOOP_WAITCNT;
3396
3397	if (flags & TGSI_MEMBAR_THREAD_GROUP)
3398		waitcnt &= VM_CNT & LGKM_CNT;
3399
3400	if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3401		     TGSI_MEMBAR_SHADER_BUFFER |
3402		     TGSI_MEMBAR_SHADER_IMAGE))
3403		waitcnt &= VM_CNT;
3404
3405	if (flags & TGSI_MEMBAR_SHARED)
3406		waitcnt &= LGKM_CNT;
3407
3408	if (waitcnt != NOOP_WAITCNT)
3409		emit_waitcnt(ctx, waitcnt);
3410}
3411
3412static LLVMValueRef
3413shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
3414			 const struct tgsi_full_src_register *reg)
3415{
3416	LLVMValueRef index;
3417	LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
3418					     SI_PARAM_SHADER_BUFFERS);
3419
3420	if (!reg->Register.Indirect)
3421		index = LLVMConstInt(ctx->i32, reg->Register.Index, 0);
3422	else
3423		index = get_bounded_indirect_index(ctx, &reg->Indirect,
3424						   reg->Register.Index,
3425						   SI_NUM_SHADER_BUFFERS);
3426
3427	return build_indexed_load_const(ctx, rsrc_ptr, index);
3428}
3429
3430static bool tgsi_is_array_sampler(unsigned target)
3431{
3432	return target == TGSI_TEXTURE_1D_ARRAY ||
3433	       target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
3434	       target == TGSI_TEXTURE_2D_ARRAY ||
3435	       target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
3436	       target == TGSI_TEXTURE_CUBE_ARRAY ||
3437	       target == TGSI_TEXTURE_SHADOWCUBE_ARRAY ||
3438	       target == TGSI_TEXTURE_2D_ARRAY_MSAA;
3439}
3440
3441static bool tgsi_is_array_image(unsigned target)
3442{
3443	return target == TGSI_TEXTURE_3D ||
3444	       target == TGSI_TEXTURE_CUBE ||
3445	       target == TGSI_TEXTURE_1D_ARRAY ||
3446	       target == TGSI_TEXTURE_2D_ARRAY ||
3447	       target == TGSI_TEXTURE_CUBE_ARRAY ||
3448	       target == TGSI_TEXTURE_2D_ARRAY_MSAA;
3449}
3450
3451/**
3452 * Given a 256-bit resource descriptor, force the DCC enable bit to off.
3453 *
3454 * At least on Tonga, executing image stores on images with DCC enabled and
3455 * non-trivial can eventually lead to lockups. This can occur when an
3456 * application binds an image as read-only but then uses a shader that writes
3457 * to it. The OpenGL spec allows almost arbitrarily bad behavior (including
3458 * program termination) in this case, but it doesn't cost much to be a bit
3459 * nicer: disabling DCC in the shader still leads to undefined results but
3460 * avoids the lockup.
3461 */
3462static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
3463				  LLVMValueRef rsrc)
3464{
3465	if (ctx->screen->b.chip_class <= CIK) {
3466		return rsrc;
3467	} else {
3468		LLVMBuilderRef builder = ctx->gallivm.builder;
3469		LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
3470		LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
3471		LLVMValueRef tmp;
3472
3473		tmp = LLVMBuildExtractElement(builder, rsrc, i32_6, "");
3474		tmp = LLVMBuildAnd(builder, tmp, i32_C, "");
3475		return LLVMBuildInsertElement(builder, rsrc, tmp, i32_6, "");
3476	}
3477}
3478
3479static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
3480{
3481	return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
3482			       CONST_ADDR_SPACE);
3483}
3484
3485/**
3486 * Load the resource descriptor for \p image.
3487 */
3488static void
3489image_fetch_rsrc(
3490	struct lp_build_tgsi_context *bld_base,
3491	const struct tgsi_full_src_register *image,
3492	bool is_store, unsigned target,
3493	LLVMValueRef *rsrc)
3494{
3495	struct si_shader_context *ctx = si_shader_context(bld_base);
3496	LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
3497					     SI_PARAM_IMAGES);
3498	LLVMValueRef index, tmp;
3499	bool dcc_off = target != TGSI_TEXTURE_BUFFER && is_store;
3500
3501	assert(image->Register.File == TGSI_FILE_IMAGE);
3502
3503	if (!image->Register.Indirect) {
3504		const struct tgsi_shader_info *info = bld_base->info;
3505
3506		index = LLVMConstInt(ctx->i32, image->Register.Index, 0);
3507
3508		if (info->images_writemask & (1 << image->Register.Index) &&
3509		    target != TGSI_TEXTURE_BUFFER)
3510			dcc_off = true;
3511	} else {
3512		/* From the GL_ARB_shader_image_load_store extension spec:
3513		 *
3514		 *    If a shader performs an image load, store, or atomic
3515		 *    operation using an image variable declared as an array,
3516		 *    and if the index used to select an individual element is
3517		 *    negative or greater than or equal to the size of the
3518		 *    array, the results of the operation are undefined but may
3519		 *    not lead to termination.
3520		 */
3521		index = get_bounded_indirect_index(ctx, &image->Indirect,
3522						   image->Register.Index,
3523						   SI_NUM_IMAGES);
3524	}
3525
3526	if (target == TGSI_TEXTURE_BUFFER) {
3527		LLVMBuilderRef builder = ctx->gallivm.builder;
3528
3529		rsrc_ptr = LLVMBuildPointerCast(builder, rsrc_ptr,
3530						const_array(ctx->v4i32, 0), "");
3531		index = LLVMBuildMul(builder, index,
3532				     LLVMConstInt(ctx->i32, 2, 0), "");
3533		index = LLVMBuildAdd(builder, index,
3534				     LLVMConstInt(ctx->i32, 1, 0), "");
3535		*rsrc = build_indexed_load_const(ctx, rsrc_ptr, index);
3536		return;
3537	}
3538
3539	tmp = build_indexed_load_const(ctx, rsrc_ptr, index);
3540	if (dcc_off)
3541		tmp = force_dcc_off(ctx, tmp);
3542	*rsrc = tmp;
3543}
3544
3545static LLVMValueRef image_fetch_coords(
3546		struct lp_build_tgsi_context *bld_base,
3547		const struct tgsi_full_instruction *inst,
3548		unsigned src)
3549{
3550	struct gallivm_state *gallivm = bld_base->base.gallivm;
3551	LLVMBuilderRef builder = gallivm->builder;
3552	unsigned target = inst->Memory.Texture;
3553	unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
3554	LLVMValueRef coords[4];
3555	LLVMValueRef tmp;
3556	int chan;
3557
3558	for (chan = 0; chan < num_coords; ++chan) {
3559		tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
3560		tmp = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3561		coords[chan] = tmp;
3562	}
3563
3564	if (num_coords == 1)
3565		return coords[0];
3566
3567	if (num_coords == 3) {
3568		/* LLVM has difficulties lowering 3-element vectors. */
3569		coords[3] = bld_base->uint_bld.undef;
3570		num_coords = 4;
3571	}
3572
3573	return lp_build_gather_values(gallivm, coords, num_coords);
3574}
3575
3576/**
3577 * Append the extra mode bits that are used by image load and store.
3578 */
3579static void image_append_args(
3580		struct si_shader_context *ctx,
3581		struct lp_build_emit_data * emit_data,
3582		unsigned target,
3583		bool atomic,
3584		bool force_glc)
3585{
3586	const struct tgsi_full_instruction *inst = emit_data->inst;
3587	LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
3588	LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
3589	LLVMValueRef r128 = i1false;
3590	LLVMValueRef da = tgsi_is_array_image(target) ? i1true : i1false;
3591	LLVMValueRef glc =
3592		force_glc ||
3593		inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
3594		i1true : i1false;
3595	LLVMValueRef slc = i1false;
3596	LLVMValueRef lwe = i1false;
3597
3598	if (atomic || (HAVE_LLVM <= 0x0309)) {
3599		emit_data->args[emit_data->arg_count++] = r128;
3600		emit_data->args[emit_data->arg_count++] = da;
3601		if (!atomic) {
3602			emit_data->args[emit_data->arg_count++] = glc;
3603		}
3604		emit_data->args[emit_data->arg_count++] = slc;
3605		return;
3606	}
3607
3608	/* HAVE_LLVM >= 0x0400 */
3609	emit_data->args[emit_data->arg_count++] = glc;
3610	emit_data->args[emit_data->arg_count++] = slc;
3611	emit_data->args[emit_data->arg_count++] = lwe;
3612	emit_data->args[emit_data->arg_count++] = da;
3613}
3614
3615/**
3616 * Append the resource and indexing arguments for buffer intrinsics.
3617 *
3618 * \param rsrc the v4i32 buffer resource
3619 * \param index index into the buffer (stride-based)
3620 * \param offset byte offset into the buffer
3621 */
3622static void buffer_append_args(
3623		struct si_shader_context *ctx,
3624		struct lp_build_emit_data *emit_data,
3625		LLVMValueRef rsrc,
3626		LLVMValueRef index,
3627		LLVMValueRef offset,
3628		bool atomic,
3629		bool force_glc)
3630{
3631	const struct tgsi_full_instruction *inst = emit_data->inst;
3632	LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
3633	LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
3634
3635	emit_data->args[emit_data->arg_count++] = rsrc;
3636	emit_data->args[emit_data->arg_count++] = index; /* vindex */
3637	emit_data->args[emit_data->arg_count++] = offset; /* voffset */
3638	if (!atomic) {
3639		emit_data->args[emit_data->arg_count++] =
3640			force_glc ||
3641			inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
3642			i1true : i1false; /* glc */
3643	}
3644	emit_data->args[emit_data->arg_count++] = i1false; /* slc */
3645}
3646
3647static void load_fetch_args(
3648		struct lp_build_tgsi_context * bld_base,
3649		struct lp_build_emit_data * emit_data)
3650{
3651	struct si_shader_context *ctx = si_shader_context(bld_base);
3652	struct gallivm_state *gallivm = bld_base->base.gallivm;
3653	const struct tgsi_full_instruction * inst = emit_data->inst;
3654	unsigned target = inst->Memory.Texture;
3655	LLVMValueRef rsrc;
3656
3657	emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4);
3658
3659	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3660		LLVMBuilderRef builder = gallivm->builder;
3661		LLVMValueRef offset;
3662		LLVMValueRef tmp;
3663
3664		rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
3665
3666		tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
3667		offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3668
3669		buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
3670				   offset, false, false);
3671	} else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
3672		LLVMValueRef coords;
3673
3674		image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &rsrc);
3675		coords = image_fetch_coords(bld_base, inst, 1);
3676
3677		if (target == TGSI_TEXTURE_BUFFER) {
3678			buffer_append_args(ctx, emit_data, rsrc, coords,
3679					   bld_base->uint_bld.zero, false, false);
3680		} else {
3681			emit_data->args[0] = coords;
3682			emit_data->args[1] = rsrc;
3683			emit_data->args[2] = lp_build_const_int32(gallivm, 15); /* dmask */
3684			emit_data->arg_count = 3;
3685
3686			image_append_args(ctx, emit_data, target, false, false);
3687		}
3688	}
3689}
3690
3691static void load_emit_buffer(struct si_shader_context *ctx,
3692			     struct lp_build_emit_data *emit_data)
3693{
3694	const struct tgsi_full_instruction *inst = emit_data->inst;
3695	struct gallivm_state *gallivm = &ctx->gallivm;
3696	LLVMBuilderRef builder = gallivm->builder;
3697	uint writemask = inst->Dst[0].Register.WriteMask;
3698	uint count = util_last_bit(writemask);
3699	const char *intrinsic_name;
3700	LLVMTypeRef dst_type;
3701
3702	switch (count) {
3703	case 1:
3704		intrinsic_name = "llvm.amdgcn.buffer.load.f32";
3705		dst_type = ctx->f32;
3706		break;
3707	case 2:
3708		intrinsic_name = "llvm.amdgcn.buffer.load.v2f32";
3709		dst_type = LLVMVectorType(ctx->f32, 2);
3710		break;
3711	default: // 3 & 4
3712		intrinsic_name = "llvm.amdgcn.buffer.load.v4f32";
3713		dst_type = ctx->v4f32;
3714		count = 4;
3715	}
3716
3717	emit_data->output[emit_data->chan] = lp_build_intrinsic(
3718			builder, intrinsic_name, dst_type,
3719			emit_data->args, emit_data->arg_count,
3720			LP_FUNC_ATTR_READONLY);
3721}
3722
3723static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
3724                                   const struct tgsi_full_instruction *inst,
3725                                   LLVMTypeRef type, int arg)
3726{
3727	struct gallivm_state *gallivm = &ctx->gallivm;
3728	LLVMBuilderRef builder = gallivm->builder;
3729	LLVMValueRef offset, ptr;
3730	int addr_space;
3731
3732	offset = lp_build_emit_fetch(&ctx->bld_base, inst, arg, 0);
3733	offset = LLVMBuildBitCast(builder, offset, ctx->i32, "");
3734
3735	ptr = ctx->shared_memory;
3736	ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
3737	addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3738	ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
3739
3740	return ptr;
3741}
3742
3743static void load_emit_memory(
3744		struct si_shader_context *ctx,
3745		struct lp_build_emit_data *emit_data)
3746{
3747	const struct tgsi_full_instruction *inst = emit_data->inst;
3748	struct lp_build_context *base = &ctx->bld_base.base;
3749	struct gallivm_state *gallivm = &ctx->gallivm;
3750	LLVMBuilderRef builder = gallivm->builder;
3751	unsigned writemask = inst->Dst[0].Register.WriteMask;
3752	LLVMValueRef channels[4], ptr, derived_ptr, index;
3753	int chan;
3754
3755	ptr = get_memory_ptr(ctx, inst, base->elem_type, 1);
3756
3757	for (chan = 0; chan < 4; ++chan) {
3758		if (!(writemask & (1 << chan))) {
3759			channels[chan] = LLVMGetUndef(base->elem_type);
3760			continue;
3761		}
3762
3763		index = lp_build_const_int32(gallivm, chan);
3764		derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
3765		channels[chan] = LLVMBuildLoad(builder, derived_ptr, "");
3766	}
3767	emit_data->output[emit_data->chan] = lp_build_gather_values(gallivm, channels, 4);
3768}
3769
3770static void get_image_intr_name(const char *base_name,
3771				LLVMTypeRef data_type,
3772				LLVMTypeRef coords_type,
3773				LLVMTypeRef rsrc_type,
3774				char *out_name, unsigned out_len)
3775{
3776	char coords_type_name[8];
3777
3778	build_type_name_for_intr(coords_type, coords_type_name,
3779			    sizeof(coords_type_name));
3780
3781	if (HAVE_LLVM <= 0x0309) {
3782		snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
3783	} else {
3784		char data_type_name[8];
3785		char rsrc_type_name[8];
3786
3787		build_type_name_for_intr(data_type, data_type_name,
3788					sizeof(data_type_name));
3789		build_type_name_for_intr(rsrc_type, rsrc_type_name,
3790					sizeof(rsrc_type_name));
3791		snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
3792			 data_type_name, coords_type_name, rsrc_type_name);
3793	}
3794}
3795
3796static void load_emit(
3797		const struct lp_build_tgsi_action *action,
3798		struct lp_build_tgsi_context *bld_base,
3799		struct lp_build_emit_data *emit_data)
3800{
3801	struct si_shader_context *ctx = si_shader_context(bld_base);
3802	struct gallivm_state *gallivm = bld_base->base.gallivm;
3803	LLVMBuilderRef builder = gallivm->builder;
3804	const struct tgsi_full_instruction * inst = emit_data->inst;
3805	char intrinsic_name[64];
3806
3807	if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
3808		load_emit_memory(ctx, emit_data);
3809		return;
3810	}
3811
3812	if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
3813		emit_waitcnt(ctx, VM_CNT);
3814
3815	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
3816		load_emit_buffer(ctx, emit_data);
3817		return;
3818	}
3819
3820	if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
3821		emit_data->output[emit_data->chan] =
3822			lp_build_intrinsic(
3823				builder, "llvm.amdgcn.buffer.load.format.v4f32", emit_data->dst_type,
3824				emit_data->args, emit_data->arg_count,
3825				LP_FUNC_ATTR_READONLY);
3826	} else {
3827		get_image_intr_name("llvm.amdgcn.image.load",
3828				emit_data->dst_type,		/* vdata */
3829				LLVMTypeOf(emit_data->args[0]), /* coords */
3830				LLVMTypeOf(emit_data->args[1]), /* rsrc */
3831				intrinsic_name, sizeof(intrinsic_name));
3832
3833		emit_data->output[emit_data->chan] =
3834			lp_build_intrinsic(
3835				builder, intrinsic_name, emit_data->dst_type,
3836				emit_data->args, emit_data->arg_count,
3837				LP_FUNC_ATTR_READONLY);
3838	}
3839}
3840
3841static void store_fetch_args(
3842		struct lp_build_tgsi_context * bld_base,
3843		struct lp_build_emit_data * emit_data)
3844{
3845	struct si_shader_context *ctx = si_shader_context(bld_base);
3846	struct gallivm_state *gallivm = bld_base->base.gallivm;
3847	LLVMBuilderRef builder = gallivm->builder;
3848	const struct tgsi_full_instruction * inst = emit_data->inst;
3849	struct tgsi_full_src_register memory;
3850	LLVMValueRef chans[4];
3851	LLVMValueRef data;
3852	LLVMValueRef rsrc;
3853	unsigned chan;
3854
3855	emit_data->dst_type = LLVMVoidTypeInContext(gallivm->context);
3856
3857	for (chan = 0; chan < 4; ++chan) {
3858		chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
3859	}
3860	data = lp_build_gather_values(gallivm, chans, 4);
3861
3862	emit_data->args[emit_data->arg_count++] = data;
3863
3864	memory = tgsi_full_src_register_from_dst(&inst->Dst[0]);
3865
3866	if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
3867		LLVMValueRef offset;
3868		LLVMValueRef tmp;
3869
3870		rsrc = shader_buffer_fetch_rsrc(ctx, &memory);
3871
3872		tmp = lp_build_emit_fetch(bld_base, inst, 0, 0);
3873		offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
3874
3875		buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
3876				   offset, false, false);
3877	} else if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE) {
3878		unsigned target = inst->Memory.Texture;
3879		LLVMValueRef coords;
3880
3881		/* 8bit/16bit TC L1 write corruption bug on SI.
3882		 * All store opcodes not aligned to a dword are affected.
3883		 *
3884		 * The only way to get unaligned stores in radeonsi is through
3885		 * shader images.
3886		 */
3887		bool force_glc = ctx->screen->b.chip_class == SI;
3888
3889		coords = image_fetch_coords(bld_base, inst, 0);
3890
3891		if (target == TGSI_TEXTURE_BUFFER) {
3892			image_fetch_rsrc(bld_base, &memory, true, target, &rsrc);
3893			buffer_append_args(ctx, emit_data, rsrc, coords,
3894					   bld_base->uint_bld.zero, false, force_glc);
3895		} else {
3896			emit_data->args[1] = coords;
3897			image_fetch_rsrc(bld_base, &memory, true, target,
3898					 &emit_data->args[2]);
3899			emit_data->args[3] = lp_build_const_int32(gallivm, 15); /* dmask */
3900			emit_data->arg_count = 4;
3901
3902			image_append_args(ctx, emit_data, target, false, force_glc);
3903		}
3904	}
3905}
3906
3907static void store_emit_buffer(
3908		struct si_shader_context *ctx,
3909		struct lp_build_emit_data *emit_data)
3910{
3911	const struct tgsi_full_instruction *inst = emit_data->inst;
3912	struct gallivm_state *gallivm = &ctx->gallivm;
3913	LLVMBuilderRef builder = gallivm->builder;
3914	struct lp_build_context *uint_bld = &ctx->bld_base.uint_bld;
3915	LLVMValueRef base_data = emit_data->args[0];
3916	LLVMValueRef base_offset = emit_data->args[3];
3917	unsigned writemask = inst->Dst[0].Register.WriteMask;
3918
3919	while (writemask) {
3920		int start, count;
3921		const char *intrinsic_name;
3922		LLVMValueRef data;
3923		LLVMValueRef offset;
3924		LLVMValueRef tmp;
3925
3926		u_bit_scan_consecutive_range(&writemask, &start, &count);
3927
3928		/* Due to an LLVM limitation, split 3-element writes
3929		 * into a 2-element and a 1-element write. */
3930		if (count == 3) {
3931			writemask |= 1 << (start + 2);
3932			count = 2;
3933		}
3934
3935		if (count == 4) {
3936			data = base_data;
3937			intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
3938		} else if (count == 2) {
3939			LLVMTypeRef v2f32 = LLVMVectorType(ctx->f32, 2);
3940
3941			tmp = LLVMBuildExtractElement(
3942				builder, base_data,
3943				lp_build_const_int32(gallivm, start), "");
3944			data = LLVMBuildInsertElement(
3945				builder, LLVMGetUndef(v2f32), tmp,
3946				uint_bld->zero, "");
3947
3948			tmp = LLVMBuildExtractElement(
3949				builder, base_data,
3950				lp_build_const_int32(gallivm, start + 1), "");
3951			data = LLVMBuildInsertElement(
3952				builder, data, tmp, uint_bld->one, "");
3953
3954			intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
3955		} else {
3956			assert(count == 1);
3957			data = LLVMBuildExtractElement(
3958				builder, base_data,
3959				lp_build_const_int32(gallivm, start), "");
3960			intrinsic_name = "llvm.amdgcn.buffer.store.f32";
3961		}
3962
3963		offset = base_offset;
3964		if (start != 0) {
3965			offset = LLVMBuildAdd(
3966				builder, offset,
3967				lp_build_const_int32(gallivm, start * 4), "");
3968		}
3969
3970		emit_data->args[0] = data;
3971		emit_data->args[3] = offset;
3972
3973		lp_build_intrinsic(
3974			builder, intrinsic_name, emit_data->dst_type,
3975			emit_data->args, emit_data->arg_count, 0);
3976	}
3977}
3978
3979static void store_emit_memory(
3980		struct si_shader_context *ctx,
3981		struct lp_build_emit_data *emit_data)
3982{
3983	const struct tgsi_full_instruction *inst = emit_data->inst;
3984	struct gallivm_state *gallivm = &ctx->gallivm;
3985	struct lp_build_context *base = &ctx->bld_base.base;
3986	LLVMBuilderRef builder = gallivm->builder;
3987	unsigned writemask = inst->Dst[0].Register.WriteMask;
3988	LLVMValueRef ptr, derived_ptr, data, index;
3989	int chan;
3990
3991	ptr = get_memory_ptr(ctx, inst, base->elem_type, 0);
3992
3993	for (chan = 0; chan < 4; ++chan) {
3994		if (!(writemask & (1 << chan))) {
3995			continue;
3996		}
3997		data = lp_build_emit_fetch(&ctx->bld_base, inst, 1, chan);
3998		index = lp_build_const_int32(gallivm, chan);
3999		derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
4000		LLVMBuildStore(builder, data, derived_ptr);
4001	}
4002}
4003
4004static void store_emit(
4005		const struct lp_build_tgsi_action *action,
4006		struct lp_build_tgsi_context *bld_base,
4007		struct lp_build_emit_data *emit_data)
4008{
4009	struct si_shader_context *ctx = si_shader_context(bld_base);
4010	struct gallivm_state *gallivm = bld_base->base.gallivm;
4011	LLVMBuilderRef builder = gallivm->builder;
4012	const struct tgsi_full_instruction * inst = emit_data->inst;
4013	unsigned target = inst->Memory.Texture;
4014	char intrinsic_name[64];
4015
4016	if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
4017		store_emit_memory(ctx, emit_data);
4018		return;
4019	}
4020
4021	if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
4022		emit_waitcnt(ctx, VM_CNT);
4023
4024	if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
4025		store_emit_buffer(ctx, emit_data);
4026		return;
4027	}
4028
4029	if (target == TGSI_TEXTURE_BUFFER) {
4030		emit_data->output[emit_data->chan] = lp_build_intrinsic(
4031			builder, "llvm.amdgcn.buffer.store.format.v4f32",
4032			emit_data->dst_type, emit_data->args,
4033			emit_data->arg_count, 0);
4034	} else {
4035		get_image_intr_name("llvm.amdgcn.image.store",
4036				LLVMTypeOf(emit_data->args[0]), /* vdata */
4037				LLVMTypeOf(emit_data->args[1]), /* coords */
4038				LLVMTypeOf(emit_data->args[2]), /* rsrc */
4039				intrinsic_name, sizeof(intrinsic_name));
4040
4041		emit_data->output[emit_data->chan] =
4042			lp_build_intrinsic(
4043				builder, intrinsic_name, emit_data->dst_type,
4044				emit_data->args, emit_data->arg_count, 0);
4045	}
4046}
4047
4048static void atomic_fetch_args(
4049		struct lp_build_tgsi_context * bld_base,
4050		struct lp_build_emit_data * emit_data)
4051{
4052	struct si_shader_context *ctx = si_shader_context(bld_base);
4053	struct gallivm_state *gallivm = bld_base->base.gallivm;
4054	LLVMBuilderRef builder = gallivm->builder;
4055	const struct tgsi_full_instruction * inst = emit_data->inst;
4056	LLVMValueRef data1, data2;
4057	LLVMValueRef rsrc;
4058	LLVMValueRef tmp;
4059
4060	emit_data->dst_type = bld_base->base.elem_type;
4061
4062	tmp = lp_build_emit_fetch(bld_base, inst, 2, 0);
4063	data1 = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
4064
4065	if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4066		tmp = lp_build_emit_fetch(bld_base, inst, 3, 0);
4067		data2 = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
4068	}
4069
4070	/* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
4071	 * of arguments, which is reversed relative to TGSI (and GLSL)
4072	 */
4073	if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4074		emit_data->args[emit_data->arg_count++] = data2;
4075	emit_data->args[emit_data->arg_count++] = data1;
4076
4077	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
4078		LLVMValueRef offset;
4079
4080		rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
4081
4082		tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
4083		offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
4084
4085		buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
4086				   offset, true, false);
4087	} else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
4088		unsigned target = inst->Memory.Texture;
4089		LLVMValueRef coords;
4090
4091		image_fetch_rsrc(bld_base, &inst->Src[0], true, target, &rsrc);
4092		coords = image_fetch_coords(bld_base, inst, 1);
4093
4094		if (target == TGSI_TEXTURE_BUFFER) {
4095			buffer_append_args(ctx, emit_data, rsrc, coords,
4096					   bld_base->uint_bld.zero, true, false);
4097		} else {
4098			emit_data->args[emit_data->arg_count++] = coords;
4099			emit_data->args[emit_data->arg_count++] = rsrc;
4100
4101			image_append_args(ctx, emit_data, target, true, false);
4102		}
4103	}
4104}
4105
4106static void atomic_emit_memory(struct si_shader_context *ctx,
4107                               struct lp_build_emit_data *emit_data) {
4108	struct gallivm_state *gallivm = &ctx->gallivm;
4109	LLVMBuilderRef builder = gallivm->builder;
4110	const struct tgsi_full_instruction * inst = emit_data->inst;
4111	LLVMValueRef ptr, result, arg;
4112
4113	ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
4114
4115	arg = lp_build_emit_fetch(&ctx->bld_base, inst, 2, 0);
4116	arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
4117
4118	if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4119		LLVMValueRef new_data;
4120		new_data = lp_build_emit_fetch(&ctx->bld_base,
4121		                               inst, 3, 0);
4122
4123		new_data = LLVMBuildBitCast(builder, new_data, ctx->i32, "");
4124
4125#if HAVE_LLVM >= 0x309
4126		result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
4127		                       LLVMAtomicOrderingSequentiallyConsistent,
4128		                       LLVMAtomicOrderingSequentiallyConsistent,
4129		                       false);
4130#endif
4131
4132		result = LLVMBuildExtractValue(builder, result, 0, "");
4133	} else {
4134		LLVMAtomicRMWBinOp op;
4135
4136		switch(inst->Instruction.Opcode) {
4137			case TGSI_OPCODE_ATOMUADD:
4138				op = LLVMAtomicRMWBinOpAdd;
4139				break;
4140			case TGSI_OPCODE_ATOMXCHG:
4141				op = LLVMAtomicRMWBinOpXchg;
4142				break;
4143			case TGSI_OPCODE_ATOMAND:
4144				op = LLVMAtomicRMWBinOpAnd;
4145				break;
4146			case TGSI_OPCODE_ATOMOR:
4147				op = LLVMAtomicRMWBinOpOr;
4148				break;
4149			case TGSI_OPCODE_ATOMXOR:
4150				op = LLVMAtomicRMWBinOpXor;
4151				break;
4152			case TGSI_OPCODE_ATOMUMIN:
4153				op = LLVMAtomicRMWBinOpUMin;
4154				break;
4155			case TGSI_OPCODE_ATOMUMAX:
4156				op = LLVMAtomicRMWBinOpUMax;
4157				break;
4158			case TGSI_OPCODE_ATOMIMIN:
4159				op = LLVMAtomicRMWBinOpMin;
4160				break;
4161			case TGSI_OPCODE_ATOMIMAX:
4162				op = LLVMAtomicRMWBinOpMax;
4163				break;
4164			default:
4165				unreachable("unknown atomic opcode");
4166		}
4167
4168		result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
4169		                       LLVMAtomicOrderingSequentiallyConsistent,
4170		                       false);
4171	}
4172	emit_data->output[emit_data->chan] = LLVMBuildBitCast(builder, result, emit_data->dst_type, "");
4173}
4174
4175static void atomic_emit(
4176		const struct lp_build_tgsi_action *action,
4177		struct lp_build_tgsi_context *bld_base,
4178		struct lp_build_emit_data *emit_data)
4179{
4180	struct si_shader_context *ctx = si_shader_context(bld_base);
4181	struct gallivm_state *gallivm = bld_base->base.gallivm;
4182	LLVMBuilderRef builder = gallivm->builder;
4183	const struct tgsi_full_instruction * inst = emit_data->inst;
4184	char intrinsic_name[40];
4185	LLVMValueRef tmp;
4186
4187	if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
4188		atomic_emit_memory(ctx, emit_data);
4189		return;
4190	}
4191
4192	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
4193	    inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4194		snprintf(intrinsic_name, sizeof(intrinsic_name),
4195			 "llvm.amdgcn.buffer.atomic.%s", action->intr_name);
4196	} else {
4197		LLVMValueRef coords;
4198		char coords_type[8];
4199
4200		if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4201			coords = emit_data->args[2];
4202		else
4203			coords = emit_data->args[1];
4204
4205		build_type_name_for_intr(LLVMTypeOf(coords), coords_type, sizeof(coords_type));
4206		snprintf(intrinsic_name, sizeof(intrinsic_name),
4207			 "llvm.amdgcn.image.atomic.%s.%s",
4208			 action->intr_name, coords_type);
4209	}
4210
4211	tmp = lp_build_intrinsic(
4212		builder, intrinsic_name, bld_base->uint_bld.elem_type,
4213		emit_data->args, emit_data->arg_count, 0);
4214	emit_data->output[emit_data->chan] =
4215		LLVMBuildBitCast(builder, tmp, bld_base->base.elem_type, "");
4216}
4217
4218static void resq_fetch_args(
4219		struct lp_build_tgsi_context * bld_base,
4220		struct lp_build_emit_data * emit_data)
4221{
4222	struct si_shader_context *ctx = si_shader_context(bld_base);
4223	struct gallivm_state *gallivm = bld_base->base.gallivm;
4224	const struct tgsi_full_instruction *inst = emit_data->inst;
4225	const struct tgsi_full_src_register *reg = &inst->Src[0];
4226
4227	emit_data->dst_type = ctx->v4i32;
4228
4229	if (reg->Register.File == TGSI_FILE_BUFFER) {
4230		emit_data->args[0] = shader_buffer_fetch_rsrc(ctx, reg);
4231		emit_data->arg_count = 1;
4232	} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4233		image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
4234				 &emit_data->args[0]);
4235		emit_data->arg_count = 1;
4236	} else {
4237		emit_data->args[0] = bld_base->uint_bld.zero; /* mip level */
4238		image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
4239				 &emit_data->args[1]);
4240		emit_data->args[2] = lp_build_const_int32(gallivm, 15); /* dmask */
4241		emit_data->args[3] = bld_base->uint_bld.zero; /* unorm */
4242		emit_data->args[4] = bld_base->uint_bld.zero; /* r128 */
4243		emit_data->args[5] = tgsi_is_array_image(inst->Memory.Texture) ?
4244			bld_base->uint_bld.one : bld_base->uint_bld.zero; /* da */
4245		emit_data->args[6] = bld_base->uint_bld.zero; /* glc */
4246		emit_data->args[7] = bld_base->uint_bld.zero; /* slc */
4247		emit_data->args[8] = bld_base->uint_bld.zero; /* tfe */
4248		emit_data->args[9] = bld_base->uint_bld.zero; /* lwe */
4249		emit_data->arg_count = 10;
4250	}
4251}
4252
4253static void resq_emit(
4254		const struct lp_build_tgsi_action *action,
4255		struct lp_build_tgsi_context *bld_base,
4256		struct lp_build_emit_data *emit_data)
4257{
4258	struct gallivm_state *gallivm = bld_base->base.gallivm;
4259	LLVMBuilderRef builder = gallivm->builder;
4260	const struct tgsi_full_instruction *inst = emit_data->inst;
4261	LLVMValueRef out;
4262
4263	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
4264		out = LLVMBuildExtractElement(builder, emit_data->args[0],
4265					      lp_build_const_int32(gallivm, 2), "");
4266	} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
4267		out = get_buffer_size(bld_base, emit_data->args[0]);
4268	} else {
4269		out = lp_build_intrinsic(
4270			builder, "llvm.SI.getresinfo.i32", emit_data->dst_type,
4271			emit_data->args, emit_data->arg_count,
4272			LP_FUNC_ATTR_READNONE);
4273
4274		/* Divide the number of layers by 6 to get the number of cubes. */
4275		if (inst->Memory.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
4276			LLVMValueRef imm2 = lp_build_const_int32(gallivm, 2);
4277			LLVMValueRef imm6 = lp_build_const_int32(gallivm, 6);
4278
4279			LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
4280			z = LLVMBuildSDiv(builder, z, imm6, "");
4281			out = LLVMBuildInsertElement(builder, out, z, imm2, "");
4282		}
4283	}
4284
4285	emit_data->output[emit_data->chan] = out;
4286}
4287
4288static void set_tex_fetch_args(struct si_shader_context *ctx,
4289			       struct lp_build_emit_data *emit_data,
4290			       unsigned opcode, unsigned target,
4291			       LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
4292			       LLVMValueRef *param, unsigned count,
4293			       unsigned dmask)
4294{
4295	struct gallivm_state *gallivm = &ctx->gallivm;
4296	unsigned num_args;
4297	unsigned is_rect = target == TGSI_TEXTURE_RECT;
4298
4299	/* Pad to power of two vector */
4300	while (count < util_next_power_of_two(count))
4301		param[count++] = LLVMGetUndef(ctx->i32);
4302
4303	/* Texture coordinates. */
4304	if (count > 1)
4305		emit_data->args[0] = lp_build_gather_values(gallivm, param, count);
4306	else
4307		emit_data->args[0] = param[0];
4308
4309	/* Resource. */
4310	emit_data->args[1] = res_ptr;
4311	num_args = 2;
4312
4313	if (opcode == TGSI_OPCODE_TXF || opcode == TGSI_OPCODE_TXQ)
4314		emit_data->dst_type = ctx->v4i32;
4315	else {
4316		emit_data->dst_type = ctx->v4f32;
4317
4318		emit_data->args[num_args++] = samp_ptr;
4319	}
4320
4321	emit_data->args[num_args++] = lp_build_const_int32(gallivm, dmask);
4322	emit_data->args[num_args++] = lp_build_const_int32(gallivm, is_rect); /* unorm */
4323	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* r128 */
4324	emit_data->args[num_args++] = lp_build_const_int32(gallivm,
4325					tgsi_is_array_sampler(target)); /* da */
4326	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* glc */
4327	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* slc */
4328	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* tfe */
4329	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* lwe */
4330
4331	emit_data->arg_count = num_args;
4332}
4333
4334static const struct lp_build_tgsi_action tex_action;
4335
4336enum desc_type {
4337	DESC_IMAGE,
4338	DESC_BUFFER,
4339	DESC_FMASK,
4340	DESC_SAMPLER,
4341};
4342
4343/**
4344 * Load an image view, fmask view. or sampler state descriptor.
4345 */
4346static LLVMValueRef load_sampler_desc_custom(struct si_shader_context *ctx,
4347					     LLVMValueRef list, LLVMValueRef index,
4348					     enum desc_type type)
4349{
4350	struct gallivm_state *gallivm = &ctx->gallivm;
4351	LLVMBuilderRef builder = gallivm->builder;
4352
4353	switch (type) {
4354	case DESC_IMAGE:
4355		/* The image is at [0:7]. */
4356		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
4357		break;
4358	case DESC_BUFFER:
4359		/* The buffer is in [4:7]. */
4360		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4361		index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 1, 0), "");
4362		list = LLVMBuildPointerCast(builder, list,
4363					    const_array(ctx->v4i32, 0), "");
4364		break;
4365	case DESC_FMASK:
4366		/* The FMASK is at [8:15]. */
4367		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
4368		index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 1, 0), "");
4369		break;
4370	case DESC_SAMPLER:
4371		/* The sampler state is at [12:15]. */
4372		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4373		index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 3, 0), "");
4374		list = LLVMBuildPointerCast(builder, list,
4375					    const_array(ctx->v4i32, 0), "");
4376		break;
4377	}
4378
4379	return build_indexed_load_const(ctx, list, index);
4380}
4381
4382static LLVMValueRef load_sampler_desc(struct si_shader_context *ctx,
4383				     LLVMValueRef index, enum desc_type type)
4384{
4385	LLVMValueRef list = LLVMGetParam(ctx->main_fn,
4386					 SI_PARAM_SAMPLERS);
4387
4388	return load_sampler_desc_custom(ctx, list, index, type);
4389}
4390
4391/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
4392 *
4393 * SI-CI:
4394 *   If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
4395 *   filtering manually. The driver sets img7 to a mask clearing
4396 *   MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
4397 *     s_and_b32 samp0, samp0, img7
4398 *
4399 * VI:
4400 *   The ANISO_OVERRIDE sampler field enables this fix in TA.
4401 */
4402static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
4403					   LLVMValueRef res, LLVMValueRef samp)
4404{
4405	LLVMBuilderRef builder = ctx->gallivm.builder;
4406	LLVMValueRef img7, samp0;
4407
4408	if (ctx->screen->b.chip_class >= VI)
4409		return samp;
4410
4411	img7 = LLVMBuildExtractElement(builder, res,
4412				       LLVMConstInt(ctx->i32, 7, 0), "");
4413	samp0 = LLVMBuildExtractElement(builder, samp,
4414					LLVMConstInt(ctx->i32, 0, 0), "");
4415	samp0 = LLVMBuildAnd(builder, samp0, img7, "");
4416	return LLVMBuildInsertElement(builder, samp, samp0,
4417				      LLVMConstInt(ctx->i32, 0, 0), "");
4418}
4419
4420static void tex_fetch_ptrs(
4421	struct lp_build_tgsi_context *bld_base,
4422	struct lp_build_emit_data *emit_data,
4423	LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr)
4424{
4425	struct si_shader_context *ctx = si_shader_context(bld_base);
4426	const struct tgsi_full_instruction *inst = emit_data->inst;
4427	unsigned target = inst->Texture.Texture;
4428	unsigned sampler_src;
4429	unsigned sampler_index;
4430	LLVMValueRef index;
4431
4432	sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
4433	sampler_index = emit_data->inst->Src[sampler_src].Register.Index;
4434
4435	if (emit_data->inst->Src[sampler_src].Register.Indirect) {
4436		const struct tgsi_full_src_register *reg = &emit_data->inst->Src[sampler_src];
4437
4438		index = get_bounded_indirect_index(ctx,
4439						   &reg->Indirect,
4440						   reg->Register.Index,
4441						   SI_NUM_SAMPLERS);
4442	} else {
4443		index = LLVMConstInt(ctx->i32, sampler_index, 0);
4444	}
4445
4446	if (target == TGSI_TEXTURE_BUFFER)
4447		*res_ptr = load_sampler_desc(ctx, index, DESC_BUFFER);
4448	else
4449		*res_ptr = load_sampler_desc(ctx, index, DESC_IMAGE);
4450
4451	if (samp_ptr)
4452		*samp_ptr = NULL;
4453	if (fmask_ptr)
4454		*fmask_ptr = NULL;
4455
4456	if (target == TGSI_TEXTURE_2D_MSAA ||
4457	    target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
4458		if (fmask_ptr)
4459			*fmask_ptr = load_sampler_desc(ctx, index, DESC_FMASK);
4460	} else if (target != TGSI_TEXTURE_BUFFER) {
4461		if (samp_ptr) {
4462			*samp_ptr = load_sampler_desc(ctx, index, DESC_SAMPLER);
4463			*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
4464		}
4465	}
4466}
4467
4468static void txq_fetch_args(
4469	struct lp_build_tgsi_context *bld_base,
4470	struct lp_build_emit_data *emit_data)
4471{
4472	struct si_shader_context *ctx = si_shader_context(bld_base);
4473	const struct tgsi_full_instruction *inst = emit_data->inst;
4474	unsigned target = inst->Texture.Texture;
4475	LLVMValueRef res_ptr;
4476	LLVMValueRef address;
4477
4478	tex_fetch_ptrs(bld_base, emit_data, &res_ptr, NULL, NULL);
4479
4480	if (target == TGSI_TEXTURE_BUFFER) {
4481		/* Read the size from the buffer descriptor directly. */
4482		emit_data->args[0] = get_buffer_size(bld_base, res_ptr);
4483		return;
4484	}
4485
4486	/* Textures - set the mip level. */
4487	address = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
4488
4489	set_tex_fetch_args(ctx, emit_data, TGSI_OPCODE_TXQ, target, res_ptr,
4490			   NULL, &address, 1, 0xf);
4491}
4492
4493static void txq_emit(const struct lp_build_tgsi_action *action,
4494		     struct lp_build_tgsi_context *bld_base,
4495		     struct lp_build_emit_data *emit_data)
4496{
4497	struct lp_build_context *base = &bld_base->base;
4498	unsigned target = emit_data->inst->Texture.Texture;
4499
4500	if (target == TGSI_TEXTURE_BUFFER) {
4501		/* Just return the buffer size. */
4502		emit_data->output[emit_data->chan] = emit_data->args[0];
4503		return;
4504	}
4505
4506	emit_data->output[emit_data->chan] = lp_build_intrinsic(
4507		base->gallivm->builder, "llvm.SI.getresinfo.i32",
4508		emit_data->dst_type, emit_data->args, emit_data->arg_count,
4509		LP_FUNC_ATTR_READNONE);
4510
4511	/* Divide the number of layers by 6 to get the number of cubes. */
4512	if (target == TGSI_TEXTURE_CUBE_ARRAY ||
4513	    target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
4514		LLVMBuilderRef builder = bld_base->base.gallivm->builder;
4515		LLVMValueRef two = lp_build_const_int32(bld_base->base.gallivm, 2);
4516		LLVMValueRef six = lp_build_const_int32(bld_base->base.gallivm, 6);
4517
4518		LLVMValueRef v4 = emit_data->output[emit_data->chan];
4519		LLVMValueRef z = LLVMBuildExtractElement(builder, v4, two, "");
4520		z = LLVMBuildSDiv(builder, z, six, "");
4521
4522		emit_data->output[emit_data->chan] =
4523			LLVMBuildInsertElement(builder, v4, z, two, "");
4524	}
4525}
4526
4527static void tex_fetch_args(
4528	struct lp_build_tgsi_context *bld_base,
4529	struct lp_build_emit_data *emit_data)
4530{
4531	struct si_shader_context *ctx = si_shader_context(bld_base);
4532	struct gallivm_state *gallivm = bld_base->base.gallivm;
4533	const struct tgsi_full_instruction *inst = emit_data->inst;
4534	unsigned opcode = inst->Instruction.Opcode;
4535	unsigned target = inst->Texture.Texture;
4536	LLVMValueRef coords[5], derivs[6];
4537	LLVMValueRef address[16];
4538	unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
4539	int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
4540	unsigned count = 0;
4541	unsigned chan;
4542	unsigned num_deriv_channels = 0;
4543	bool has_offset = inst->Texture.NumOffsets > 0;
4544	LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
4545	unsigned dmask = 0xf;
4546
4547	tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
4548
4549	if (target == TGSI_TEXTURE_BUFFER) {
4550		emit_data->dst_type = ctx->v4f32;
4551		emit_data->args[0] = LLVMBuildBitCast(gallivm->builder, res_ptr,
4552						      ctx->v16i8, "");
4553		emit_data->args[1] = bld_base->uint_bld.zero;
4554		emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4555		emit_data->arg_count = 3;
4556		return;
4557	}
4558
4559	/* Fetch and project texture coordinates */
4560	coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
4561	for (chan = 0; chan < 3; chan++ ) {
4562		coords[chan] = lp_build_emit_fetch(bld_base,
4563						   emit_data->inst, 0,
4564						   chan);
4565		if (opcode == TGSI_OPCODE_TXP)
4566			coords[chan] = lp_build_emit_llvm_binary(bld_base,
4567								 TGSI_OPCODE_DIV,
4568								 coords[chan],
4569								 coords[3]);
4570	}
4571
4572	if (opcode == TGSI_OPCODE_TXP)
4573		coords[3] = bld_base->base.one;
4574
4575	/* Pack offsets. */
4576	if (has_offset && opcode != TGSI_OPCODE_TXF) {
4577		/* The offsets are six-bit signed integers packed like this:
4578		 *   X=[5:0], Y=[13:8], and Z=[21:16].
4579		 */
4580		LLVMValueRef offset[3], pack;
4581
4582		assert(inst->Texture.NumOffsets == 1);
4583
4584		for (chan = 0; chan < 3; chan++) {
4585			offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
4586								     emit_data->inst, 0, chan);
4587			offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan],
4588						    lp_build_const_int32(gallivm, 0x3f), "");
4589			if (chan)
4590				offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan],
4591							    lp_build_const_int32(gallivm, chan*8), "");
4592		}
4593
4594		pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], "");
4595		pack = LLVMBuildOr(gallivm->builder, pack, offset[2], "");
4596		address[count++] = pack;
4597	}
4598
4599	/* Pack LOD bias value */
4600	if (opcode == TGSI_OPCODE_TXB)
4601		address[count++] = coords[3];
4602	if (opcode == TGSI_OPCODE_TXB2)
4603		address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4604
4605	/* Pack depth comparison value */
4606	if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
4607		LLVMValueRef z;
4608
4609		if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
4610			z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4611		} else {
4612			assert(ref_pos >= 0);
4613			z = coords[ref_pos];
4614		}
4615
4616		/* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
4617		 * so the depth comparison value isn't clamped for Z16 and
4618		 * Z24 anymore. Do it manually here.
4619		 *
4620		 * It's unnecessary if the original texture format was
4621		 * Z32_FLOAT, but we don't know that here.
4622		 */
4623		if (ctx->screen->b.chip_class == VI)
4624			z = si_llvm_saturate(bld_base, z);
4625
4626		address[count++] = z;
4627	}
4628
4629	/* Pack user derivatives */
4630	if (opcode == TGSI_OPCODE_TXD) {
4631		int param, num_src_deriv_channels;
4632
4633		switch (target) {
4634		case TGSI_TEXTURE_3D:
4635			num_src_deriv_channels = 3;
4636			num_deriv_channels = 3;
4637			break;
4638		case TGSI_TEXTURE_2D:
4639		case TGSI_TEXTURE_SHADOW2D:
4640		case TGSI_TEXTURE_RECT:
4641		case TGSI_TEXTURE_SHADOWRECT:
4642		case TGSI_TEXTURE_2D_ARRAY:
4643		case TGSI_TEXTURE_SHADOW2D_ARRAY:
4644			num_src_deriv_channels = 2;
4645			num_deriv_channels = 2;
4646			break;
4647		case TGSI_TEXTURE_CUBE:
4648		case TGSI_TEXTURE_SHADOWCUBE:
4649		case TGSI_TEXTURE_CUBE_ARRAY:
4650		case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
4651			/* Cube derivatives will be converted to 2D. */
4652			num_src_deriv_channels = 3;
4653			num_deriv_channels = 2;
4654			break;
4655		case TGSI_TEXTURE_1D:
4656		case TGSI_TEXTURE_SHADOW1D:
4657		case TGSI_TEXTURE_1D_ARRAY:
4658		case TGSI_TEXTURE_SHADOW1D_ARRAY:
4659			num_src_deriv_channels = 1;
4660			num_deriv_channels = 1;
4661			break;
4662		default:
4663			unreachable("invalid target");
4664		}
4665
4666		for (param = 0; param < 2; param++)
4667			for (chan = 0; chan < num_src_deriv_channels; chan++)
4668				derivs[param * num_src_deriv_channels + chan] =
4669					lp_build_emit_fetch(bld_base, inst, param+1, chan);
4670	}
4671
4672	if (target == TGSI_TEXTURE_CUBE ||
4673	    target == TGSI_TEXTURE_CUBE_ARRAY ||
4674	    target == TGSI_TEXTURE_SHADOWCUBE ||
4675	    target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
4676		ac_prepare_cube_coords(&ctx->ac,
4677				       opcode == TGSI_OPCODE_TXD,
4678				       target == TGSI_TEXTURE_CUBE_ARRAY ||
4679				       target == TGSI_TEXTURE_SHADOWCUBE_ARRAY,
4680				       coords, derivs);
4681
4682	if (opcode == TGSI_OPCODE_TXD)
4683		for (int i = 0; i < num_deriv_channels * 2; i++)
4684			address[count++] = derivs[i];
4685
4686	/* Pack texture coordinates */
4687	address[count++] = coords[0];
4688	if (num_coords > 1)
4689		address[count++] = coords[1];
4690	if (num_coords > 2)
4691		address[count++] = coords[2];
4692
4693	/* Pack LOD or sample index */
4694	if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
4695		address[count++] = coords[3];
4696	else if (opcode == TGSI_OPCODE_TXL2)
4697		address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
4698
4699	if (count > 16) {
4700		assert(!"Cannot handle more than 16 texture address parameters");
4701		count = 16;
4702	}
4703
4704	for (chan = 0; chan < count; chan++ ) {
4705		address[chan] = LLVMBuildBitCast(gallivm->builder,
4706						 address[chan], ctx->i32, "");
4707	}
4708
4709	/* Adjust the sample index according to FMASK.
4710	 *
4711	 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4712	 * which is the identity mapping. Each nibble says which physical sample
4713	 * should be fetched to get that sample.
4714	 *
4715	 * For example, 0x11111100 means there are only 2 samples stored and
4716	 * the second sample covers 3/4 of the pixel. When reading samples 0
4717	 * and 1, return physical sample 0 (determined by the first two 0s
4718	 * in FMASK), otherwise return physical sample 1.
4719	 *
4720	 * The sample index should be adjusted as follows:
4721	 *   sample_index = (fmask >> (sample_index * 4)) & 0xF;
4722	 */
4723	if (target == TGSI_TEXTURE_2D_MSAA ||
4724	    target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
4725		struct lp_build_context *uint_bld = &bld_base->uint_bld;
4726		struct lp_build_emit_data txf_emit_data = *emit_data;
4727		LLVMValueRef txf_address[4];
4728		unsigned txf_count = count;
4729		struct tgsi_full_instruction inst = {};
4730
4731		memcpy(txf_address, address, sizeof(txf_address));
4732
4733		if (target == TGSI_TEXTURE_2D_MSAA) {
4734			txf_address[2] = bld_base->uint_bld.zero;
4735		}
4736		txf_address[3] = bld_base->uint_bld.zero;
4737
4738		/* Read FMASK using TXF. */
4739		inst.Instruction.Opcode = TGSI_OPCODE_TXF;
4740		inst.Texture.Texture = target;
4741		txf_emit_data.inst = &inst;
4742		txf_emit_data.chan = 0;
4743		set_tex_fetch_args(ctx, &txf_emit_data, TGSI_OPCODE_TXF,
4744				   target, fmask_ptr, NULL,
4745				   txf_address, txf_count, 0xf);
4746		build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
4747
4748		/* Initialize some constants. */
4749		LLVMValueRef four = LLVMConstInt(ctx->i32, 4, 0);
4750		LLVMValueRef F = LLVMConstInt(ctx->i32, 0xF, 0);
4751
4752		/* Apply the formula. */
4753		LLVMValueRef fmask =
4754			LLVMBuildExtractElement(gallivm->builder,
4755						txf_emit_data.output[0],
4756						uint_bld->zero, "");
4757
4758		unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
4759
4760		LLVMValueRef sample_index4 =
4761			LLVMBuildMul(gallivm->builder, address[sample_chan], four, "");
4762
4763		LLVMValueRef shifted_fmask =
4764			LLVMBuildLShr(gallivm->builder, fmask, sample_index4, "");
4765
4766		LLVMValueRef final_sample =
4767			LLVMBuildAnd(gallivm->builder, shifted_fmask, F, "");
4768
4769		/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4770		 * resource descriptor is 0 (invalid),
4771		 */
4772		LLVMValueRef fmask_desc =
4773			LLVMBuildBitCast(gallivm->builder, fmask_ptr,
4774					 ctx->v8i32, "");
4775
4776		LLVMValueRef fmask_word1 =
4777			LLVMBuildExtractElement(gallivm->builder, fmask_desc,
4778						uint_bld->one, "");
4779
4780		LLVMValueRef word1_is_nonzero =
4781			LLVMBuildICmp(gallivm->builder, LLVMIntNE,
4782				      fmask_word1, uint_bld->zero, "");
4783
4784		/* Replace the MSAA sample index. */
4785		address[sample_chan] =
4786			LLVMBuildSelect(gallivm->builder, word1_is_nonzero,
4787					final_sample, address[sample_chan], "");
4788	}
4789
4790	if (opcode == TGSI_OPCODE_TXF) {
4791		/* add tex offsets */
4792		if (inst->Texture.NumOffsets) {
4793			struct lp_build_context *uint_bld = &bld_base->uint_bld;
4794			const struct tgsi_texture_offset *off = inst->TexOffsets;
4795
4796			assert(inst->Texture.NumOffsets == 1);
4797
4798			switch (target) {
4799			case TGSI_TEXTURE_3D:
4800				address[2] = lp_build_add(uint_bld, address[2],
4801						ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleZ]);
4802				/* fall through */
4803			case TGSI_TEXTURE_2D:
4804			case TGSI_TEXTURE_SHADOW2D:
4805			case TGSI_TEXTURE_RECT:
4806			case TGSI_TEXTURE_SHADOWRECT:
4807			case TGSI_TEXTURE_2D_ARRAY:
4808			case TGSI_TEXTURE_SHADOW2D_ARRAY:
4809				address[1] =
4810					lp_build_add(uint_bld, address[1],
4811						ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleY]);
4812				/* fall through */
4813			case TGSI_TEXTURE_1D:
4814			case TGSI_TEXTURE_SHADOW1D:
4815			case TGSI_TEXTURE_1D_ARRAY:
4816			case TGSI_TEXTURE_SHADOW1D_ARRAY:
4817				address[0] =
4818					lp_build_add(uint_bld, address[0],
4819						ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleX]);
4820				break;
4821				/* texture offsets do not apply to other texture targets */
4822			}
4823		}
4824	}
4825
4826	if (opcode == TGSI_OPCODE_TG4) {
4827		unsigned gather_comp = 0;
4828
4829		/* DMASK was repurposed for GATHER4. 4 components are always
4830		 * returned and DMASK works like a swizzle - it selects
4831		 * the component to fetch. The only valid DMASK values are
4832		 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
4833		 * (red,red,red,red) etc.) The ISA document doesn't mention
4834		 * this.
4835		 */
4836
4837		/* Get the component index from src1.x for Gather4. */
4838		if (!tgsi_is_shadow_target(target)) {
4839			LLVMValueRef comp_imm;
4840			struct tgsi_src_register src1 = inst->Src[1].Register;
4841
4842			assert(src1.File == TGSI_FILE_IMMEDIATE);
4843
4844			comp_imm = ctx->imms[src1.Index * TGSI_NUM_CHANNELS + src1.SwizzleX];
4845			gather_comp = LLVMConstIntGetZExtValue(comp_imm);
4846			gather_comp = CLAMP(gather_comp, 0, 3);
4847		}
4848
4849		dmask = 1 << gather_comp;
4850	}
4851
4852	set_tex_fetch_args(ctx, emit_data, opcode, target, res_ptr,
4853			   samp_ptr, address, count, dmask);
4854}
4855
4856/* Gather4 should follow the same rules as bilinear filtering, but the hardware
4857 * incorrectly forces nearest filtering if the texture format is integer.
4858 * The only effect it has on Gather4, which always returns 4 texels for
4859 * bilinear filtering, is that the final coordinates are off by 0.5 of
4860 * the texel size.
4861 *
4862 * The workaround is to subtract 0.5 from the unnormalized coordinates,
4863 * or (0.5 / size) from the normalized coordinates.
4864 */
4865static void si_lower_gather4_integer(struct si_shader_context *ctx,
4866				     struct lp_build_emit_data *emit_data,
4867				     const char *intr_name,
4868				     unsigned coord_vgpr_index)
4869{
4870	LLVMBuilderRef builder = ctx->gallivm.builder;
4871	LLVMValueRef coord = emit_data->args[0];
4872	LLVMValueRef half_texel[2];
4873	int c;
4874
4875	if (emit_data->inst->Texture.Texture == TGSI_TEXTURE_RECT ||
4876	    emit_data->inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
4877		half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
4878	} else {
4879		struct tgsi_full_instruction txq_inst = {};
4880		struct lp_build_emit_data txq_emit_data = {};
4881
4882		/* Query the texture size. */
4883		txq_inst.Texture.Texture = emit_data->inst->Texture.Texture;
4884		txq_emit_data.inst = &txq_inst;
4885		txq_emit_data.dst_type = ctx->v4i32;
4886		set_tex_fetch_args(ctx, &txq_emit_data, TGSI_OPCODE_TXQ,
4887				   txq_inst.Texture.Texture,
4888				   emit_data->args[1], NULL,
4889				   &ctx->bld_base.uint_bld.zero,
4890				   1, 0xf);
4891		txq_emit(NULL, &ctx->bld_base, &txq_emit_data);
4892
4893		/* Compute -0.5 / size. */
4894		for (c = 0; c < 2; c++) {
4895			half_texel[c] =
4896				LLVMBuildExtractElement(builder, txq_emit_data.output[0],
4897							LLVMConstInt(ctx->i32, c, 0), "");
4898			half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
4899			half_texel[c] =
4900				lp_build_emit_llvm_unary(&ctx->bld_base,
4901							 TGSI_OPCODE_RCP, half_texel[c]);
4902			half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
4903						      LLVMConstReal(ctx->f32, -0.5), "");
4904		}
4905	}
4906
4907	for (c = 0; c < 2; c++) {
4908		LLVMValueRef tmp;
4909		LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
4910
4911		tmp = LLVMBuildExtractElement(builder, coord, index, "");
4912		tmp = LLVMBuildBitCast(builder, tmp, ctx->f32, "");
4913		tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
4914		tmp = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
4915		coord = LLVMBuildInsertElement(builder, coord, tmp, index, "");
4916	}
4917
4918	emit_data->args[0] = coord;
4919	emit_data->output[emit_data->chan] =
4920		lp_build_intrinsic(builder, intr_name, emit_data->dst_type,
4921				   emit_data->args, emit_data->arg_count,
4922				   LP_FUNC_ATTR_READNONE);
4923}
4924
4925static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
4926				struct lp_build_tgsi_context *bld_base,
4927				struct lp_build_emit_data *emit_data)
4928{
4929	struct si_shader_context *ctx = si_shader_context(bld_base);
4930	struct lp_build_context *base = &bld_base->base;
4931	const struct tgsi_full_instruction *inst = emit_data->inst;
4932	unsigned opcode = inst->Instruction.Opcode;
4933	unsigned target = inst->Texture.Texture;
4934	char intr_name[127];
4935	bool has_offset = inst->Texture.NumOffsets > 0;
4936	bool is_shadow = tgsi_is_shadow_target(target);
4937	char type[64];
4938	const char *name = "llvm.SI.image.sample";
4939	const char *infix = "";
4940
4941	if (target == TGSI_TEXTURE_BUFFER) {
4942		emit_data->output[emit_data->chan] = lp_build_intrinsic(
4943			base->gallivm->builder,
4944			"llvm.SI.vs.load.input", emit_data->dst_type,
4945			emit_data->args, emit_data->arg_count,
4946			LP_FUNC_ATTR_READNONE);
4947		return;
4948	}
4949
4950	switch (opcode) {
4951	case TGSI_OPCODE_TXF:
4952		name = target == TGSI_TEXTURE_2D_MSAA ||
4953		       target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
4954			       "llvm.SI.image.load" :
4955			       "llvm.SI.image.load.mip";
4956		is_shadow = false;
4957		has_offset = false;
4958		break;
4959	case TGSI_OPCODE_LODQ:
4960		name = "llvm.SI.getlod";
4961		is_shadow = false;
4962		has_offset = false;
4963		break;
4964	case TGSI_OPCODE_TEX:
4965	case TGSI_OPCODE_TEX2:
4966	case TGSI_OPCODE_TXP:
4967		if (ctx->type != PIPE_SHADER_FRAGMENT)
4968			infix = ".lz";
4969		break;
4970	case TGSI_OPCODE_TXB:
4971	case TGSI_OPCODE_TXB2:
4972		assert(ctx->type == PIPE_SHADER_FRAGMENT);
4973		infix = ".b";
4974		break;
4975	case TGSI_OPCODE_TXL:
4976	case TGSI_OPCODE_TXL2:
4977		infix = ".l";
4978		break;
4979	case TGSI_OPCODE_TXD:
4980		infix = ".d";
4981		break;
4982	case TGSI_OPCODE_TG4:
4983		name = "llvm.SI.gather4";
4984		infix = ".lz";
4985		break;
4986	default:
4987		assert(0);
4988		return;
4989	}
4990
4991	/* Add the type and suffixes .c, .o if needed. */
4992	build_type_name_for_intr(LLVMTypeOf(emit_data->args[0]), type, sizeof(type));
4993	sprintf(intr_name, "%s%s%s%s.%s",
4994		name, is_shadow ? ".c" : "", infix,
4995		has_offset ? ".o" : "", type);
4996
4997	/* The hardware needs special lowering for Gather4 with integer formats. */
4998	if (opcode == TGSI_OPCODE_TG4) {
4999		struct tgsi_shader_info *info = &ctx->shader->selector->info;
5000		/* This will also work with non-constant indexing because of how
5001		 * glsl_to_tgsi works and we intent to preserve that behavior.
5002		 */
5003		const unsigned src_idx = 2;
5004		unsigned sampler = inst->Src[src_idx].Register.Index;
5005
5006		assert(inst->Src[src_idx].Register.File == TGSI_FILE_SAMPLER);
5007
5008		if (info->sampler_type[sampler] == TGSI_RETURN_TYPE_SINT ||
5009		    info->sampler_type[sampler] == TGSI_RETURN_TYPE_UINT) {
5010			/* Texture coordinates start after:
5011			 *   {offset, bias, z-compare, derivatives}
5012			 * Only the offset and z-compare can occur here.
5013			 */
5014			si_lower_gather4_integer(ctx, emit_data, intr_name,
5015						 (int)has_offset + (int)is_shadow);
5016			return;
5017		}
5018	}
5019
5020	emit_data->output[emit_data->chan] = lp_build_intrinsic(
5021		base->gallivm->builder, intr_name, emit_data->dst_type,
5022		emit_data->args, emit_data->arg_count,
5023		LP_FUNC_ATTR_READNONE);
5024}
5025
5026static void si_llvm_emit_txqs(
5027	const struct lp_build_tgsi_action *action,
5028	struct lp_build_tgsi_context *bld_base,
5029	struct lp_build_emit_data *emit_data)
5030{
5031	struct si_shader_context *ctx = si_shader_context(bld_base);
5032	struct gallivm_state *gallivm = bld_base->base.gallivm;
5033	LLVMBuilderRef builder = gallivm->builder;
5034	LLVMValueRef res, samples;
5035	LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
5036
5037	tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
5038
5039
5040	/* Read the samples from the descriptor directly. */
5041	res = LLVMBuildBitCast(builder, res_ptr, ctx->v8i32, "");
5042	samples = LLVMBuildExtractElement(
5043		builder, res,
5044		lp_build_const_int32(gallivm, 3), "");
5045	samples = LLVMBuildLShr(builder, samples,
5046				lp_build_const_int32(gallivm, 16), "");
5047	samples = LLVMBuildAnd(builder, samples,
5048			       lp_build_const_int32(gallivm, 0xf), "");
5049	samples = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1),
5050			       samples, "");
5051
5052	emit_data->output[emit_data->chan] = samples;
5053}
5054
5055/*
5056 * SI implements derivatives using the local data store (LDS)
5057 * All writes to the LDS happen in all executing threads at
5058 * the same time. TID is the Thread ID for the current
5059 * thread and is a value between 0 and 63, representing
5060 * the thread's position in the wavefront.
5061 *
5062 * For the pixel shader threads are grouped into quads of four pixels.
5063 * The TIDs of the pixels of a quad are:
5064 *
5065 *  +------+------+
5066 *  |4n + 0|4n + 1|
5067 *  +------+------+
5068 *  |4n + 2|4n + 3|
5069 *  +------+------+
5070 *
5071 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
5072 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
5073 * the current pixel's column, and masking with 0xfffffffe yields the TID
5074 * of the left pixel of the current pixel's row.
5075 *
5076 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
5077 * adding 2 yields the TID of the pixel below the top pixel.
5078 */
5079/* masks for thread ID. */
5080#define TID_MASK_TOP_LEFT 0xfffffffc
5081#define TID_MASK_TOP      0xfffffffd
5082#define TID_MASK_LEFT     0xfffffffe
5083
5084static void si_llvm_emit_ddxy(
5085	const struct lp_build_tgsi_action *action,
5086	struct lp_build_tgsi_context *bld_base,
5087	struct lp_build_emit_data *emit_data)
5088{
5089	struct si_shader_context *ctx = si_shader_context(bld_base);
5090	struct gallivm_state *gallivm = bld_base->base.gallivm;
5091	unsigned opcode = emit_data->info->opcode;
5092	LLVMValueRef thread_id, tl, trbl, tl_tid, trbl_tid, val, args[2];
5093	int idx;
5094	unsigned mask;
5095
5096	thread_id = get_thread_id(ctx);
5097
5098	if (opcode == TGSI_OPCODE_DDX_FINE)
5099		mask = TID_MASK_LEFT;
5100	else if (opcode == TGSI_OPCODE_DDY_FINE)
5101		mask = TID_MASK_TOP;
5102	else
5103		mask = TID_MASK_TOP_LEFT;
5104
5105	tl_tid = LLVMBuildAnd(gallivm->builder, thread_id,
5106				lp_build_const_int32(gallivm, mask), "");
5107
5108	/* for DDX we want to next X pixel, DDY next Y pixel. */
5109	idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
5110	trbl_tid = LLVMBuildAdd(gallivm->builder, tl_tid,
5111				  lp_build_const_int32(gallivm, idx), "");
5112
5113	val = LLVMBuildBitCast(gallivm->builder, emit_data->args[0], ctx->i32, "");
5114
5115	if (ctx->screen->has_ds_bpermute) {
5116		args[0] = LLVMBuildMul(gallivm->builder, tl_tid,
5117				       lp_build_const_int32(gallivm, 4), "");
5118		args[1] = val;
5119		tl = lp_build_intrinsic(gallivm->builder,
5120					"llvm.amdgcn.ds.bpermute", ctx->i32,
5121					args, 2, LP_FUNC_ATTR_READNONE);
5122
5123		args[0] = LLVMBuildMul(gallivm->builder, trbl_tid,
5124				       lp_build_const_int32(gallivm, 4), "");
5125		trbl = lp_build_intrinsic(gallivm->builder,
5126					  "llvm.amdgcn.ds.bpermute", ctx->i32,
5127					  args, 2, LP_FUNC_ATTR_READNONE);
5128	} else {
5129		LLVMValueRef store_ptr, load_ptr0, load_ptr1;
5130
5131		store_ptr = build_gep0(ctx, ctx->lds, thread_id);
5132		load_ptr0 = build_gep0(ctx, ctx->lds, tl_tid);
5133		load_ptr1 = build_gep0(ctx, ctx->lds, trbl_tid);
5134
5135		LLVMBuildStore(gallivm->builder, val, store_ptr);
5136		tl = LLVMBuildLoad(gallivm->builder, load_ptr0, "");
5137		trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, "");
5138	}
5139
5140	tl = LLVMBuildBitCast(gallivm->builder, tl, ctx->f32, "");
5141	trbl = LLVMBuildBitCast(gallivm->builder, trbl,	ctx->f32, "");
5142
5143	emit_data->output[emit_data->chan] =
5144		LLVMBuildFSub(gallivm->builder, trbl, tl, "");
5145}
5146
5147/*
5148 * this takes an I,J coordinate pair,
5149 * and works out the X and Y derivatives.
5150 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
5151 */
5152static LLVMValueRef si_llvm_emit_ddxy_interp(
5153	struct lp_build_tgsi_context *bld_base,
5154	LLVMValueRef interp_ij)
5155{
5156	struct si_shader_context *ctx = si_shader_context(bld_base);
5157	struct gallivm_state *gallivm = bld_base->base.gallivm;
5158	LLVMValueRef result[4], a;
5159	unsigned i;
5160
5161	for (i = 0; i < 2; i++) {
5162		a = LLVMBuildExtractElement(gallivm->builder, interp_ij,
5163					    LLVMConstInt(ctx->i32, i, 0), "");
5164		result[i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDX, a);
5165		result[2+i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDY, a);
5166	}
5167
5168	return lp_build_gather_values(gallivm, result, 4);
5169}
5170
5171static void interp_fetch_args(
5172	struct lp_build_tgsi_context *bld_base,
5173	struct lp_build_emit_data *emit_data)
5174{
5175	struct si_shader_context *ctx = si_shader_context(bld_base);
5176	struct gallivm_state *gallivm = bld_base->base.gallivm;
5177	const struct tgsi_full_instruction *inst = emit_data->inst;
5178
5179	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
5180		/* offset is in second src, first two channels */
5181		emit_data->args[0] = lp_build_emit_fetch(bld_base,
5182							 emit_data->inst, 1,
5183							 TGSI_CHAN_X);
5184		emit_data->args[1] = lp_build_emit_fetch(bld_base,
5185							 emit_data->inst, 1,
5186							 TGSI_CHAN_Y);
5187		emit_data->arg_count = 2;
5188	} else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
5189		LLVMValueRef sample_position;
5190		LLVMValueRef sample_id;
5191		LLVMValueRef halfval = lp_build_const_float(gallivm, 0.5f);
5192
5193		/* fetch sample ID, then fetch its sample position,
5194		 * and place into first two channels.
5195		 */
5196		sample_id = lp_build_emit_fetch(bld_base,
5197						emit_data->inst, 1, TGSI_CHAN_X);
5198		sample_id = LLVMBuildBitCast(gallivm->builder, sample_id,
5199					     ctx->i32, "");
5200		sample_position = load_sample_position(ctx, sample_id);
5201
5202		emit_data->args[0] = LLVMBuildExtractElement(gallivm->builder,
5203							     sample_position,
5204							     lp_build_const_int32(gallivm, 0), "");
5205
5206		emit_data->args[0] = LLVMBuildFSub(gallivm->builder, emit_data->args[0], halfval, "");
5207		emit_data->args[1] = LLVMBuildExtractElement(gallivm->builder,
5208							     sample_position,
5209							     lp_build_const_int32(gallivm, 1), "");
5210		emit_data->args[1] = LLVMBuildFSub(gallivm->builder, emit_data->args[1], halfval, "");
5211		emit_data->arg_count = 2;
5212	}
5213}
5214
5215static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
5216				struct lp_build_tgsi_context *bld_base,
5217				struct lp_build_emit_data *emit_data)
5218{
5219	struct si_shader_context *ctx = si_shader_context(bld_base);
5220	struct si_shader *shader = ctx->shader;
5221	struct gallivm_state *gallivm = bld_base->base.gallivm;
5222	struct lp_build_context *uint = &bld_base->uint_bld;
5223	LLVMValueRef interp_param;
5224	const struct tgsi_full_instruction *inst = emit_data->inst;
5225	int input_index = inst->Src[0].Register.Index;
5226	int chan;
5227	int i;
5228	LLVMValueRef attr_number;
5229	LLVMValueRef params = LLVMGetParam(ctx->main_fn, SI_PARAM_PRIM_MASK);
5230	int interp_param_idx;
5231	unsigned interp = shader->selector->info.input_interpolate[input_index];
5232	unsigned location;
5233
5234	assert(inst->Src[0].Register.File == TGSI_FILE_INPUT);
5235
5236	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
5237	    inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
5238		location = TGSI_INTERPOLATE_LOC_CENTER;
5239	else
5240		location = TGSI_INTERPOLATE_LOC_CENTROID;
5241
5242	interp_param_idx = lookup_interp_param_index(interp, location);
5243	if (interp_param_idx == -1)
5244		return;
5245	else if (interp_param_idx)
5246		interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
5247	else
5248		interp_param = NULL;
5249
5250	attr_number = lp_build_const_int32(gallivm, input_index);
5251
5252	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
5253	    inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
5254		LLVMValueRef ij_out[2];
5255		LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
5256
5257		/*
5258		 * take the I then J parameters, and the DDX/Y for it, and
5259		 * calculate the IJ inputs for the interpolator.
5260		 * temp1 = ddx * offset/sample.x + I;
5261		 * interp_param.I = ddy * offset/sample.y + temp1;
5262		 * temp1 = ddx * offset/sample.x + J;
5263		 * interp_param.J = ddy * offset/sample.y + temp1;
5264		 */
5265		for (i = 0; i < 2; i++) {
5266			LLVMValueRef ix_ll = lp_build_const_int32(gallivm, i);
5267			LLVMValueRef iy_ll = lp_build_const_int32(gallivm, i + 2);
5268			LLVMValueRef ddx_el = LLVMBuildExtractElement(gallivm->builder,
5269								      ddxy_out, ix_ll, "");
5270			LLVMValueRef ddy_el = LLVMBuildExtractElement(gallivm->builder,
5271								      ddxy_out, iy_ll, "");
5272			LLVMValueRef interp_el = LLVMBuildExtractElement(gallivm->builder,
5273									 interp_param, ix_ll, "");
5274			LLVMValueRef temp1, temp2;
5275
5276			interp_el = LLVMBuildBitCast(gallivm->builder, interp_el,
5277						     ctx->f32, "");
5278
5279			temp1 = LLVMBuildFMul(gallivm->builder, ddx_el, emit_data->args[0], "");
5280
5281			temp1 = LLVMBuildFAdd(gallivm->builder, temp1, interp_el, "");
5282
5283			temp2 = LLVMBuildFMul(gallivm->builder, ddy_el, emit_data->args[1], "");
5284
5285			ij_out[i] = LLVMBuildFAdd(gallivm->builder, temp2, temp1, "");
5286		}
5287		interp_param = lp_build_gather_values(bld_base->base.gallivm, ij_out, 2);
5288	}
5289
5290	for (chan = 0; chan < 4; chan++) {
5291		LLVMValueRef llvm_chan;
5292		unsigned schan;
5293
5294		schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
5295		llvm_chan = lp_build_const_int32(gallivm, schan);
5296
5297		if (interp_param) {
5298			interp_param = LLVMBuildBitCast(gallivm->builder,
5299				interp_param, LLVMVectorType(ctx->f32, 2), "");
5300			LLVMValueRef i = LLVMBuildExtractElement(
5301				gallivm->builder, interp_param, uint->zero, "");
5302			LLVMValueRef j = LLVMBuildExtractElement(
5303				gallivm->builder, interp_param, uint->one, "");
5304			emit_data->output[chan] = build_fs_interp(bld_base,
5305				llvm_chan, attr_number, params,
5306				i, j);
5307		} else {
5308			emit_data->output[chan] = build_fs_interp_mov(bld_base,
5309				lp_build_const_int32(gallivm, 2), /* P0 */
5310				llvm_chan, attr_number, params);
5311		}
5312	}
5313}
5314
5315static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
5316				       struct lp_build_emit_data *emit_data)
5317{
5318	struct si_shader_context *ctx = si_shader_context(bld_base);
5319	struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
5320	LLVMValueRef imm;
5321	unsigned stream;
5322
5323	assert(src0.File == TGSI_FILE_IMMEDIATE);
5324
5325	imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
5326	stream = LLVMConstIntGetZExtValue(imm) & 0x3;
5327	return stream;
5328}
5329
5330/* Emit one vertex from the geometry shader */
5331static void si_llvm_emit_vertex(
5332	const struct lp_build_tgsi_action *action,
5333	struct lp_build_tgsi_context *bld_base,
5334	struct lp_build_emit_data *emit_data)
5335{
5336	struct si_shader_context *ctx = si_shader_context(bld_base);
5337	struct lp_build_context *uint = &bld_base->uint_bld;
5338	struct si_shader *shader = ctx->shader;
5339	struct tgsi_shader_info *info = &shader->selector->info;
5340	struct gallivm_state *gallivm = bld_base->base.gallivm;
5341	struct lp_build_if_state if_state;
5342	LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
5343					    SI_PARAM_GS2VS_OFFSET);
5344	LLVMValueRef gs_next_vertex;
5345	LLVMValueRef can_emit, kill;
5346	LLVMValueRef args[2];
5347	unsigned chan, offset;
5348	int i;
5349	unsigned stream;
5350
5351	stream = si_llvm_get_stream(bld_base, emit_data);
5352
5353	/* Write vertex attribute values to GSVS ring */
5354	gs_next_vertex = LLVMBuildLoad(gallivm->builder,
5355				       ctx->gs_next_vertex[stream],
5356				       "");
5357
5358	/* If this thread has already emitted the declared maximum number of
5359	 * vertices, skip the write: excessive vertex emissions are not
5360	 * supposed to have any effect.
5361	 *
5362	 * If the shader has no writes to memory, kill it instead. This skips
5363	 * further memory loads and may allow LLVM to skip to the end
5364	 * altogether.
5365	 */
5366	can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULT, gs_next_vertex,
5367				 lp_build_const_int32(gallivm,
5368						      shader->selector->gs_max_out_vertices), "");
5369
5370	bool use_kill = !info->writes_memory;
5371	if (use_kill) {
5372		kill = lp_build_select(&bld_base->base, can_emit,
5373				       lp_build_const_float(gallivm, 1.0f),
5374				       lp_build_const_float(gallivm, -1.0f));
5375
5376		lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
5377				   ctx->voidt, &kill, 1, 0);
5378	} else {
5379		lp_build_if(&if_state, gallivm, can_emit);
5380	}
5381
5382	offset = 0;
5383	for (i = 0; i < info->num_outputs; i++) {
5384		LLVMValueRef *out_ptr = ctx->outputs[i];
5385
5386		for (chan = 0; chan < 4; chan++) {
5387			if (!(info->output_usagemask[i] & (1 << chan)) ||
5388			    ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
5389				continue;
5390
5391			LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
5392			LLVMValueRef voffset =
5393				lp_build_const_int32(gallivm, offset *
5394						     shader->selector->gs_max_out_vertices);
5395			offset++;
5396
5397			voffset = lp_build_add(uint, voffset, gs_next_vertex);
5398			voffset = lp_build_mul_imm(uint, voffset, 4);
5399
5400			out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
5401
5402			build_tbuffer_store(ctx,
5403					    ctx->gsvs_ring[stream],
5404					    out_val, 1,
5405					    voffset, soffset, 0,
5406					    V_008F0C_BUF_DATA_FORMAT_32,
5407					    V_008F0C_BUF_NUM_FORMAT_UINT,
5408					    1, 0, 1, 1, 0);
5409		}
5410	}
5411
5412	gs_next_vertex = lp_build_add(uint, gs_next_vertex,
5413				      lp_build_const_int32(gallivm, 1));
5414
5415	LLVMBuildStore(gallivm->builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
5416
5417	/* Signal vertex emission */
5418	args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS | (stream << 8));
5419	args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
5420	lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
5421			   ctx->voidt, args, 2, 0);
5422
5423	if (!use_kill)
5424		lp_build_endif(&if_state);
5425}
5426
5427/* Cut one primitive from the geometry shader */
5428static void si_llvm_emit_primitive(
5429	const struct lp_build_tgsi_action *action,
5430	struct lp_build_tgsi_context *bld_base,
5431	struct lp_build_emit_data *emit_data)
5432{
5433	struct si_shader_context *ctx = si_shader_context(bld_base);
5434	struct gallivm_state *gallivm = bld_base->base.gallivm;
5435	LLVMValueRef args[2];
5436	unsigned stream;
5437
5438	/* Signal primitive cut */
5439	stream = si_llvm_get_stream(bld_base, emit_data);
5440	args[0] = lp_build_const_int32(gallivm,	SENDMSG_GS_OP_CUT | SENDMSG_GS | (stream << 8));
5441	args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
5442	lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
5443			   ctx->voidt, args, 2, 0);
5444}
5445
5446static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
5447				 struct lp_build_tgsi_context *bld_base,
5448				 struct lp_build_emit_data *emit_data)
5449{
5450	struct si_shader_context *ctx = si_shader_context(bld_base);
5451	struct gallivm_state *gallivm = bld_base->base.gallivm;
5452
5453	/* SI only (thanks to a hw bug workaround):
5454	 * The real barrier instruction isn’t needed, because an entire patch
5455	 * always fits into a single wave.
5456	 */
5457	if (HAVE_LLVM >= 0x0309 &&
5458	    ctx->screen->b.chip_class == SI &&
5459	    ctx->type == PIPE_SHADER_TESS_CTRL) {
5460		emit_waitcnt(ctx, LGKM_CNT & VM_CNT);
5461		return;
5462	}
5463
5464	lp_build_intrinsic(gallivm->builder,
5465			   HAVE_LLVM >= 0x0309 ? "llvm.amdgcn.s.barrier"
5466					       : "llvm.AMDGPU.barrier.local",
5467			   ctx->voidt, NULL, 0, 0);
5468}
5469
5470static const struct lp_build_tgsi_action tex_action = {
5471	.fetch_args = tex_fetch_args,
5472	.emit = build_tex_intrinsic,
5473};
5474
5475static const struct lp_build_tgsi_action interp_action = {
5476	.fetch_args = interp_fetch_args,
5477	.emit = build_interp_intrinsic,
5478};
5479
5480static void si_create_function(struct si_shader_context *ctx,
5481			       const char *name,
5482			       LLVMTypeRef *returns, unsigned num_returns,
5483			       LLVMTypeRef *params, unsigned num_params,
5484			       int last_sgpr)
5485{
5486	int i;
5487
5488	si_llvm_create_func(ctx, name, returns, num_returns,
5489			    params, num_params);
5490	si_llvm_shader_type(ctx->main_fn, ctx->type);
5491	ctx->return_value = LLVMGetUndef(ctx->return_type);
5492
5493	for (i = 0; i <= last_sgpr; ++i) {
5494		LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
5495
5496		/* The combination of:
5497		 * - ByVal
5498		 * - dereferenceable
5499		 * - invariant.load
5500		 * allows the optimization passes to move loads and reduces
5501		 * SGPR spilling significantly.
5502		 */
5503		if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
5504			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_BYVAL);
5505			lp_add_attr_dereferenceable(P, UINT64_MAX);
5506		} else
5507			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_INREG);
5508	}
5509
5510	if (ctx->screen->b.debug_flags & DBG_UNSAFE_MATH) {
5511		/* These were copied from some LLVM test. */
5512		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5513						   "less-precise-fpmad",
5514						   "true");
5515		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5516						   "no-infs-fp-math",
5517						   "true");
5518		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5519						   "no-nans-fp-math",
5520						   "true");
5521		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
5522						   "unsafe-fp-math",
5523						   "true");
5524	}
5525}
5526
5527static void create_meta_data(struct si_shader_context *ctx)
5528{
5529	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
5530
5531	ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
5532							       "invariant.load", 14);
5533	ctx->range_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
5534						     "range", 5);
5535	ctx->uniform_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
5536							"amdgpu.uniform", 14);
5537
5538	ctx->empty_md = LLVMMDNodeInContext(gallivm->context, NULL, 0);
5539}
5540
5541static void declare_streamout_params(struct si_shader_context *ctx,
5542				     struct pipe_stream_output_info *so,
5543				     LLVMTypeRef *params, LLVMTypeRef i32,
5544				     unsigned *num_params)
5545{
5546	int i;
5547
5548	/* Streamout SGPRs. */
5549	if (so->num_outputs) {
5550		if (ctx->type != PIPE_SHADER_TESS_EVAL)
5551			params[ctx->param_streamout_config = (*num_params)++] = i32;
5552		else
5553			ctx->param_streamout_config = ctx->param_tess_offchip;
5554
5555		params[ctx->param_streamout_write_index = (*num_params)++] = i32;
5556	}
5557	/* A streamout buffer offset is loaded if the stride is non-zero. */
5558	for (i = 0; i < 4; i++) {
5559		if (!so->stride[i])
5560			continue;
5561
5562		params[ctx->param_streamout_offset[i] = (*num_params)++] = i32;
5563	}
5564}
5565
5566static unsigned llvm_get_type_size(LLVMTypeRef type)
5567{
5568	LLVMTypeKind kind = LLVMGetTypeKind(type);
5569
5570	switch (kind) {
5571	case LLVMIntegerTypeKind:
5572		return LLVMGetIntTypeWidth(type) / 8;
5573	case LLVMFloatTypeKind:
5574		return 4;
5575	case LLVMPointerTypeKind:
5576		return 8;
5577	case LLVMVectorTypeKind:
5578		return LLVMGetVectorSize(type) *
5579		       llvm_get_type_size(LLVMGetElementType(type));
5580	case LLVMArrayTypeKind:
5581		return LLVMGetArrayLength(type) *
5582		       llvm_get_type_size(LLVMGetElementType(type));
5583	default:
5584		assert(0);
5585		return 0;
5586	}
5587}
5588
5589static void declare_tess_lds(struct si_shader_context *ctx)
5590{
5591	struct gallivm_state *gallivm = &ctx->gallivm;
5592	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5593	struct lp_build_context *uint = &bld_base->uint_bld;
5594
5595	unsigned lds_size = ctx->screen->b.chip_class >= CIK ? 65536 : 32768;
5596	ctx->lds = LLVMBuildIntToPtr(gallivm->builder, uint->zero,
5597		LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), LOCAL_ADDR_SPACE),
5598		"tess_lds");
5599}
5600
5601static unsigned si_get_max_workgroup_size(struct si_shader *shader)
5602{
5603	const unsigned *properties = shader->selector->info.properties;
5604	unsigned max_work_group_size =
5605	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
5606	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
5607	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
5608
5609	if (!max_work_group_size) {
5610		/* This is a variable group size compute shader,
5611		 * compile it for the maximum possible group size.
5612		 */
5613		max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
5614	}
5615	return max_work_group_size;
5616}
5617
5618static void create_function(struct si_shader_context *ctx)
5619{
5620	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5621	struct gallivm_state *gallivm = bld_base->base.gallivm;
5622	struct si_shader *shader = ctx->shader;
5623	LLVMTypeRef params[SI_NUM_PARAMS + SI_NUM_VERTEX_BUFFERS], v3i32;
5624	LLVMTypeRef returns[16+32*4];
5625	unsigned i, last_sgpr, num_params, num_return_sgprs;
5626	unsigned num_returns = 0;
5627	unsigned num_prolog_vgprs = 0;
5628
5629	v3i32 = LLVMVectorType(ctx->i32, 3);
5630
5631	params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
5632	params[SI_PARAM_CONST_BUFFERS] = const_array(ctx->v16i8, SI_NUM_CONST_BUFFERS);
5633	params[SI_PARAM_SAMPLERS] = const_array(ctx->v8i32, SI_NUM_SAMPLERS);
5634	params[SI_PARAM_IMAGES] = const_array(ctx->v8i32, SI_NUM_IMAGES);
5635	params[SI_PARAM_SHADER_BUFFERS] = const_array(ctx->v4i32, SI_NUM_SHADER_BUFFERS);
5636
5637	switch (ctx->type) {
5638	case PIPE_SHADER_VERTEX:
5639		params[SI_PARAM_VERTEX_BUFFERS] = const_array(ctx->v16i8, SI_NUM_VERTEX_BUFFERS);
5640		params[SI_PARAM_BASE_VERTEX] = ctx->i32;
5641		params[SI_PARAM_START_INSTANCE] = ctx->i32;
5642		params[SI_PARAM_DRAWID] = ctx->i32;
5643		num_params = SI_PARAM_DRAWID+1;
5644
5645		if (shader->key.as_es) {
5646			params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
5647		} else if (shader->key.as_ls) {
5648			params[SI_PARAM_LS_OUT_LAYOUT] = ctx->i32;
5649			num_params = SI_PARAM_LS_OUT_LAYOUT+1;
5650		} else {
5651			if (shader->is_gs_copy_shader) {
5652				num_params = SI_PARAM_RW_BUFFERS+1;
5653			} else {
5654				params[SI_PARAM_VS_STATE_BITS] = ctx->i32;
5655				num_params = SI_PARAM_VS_STATE_BITS+1;
5656			}
5657
5658			/* The locations of the other parameters are assigned dynamically. */
5659			declare_streamout_params(ctx, &shader->selector->so,
5660						 params, ctx->i32, &num_params);
5661		}
5662
5663		last_sgpr = num_params-1;
5664
5665		/* VGPRs */
5666		params[ctx->param_vertex_id = num_params++] = ctx->i32;
5667		params[ctx->param_rel_auto_id = num_params++] = ctx->i32;
5668		params[ctx->param_vs_prim_id = num_params++] = ctx->i32;
5669		params[ctx->param_instance_id = num_params++] = ctx->i32;
5670
5671		if (!shader->is_gs_copy_shader) {
5672			/* Vertex load indices. */
5673			ctx->param_vertex_index0 = num_params;
5674
5675			for (i = 0; i < shader->selector->info.num_inputs; i++)
5676				params[num_params++] = ctx->i32;
5677
5678			num_prolog_vgprs += shader->selector->info.num_inputs;
5679
5680			/* PrimitiveID output. */
5681			if (!shader->key.as_es && !shader->key.as_ls)
5682				for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
5683					returns[num_returns++] = ctx->f32;
5684		}
5685		break;
5686
5687	case PIPE_SHADER_TESS_CTRL:
5688		params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
5689		params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
5690		params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
5691		params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
5692		params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
5693		params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
5694		last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
5695
5696		/* VGPRs */
5697		params[SI_PARAM_PATCH_ID] = ctx->i32;
5698		params[SI_PARAM_REL_IDS] = ctx->i32;
5699		num_params = SI_PARAM_REL_IDS+1;
5700
5701		/* SI_PARAM_TCS_OC_LDS and PARAM_TESS_FACTOR_OFFSET are
5702		 * placed after the user SGPRs.
5703		 */
5704		for (i = 0; i < SI_TCS_NUM_USER_SGPR + 2; i++)
5705			returns[num_returns++] = ctx->i32; /* SGPRs */
5706
5707		for (i = 0; i < 3; i++)
5708			returns[num_returns++] = ctx->f32; /* VGPRs */
5709		break;
5710
5711	case PIPE_SHADER_TESS_EVAL:
5712		params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
5713		num_params = SI_PARAM_TCS_OFFCHIP_LAYOUT+1;
5714
5715		if (shader->key.as_es) {
5716			params[ctx->param_oc_lds = num_params++] = ctx->i32;
5717			params[ctx->param_tess_offchip = num_params++] = ctx->i32;
5718			params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
5719		} else {
5720			params[ctx->param_tess_offchip = num_params++] = ctx->i32;
5721			declare_streamout_params(ctx, &shader->selector->so,
5722						 params, ctx->i32, &num_params);
5723			params[ctx->param_oc_lds = num_params++] = ctx->i32;
5724		}
5725		last_sgpr = num_params - 1;
5726
5727		/* VGPRs */
5728		params[ctx->param_tes_u = num_params++] = ctx->f32;
5729		params[ctx->param_tes_v = num_params++] = ctx->f32;
5730		params[ctx->param_tes_rel_patch_id = num_params++] = ctx->i32;
5731		params[ctx->param_tes_patch_id = num_params++] = ctx->i32;
5732
5733		/* PrimitiveID output. */
5734		if (!shader->key.as_es)
5735			for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
5736				returns[num_returns++] = ctx->f32;
5737		break;
5738
5739	case PIPE_SHADER_GEOMETRY:
5740		params[SI_PARAM_GS2VS_OFFSET] = ctx->i32;
5741		params[SI_PARAM_GS_WAVE_ID] = ctx->i32;
5742		last_sgpr = SI_PARAM_GS_WAVE_ID;
5743
5744		/* VGPRs */
5745		params[SI_PARAM_VTX0_OFFSET] = ctx->i32;
5746		params[SI_PARAM_VTX1_OFFSET] = ctx->i32;
5747		params[SI_PARAM_PRIMITIVE_ID] = ctx->i32;
5748		params[SI_PARAM_VTX2_OFFSET] = ctx->i32;
5749		params[SI_PARAM_VTX3_OFFSET] = ctx->i32;
5750		params[SI_PARAM_VTX4_OFFSET] = ctx->i32;
5751		params[SI_PARAM_VTX5_OFFSET] = ctx->i32;
5752		params[SI_PARAM_GS_INSTANCE_ID] = ctx->i32;
5753		num_params = SI_PARAM_GS_INSTANCE_ID+1;
5754		break;
5755
5756	case PIPE_SHADER_FRAGMENT:
5757		params[SI_PARAM_ALPHA_REF] = ctx->f32;
5758		params[SI_PARAM_PRIM_MASK] = ctx->i32;
5759		last_sgpr = SI_PARAM_PRIM_MASK;
5760		params[SI_PARAM_PERSP_SAMPLE] = ctx->v2i32;
5761		params[SI_PARAM_PERSP_CENTER] = ctx->v2i32;
5762		params[SI_PARAM_PERSP_CENTROID] = ctx->v2i32;
5763		params[SI_PARAM_PERSP_PULL_MODEL] = v3i32;
5764		params[SI_PARAM_LINEAR_SAMPLE] = ctx->v2i32;
5765		params[SI_PARAM_LINEAR_CENTER] = ctx->v2i32;
5766		params[SI_PARAM_LINEAR_CENTROID] = ctx->v2i32;
5767		params[SI_PARAM_LINE_STIPPLE_TEX] = ctx->f32;
5768		params[SI_PARAM_POS_X_FLOAT] = ctx->f32;
5769		params[SI_PARAM_POS_Y_FLOAT] = ctx->f32;
5770		params[SI_PARAM_POS_Z_FLOAT] = ctx->f32;
5771		params[SI_PARAM_POS_W_FLOAT] = ctx->f32;
5772		params[SI_PARAM_FRONT_FACE] = ctx->i32;
5773		shader->info.face_vgpr_index = 20;
5774		params[SI_PARAM_ANCILLARY] = ctx->i32;
5775		params[SI_PARAM_SAMPLE_COVERAGE] = ctx->f32;
5776		params[SI_PARAM_POS_FIXED_PT] = ctx->i32;
5777		num_params = SI_PARAM_POS_FIXED_PT+1;
5778
5779		/* Color inputs from the prolog. */
5780		if (shader->selector->info.colors_read) {
5781			unsigned num_color_elements =
5782				util_bitcount(shader->selector->info.colors_read);
5783
5784			assert(num_params + num_color_elements <= ARRAY_SIZE(params));
5785			for (i = 0; i < num_color_elements; i++)
5786				params[num_params++] = ctx->f32;
5787
5788			num_prolog_vgprs += num_color_elements;
5789		}
5790
5791		/* Outputs for the epilog. */
5792		num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
5793		num_returns =
5794			num_return_sgprs +
5795			util_bitcount(shader->selector->info.colors_written) * 4 +
5796			shader->selector->info.writes_z +
5797			shader->selector->info.writes_stencil +
5798			shader->selector->info.writes_samplemask +
5799			1 /* SampleMaskIn */;
5800
5801		num_returns = MAX2(num_returns,
5802				   num_return_sgprs +
5803				   PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
5804
5805		for (i = 0; i < num_return_sgprs; i++)
5806			returns[i] = ctx->i32;
5807		for (; i < num_returns; i++)
5808			returns[i] = ctx->f32;
5809		break;
5810
5811	case PIPE_SHADER_COMPUTE:
5812		params[SI_PARAM_GRID_SIZE] = v3i32;
5813		params[SI_PARAM_BLOCK_SIZE] = v3i32;
5814		params[SI_PARAM_BLOCK_ID] = v3i32;
5815		last_sgpr = SI_PARAM_BLOCK_ID;
5816
5817		params[SI_PARAM_THREAD_ID] = v3i32;
5818		num_params = SI_PARAM_THREAD_ID + 1;
5819		break;
5820	default:
5821		assert(0 && "unimplemented shader");
5822		return;
5823	}
5824
5825	assert(num_params <= ARRAY_SIZE(params));
5826
5827	si_create_function(ctx, "main", returns, num_returns, params,
5828			   num_params, last_sgpr);
5829
5830	/* Reserve register locations for VGPR inputs the PS prolog may need. */
5831	if (ctx->type == PIPE_SHADER_FRAGMENT &&
5832	    ctx->separate_prolog) {
5833		si_llvm_add_attribute(ctx->main_fn,
5834				      "InitialPSInputAddr",
5835				      S_0286D0_PERSP_SAMPLE_ENA(1) |
5836				      S_0286D0_PERSP_CENTER_ENA(1) |
5837				      S_0286D0_PERSP_CENTROID_ENA(1) |
5838				      S_0286D0_LINEAR_SAMPLE_ENA(1) |
5839				      S_0286D0_LINEAR_CENTER_ENA(1) |
5840				      S_0286D0_LINEAR_CENTROID_ENA(1) |
5841				      S_0286D0_FRONT_FACE_ENA(1) |
5842				      S_0286D0_POS_FIXED_PT_ENA(1));
5843	} else if (ctx->type == PIPE_SHADER_COMPUTE) {
5844		si_llvm_add_attribute(ctx->main_fn,
5845				      "amdgpu-max-work-group-size",
5846				      si_get_max_workgroup_size(shader));
5847	}
5848
5849	shader->info.num_input_sgprs = 0;
5850	shader->info.num_input_vgprs = 0;
5851
5852	for (i = 0; i <= last_sgpr; ++i)
5853		shader->info.num_input_sgprs += llvm_get_type_size(params[i]) / 4;
5854
5855	for (; i < num_params; ++i)
5856		shader->info.num_input_vgprs += llvm_get_type_size(params[i]) / 4;
5857
5858	assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5859	shader->info.num_input_vgprs -= num_prolog_vgprs;
5860
5861	if (!ctx->screen->has_ds_bpermute &&
5862	    bld_base->info &&
5863	    (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 ||
5864	     bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0 ||
5865	     bld_base->info->opcode_count[TGSI_OPCODE_DDX_FINE] > 0 ||
5866	     bld_base->info->opcode_count[TGSI_OPCODE_DDY_FINE] > 0 ||
5867	     bld_base->info->opcode_count[TGSI_OPCODE_INTERP_OFFSET] > 0 ||
5868	     bld_base->info->opcode_count[TGSI_OPCODE_INTERP_SAMPLE] > 0))
5869		ctx->lds =
5870			LLVMAddGlobalInAddressSpace(gallivm->module,
5871						    LLVMArrayType(ctx->i32, 64),
5872						    "ddxy_lds",
5873						    LOCAL_ADDR_SPACE);
5874
5875	if ((ctx->type == PIPE_SHADER_VERTEX && shader->key.as_ls) ||
5876	    ctx->type == PIPE_SHADER_TESS_CTRL ||
5877	    ctx->type == PIPE_SHADER_TESS_EVAL)
5878		declare_tess_lds(ctx);
5879}
5880
5881/**
5882 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5883 * for later use.
5884 */
5885static void preload_ring_buffers(struct si_shader_context *ctx)
5886{
5887	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
5888	LLVMBuilderRef builder = gallivm->builder;
5889
5890	LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5891					    SI_PARAM_RW_BUFFERS);
5892
5893	if ((ctx->type == PIPE_SHADER_VERTEX &&
5894	     ctx->shader->key.as_es) ||
5895	    (ctx->type == PIPE_SHADER_TESS_EVAL &&
5896	     ctx->shader->key.as_es) ||
5897	    ctx->type == PIPE_SHADER_GEOMETRY) {
5898		unsigned ring =
5899			ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5900							     : SI_ES_RING_ESGS;
5901		LLVMValueRef offset = lp_build_const_int32(gallivm, ring);
5902
5903		ctx->esgs_ring =
5904			build_indexed_load_const(ctx, buf_ptr, offset);
5905	}
5906
5907	if (ctx->shader->is_gs_copy_shader) {
5908		LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS);
5909
5910		ctx->gsvs_ring[0] =
5911			build_indexed_load_const(ctx, buf_ptr, offset);
5912	} else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5913		const struct si_shader_selector *sel = ctx->shader->selector;
5914		struct lp_build_context *uint = &ctx->bld_base.uint_bld;
5915		LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS);
5916		LLVMValueRef base_ring;
5917
5918		base_ring = build_indexed_load_const(ctx, buf_ptr, offset);
5919
5920		/* The conceptual layout of the GSVS ring is
5921		 *   v0c0 .. vLv0 v0c1 .. vLc1 ..
5922		 * but the real memory layout is swizzled across
5923		 * threads:
5924		 *   t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5925		 *   t16v0c0 ..
5926		 * Override the buffer descriptor accordingly.
5927		 */
5928		LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5929		uint64_t stream_offset = 0;
5930
5931		for (unsigned stream = 0; stream < 4; ++stream) {
5932			unsigned num_components;
5933			unsigned stride;
5934			unsigned num_records;
5935			LLVMValueRef ring, tmp;
5936
5937			num_components = sel->info.num_stream_output_components[stream];
5938			if (!num_components)
5939				continue;
5940
5941			stride = 4 * num_components * sel->gs_max_out_vertices;
5942
5943			/* Limit on the stride field for <= CIK. */
5944			assert(stride < (1 << 14));
5945
5946			num_records = 64;
5947
5948			ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5949			tmp = LLVMBuildExtractElement(builder, ring, uint->zero, "");
5950			tmp = LLVMBuildAdd(builder, tmp,
5951					   LLVMConstInt(ctx->i64,
5952							stream_offset, 0), "");
5953			stream_offset += stride * 64;
5954
5955			ring = LLVMBuildInsertElement(builder, ring, tmp, uint->zero, "");
5956			ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5957			tmp = LLVMBuildExtractElement(builder, ring, uint->one, "");
5958			tmp = LLVMBuildOr(builder, tmp,
5959				LLVMConstInt(ctx->i32,
5960					     S_008F04_STRIDE(stride) |
5961					     S_008F04_SWIZZLE_ENABLE(1), 0), "");
5962			ring = LLVMBuildInsertElement(builder, ring, tmp, uint->one, "");
5963			ring = LLVMBuildInsertElement(builder, ring,
5964					LLVMConstInt(ctx->i32, num_records, 0),
5965					LLVMConstInt(ctx->i32, 2, 0), "");
5966			ring = LLVMBuildInsertElement(builder, ring,
5967				LLVMConstInt(ctx->i32,
5968					     S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5969					     S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5970					     S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5971					     S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5972					     S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5973					     S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5974					     S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5975					     S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5976					     S_008F0C_ADD_TID_ENABLE(1),
5977					     0),
5978				LLVMConstInt(ctx->i32, 3, 0), "");
5979			ring = LLVMBuildBitCast(builder, ring, ctx->v16i8, "");
5980
5981			ctx->gsvs_ring[stream] = ring;
5982		}
5983	}
5984}
5985
5986static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5987					 LLVMValueRef param_rw_buffers,
5988					 unsigned param_pos_fixed_pt)
5989{
5990	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5991	struct gallivm_state *gallivm = bld_base->base.gallivm;
5992	LLVMBuilderRef builder = gallivm->builder;
5993	LLVMValueRef slot, desc, offset, row, bit, address[2];
5994
5995	/* Use the fixed-point gl_FragCoord input.
5996	 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5997	 * per coordinate to get the repeating effect.
5998	 */
5999	address[0] = unpack_param(ctx, param_pos_fixed_pt, 0, 5);
6000	address[1] = unpack_param(ctx, param_pos_fixed_pt, 16, 5);
6001
6002	/* Load the buffer descriptor. */
6003	slot = lp_build_const_int32(gallivm, SI_PS_CONST_POLY_STIPPLE);
6004	desc = build_indexed_load_const(ctx, param_rw_buffers, slot);
6005
6006	/* The stipple pattern is 32x32, each row has 32 bits. */
6007	offset = LLVMBuildMul(builder, address[1],
6008			      LLVMConstInt(ctx->i32, 4, 0), "");
6009	row = buffer_load_const(ctx, desc, offset);
6010	row = LLVMBuildBitCast(builder, row, ctx->i32, "");
6011	bit = LLVMBuildLShr(builder, row, address[0], "");
6012	bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
6013
6014	/* The intrinsic kills the thread if arg < 0. */
6015	bit = LLVMBuildSelect(builder, bit, LLVMConstReal(ctx->f32, 0),
6016			      LLVMConstReal(ctx->f32, -1), "");
6017	lp_build_intrinsic(builder, "llvm.AMDGPU.kill", ctx->voidt, &bit, 1, 0);
6018}
6019
6020void si_shader_binary_read_config(struct radeon_shader_binary *binary,
6021				  struct si_shader_config *conf,
6022				  unsigned symbol_offset)
6023{
6024	unsigned i;
6025	const unsigned char *config =
6026		radeon_shader_binary_config_start(binary, symbol_offset);
6027	bool really_needs_scratch = false;
6028
6029	/* LLVM adds SGPR spills to the scratch size.
6030	 * Find out if we really need the scratch buffer.
6031	 */
6032	for (i = 0; i < binary->reloc_count; i++) {
6033		const struct radeon_shader_reloc *reloc = &binary->relocs[i];
6034
6035		if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
6036		    !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
6037			really_needs_scratch = true;
6038			break;
6039		}
6040	}
6041
6042	/* XXX: We may be able to emit some of these values directly rather than
6043	 * extracting fields to be emitted later.
6044	 */
6045
6046	for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
6047		unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
6048		unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
6049		switch (reg) {
6050		case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
6051		case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
6052		case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
6053		case R_00B848_COMPUTE_PGM_RSRC1:
6054			conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
6055			conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
6056			conf->float_mode =  G_00B028_FLOAT_MODE(value);
6057			conf->rsrc1 = value;
6058			break;
6059		case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
6060			conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
6061			break;
6062		case R_00B84C_COMPUTE_PGM_RSRC2:
6063			conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
6064			conf->rsrc2 = value;
6065			break;
6066		case R_0286CC_SPI_PS_INPUT_ENA:
6067			conf->spi_ps_input_ena = value;
6068			break;
6069		case R_0286D0_SPI_PS_INPUT_ADDR:
6070			conf->spi_ps_input_addr = value;
6071			break;
6072		case R_0286E8_SPI_TMPRING_SIZE:
6073		case R_00B860_COMPUTE_TMPRING_SIZE:
6074			/* WAVESIZE is in units of 256 dwords. */
6075			if (really_needs_scratch)
6076				conf->scratch_bytes_per_wave =
6077					G_00B860_WAVESIZE(value) * 256 * 4;
6078			break;
6079		case 0x4: /* SPILLED_SGPRS */
6080			conf->spilled_sgprs = value;
6081			break;
6082		case 0x8: /* SPILLED_VGPRS */
6083			conf->spilled_vgprs = value;
6084			break;
6085		default:
6086			{
6087				static bool printed;
6088
6089				if (!printed) {
6090					fprintf(stderr, "Warning: LLVM emitted unknown "
6091						"config register: 0x%x\n", reg);
6092					printed = true;
6093				}
6094			}
6095			break;
6096		}
6097	}
6098
6099	if (!conf->spi_ps_input_addr)
6100		conf->spi_ps_input_addr = conf->spi_ps_input_ena;
6101}
6102
6103void si_shader_apply_scratch_relocs(struct si_context *sctx,
6104			struct si_shader *shader,
6105			struct si_shader_config *config,
6106			uint64_t scratch_va)
6107{
6108	unsigned i;
6109	uint32_t scratch_rsrc_dword0 = scratch_va;
6110	uint32_t scratch_rsrc_dword1 =
6111		S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
6112
6113	/* Enable scratch coalescing if LLVM sets ELEMENT_SIZE & INDEX_STRIDE
6114	 * correctly.
6115	 */
6116	if (HAVE_LLVM >= 0x0309)
6117		scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
6118	else
6119		scratch_rsrc_dword1 |=
6120			S_008F04_STRIDE(config->scratch_bytes_per_wave / 64);
6121
6122	for (i = 0 ; i < shader->binary.reloc_count; i++) {
6123		const struct radeon_shader_reloc *reloc =
6124					&shader->binary.relocs[i];
6125		if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
6126			util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
6127			&scratch_rsrc_dword0, 4);
6128		} else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
6129			util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
6130			&scratch_rsrc_dword1, 4);
6131		}
6132	}
6133}
6134
6135static unsigned si_get_shader_binary_size(struct si_shader *shader)
6136{
6137	unsigned size = shader->binary.code_size;
6138
6139	if (shader->prolog)
6140		size += shader->prolog->binary.code_size;
6141	if (shader->epilog)
6142		size += shader->epilog->binary.code_size;
6143	return size;
6144}
6145
6146int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
6147{
6148	const struct radeon_shader_binary *prolog =
6149		shader->prolog ? &shader->prolog->binary : NULL;
6150	const struct radeon_shader_binary *epilog =
6151		shader->epilog ? &shader->epilog->binary : NULL;
6152	const struct radeon_shader_binary *mainb = &shader->binary;
6153	unsigned bo_size = si_get_shader_binary_size(shader) +
6154			   (!epilog ? mainb->rodata_size : 0);
6155	unsigned char *ptr;
6156
6157	assert(!prolog || !prolog->rodata_size);
6158	assert((!prolog && !epilog) || !mainb->rodata_size);
6159	assert(!epilog || !epilog->rodata_size);
6160
6161	r600_resource_reference(&shader->bo, NULL);
6162	shader->bo = (struct r600_resource*)
6163		     pipe_buffer_create(&sscreen->b.b, 0,
6164					PIPE_USAGE_IMMUTABLE, bo_size);
6165	if (!shader->bo)
6166		return -ENOMEM;
6167
6168	/* Upload. */
6169	ptr = sscreen->b.ws->buffer_map(shader->bo->buf, NULL,
6170					PIPE_TRANSFER_READ_WRITE);
6171
6172	if (prolog) {
6173		util_memcpy_cpu_to_le32(ptr, prolog->code, prolog->code_size);
6174		ptr += prolog->code_size;
6175	}
6176
6177	util_memcpy_cpu_to_le32(ptr, mainb->code, mainb->code_size);
6178	ptr += mainb->code_size;
6179
6180	if (epilog)
6181		util_memcpy_cpu_to_le32(ptr, epilog->code, epilog->code_size);
6182	else if (mainb->rodata_size > 0)
6183		util_memcpy_cpu_to_le32(ptr, mainb->rodata, mainb->rodata_size);
6184
6185	sscreen->b.ws->buffer_unmap(shader->bo->buf);
6186	return 0;
6187}
6188
6189static void si_shader_dump_disassembly(const struct radeon_shader_binary *binary,
6190				       struct pipe_debug_callback *debug,
6191				       const char *name, FILE *file)
6192{
6193	char *line, *p;
6194	unsigned i, count;
6195
6196	if (binary->disasm_string) {
6197		fprintf(file, "Shader %s disassembly:\n", name);
6198		fprintf(file, "%s", binary->disasm_string);
6199
6200		if (debug && debug->debug_message) {
6201			/* Very long debug messages are cut off, so send the
6202			 * disassembly one line at a time. This causes more
6203			 * overhead, but on the plus side it simplifies
6204			 * parsing of resulting logs.
6205			 */
6206			pipe_debug_message(debug, SHADER_INFO,
6207					   "Shader Disassembly Begin");
6208
6209			line = binary->disasm_string;
6210			while (*line) {
6211				p = util_strchrnul(line, '\n');
6212				count = p - line;
6213
6214				if (count) {
6215					pipe_debug_message(debug, SHADER_INFO,
6216							   "%.*s", count, line);
6217				}
6218
6219				if (!*p)
6220					break;
6221				line = p + 1;
6222			}
6223
6224			pipe_debug_message(debug, SHADER_INFO,
6225					   "Shader Disassembly End");
6226		}
6227	} else {
6228		fprintf(file, "Shader %s binary:\n", name);
6229		for (i = 0; i < binary->code_size; i += 4) {
6230			fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
6231				binary->code[i + 3], binary->code[i + 2],
6232				binary->code[i + 1], binary->code[i]);
6233		}
6234	}
6235}
6236
6237static void si_shader_dump_stats(struct si_screen *sscreen,
6238				 struct si_shader *shader,
6239			         struct pipe_debug_callback *debug,
6240			         unsigned processor,
6241				 FILE *file,
6242				 bool check_debug_option)
6243{
6244	struct si_shader_config *conf = &shader->config;
6245	unsigned num_inputs = shader->selector ? shader->selector->info.num_inputs : 0;
6246	unsigned code_size = si_get_shader_binary_size(shader);
6247	unsigned lds_increment = sscreen->b.chip_class >= CIK ? 512 : 256;
6248	unsigned lds_per_wave = 0;
6249	unsigned max_simd_waves = 10;
6250
6251	/* Compute LDS usage for PS. */
6252	switch (processor) {
6253	case PIPE_SHADER_FRAGMENT:
6254		/* The minimum usage per wave is (num_inputs * 48). The maximum
6255		 * usage is (num_inputs * 48 * 16).
6256		 * We can get anything in between and it varies between waves.
6257		 *
6258		 * The 48 bytes per input for a single primitive is equal to
6259		 * 4 bytes/component * 4 components/input * 3 points.
6260		 *
6261		 * Other stages don't know the size at compile time or don't
6262		 * allocate LDS per wave, but instead they do it per thread group.
6263		 */
6264		lds_per_wave = conf->lds_size * lds_increment +
6265			       align(num_inputs * 48, lds_increment);
6266		break;
6267	case PIPE_SHADER_COMPUTE:
6268		if (shader->selector) {
6269			unsigned max_workgroup_size =
6270				si_get_max_workgroup_size(shader);
6271			lds_per_wave = (conf->lds_size * lds_increment) /
6272				       DIV_ROUND_UP(max_workgroup_size, 64);
6273		}
6274		break;
6275	}
6276
6277	/* Compute the per-SIMD wave counts. */
6278	if (conf->num_sgprs) {
6279		if (sscreen->b.chip_class >= VI)
6280			max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
6281		else
6282			max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
6283	}
6284
6285	if (conf->num_vgprs)
6286		max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
6287
6288	/* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
6289	 * 16KB makes some SIMDs unoccupied). */
6290	if (lds_per_wave)
6291		max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
6292
6293	if (!check_debug_option ||
6294	    r600_can_dump_shader(&sscreen->b, processor)) {
6295		if (processor == PIPE_SHADER_FRAGMENT) {
6296			fprintf(file, "*** SHADER CONFIG ***\n"
6297				"SPI_PS_INPUT_ADDR = 0x%04x\n"
6298				"SPI_PS_INPUT_ENA  = 0x%04x\n",
6299				conf->spi_ps_input_addr, conf->spi_ps_input_ena);
6300		}
6301
6302		fprintf(file, "*** SHADER STATS ***\n"
6303			"SGPRS: %d\n"
6304			"VGPRS: %d\n"
6305		        "Spilled SGPRs: %d\n"
6306			"Spilled VGPRs: %d\n"
6307			"Private memory VGPRs: %d\n"
6308			"Code Size: %d bytes\n"
6309			"LDS: %d blocks\n"
6310			"Scratch: %d bytes per wave\n"
6311			"Max Waves: %d\n"
6312			"********************\n\n\n",
6313			conf->num_sgprs, conf->num_vgprs,
6314			conf->spilled_sgprs, conf->spilled_vgprs,
6315			conf->private_mem_vgprs, code_size,
6316			conf->lds_size, conf->scratch_bytes_per_wave,
6317			max_simd_waves);
6318	}
6319
6320	pipe_debug_message(debug, SHADER_INFO,
6321			   "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
6322			   "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
6323			   "Spilled VGPRs: %d PrivMem VGPRs: %d",
6324			   conf->num_sgprs, conf->num_vgprs, code_size,
6325			   conf->lds_size, conf->scratch_bytes_per_wave,
6326			   max_simd_waves, conf->spilled_sgprs,
6327			   conf->spilled_vgprs, conf->private_mem_vgprs);
6328}
6329
6330static const char *si_get_shader_name(struct si_shader *shader,
6331				      unsigned processor)
6332{
6333	switch (processor) {
6334	case PIPE_SHADER_VERTEX:
6335		if (shader->key.as_es)
6336			return "Vertex Shader as ES";
6337		else if (shader->key.as_ls)
6338			return "Vertex Shader as LS";
6339		else
6340			return "Vertex Shader as VS";
6341	case PIPE_SHADER_TESS_CTRL:
6342		return "Tessellation Control Shader";
6343	case PIPE_SHADER_TESS_EVAL:
6344		if (shader->key.as_es)
6345			return "Tessellation Evaluation Shader as ES";
6346		else
6347			return "Tessellation Evaluation Shader as VS";
6348	case PIPE_SHADER_GEOMETRY:
6349		if (shader->is_gs_copy_shader)
6350			return "GS Copy Shader as VS";
6351		else
6352			return "Geometry Shader";
6353	case PIPE_SHADER_FRAGMENT:
6354		return "Pixel Shader";
6355	case PIPE_SHADER_COMPUTE:
6356		return "Compute Shader";
6357	default:
6358		return "Unknown Shader";
6359	}
6360}
6361
6362void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
6363		    struct pipe_debug_callback *debug, unsigned processor,
6364		    FILE *file, bool check_debug_option)
6365{
6366	if (!check_debug_option ||
6367	    r600_can_dump_shader(&sscreen->b, processor))
6368		si_dump_shader_key(processor, &shader->key, file);
6369
6370	if (!check_debug_option && shader->binary.llvm_ir_string) {
6371		fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
6372			si_get_shader_name(shader, processor));
6373		fprintf(file, "%s\n", shader->binary.llvm_ir_string);
6374	}
6375
6376	if (!check_debug_option ||
6377	    (r600_can_dump_shader(&sscreen->b, processor) &&
6378	     !(sscreen->b.debug_flags & DBG_NO_ASM))) {
6379		fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
6380
6381		if (shader->prolog)
6382			si_shader_dump_disassembly(&shader->prolog->binary,
6383						   debug, "prolog", file);
6384
6385		si_shader_dump_disassembly(&shader->binary, debug, "main", file);
6386
6387		if (shader->epilog)
6388			si_shader_dump_disassembly(&shader->epilog->binary,
6389						   debug, "epilog", file);
6390		fprintf(file, "\n");
6391	}
6392
6393	si_shader_dump_stats(sscreen, shader, debug, processor, file,
6394			     check_debug_option);
6395}
6396
6397int si_compile_llvm(struct si_screen *sscreen,
6398		    struct radeon_shader_binary *binary,
6399		    struct si_shader_config *conf,
6400		    LLVMTargetMachineRef tm,
6401		    LLVMModuleRef mod,
6402		    struct pipe_debug_callback *debug,
6403		    unsigned processor,
6404		    const char *name)
6405{
6406	int r = 0;
6407	unsigned count = p_atomic_inc_return(&sscreen->b.num_compilations);
6408
6409	if (r600_can_dump_shader(&sscreen->b, processor)) {
6410		fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
6411
6412		if (!(sscreen->b.debug_flags & (DBG_NO_IR | DBG_PREOPT_IR))) {
6413			fprintf(stderr, "%s LLVM IR:\n\n", name);
6414			LLVMDumpModule(mod);
6415			fprintf(stderr, "\n");
6416		}
6417	}
6418
6419	if (sscreen->record_llvm_ir) {
6420		char *ir = LLVMPrintModuleToString(mod);
6421		binary->llvm_ir_string = strdup(ir);
6422		LLVMDisposeMessage(ir);
6423	}
6424
6425	if (!si_replace_shader(count, binary)) {
6426		r = si_llvm_compile(mod, binary, tm, debug);
6427		if (r)
6428			return r;
6429	}
6430
6431	si_shader_binary_read_config(binary, conf, 0);
6432
6433	/* Enable 64-bit and 16-bit denormals, because there is no performance
6434	 * cost.
6435	 *
6436	 * If denormals are enabled, all floating-point output modifiers are
6437	 * ignored.
6438	 *
6439	 * Don't enable denormals for 32-bit floats, because:
6440	 * - Floating-point output modifiers would be ignored by the hw.
6441	 * - Some opcodes don't support denormals, such as v_mad_f32. We would
6442	 *   have to stop using those.
6443	 * - SI & CI would be very slow.
6444	 */
6445	conf->float_mode |= V_00B028_FP_64_DENORMS;
6446
6447	FREE(binary->config);
6448	FREE(binary->global_symbol_offsets);
6449	binary->config = NULL;
6450	binary->global_symbol_offsets = NULL;
6451
6452	/* Some shaders can't have rodata because their binaries can be
6453	 * concatenated.
6454	 */
6455	if (binary->rodata_size &&
6456	    (processor == PIPE_SHADER_VERTEX ||
6457	     processor == PIPE_SHADER_TESS_CTRL ||
6458	     processor == PIPE_SHADER_TESS_EVAL ||
6459	     processor == PIPE_SHADER_FRAGMENT)) {
6460		fprintf(stderr, "radeonsi: The shader can't have rodata.");
6461		return -EINVAL;
6462	}
6463
6464	return r;
6465}
6466
6467static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
6468{
6469	if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
6470		LLVMBuildRetVoid(ctx->gallivm.builder);
6471	else
6472		LLVMBuildRet(ctx->gallivm.builder, ret);
6473}
6474
6475/* Generate code for the hardware VS shader stage to go with a geometry shader */
6476struct si_shader *
6477si_generate_gs_copy_shader(struct si_screen *sscreen,
6478			   LLVMTargetMachineRef tm,
6479			   struct si_shader_selector *gs_selector,
6480			   struct pipe_debug_callback *debug)
6481{
6482	struct si_shader_context ctx;
6483	struct si_shader *shader;
6484	struct gallivm_state *gallivm = &ctx.gallivm;
6485	LLVMBuilderRef builder;
6486	struct lp_build_tgsi_context *bld_base = &ctx.bld_base;
6487	struct lp_build_context *uint = &bld_base->uint_bld;
6488	struct si_shader_output_values *outputs;
6489	struct tgsi_shader_info *gsinfo = &gs_selector->info;
6490	LLVMValueRef args[9];
6491	int i, r;
6492
6493	outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
6494
6495	if (!outputs)
6496		return NULL;
6497
6498	shader = CALLOC_STRUCT(si_shader);
6499	if (!shader) {
6500		FREE(outputs);
6501		return NULL;
6502	}
6503
6504
6505	shader->selector = gs_selector;
6506	shader->is_gs_copy_shader = true;
6507
6508	si_init_shader_ctx(&ctx, sscreen, shader, tm);
6509	ctx.type = PIPE_SHADER_VERTEX;
6510
6511	builder = gallivm->builder;
6512
6513	create_meta_data(&ctx);
6514	create_function(&ctx);
6515	preload_ring_buffers(&ctx);
6516
6517	args[0] = ctx.gsvs_ring[0];
6518	args[1] = lp_build_mul_imm(uint,
6519				   LLVMGetParam(ctx.main_fn,
6520						ctx.param_vertex_id),
6521				   4);
6522	args[3] = uint->zero;
6523	args[4] = uint->one;  /* OFFEN */
6524	args[5] = uint->zero; /* IDXEN */
6525	args[6] = uint->one;  /* GLC */
6526	args[7] = uint->one;  /* SLC */
6527	args[8] = uint->zero; /* TFE */
6528
6529	/* Fetch the vertex stream ID.*/
6530	LLVMValueRef stream_id;
6531
6532	if (gs_selector->so.num_outputs)
6533		stream_id = unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
6534	else
6535		stream_id = uint->zero;
6536
6537	/* Fill in output information. */
6538	for (i = 0; i < gsinfo->num_outputs; ++i) {
6539		outputs[i].semantic_name = gsinfo->output_semantic_name[i];
6540		outputs[i].semantic_index = gsinfo->output_semantic_index[i];
6541
6542		for (int chan = 0; chan < 4; chan++) {
6543			outputs[i].vertex_stream[chan] =
6544				(gsinfo->output_streams[i] >> (2 * chan)) & 3;
6545		}
6546	}
6547
6548	LLVMBasicBlockRef end_bb;
6549	LLVMValueRef switch_inst;
6550
6551	end_bb = LLVMAppendBasicBlockInContext(gallivm->context, ctx.main_fn, "end");
6552	switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
6553
6554	for (int stream = 0; stream < 4; stream++) {
6555		LLVMBasicBlockRef bb;
6556		unsigned offset;
6557
6558		if (!gsinfo->num_stream_output_components[stream])
6559			continue;
6560
6561		if (stream > 0 && !gs_selector->so.num_outputs)
6562			continue;
6563
6564		bb = LLVMInsertBasicBlockInContext(gallivm->context, end_bb, "out");
6565		LLVMAddCase(switch_inst, lp_build_const_int32(gallivm, stream), bb);
6566		LLVMPositionBuilderAtEnd(builder, bb);
6567
6568		/* Fetch vertex data from GSVS ring */
6569		offset = 0;
6570		for (i = 0; i < gsinfo->num_outputs; ++i) {
6571			for (unsigned chan = 0; chan < 4; chan++) {
6572				if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
6573				    outputs[i].vertex_stream[chan] != stream) {
6574					outputs[i].values[chan] = ctx.bld_base.base.undef;
6575					continue;
6576				}
6577
6578				args[2] = lp_build_const_int32(
6579					gallivm,
6580					offset * gs_selector->gs_max_out_vertices * 16 * 4);
6581				offset++;
6582
6583				outputs[i].values[chan] =
6584					LLVMBuildBitCast(gallivm->builder,
6585						 lp_build_intrinsic(gallivm->builder,
6586								 "llvm.SI.buffer.load.dword.i32.i32",
6587								 ctx.i32, args, 9,
6588								 LP_FUNC_ATTR_READONLY),
6589						 ctx.f32, "");
6590			}
6591		}
6592
6593		/* Streamout and exports. */
6594		if (gs_selector->so.num_outputs) {
6595			si_llvm_emit_streamout(&ctx, outputs,
6596					       gsinfo->num_outputs,
6597					       stream);
6598		}
6599
6600		if (stream == 0)
6601			si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs);
6602
6603		LLVMBuildBr(builder, end_bb);
6604	}
6605
6606	LLVMPositionBuilderAtEnd(builder, end_bb);
6607
6608	LLVMBuildRetVoid(gallivm->builder);
6609
6610	/* Dump LLVM IR before any optimization passes */
6611	if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
6612	    r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
6613		LLVMDumpModule(bld_base->base.gallivm->module);
6614
6615	si_llvm_finalize_module(&ctx,
6616		r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_GEOMETRY));
6617
6618	r = si_compile_llvm(sscreen, &ctx.shader->binary,
6619			    &ctx.shader->config, ctx.tm,
6620			    bld_base->base.gallivm->module,
6621			    debug, PIPE_SHADER_GEOMETRY,
6622			    "GS Copy Shader");
6623	if (!r) {
6624		if (r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
6625			fprintf(stderr, "GS Copy Shader:\n");
6626		si_shader_dump(sscreen, ctx.shader, debug,
6627			       PIPE_SHADER_GEOMETRY, stderr, true);
6628		r = si_shader_binary_upload(sscreen, ctx.shader);
6629	}
6630
6631	si_llvm_dispose(&ctx);
6632
6633	FREE(outputs);
6634
6635	if (r != 0) {
6636		FREE(shader);
6637		shader = NULL;
6638	}
6639	return shader;
6640}
6641
6642static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
6643			       FILE *f)
6644{
6645	int i;
6646
6647	fprintf(f, "SHADER KEY\n");
6648
6649	switch (shader) {
6650	case PIPE_SHADER_VERTEX:
6651		fprintf(f, "  part.vs.prolog.instance_divisors = {");
6652		for (i = 0; i < ARRAY_SIZE(key->part.vs.prolog.instance_divisors); i++)
6653			fprintf(f, !i ? "%u" : ", %u",
6654				key->part.vs.prolog.instance_divisors[i]);
6655		fprintf(f, "}\n");
6656		fprintf(f, "  part.vs.epilog.export_prim_id = %u\n", key->part.vs.epilog.export_prim_id);
6657		fprintf(f, "  as_es = %u\n", key->as_es);
6658		fprintf(f, "  as_ls = %u\n", key->as_ls);
6659		fprintf(f, "  mono.vs.fix_fetch = 0x%"PRIx64"\n", key->mono.vs.fix_fetch);
6660		break;
6661
6662	case PIPE_SHADER_TESS_CTRL:
6663		fprintf(f, "  part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
6664		fprintf(f, "  mono.tcs.inputs_to_copy = 0x%"PRIx64"\n", key->mono.tcs.inputs_to_copy);
6665		break;
6666
6667	case PIPE_SHADER_TESS_EVAL:
6668		fprintf(f, "  part.tes.epilog.export_prim_id = %u\n", key->part.tes.epilog.export_prim_id);
6669		fprintf(f, "  as_es = %u\n", key->as_es);
6670		break;
6671
6672	case PIPE_SHADER_GEOMETRY:
6673		fprintf(f, "  part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
6674		break;
6675
6676	case PIPE_SHADER_COMPUTE:
6677		break;
6678
6679	case PIPE_SHADER_FRAGMENT:
6680		fprintf(f, "  part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
6681		fprintf(f, "  part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
6682		fprintf(f, "  part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
6683		fprintf(f, "  part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
6684		fprintf(f, "  part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
6685		fprintf(f, "  part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
6686		fprintf(f, "  part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
6687		fprintf(f, "  part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
6688		fprintf(f, "  part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
6689		fprintf(f, "  part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
6690		fprintf(f, "  part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
6691		fprintf(f, "  part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
6692		fprintf(f, "  part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
6693		fprintf(f, "  part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
6694		fprintf(f, "  part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
6695		fprintf(f, "  part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
6696		fprintf(f, "  part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
6697		break;
6698
6699	default:
6700		assert(0);
6701	}
6702
6703	if ((shader == PIPE_SHADER_GEOMETRY ||
6704	     shader == PIPE_SHADER_TESS_EVAL ||
6705	     shader == PIPE_SHADER_VERTEX) &&
6706	    !key->as_es && !key->as_ls) {
6707		fprintf(f, "  opt.hw_vs.kill_outputs = 0x%"PRIx64"\n", key->opt.hw_vs.kill_outputs);
6708		fprintf(f, "  opt.hw_vs.kill_outputs2 = 0x%x\n", key->opt.hw_vs.kill_outputs2);
6709		fprintf(f, "  opt.hw_vs.clip_disable = %u\n", key->opt.hw_vs.clip_disable);
6710	}
6711}
6712
6713static void si_init_shader_ctx(struct si_shader_context *ctx,
6714			       struct si_screen *sscreen,
6715			       struct si_shader *shader,
6716			       LLVMTargetMachineRef tm)
6717{
6718	struct lp_build_tgsi_context *bld_base;
6719	struct lp_build_tgsi_action tmpl = {};
6720
6721	si_llvm_context_init(ctx, sscreen, shader, tm,
6722		(shader && shader->selector) ? &shader->selector->info : NULL,
6723		(shader && shader->selector) ? shader->selector->tokens : NULL);
6724
6725	bld_base = &ctx->bld_base;
6726	bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
6727
6728	bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
6729	bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
6730	bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
6731
6732	bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
6733	bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
6734	bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
6735	bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
6736	bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
6737	bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
6738	bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
6739	bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
6740	bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
6741	bld_base->op_actions[TGSI_OPCODE_TXQ].fetch_args = txq_fetch_args;
6742	bld_base->op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
6743	bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
6744	bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
6745	bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
6746
6747	bld_base->op_actions[TGSI_OPCODE_LOAD].fetch_args = load_fetch_args;
6748	bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
6749	bld_base->op_actions[TGSI_OPCODE_STORE].fetch_args = store_fetch_args;
6750	bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
6751	bld_base->op_actions[TGSI_OPCODE_RESQ].fetch_args = resq_fetch_args;
6752	bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
6753
6754	tmpl.fetch_args = atomic_fetch_args;
6755	tmpl.emit = atomic_emit;
6756	bld_base->op_actions[TGSI_OPCODE_ATOMUADD] = tmpl;
6757	bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
6758	bld_base->op_actions[TGSI_OPCODE_ATOMXCHG] = tmpl;
6759	bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
6760	bld_base->op_actions[TGSI_OPCODE_ATOMCAS] = tmpl;
6761	bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
6762	bld_base->op_actions[TGSI_OPCODE_ATOMAND] = tmpl;
6763	bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
6764	bld_base->op_actions[TGSI_OPCODE_ATOMOR] = tmpl;
6765	bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
6766	bld_base->op_actions[TGSI_OPCODE_ATOMXOR] = tmpl;
6767	bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
6768	bld_base->op_actions[TGSI_OPCODE_ATOMUMIN] = tmpl;
6769	bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
6770	bld_base->op_actions[TGSI_OPCODE_ATOMUMAX] = tmpl;
6771	bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
6772	bld_base->op_actions[TGSI_OPCODE_ATOMIMIN] = tmpl;
6773	bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
6774	bld_base->op_actions[TGSI_OPCODE_ATOMIMAX] = tmpl;
6775	bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
6776
6777	bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
6778
6779	bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
6780	bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
6781	bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
6782	bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
6783
6784	bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex;
6785	bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive;
6786	bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6787}
6788
6789/* Return true if the PARAM export has been eliminated. */
6790static bool si_eliminate_const_output(struct si_shader_context *ctx,
6791				      LLVMValueRef inst, unsigned offset)
6792{
6793	struct si_shader *shader = ctx->shader;
6794	unsigned num_outputs = shader->selector->info.num_outputs;
6795	unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
6796	bool is_zero[4] = {}, is_one[4] = {};
6797
6798	for (i = 0; i < 4; i++) {
6799		LLVMBool loses_info;
6800		LLVMValueRef p = LLVMGetOperand(inst, 5 + i);
6801
6802		/* It's a constant expression. Undef outputs are eliminated too. */
6803		if (LLVMIsUndef(p)) {
6804			is_zero[i] = true;
6805			is_one[i] = true;
6806		} else if (LLVMIsAConstantFP(p)) {
6807			double a = LLVMConstRealGetDouble(p, &loses_info);
6808
6809			if (a == 0)
6810				is_zero[i] = true;
6811			else if (a == 1)
6812				is_one[i] = true;
6813			else
6814				return false; /* other constant */
6815		} else
6816			return false;
6817	}
6818
6819	/* Only certain combinations of 0 and 1 can be eliminated. */
6820	if (is_zero[0] && is_zero[1] && is_zero[2])
6821		default_val = is_zero[3] ? 0 : 1;
6822	else if (is_one[0] && is_one[1] && is_one[2])
6823		default_val = is_zero[3] ? 2 : 3;
6824	else
6825		return false;
6826
6827	/* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
6828	LLVMInstructionEraseFromParent(inst);
6829
6830	/* Change OFFSET to DEFAULT_VAL. */
6831	for (i = 0; i < num_outputs; i++) {
6832		if (shader->info.vs_output_param_offset[i] == offset) {
6833			shader->info.vs_output_param_offset[i] =
6834				EXP_PARAM_DEFAULT_VAL_0000 + default_val;
6835			break;
6836		}
6837	}
6838	return true;
6839}
6840
6841struct si_vs_exports {
6842	unsigned num;
6843	unsigned offset[SI_MAX_VS_OUTPUTS];
6844	LLVMValueRef inst[SI_MAX_VS_OUTPUTS];
6845};
6846
6847static void si_eliminate_const_vs_outputs(struct si_shader_context *ctx)
6848{
6849	struct si_shader *shader = ctx->shader;
6850	struct tgsi_shader_info *info = &shader->selector->info;
6851	LLVMBasicBlockRef bb;
6852	struct si_vs_exports exports;
6853	bool removed_any = false;
6854
6855	exports.num = 0;
6856
6857	if (ctx->type == PIPE_SHADER_FRAGMENT ||
6858	    ctx->type == PIPE_SHADER_COMPUTE ||
6859	    shader->key.as_es ||
6860	    shader->key.as_ls)
6861		return;
6862
6863	/* Process all LLVM instructions. */
6864	bb = LLVMGetFirstBasicBlock(ctx->main_fn);
6865	while (bb) {
6866		LLVMValueRef inst = LLVMGetFirstInstruction(bb);
6867
6868		while (inst) {
6869			LLVMValueRef cur = inst;
6870			inst = LLVMGetNextInstruction(inst);
6871
6872			if (LLVMGetInstructionOpcode(cur) != LLVMCall)
6873				continue;
6874
6875			LLVMValueRef callee = lp_get_called_value(cur);
6876
6877			if (!lp_is_function(callee))
6878				continue;
6879
6880			const char *name = LLVMGetValueName(callee);
6881			unsigned num_args = LLVMCountParams(callee);
6882
6883			/* Check if this is an export instruction. */
6884			if (num_args != 9 || strcmp(name, "llvm.SI.export"))
6885				continue;
6886
6887			LLVMValueRef arg = LLVMGetOperand(cur, 3);
6888			unsigned target = LLVMConstIntGetZExtValue(arg);
6889
6890			if (target < V_008DFC_SQ_EXP_PARAM)
6891				continue;
6892
6893			target -= V_008DFC_SQ_EXP_PARAM;
6894
6895			/* Eliminate constant value PARAM exports. */
6896			if (si_eliminate_const_output(ctx, cur, target)) {
6897				removed_any = true;
6898			} else {
6899				exports.offset[exports.num] = target;
6900				exports.inst[exports.num] = cur;
6901				exports.num++;
6902			}
6903		}
6904		bb = LLVMGetNextBasicBlock(bb);
6905	}
6906
6907	/* Remove holes in export memory due to removed PARAM exports.
6908	 * This is done by renumbering all PARAM exports.
6909	 */
6910	if (removed_any) {
6911		ubyte current_offset[SI_MAX_VS_OUTPUTS];
6912		unsigned new_count = 0;
6913		unsigned out, i;
6914
6915		/* Make a copy of the offsets. We need the old version while
6916		 * we are modifying some of them. */
6917		assert(sizeof(current_offset) ==
6918		       sizeof(shader->info.vs_output_param_offset));
6919		memcpy(current_offset, shader->info.vs_output_param_offset,
6920		       sizeof(current_offset));
6921
6922		for (i = 0; i < exports.num; i++) {
6923			unsigned offset = exports.offset[i];
6924
6925			for (out = 0; out < info->num_outputs; out++) {
6926				if (current_offset[out] != offset)
6927					continue;
6928
6929				LLVMSetOperand(exports.inst[i], 3,
6930					       LLVMConstInt(ctx->i32,
6931							    V_008DFC_SQ_EXP_PARAM + new_count, 0));
6932				shader->info.vs_output_param_offset[out] = new_count;
6933				new_count++;
6934				break;
6935			}
6936		}
6937		shader->info.nr_param_exports = new_count;
6938	}
6939}
6940
6941static void si_count_scratch_private_memory(struct si_shader_context *ctx)
6942{
6943	ctx->shader->config.private_mem_vgprs = 0;
6944
6945	/* Process all LLVM instructions. */
6946	LLVMBasicBlockRef bb = LLVMGetFirstBasicBlock(ctx->main_fn);
6947	while (bb) {
6948		LLVMValueRef next = LLVMGetFirstInstruction(bb);
6949
6950		while (next) {
6951			LLVMValueRef inst = next;
6952			next = LLVMGetNextInstruction(next);
6953
6954			if (LLVMGetInstructionOpcode(inst) != LLVMAlloca)
6955				continue;
6956
6957			LLVMTypeRef type = LLVMGetElementType(LLVMTypeOf(inst));
6958			/* No idea why LLVM aligns allocas to 4 elements. */
6959			unsigned alignment = LLVMGetAlignment(inst);
6960			unsigned dw_size = align(llvm_get_type_size(type) / 4, alignment);
6961			ctx->shader->config.private_mem_vgprs += dw_size;
6962		}
6963		bb = LLVMGetNextBasicBlock(bb);
6964	}
6965}
6966
6967static bool si_compile_tgsi_main(struct si_shader_context *ctx,
6968				 struct si_shader *shader)
6969{
6970	struct si_shader_selector *sel = shader->selector;
6971	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6972
6973	switch (ctx->type) {
6974	case PIPE_SHADER_VERTEX:
6975		ctx->load_input = declare_input_vs;
6976		if (shader->key.as_ls)
6977			bld_base->emit_epilogue = si_llvm_emit_ls_epilogue;
6978		else if (shader->key.as_es)
6979			bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
6980		else
6981			bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
6982		break;
6983	case PIPE_SHADER_TESS_CTRL:
6984		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6985		bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6986		bld_base->emit_store = store_output_tcs;
6987		bld_base->emit_epilogue = si_llvm_emit_tcs_epilogue;
6988		break;
6989	case PIPE_SHADER_TESS_EVAL:
6990		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6991		if (shader->key.as_es)
6992			bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
6993		else
6994			bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
6995		break;
6996	case PIPE_SHADER_GEOMETRY:
6997		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6998		bld_base->emit_epilogue = si_llvm_emit_gs_epilogue;
6999		break;
7000	case PIPE_SHADER_FRAGMENT:
7001		ctx->load_input = declare_input_fs;
7002		bld_base->emit_epilogue = si_llvm_return_fs_outputs;
7003		break;
7004	case PIPE_SHADER_COMPUTE:
7005		ctx->declare_memory_region = declare_compute_memory;
7006		break;
7007	default:
7008		assert(!"Unsupported shader type");
7009		return false;
7010	}
7011
7012	create_meta_data(ctx);
7013	create_function(ctx);
7014	preload_ring_buffers(ctx);
7015
7016	if (ctx->type == PIPE_SHADER_GEOMETRY) {
7017		int i;
7018		for (i = 0; i < 4; i++) {
7019			ctx->gs_next_vertex[i] =
7020				lp_build_alloca(bld_base->base.gallivm,
7021						ctx->i32, "");
7022		}
7023	}
7024
7025	if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
7026		fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
7027		return false;
7028	}
7029
7030	si_llvm_build_ret(ctx, ctx->return_value);
7031	return true;
7032}
7033
7034/**
7035 * Compute the VS prolog key, which contains all the information needed to
7036 * build the VS prolog function, and set shader->info bits where needed.
7037 */
7038static void si_get_vs_prolog_key(struct si_shader *shader,
7039				 union si_shader_part_key *key)
7040{
7041	struct tgsi_shader_info *info = &shader->selector->info;
7042
7043	memset(key, 0, sizeof(*key));
7044	key->vs_prolog.states = shader->key.part.vs.prolog;
7045	key->vs_prolog.num_input_sgprs = shader->info.num_input_sgprs;
7046	key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
7047
7048	/* Set the instanceID flag. */
7049	for (unsigned i = 0; i < info->num_inputs; i++)
7050		if (key->vs_prolog.states.instance_divisors[i])
7051			shader->info.uses_instanceid = true;
7052}
7053
7054/**
7055 * Compute the VS epilog key, which contains all the information needed to
7056 * build the VS epilog function, and set the PrimitiveID output offset.
7057 */
7058static void si_get_vs_epilog_key(struct si_shader *shader,
7059				 struct si_vs_epilog_bits *states,
7060				 union si_shader_part_key *key)
7061{
7062	memset(key, 0, sizeof(*key));
7063	key->vs_epilog.states = *states;
7064
7065	/* Set up the PrimitiveID output. */
7066	if (shader->key.part.vs.epilog.export_prim_id) {
7067		unsigned index = shader->selector->info.num_outputs;
7068		unsigned offset = shader->info.nr_param_exports++;
7069
7070		key->vs_epilog.prim_id_param_offset = offset;
7071		assert(index < ARRAY_SIZE(shader->info.vs_output_param_offset));
7072		shader->info.vs_output_param_offset[index] = offset;
7073	}
7074}
7075
7076/**
7077 * Compute the PS prolog key, which contains all the information needed to
7078 * build the PS prolog function, and set related bits in shader->config.
7079 */
7080static void si_get_ps_prolog_key(struct si_shader *shader,
7081				 union si_shader_part_key *key,
7082				 bool separate_prolog)
7083{
7084	struct tgsi_shader_info *info = &shader->selector->info;
7085
7086	memset(key, 0, sizeof(*key));
7087	key->ps_prolog.states = shader->key.part.ps.prolog;
7088	key->ps_prolog.colors_read = info->colors_read;
7089	key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
7090	key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
7091	key->ps_prolog.wqm = info->uses_derivatives &&
7092		(key->ps_prolog.colors_read ||
7093		 key->ps_prolog.states.force_persp_sample_interp ||
7094		 key->ps_prolog.states.force_linear_sample_interp ||
7095		 key->ps_prolog.states.force_persp_center_interp ||
7096		 key->ps_prolog.states.force_linear_center_interp ||
7097		 key->ps_prolog.states.bc_optimize_for_persp ||
7098		 key->ps_prolog.states.bc_optimize_for_linear);
7099
7100	if (info->colors_read) {
7101		unsigned *color = shader->selector->color_attr_index;
7102
7103		if (shader->key.part.ps.prolog.color_two_side) {
7104			/* BCOLORs are stored after the last input. */
7105			key->ps_prolog.num_interp_inputs = info->num_inputs;
7106			key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
7107			shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
7108		}
7109
7110		for (unsigned i = 0; i < 2; i++) {
7111			unsigned interp = info->input_interpolate[color[i]];
7112			unsigned location = info->input_interpolate_loc[color[i]];
7113
7114			if (!(info->colors_read & (0xf << i*4)))
7115				continue;
7116
7117			key->ps_prolog.color_attr_index[i] = color[i];
7118
7119			if (shader->key.part.ps.prolog.flatshade_colors &&
7120			    interp == TGSI_INTERPOLATE_COLOR)
7121				interp = TGSI_INTERPOLATE_CONSTANT;
7122
7123			switch (interp) {
7124			case TGSI_INTERPOLATE_CONSTANT:
7125				key->ps_prolog.color_interp_vgpr_index[i] = -1;
7126				break;
7127			case TGSI_INTERPOLATE_PERSPECTIVE:
7128			case TGSI_INTERPOLATE_COLOR:
7129				/* Force the interpolation location for colors here. */
7130				if (shader->key.part.ps.prolog.force_persp_sample_interp)
7131					location = TGSI_INTERPOLATE_LOC_SAMPLE;
7132				if (shader->key.part.ps.prolog.force_persp_center_interp)
7133					location = TGSI_INTERPOLATE_LOC_CENTER;
7134
7135				switch (location) {
7136				case TGSI_INTERPOLATE_LOC_SAMPLE:
7137					key->ps_prolog.color_interp_vgpr_index[i] = 0;
7138					shader->config.spi_ps_input_ena |=
7139						S_0286CC_PERSP_SAMPLE_ENA(1);
7140					break;
7141				case TGSI_INTERPOLATE_LOC_CENTER:
7142					key->ps_prolog.color_interp_vgpr_index[i] = 2;
7143					shader->config.spi_ps_input_ena |=
7144						S_0286CC_PERSP_CENTER_ENA(1);
7145					break;
7146				case TGSI_INTERPOLATE_LOC_CENTROID:
7147					key->ps_prolog.color_interp_vgpr_index[i] = 4;
7148					shader->config.spi_ps_input_ena |=
7149						S_0286CC_PERSP_CENTROID_ENA(1);
7150					break;
7151				default:
7152					assert(0);
7153				}
7154				break;
7155			case TGSI_INTERPOLATE_LINEAR:
7156				/* Force the interpolation location for colors here. */
7157				if (shader->key.part.ps.prolog.force_linear_sample_interp)
7158					location = TGSI_INTERPOLATE_LOC_SAMPLE;
7159				if (shader->key.part.ps.prolog.force_linear_center_interp)
7160					location = TGSI_INTERPOLATE_LOC_CENTER;
7161
7162				/* The VGPR assignment for non-monolithic shaders
7163				 * works because InitialPSInputAddr is set on the
7164				 * main shader and PERSP_PULL_MODEL is never used.
7165				 */
7166				switch (location) {
7167				case TGSI_INTERPOLATE_LOC_SAMPLE:
7168					key->ps_prolog.color_interp_vgpr_index[i] =
7169						separate_prolog ? 6 : 9;
7170					shader->config.spi_ps_input_ena |=
7171						S_0286CC_LINEAR_SAMPLE_ENA(1);
7172					break;
7173				case TGSI_INTERPOLATE_LOC_CENTER:
7174					key->ps_prolog.color_interp_vgpr_index[i] =
7175						separate_prolog ? 8 : 11;
7176					shader->config.spi_ps_input_ena |=
7177						S_0286CC_LINEAR_CENTER_ENA(1);
7178					break;
7179				case TGSI_INTERPOLATE_LOC_CENTROID:
7180					key->ps_prolog.color_interp_vgpr_index[i] =
7181						separate_prolog ? 10 : 13;
7182					shader->config.spi_ps_input_ena |=
7183						S_0286CC_LINEAR_CENTROID_ENA(1);
7184					break;
7185				default:
7186					assert(0);
7187				}
7188				break;
7189			default:
7190				assert(0);
7191			}
7192		}
7193	}
7194}
7195
7196/**
7197 * Check whether a PS prolog is required based on the key.
7198 */
7199static bool si_need_ps_prolog(const union si_shader_part_key *key)
7200{
7201	return key->ps_prolog.colors_read ||
7202	       key->ps_prolog.states.force_persp_sample_interp ||
7203	       key->ps_prolog.states.force_linear_sample_interp ||
7204	       key->ps_prolog.states.force_persp_center_interp ||
7205	       key->ps_prolog.states.force_linear_center_interp ||
7206	       key->ps_prolog.states.bc_optimize_for_persp ||
7207	       key->ps_prolog.states.bc_optimize_for_linear ||
7208	       key->ps_prolog.states.poly_stipple;
7209}
7210
7211/**
7212 * Compute the PS epilog key, which contains all the information needed to
7213 * build the PS epilog function.
7214 */
7215static void si_get_ps_epilog_key(struct si_shader *shader,
7216				 union si_shader_part_key *key)
7217{
7218	struct tgsi_shader_info *info = &shader->selector->info;
7219	memset(key, 0, sizeof(*key));
7220	key->ps_epilog.colors_written = info->colors_written;
7221	key->ps_epilog.writes_z = info->writes_z;
7222	key->ps_epilog.writes_stencil = info->writes_stencil;
7223	key->ps_epilog.writes_samplemask = info->writes_samplemask;
7224	key->ps_epilog.states = shader->key.part.ps.epilog;
7225}
7226
7227/**
7228 * Build the GS prolog function. Rotate the input vertices for triangle strips
7229 * with adjacency.
7230 */
7231static void si_build_gs_prolog_function(struct si_shader_context *ctx,
7232					union si_shader_part_key *key)
7233{
7234	const unsigned num_sgprs = SI_GS_NUM_USER_SGPR + 2;
7235	const unsigned num_vgprs = 8;
7236	struct gallivm_state *gallivm = &ctx->gallivm;
7237	LLVMBuilderRef builder = gallivm->builder;
7238	LLVMTypeRef params[32];
7239	LLVMTypeRef returns[32];
7240	LLVMValueRef func, ret;
7241
7242	for (unsigned i = 0; i < num_sgprs; ++i) {
7243		params[i] = ctx->i32;
7244		returns[i] = ctx->i32;
7245	}
7246
7247	for (unsigned i = 0; i < num_vgprs; ++i) {
7248		params[num_sgprs + i] = ctx->i32;
7249		returns[num_sgprs + i] = ctx->f32;
7250	}
7251
7252	/* Create the function. */
7253	si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
7254			   params, num_sgprs + num_vgprs, num_sgprs - 1);
7255	func = ctx->main_fn;
7256
7257	/* Copy inputs to outputs. This should be no-op, as the registers match,
7258	 * but it will prevent the compiler from overwriting them unintentionally.
7259	 */
7260	ret = ctx->return_value;
7261	for (unsigned i = 0; i < num_sgprs; i++) {
7262		LLVMValueRef p = LLVMGetParam(func, i);
7263		ret = LLVMBuildInsertValue(builder, ret, p, i, "");
7264	}
7265	for (unsigned i = 0; i < num_vgprs; i++) {
7266		LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
7267		p = LLVMBuildBitCast(builder, p, ctx->f32, "");
7268		ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
7269	}
7270
7271	if (key->gs_prolog.states.tri_strip_adj_fix) {
7272		/* Remap the input vertices for every other primitive. */
7273		const unsigned vtx_params[6] = {
7274			num_sgprs,
7275			num_sgprs + 1,
7276			num_sgprs + 3,
7277			num_sgprs + 4,
7278			num_sgprs + 5,
7279			num_sgprs + 6
7280		};
7281		LLVMValueRef prim_id, rotate;
7282
7283		prim_id = LLVMGetParam(func, num_sgprs + 2);
7284		rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
7285
7286		for (unsigned i = 0; i < 6; ++i) {
7287			LLVMValueRef base, rotated, actual;
7288			base = LLVMGetParam(func, vtx_params[i]);
7289			rotated = LLVMGetParam(func, vtx_params[(i + 4) % 6]);
7290			actual = LLVMBuildSelect(builder, rotate, rotated, base, "");
7291			actual = LLVMBuildBitCast(builder, actual, ctx->f32, "");
7292			ret = LLVMBuildInsertValue(builder, ret, actual, vtx_params[i], "");
7293		}
7294	}
7295
7296	LLVMBuildRet(builder, ret);
7297}
7298
7299/**
7300 * Given a list of shader part functions, build a wrapper function that
7301 * runs them in sequence to form a monolithic shader.
7302 */
7303static void si_build_wrapper_function(struct si_shader_context *ctx,
7304				      LLVMValueRef *parts,
7305				      unsigned num_parts,
7306				      unsigned main_part)
7307{
7308	struct gallivm_state *gallivm = &ctx->gallivm;
7309	LLVMBuilderRef builder = ctx->gallivm.builder;
7310	/* PS epilog has one arg per color component */
7311	LLVMTypeRef param_types[48];
7312	LLVMValueRef out[48];
7313	LLVMTypeRef function_type;
7314	unsigned num_params;
7315	unsigned num_out;
7316	MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
7317	unsigned num_sgprs, num_vgprs;
7318	unsigned last_sgpr_param;
7319	unsigned gprs;
7320
7321	for (unsigned i = 0; i < num_parts; ++i) {
7322		lp_add_function_attr(parts[i], -1, LP_FUNC_ATTR_ALWAYSINLINE);
7323		LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
7324	}
7325
7326	/* The parameters of the wrapper function correspond to those of the
7327	 * first part in terms of SGPRs and VGPRs, but we use the types of the
7328	 * main part to get the right types. This is relevant for the
7329	 * dereferenceable attribute on descriptor table pointers.
7330	 */
7331	num_sgprs = 0;
7332	num_vgprs = 0;
7333
7334	function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
7335	num_params = LLVMCountParamTypes(function_type);
7336
7337	for (unsigned i = 0; i < num_params; ++i) {
7338		LLVMValueRef param = LLVMGetParam(parts[0], i);
7339
7340		if (ac_is_sgpr_param(param)) {
7341			assert(num_vgprs == 0);
7342			num_sgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
7343		} else {
7344			num_vgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
7345		}
7346	}
7347	assert(num_vgprs + num_sgprs <= ARRAY_SIZE(param_types));
7348
7349	num_params = 0;
7350	last_sgpr_param = 0;
7351	gprs = 0;
7352	while (gprs < num_sgprs + num_vgprs) {
7353		LLVMValueRef param = LLVMGetParam(parts[main_part], num_params);
7354		unsigned size;
7355
7356		param_types[num_params] = LLVMTypeOf(param);
7357		if (gprs < num_sgprs)
7358			last_sgpr_param = num_params;
7359		size = llvm_get_type_size(param_types[num_params]) / 4;
7360		num_params++;
7361
7362		assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
7363		assert(gprs + size <= num_sgprs + num_vgprs &&
7364		       (gprs >= num_sgprs || gprs + size <= num_sgprs));
7365
7366		gprs += size;
7367	}
7368
7369	si_create_function(ctx, "wrapper", NULL, 0, param_types, num_params, last_sgpr_param);
7370
7371	/* Record the arguments of the function as if they were an output of
7372	 * a previous part.
7373	 */
7374	num_out = 0;
7375	num_out_sgpr = 0;
7376
7377	for (unsigned i = 0; i < num_params; ++i) {
7378		LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
7379		LLVMTypeRef param_type = LLVMTypeOf(param);
7380		LLVMTypeRef out_type = i <= last_sgpr_param ? ctx->i32 : ctx->f32;
7381		unsigned size = llvm_get_type_size(param_type) / 4;
7382
7383		if (size == 1) {
7384			if (param_type != out_type)
7385				param = LLVMBuildBitCast(builder, param, out_type, "");
7386			out[num_out++] = param;
7387		} else {
7388			LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
7389
7390			if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
7391				param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
7392				param_type = ctx->i64;
7393			}
7394
7395			if (param_type != vector_type)
7396				param = LLVMBuildBitCast(builder, param, vector_type, "");
7397
7398			for (unsigned j = 0; j < size; ++j)
7399				out[num_out++] = LLVMBuildExtractElement(
7400					builder, param, LLVMConstInt(ctx->i32, j, 0), "");
7401		}
7402
7403		if (i <= last_sgpr_param)
7404			num_out_sgpr = num_out;
7405	}
7406
7407	/* Now chain the parts. */
7408	for (unsigned part = 0; part < num_parts; ++part) {
7409		LLVMValueRef in[48];
7410		LLVMValueRef ret;
7411		LLVMTypeRef ret_type;
7412		unsigned out_idx = 0;
7413
7414		num_params = LLVMCountParams(parts[part]);
7415		assert(num_params <= ARRAY_SIZE(param_types));
7416
7417		/* Derive arguments for the next part from outputs of the
7418		 * previous one.
7419		 */
7420		for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
7421			LLVMValueRef param;
7422			LLVMTypeRef param_type;
7423			bool is_sgpr;
7424			unsigned param_size;
7425			LLVMValueRef arg = NULL;
7426
7427			param = LLVMGetParam(parts[part], param_idx);
7428			param_type = LLVMTypeOf(param);
7429			param_size = llvm_get_type_size(param_type) / 4;
7430			is_sgpr = ac_is_sgpr_param(param);
7431
7432			if (is_sgpr) {
7433#if HAVE_LLVM < 0x0400
7434				LLVMRemoveAttribute(param, LLVMByValAttribute);
7435#else
7436				unsigned kind_id = LLVMGetEnumAttributeKindForName("byval", 5);
7437				LLVMRemoveEnumAttributeAtIndex(parts[part], param_idx + 1, kind_id);
7438#endif
7439				lp_add_function_attr(parts[part], param_idx + 1, LP_FUNC_ATTR_INREG);
7440			}
7441
7442			assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
7443			assert(is_sgpr || out_idx >= num_out_sgpr);
7444
7445			if (param_size == 1)
7446				arg = out[out_idx];
7447			else
7448				arg = lp_build_gather_values(gallivm, &out[out_idx], param_size);
7449
7450			if (LLVMTypeOf(arg) != param_type) {
7451				if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
7452					arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
7453					arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
7454				} else {
7455					arg = LLVMBuildBitCast(builder, arg, param_type, "");
7456				}
7457			}
7458
7459			in[param_idx] = arg;
7460			out_idx += param_size;
7461		}
7462
7463		ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
7464		ret_type = LLVMTypeOf(ret);
7465
7466		/* Extract the returned GPRs. */
7467		num_out = 0;
7468		num_out_sgpr = 0;
7469
7470		if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
7471			assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
7472
7473			unsigned ret_size = LLVMCountStructElementTypes(ret_type);
7474
7475			for (unsigned i = 0; i < ret_size; ++i) {
7476				LLVMValueRef val =
7477					LLVMBuildExtractValue(builder, ret, i, "");
7478
7479				out[num_out++] = val;
7480
7481				if (LLVMTypeOf(val) == ctx->i32) {
7482					assert(num_out_sgpr + 1 == num_out);
7483					num_out_sgpr = num_out;
7484				}
7485			}
7486		}
7487	}
7488
7489	LLVMBuildRetVoid(builder);
7490}
7491
7492int si_compile_tgsi_shader(struct si_screen *sscreen,
7493			   LLVMTargetMachineRef tm,
7494			   struct si_shader *shader,
7495			   bool is_monolithic,
7496			   struct pipe_debug_callback *debug)
7497{
7498	struct si_shader_selector *sel = shader->selector;
7499	struct si_shader_context ctx;
7500	struct lp_build_tgsi_context *bld_base;
7501	LLVMModuleRef mod;
7502	int r = -1;
7503
7504	/* Dump TGSI code before doing TGSI->LLVM conversion in case the
7505	 * conversion fails. */
7506	if (r600_can_dump_shader(&sscreen->b, sel->info.processor) &&
7507	    !(sscreen->b.debug_flags & DBG_NO_TGSI)) {
7508		tgsi_dump(sel->tokens, 0);
7509		si_dump_streamout(&sel->so);
7510	}
7511
7512	si_init_shader_ctx(&ctx, sscreen, shader, tm);
7513	ctx.separate_prolog = !is_monolithic;
7514
7515	memset(shader->info.vs_output_param_offset, EXP_PARAM_UNDEFINED,
7516	       sizeof(shader->info.vs_output_param_offset));
7517
7518	shader->info.uses_instanceid = sel->info.uses_instanceid;
7519
7520	bld_base = &ctx.bld_base;
7521	ctx.load_system_value = declare_system_value;
7522
7523	if (!si_compile_tgsi_main(&ctx, shader)) {
7524		si_llvm_dispose(&ctx);
7525		return -1;
7526	}
7527
7528	if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
7529		LLVMValueRef parts[3];
7530		bool need_prolog;
7531		bool need_epilog;
7532
7533		need_prolog = sel->info.num_inputs;
7534		need_epilog = !shader->key.as_es && !shader->key.as_ls;
7535
7536		parts[need_prolog ? 1 : 0] = ctx.main_fn;
7537
7538		if (need_prolog) {
7539			union si_shader_part_key prolog_key;
7540			si_get_vs_prolog_key(shader, &prolog_key);
7541			si_build_vs_prolog_function(&ctx, &prolog_key);
7542			parts[0] = ctx.main_fn;
7543		}
7544
7545		if (need_epilog) {
7546			union si_shader_part_key epilog_key;
7547			si_get_vs_epilog_key(shader, &shader->key.part.vs.epilog, &epilog_key);
7548			si_build_vs_epilog_function(&ctx, &epilog_key);
7549			parts[need_prolog ? 2 : 1] = ctx.main_fn;
7550		}
7551
7552		si_build_wrapper_function(&ctx, parts, 1 + need_prolog + need_epilog,
7553					  need_prolog ? 1 : 0);
7554	} else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
7555		LLVMValueRef parts[2];
7556		union si_shader_part_key epilog_key;
7557
7558		parts[0] = ctx.main_fn;
7559
7560		memset(&epilog_key, 0, sizeof(epilog_key));
7561		epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7562		si_build_tcs_epilog_function(&ctx, &epilog_key);
7563		parts[1] = ctx.main_fn;
7564
7565		si_build_wrapper_function(&ctx, parts, 2, 0);
7566	} else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_EVAL &&
7567		   !shader->key.as_es) {
7568		LLVMValueRef parts[2];
7569		union si_shader_part_key epilog_key;
7570
7571		parts[0] = ctx.main_fn;
7572
7573		si_get_vs_epilog_key(shader, &shader->key.part.tes.epilog, &epilog_key);
7574		si_build_vs_epilog_function(&ctx, &epilog_key);
7575		parts[1] = ctx.main_fn;
7576
7577		si_build_wrapper_function(&ctx, parts, 2, 0);
7578	} else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
7579		LLVMValueRef parts[2];
7580		union si_shader_part_key prolog_key;
7581
7582		parts[1] = ctx.main_fn;
7583
7584		memset(&prolog_key, 0, sizeof(prolog_key));
7585		prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7586		si_build_gs_prolog_function(&ctx, &prolog_key);
7587		parts[0] = ctx.main_fn;
7588
7589		si_build_wrapper_function(&ctx, parts, 2, 1);
7590	} else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
7591		LLVMValueRef parts[3];
7592		union si_shader_part_key prolog_key;
7593		union si_shader_part_key epilog_key;
7594		bool need_prolog;
7595
7596		si_get_ps_prolog_key(shader, &prolog_key, false);
7597		need_prolog = si_need_ps_prolog(&prolog_key);
7598
7599		parts[need_prolog ? 1 : 0] = ctx.main_fn;
7600
7601		if (need_prolog) {
7602			si_build_ps_prolog_function(&ctx, &prolog_key);
7603			parts[0] = ctx.main_fn;
7604		}
7605
7606		si_get_ps_epilog_key(shader, &epilog_key);
7607		si_build_ps_epilog_function(&ctx, &epilog_key);
7608		parts[need_prolog ? 2 : 1] = ctx.main_fn;
7609
7610		si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2, need_prolog ? 1 : 0);
7611	}
7612
7613	mod = bld_base->base.gallivm->module;
7614
7615	/* Dump LLVM IR before any optimization passes */
7616	if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
7617	    r600_can_dump_shader(&sscreen->b, ctx.type))
7618		LLVMDumpModule(mod);
7619
7620	si_llvm_finalize_module(&ctx,
7621				    r600_extra_shader_checks(&sscreen->b, ctx.type));
7622
7623	/* Post-optimization transformations and analysis. */
7624	si_eliminate_const_vs_outputs(&ctx);
7625
7626	if ((debug && debug->debug_message) ||
7627	    r600_can_dump_shader(&sscreen->b, ctx.type))
7628		si_count_scratch_private_memory(&ctx);
7629
7630	/* Compile to bytecode. */
7631	r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
7632			    mod, debug, ctx.type, "TGSI shader");
7633	si_llvm_dispose(&ctx);
7634	if (r) {
7635		fprintf(stderr, "LLVM failed to compile shader\n");
7636		return r;
7637	}
7638
7639	/* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7640	 * LLVM 3.9svn has this bug.
7641	 */
7642	if (sel->type == PIPE_SHADER_COMPUTE) {
7643		unsigned wave_size = 64;
7644		unsigned max_vgprs = 256;
7645		unsigned max_sgprs = sscreen->b.chip_class >= VI ? 800 : 512;
7646		unsigned max_sgprs_per_wave = 128;
7647		unsigned max_block_threads = si_get_max_workgroup_size(shader);
7648		unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7649		unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7650
7651		max_vgprs = max_vgprs / min_waves_per_simd;
7652		max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7653
7654		if (shader->config.num_sgprs > max_sgprs ||
7655		    shader->config.num_vgprs > max_vgprs) {
7656			fprintf(stderr, "LLVM failed to compile a shader correctly: "
7657				"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7658				shader->config.num_sgprs, shader->config.num_vgprs,
7659				max_sgprs, max_vgprs);
7660
7661			/* Just terminate the process, because dependent
7662			 * shaders can hang due to bad input data, but use
7663			 * the env var to allow shader-db to work.
7664			 */
7665			if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7666				abort();
7667		}
7668	}
7669
7670	/* Add the scratch offset to input SGPRs. */
7671	if (shader->config.scratch_bytes_per_wave)
7672		shader->info.num_input_sgprs += 1; /* scratch byte offset */
7673
7674	/* Calculate the number of fragment input VGPRs. */
7675	if (ctx.type == PIPE_SHADER_FRAGMENT) {
7676		shader->info.num_input_vgprs = 0;
7677		shader->info.face_vgpr_index = -1;
7678
7679		if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7680			shader->info.num_input_vgprs += 2;
7681		if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7682			shader->info.num_input_vgprs += 2;
7683		if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7684			shader->info.num_input_vgprs += 2;
7685		if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7686			shader->info.num_input_vgprs += 3;
7687		if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7688			shader->info.num_input_vgprs += 2;
7689		if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7690			shader->info.num_input_vgprs += 2;
7691		if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7692			shader->info.num_input_vgprs += 2;
7693		if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7694			shader->info.num_input_vgprs += 1;
7695		if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7696			shader->info.num_input_vgprs += 1;
7697		if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7698			shader->info.num_input_vgprs += 1;
7699		if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7700			shader->info.num_input_vgprs += 1;
7701		if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7702			shader->info.num_input_vgprs += 1;
7703		if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7704			shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7705			shader->info.num_input_vgprs += 1;
7706		}
7707		if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr))
7708			shader->info.num_input_vgprs += 1;
7709		if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7710			shader->info.num_input_vgprs += 1;
7711		if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7712			shader->info.num_input_vgprs += 1;
7713	}
7714
7715	return 0;
7716}
7717
7718/**
7719 * Create, compile and return a shader part (prolog or epilog).
7720 *
7721 * \param sscreen	screen
7722 * \param list		list of shader parts of the same category
7723 * \param type		shader type
7724 * \param key		shader part key
7725 * \param prolog	whether the part being requested is a prolog
7726 * \param tm		LLVM target machine
7727 * \param debug		debug callback
7728 * \param build		the callback responsible for building the main function
7729 * \return		non-NULL on success
7730 */
7731static struct si_shader_part *
7732si_get_shader_part(struct si_screen *sscreen,
7733		   struct si_shader_part **list,
7734		   enum pipe_shader_type type,
7735		   bool prolog,
7736		   union si_shader_part_key *key,
7737		   LLVMTargetMachineRef tm,
7738		   struct pipe_debug_callback *debug,
7739		   void (*build)(struct si_shader_context *,
7740				 union si_shader_part_key *),
7741		   const char *name)
7742{
7743	struct si_shader_part *result;
7744
7745	pipe_mutex_lock(sscreen->shader_parts_mutex);
7746
7747	/* Find existing. */
7748	for (result = *list; result; result = result->next) {
7749		if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7750			pipe_mutex_unlock(sscreen->shader_parts_mutex);
7751			return result;
7752		}
7753	}
7754
7755	/* Compile a new one. */
7756	result = CALLOC_STRUCT(si_shader_part);
7757	result->key = *key;
7758
7759	struct si_shader shader = {};
7760	struct si_shader_context ctx;
7761	struct gallivm_state *gallivm = &ctx.gallivm;
7762
7763	si_init_shader_ctx(&ctx, sscreen, &shader, tm);
7764	ctx.type = type;
7765
7766	switch (type) {
7767	case PIPE_SHADER_VERTEX:
7768		break;
7769	case PIPE_SHADER_TESS_CTRL:
7770		assert(!prolog);
7771		shader.key.part.tcs.epilog = key->tcs_epilog.states;
7772		break;
7773	case PIPE_SHADER_GEOMETRY:
7774		assert(prolog);
7775		break;
7776	case PIPE_SHADER_FRAGMENT:
7777		if (prolog)
7778			shader.key.part.ps.prolog = key->ps_prolog.states;
7779		else
7780			shader.key.part.ps.epilog = key->ps_epilog.states;
7781		break;
7782	default:
7783		unreachable("bad shader part");
7784	}
7785
7786	build(&ctx, key);
7787
7788	/* Compile. */
7789	si_llvm_finalize_module(&ctx,
7790		r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_FRAGMENT));
7791
7792	if (si_compile_llvm(sscreen, &result->binary, &result->config, tm,
7793			    gallivm->module, debug, ctx.type, name)) {
7794		FREE(result);
7795		result = NULL;
7796		goto out;
7797	}
7798
7799	result->next = *list;
7800	*list = result;
7801
7802out:
7803	si_llvm_dispose(&ctx);
7804	pipe_mutex_unlock(sscreen->shader_parts_mutex);
7805	return result;
7806}
7807
7808/**
7809 * Build the vertex shader prolog function.
7810 *
7811 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7812 * All inputs are returned unmodified. The vertex load indices are
7813 * stored after them, which will be used by the API VS for fetching inputs.
7814 *
7815 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7816 *   input_v0,
7817 *   input_v1,
7818 *   input_v2,
7819 *   input_v3,
7820 *   (VertexID + BaseVertex),
7821 *   (InstanceID + StartInstance),
7822 *   (InstanceID / 2 + StartInstance)
7823 */
7824static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7825					union si_shader_part_key *key)
7826{
7827	struct gallivm_state *gallivm = &ctx->gallivm;
7828	LLVMTypeRef *params, *returns;
7829	LLVMValueRef ret, func;
7830	int last_sgpr, num_params, num_returns, i;
7831
7832	ctx->param_vertex_id = key->vs_prolog.num_input_sgprs;
7833	ctx->param_instance_id = key->vs_prolog.num_input_sgprs + 3;
7834
7835	/* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7836	params = alloca((key->vs_prolog.num_input_sgprs + 4) *
7837			sizeof(LLVMTypeRef));
7838	returns = alloca((key->vs_prolog.num_input_sgprs + 4 +
7839			  key->vs_prolog.last_input + 1) *
7840			 sizeof(LLVMTypeRef));
7841	num_params = 0;
7842	num_returns = 0;
7843
7844	/* Declare input and output SGPRs. */
7845	num_params = 0;
7846	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7847		params[num_params++] = ctx->i32;
7848		returns[num_returns++] = ctx->i32;
7849	}
7850	last_sgpr = num_params - 1;
7851
7852	/* 4 preloaded VGPRs (outputs must be floats) */
7853	for (i = 0; i < 4; i++) {
7854		params[num_params++] = ctx->i32;
7855		returns[num_returns++] = ctx->f32;
7856	}
7857
7858	/* Vertex load indices. */
7859	for (i = 0; i <= key->vs_prolog.last_input; i++)
7860		returns[num_returns++] = ctx->f32;
7861
7862	/* Create the function. */
7863	si_create_function(ctx, "vs_prolog", returns, num_returns, params,
7864			   num_params, last_sgpr);
7865	func = ctx->main_fn;
7866
7867	/* Copy inputs to outputs. This should be no-op, as the registers match,
7868	 * but it will prevent the compiler from overwriting them unintentionally.
7869	 */
7870	ret = ctx->return_value;
7871	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7872		LLVMValueRef p = LLVMGetParam(func, i);
7873		ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7874	}
7875	for (i = num_params - 4; i < num_params; i++) {
7876		LLVMValueRef p = LLVMGetParam(func, i);
7877		p = LLVMBuildBitCast(gallivm->builder, p, ctx->f32, "");
7878		ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
7879	}
7880
7881	/* Compute vertex load indices from instance divisors. */
7882	for (i = 0; i <= key->vs_prolog.last_input; i++) {
7883		unsigned divisor = key->vs_prolog.states.instance_divisors[i];
7884		LLVMValueRef index;
7885
7886		if (divisor) {
7887			/* InstanceID / Divisor + StartInstance */
7888			index = get_instance_index_for_fetch(ctx,
7889							     SI_SGPR_START_INSTANCE,
7890							     divisor);
7891		} else {
7892			/* VertexID + BaseVertex */
7893			index = LLVMBuildAdd(gallivm->builder,
7894					     LLVMGetParam(func, ctx->param_vertex_id),
7895					     LLVMGetParam(func, SI_SGPR_BASE_VERTEX), "");
7896		}
7897
7898		index = LLVMBuildBitCast(gallivm->builder, index, ctx->f32, "");
7899		ret = LLVMBuildInsertValue(gallivm->builder, ret, index,
7900					   num_params++, "");
7901	}
7902
7903	si_llvm_build_ret(ctx, ret);
7904}
7905
7906/**
7907 * Build the vertex shader epilog function. This is also used by the tessellation
7908 * evaluation shader compiled as VS.
7909 *
7910 * The input is PrimitiveID.
7911 *
7912 * If PrimitiveID is required by the pixel shader, export it.
7913 * Otherwise, do nothing.
7914 */
7915static void si_build_vs_epilog_function(struct si_shader_context *ctx,
7916					union si_shader_part_key *key)
7917{
7918	struct gallivm_state *gallivm = &ctx->gallivm;
7919	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7920	LLVMTypeRef params[5];
7921	int num_params, i;
7922
7923	/* Declare input VGPRs. */
7924	num_params = key->vs_epilog.states.export_prim_id ?
7925			   (VS_EPILOG_PRIMID_LOC + 1) : 0;
7926	assert(num_params <= ARRAY_SIZE(params));
7927
7928	for (i = 0; i < num_params; i++)
7929		params[i] = ctx->f32;
7930
7931	/* Create the function. */
7932	si_create_function(ctx, "vs_epilog", NULL, 0, params, num_params, -1);
7933
7934	/* Emit exports. */
7935	if (key->vs_epilog.states.export_prim_id) {
7936		struct lp_build_context *base = &bld_base->base;
7937		struct lp_build_context *uint = &bld_base->uint_bld;
7938		LLVMValueRef args[9];
7939
7940		args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
7941		args[1] = uint->zero; /* whether the EXEC mask is valid */
7942		args[2] = uint->zero; /* DONE bit */
7943		args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_PARAM +
7944					       key->vs_epilog.prim_id_param_offset);
7945		args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
7946		args[5] = LLVMGetParam(ctx->main_fn,
7947				       VS_EPILOG_PRIMID_LOC); /* X */
7948		args[6] = base->undef; /* Y */
7949		args[7] = base->undef; /* Z */
7950		args[8] = base->undef; /* W */
7951
7952		lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
7953				   LLVMVoidTypeInContext(base->gallivm->context),
7954				   args, 9, 0);
7955	}
7956
7957	LLVMBuildRetVoid(gallivm->builder);
7958}
7959
7960/**
7961 * Create & compile a vertex shader epilog. This a helper used by VS and TES.
7962 */
7963static bool si_get_vs_epilog(struct si_screen *sscreen,
7964			     LLVMTargetMachineRef tm,
7965		             struct si_shader *shader,
7966		             struct pipe_debug_callback *debug,
7967			     struct si_vs_epilog_bits *states)
7968{
7969	union si_shader_part_key epilog_key;
7970
7971	si_get_vs_epilog_key(shader, states, &epilog_key);
7972
7973	shader->epilog = si_get_shader_part(sscreen, &sscreen->vs_epilogs,
7974					    PIPE_SHADER_VERTEX, true,
7975					    &epilog_key, tm, debug,
7976					    si_build_vs_epilog_function,
7977					    "Vertex Shader Epilog");
7978	return shader->epilog != NULL;
7979}
7980
7981/**
7982 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7983 */
7984static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7985				      LLVMTargetMachineRef tm,
7986				      struct si_shader *shader,
7987				      struct pipe_debug_callback *debug)
7988{
7989	struct tgsi_shader_info *info = &shader->selector->info;
7990	union si_shader_part_key prolog_key;
7991
7992	/* Get the prolog. */
7993	si_get_vs_prolog_key(shader, &prolog_key);
7994
7995	/* The prolog is a no-op if there are no inputs. */
7996	if (info->num_inputs) {
7997		shader->prolog =
7998			si_get_shader_part(sscreen, &sscreen->vs_prologs,
7999					   PIPE_SHADER_VERTEX, true,
8000					   &prolog_key, tm, debug,
8001					   si_build_vs_prolog_function,
8002					   "Vertex Shader Prolog");
8003		if (!shader->prolog)
8004			return false;
8005	}
8006
8007	/* Get the epilog. */
8008	if (!shader->key.as_es && !shader->key.as_ls &&
8009	    !si_get_vs_epilog(sscreen, tm, shader, debug,
8010			      &shader->key.part.vs.epilog))
8011		return false;
8012
8013	return true;
8014}
8015
8016/**
8017 * Select and compile (or reuse) TES parts (epilog).
8018 */
8019static bool si_shader_select_tes_parts(struct si_screen *sscreen,
8020				       LLVMTargetMachineRef tm,
8021				       struct si_shader *shader,
8022				       struct pipe_debug_callback *debug)
8023{
8024	if (shader->key.as_es)
8025		return true;
8026
8027	/* TES compiled as VS. */
8028	return si_get_vs_epilog(sscreen, tm, shader, debug,
8029				&shader->key.part.tes.epilog);
8030}
8031
8032/**
8033 * Compile the TCS epilog function. This writes tesselation factors to memory
8034 * based on the output primitive type of the tesselator (determined by TES).
8035 */
8036static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
8037					 union si_shader_part_key *key)
8038{
8039	struct gallivm_state *gallivm = &ctx->gallivm;
8040	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8041	LLVMTypeRef params[16];
8042	LLVMValueRef func;
8043	int last_sgpr, num_params;
8044
8045	/* Declare inputs. Only RW_BUFFERS and TESS_FACTOR_OFFSET are used. */
8046	params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
8047	params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
8048	params[SI_PARAM_SAMPLERS] = ctx->i64;
8049	params[SI_PARAM_IMAGES] = ctx->i64;
8050	params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
8051	params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
8052	params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
8053	params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
8054	params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
8055	params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
8056	params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
8057	last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
8058	num_params = last_sgpr + 1;
8059
8060	params[num_params++] = ctx->i32; /* patch index within the wave (REL_PATCH_ID) */
8061	params[num_params++] = ctx->i32; /* invocation ID within the patch */
8062	params[num_params++] = ctx->i32; /* LDS offset where tess factors should be loaded from */
8063
8064	/* Create the function. */
8065	si_create_function(ctx, "tcs_epilog", NULL, 0, params, num_params, last_sgpr);
8066	declare_tess_lds(ctx);
8067	func = ctx->main_fn;
8068
8069	si_write_tess_factors(bld_base,
8070			      LLVMGetParam(func, last_sgpr + 1),
8071			      LLVMGetParam(func, last_sgpr + 2),
8072			      LLVMGetParam(func, last_sgpr + 3));
8073
8074	LLVMBuildRetVoid(gallivm->builder);
8075}
8076
8077/**
8078 * Select and compile (or reuse) TCS parts (epilog).
8079 */
8080static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
8081				       LLVMTargetMachineRef tm,
8082				       struct si_shader *shader,
8083				       struct pipe_debug_callback *debug)
8084{
8085	union si_shader_part_key epilog_key;
8086
8087	/* Get the epilog. */
8088	memset(&epilog_key, 0, sizeof(epilog_key));
8089	epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
8090
8091	shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
8092					    PIPE_SHADER_TESS_CTRL, false,
8093					    &epilog_key, tm, debug,
8094					    si_build_tcs_epilog_function,
8095					    "Tessellation Control Shader Epilog");
8096	return shader->epilog != NULL;
8097}
8098
8099/**
8100 * Select and compile (or reuse) GS parts (prolog).
8101 */
8102static bool si_shader_select_gs_parts(struct si_screen *sscreen,
8103				      LLVMTargetMachineRef tm,
8104				      struct si_shader *shader,
8105				      struct pipe_debug_callback *debug)
8106{
8107	union si_shader_part_key prolog_key;
8108
8109	if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
8110		return true;
8111
8112	memset(&prolog_key, 0, sizeof(prolog_key));
8113	prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
8114
8115	shader->prolog = si_get_shader_part(sscreen, &sscreen->gs_prologs,
8116					    PIPE_SHADER_GEOMETRY, true,
8117					    &prolog_key, tm, debug,
8118					    si_build_gs_prolog_function,
8119					    "Geometry Shader Prolog");
8120	return shader->prolog != NULL;
8121}
8122
8123/**
8124 * Build the pixel shader prolog function. This handles:
8125 * - two-side color selection and interpolation
8126 * - overriding interpolation parameters for the API PS
8127 * - polygon stippling
8128 *
8129 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
8130 * overriden by other states. (e.g. per-sample interpolation)
8131 * Interpolated colors are stored after the preloaded VGPRs.
8132 */
8133static void si_build_ps_prolog_function(struct si_shader_context *ctx,
8134					union si_shader_part_key *key)
8135{
8136	struct gallivm_state *gallivm = &ctx->gallivm;
8137	LLVMTypeRef *params;
8138	LLVMValueRef ret, func;
8139	int last_sgpr, num_params, num_returns, i, num_color_channels;
8140
8141	assert(si_need_ps_prolog(key));
8142
8143	/* Number of inputs + 8 color elements. */
8144	params = alloca((key->ps_prolog.num_input_sgprs +
8145			 key->ps_prolog.num_input_vgprs + 8) *
8146			sizeof(LLVMTypeRef));
8147
8148	/* Declare inputs. */
8149	num_params = 0;
8150	for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
8151		params[num_params++] = ctx->i32;
8152	last_sgpr = num_params - 1;
8153
8154	for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
8155		params[num_params++] = ctx->f32;
8156
8157	/* Declare outputs (same as inputs + add colors if needed) */
8158	num_returns = num_params;
8159	num_color_channels = util_bitcount(key->ps_prolog.colors_read);
8160	for (i = 0; i < num_color_channels; i++)
8161		params[num_returns++] = ctx->f32;
8162
8163	/* Create the function. */
8164	si_create_function(ctx, "ps_prolog", params, num_returns, params,
8165			   num_params, last_sgpr);
8166	func = ctx->main_fn;
8167
8168	/* Copy inputs to outputs. This should be no-op, as the registers match,
8169	 * but it will prevent the compiler from overwriting them unintentionally.
8170	 */
8171	ret = ctx->return_value;
8172	for (i = 0; i < num_params; i++) {
8173		LLVMValueRef p = LLVMGetParam(func, i);
8174		ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
8175	}
8176
8177	/* Polygon stippling. */
8178	if (key->ps_prolog.states.poly_stipple) {
8179		/* POS_FIXED_PT is always last. */
8180		unsigned pos = key->ps_prolog.num_input_sgprs +
8181			       key->ps_prolog.num_input_vgprs - 1;
8182		LLVMValueRef ptr[2], list;
8183
8184		/* Get the pointer to rw buffers. */
8185		ptr[0] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS);
8186		ptr[1] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS_HI);
8187		list = lp_build_gather_values(gallivm, ptr, 2);
8188		list = LLVMBuildBitCast(gallivm->builder, list, ctx->i64, "");
8189		list = LLVMBuildIntToPtr(gallivm->builder, list,
8190					  const_array(ctx->v16i8, SI_NUM_RW_BUFFERS), "");
8191
8192		si_llvm_emit_polygon_stipple(ctx, list, pos);
8193	}
8194
8195	if (key->ps_prolog.states.bc_optimize_for_persp ||
8196	    key->ps_prolog.states.bc_optimize_for_linear) {
8197		unsigned i, base = key->ps_prolog.num_input_sgprs;
8198		LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
8199
8200		/* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
8201		 * The hw doesn't compute CENTROID if the whole wave only
8202		 * contains fully-covered quads.
8203		 *
8204		 * PRIM_MASK is after user SGPRs.
8205		 */
8206		bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
8207		bc_optimize = LLVMBuildLShr(gallivm->builder, bc_optimize,
8208					    LLVMConstInt(ctx->i32, 31, 0), "");
8209		bc_optimize = LLVMBuildTrunc(gallivm->builder, bc_optimize,
8210					     ctx->i1, "");
8211
8212		if (key->ps_prolog.states.bc_optimize_for_persp) {
8213			/* Read PERSP_CENTER. */
8214			for (i = 0; i < 2; i++)
8215				center[i] = LLVMGetParam(func, base + 2 + i);
8216			/* Read PERSP_CENTROID. */
8217			for (i = 0; i < 2; i++)
8218				centroid[i] = LLVMGetParam(func, base + 4 + i);
8219			/* Select PERSP_CENTROID. */
8220			for (i = 0; i < 2; i++) {
8221				tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
8222						      center[i], centroid[i], "");
8223				ret = LLVMBuildInsertValue(gallivm->builder, ret,
8224							   tmp, base + 4 + i, "");
8225			}
8226		}
8227		if (key->ps_prolog.states.bc_optimize_for_linear) {
8228			/* Read LINEAR_CENTER. */
8229			for (i = 0; i < 2; i++)
8230				center[i] = LLVMGetParam(func, base + 8 + i);
8231			/* Read LINEAR_CENTROID. */
8232			for (i = 0; i < 2; i++)
8233				centroid[i] = LLVMGetParam(func, base + 10 + i);
8234			/* Select LINEAR_CENTROID. */
8235			for (i = 0; i < 2; i++) {
8236				tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
8237						      center[i], centroid[i], "");
8238				ret = LLVMBuildInsertValue(gallivm->builder, ret,
8239							   tmp, base + 10 + i, "");
8240			}
8241		}
8242	}
8243
8244	/* Force per-sample interpolation. */
8245	if (key->ps_prolog.states.force_persp_sample_interp) {
8246		unsigned i, base = key->ps_prolog.num_input_sgprs;
8247		LLVMValueRef persp_sample[2];
8248
8249		/* Read PERSP_SAMPLE. */
8250		for (i = 0; i < 2; i++)
8251			persp_sample[i] = LLVMGetParam(func, base + i);
8252		/* Overwrite PERSP_CENTER. */
8253		for (i = 0; i < 2; i++)
8254			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8255						   persp_sample[i], base + 2 + i, "");
8256		/* Overwrite PERSP_CENTROID. */
8257		for (i = 0; i < 2; i++)
8258			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8259						   persp_sample[i], base + 4 + i, "");
8260	}
8261	if (key->ps_prolog.states.force_linear_sample_interp) {
8262		unsigned i, base = key->ps_prolog.num_input_sgprs;
8263		LLVMValueRef linear_sample[2];
8264
8265		/* Read LINEAR_SAMPLE. */
8266		for (i = 0; i < 2; i++)
8267			linear_sample[i] = LLVMGetParam(func, base + 6 + i);
8268		/* Overwrite LINEAR_CENTER. */
8269		for (i = 0; i < 2; i++)
8270			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8271						   linear_sample[i], base + 8 + i, "");
8272		/* Overwrite LINEAR_CENTROID. */
8273		for (i = 0; i < 2; i++)
8274			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8275						   linear_sample[i], base + 10 + i, "");
8276	}
8277
8278	/* Force center interpolation. */
8279	if (key->ps_prolog.states.force_persp_center_interp) {
8280		unsigned i, base = key->ps_prolog.num_input_sgprs;
8281		LLVMValueRef persp_center[2];
8282
8283		/* Read PERSP_CENTER. */
8284		for (i = 0; i < 2; i++)
8285			persp_center[i] = LLVMGetParam(func, base + 2 + i);
8286		/* Overwrite PERSP_SAMPLE. */
8287		for (i = 0; i < 2; i++)
8288			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8289						   persp_center[i], base + i, "");
8290		/* Overwrite PERSP_CENTROID. */
8291		for (i = 0; i < 2; i++)
8292			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8293						   persp_center[i], base + 4 + i, "");
8294	}
8295	if (key->ps_prolog.states.force_linear_center_interp) {
8296		unsigned i, base = key->ps_prolog.num_input_sgprs;
8297		LLVMValueRef linear_center[2];
8298
8299		/* Read LINEAR_CENTER. */
8300		for (i = 0; i < 2; i++)
8301			linear_center[i] = LLVMGetParam(func, base + 8 + i);
8302		/* Overwrite LINEAR_SAMPLE. */
8303		for (i = 0; i < 2; i++)
8304			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8305						   linear_center[i], base + 6 + i, "");
8306		/* Overwrite LINEAR_CENTROID. */
8307		for (i = 0; i < 2; i++)
8308			ret = LLVMBuildInsertValue(gallivm->builder, ret,
8309						   linear_center[i], base + 10 + i, "");
8310	}
8311
8312	/* Interpolate colors. */
8313	for (i = 0; i < 2; i++) {
8314		unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
8315		unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
8316				     key->ps_prolog.face_vgpr_index;
8317		LLVMValueRef interp[2], color[4];
8318		LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
8319
8320		if (!writemask)
8321			continue;
8322
8323		/* If the interpolation qualifier is not CONSTANT (-1). */
8324		if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
8325			unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
8326					       key->ps_prolog.color_interp_vgpr_index[i];
8327
8328			/* Get the (i,j) updated by bc_optimize handling. */
8329			interp[0] = LLVMBuildExtractValue(gallivm->builder, ret,
8330							  interp_vgpr, "");
8331			interp[1] = LLVMBuildExtractValue(gallivm->builder, ret,
8332							  interp_vgpr + 1, "");
8333			interp_ij = lp_build_gather_values(gallivm, interp, 2);
8334		}
8335
8336		/* Use the absolute location of the input. */
8337		prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
8338
8339		if (key->ps_prolog.states.color_two_side) {
8340			face = LLVMGetParam(func, face_vgpr);
8341			face = LLVMBuildBitCast(gallivm->builder, face, ctx->i32, "");
8342		}
8343
8344		interp_fs_input(ctx,
8345				key->ps_prolog.color_attr_index[i],
8346				TGSI_SEMANTIC_COLOR, i,
8347				key->ps_prolog.num_interp_inputs,
8348				key->ps_prolog.colors_read, interp_ij,
8349				prim_mask, face, color);
8350
8351		while (writemask) {
8352			unsigned chan = u_bit_scan(&writemask);
8353			ret = LLVMBuildInsertValue(gallivm->builder, ret, color[chan],
8354						   num_params++, "");
8355		}
8356	}
8357
8358	/* Tell LLVM to insert WQM instruction sequence when needed. */
8359	if (key->ps_prolog.wqm) {
8360		LLVMAddTargetDependentFunctionAttr(func,
8361						   "amdgpu-ps-wqm-outputs", "");
8362	}
8363
8364	si_llvm_build_ret(ctx, ret);
8365}
8366
8367/**
8368 * Build the pixel shader epilog function. This handles everything that must be
8369 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
8370 */
8371static void si_build_ps_epilog_function(struct si_shader_context *ctx,
8372					union si_shader_part_key *key)
8373{
8374	struct gallivm_state *gallivm = &ctx->gallivm;
8375	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
8376	LLVMTypeRef params[16+8*4+3];
8377	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
8378	int last_sgpr, num_params, i;
8379	struct si_ps_exports exp = {};
8380
8381	/* Declare input SGPRs. */
8382	params[SI_PARAM_RW_BUFFERS] = ctx->i64;
8383	params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
8384	params[SI_PARAM_SAMPLERS] = ctx->i64;
8385	params[SI_PARAM_IMAGES] = ctx->i64;
8386	params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
8387	params[SI_PARAM_ALPHA_REF] = ctx->f32;
8388	last_sgpr = SI_PARAM_ALPHA_REF;
8389
8390	/* Declare input VGPRs. */
8391	num_params = (last_sgpr + 1) +
8392		     util_bitcount(key->ps_epilog.colors_written) * 4 +
8393		     key->ps_epilog.writes_z +
8394		     key->ps_epilog.writes_stencil +
8395		     key->ps_epilog.writes_samplemask;
8396
8397	num_params = MAX2(num_params,
8398			  last_sgpr + 1 + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
8399
8400	assert(num_params <= ARRAY_SIZE(params));
8401
8402	for (i = last_sgpr + 1; i < num_params; i++)
8403		params[i] = ctx->f32;
8404
8405	/* Create the function. */
8406	si_create_function(ctx, "ps_epilog", NULL, 0, params, num_params, last_sgpr);
8407	/* Disable elimination of unused inputs. */
8408	si_llvm_add_attribute(ctx->main_fn,
8409				  "InitialPSInputAddr", 0xffffff);
8410
8411	/* Process colors. */
8412	unsigned vgpr = last_sgpr + 1;
8413	unsigned colors_written = key->ps_epilog.colors_written;
8414	int last_color_export = -1;
8415
8416	/* Find the last color export. */
8417	if (!key->ps_epilog.writes_z &&
8418	    !key->ps_epilog.writes_stencil &&
8419	    !key->ps_epilog.writes_samplemask) {
8420		unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
8421
8422		/* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
8423		if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
8424			/* Just set this if any of the colorbuffers are enabled. */
8425			if (spi_format &
8426			    ((1llu << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
8427				last_color_export = 0;
8428		} else {
8429			for (i = 0; i < 8; i++)
8430				if (colors_written & (1 << i) &&
8431				    (spi_format >> (i * 4)) & 0xf)
8432					last_color_export = i;
8433		}
8434	}
8435
8436	while (colors_written) {
8437		LLVMValueRef color[4];
8438		int mrt = u_bit_scan(&colors_written);
8439
8440		for (i = 0; i < 4; i++)
8441			color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
8442
8443		si_export_mrt_color(bld_base, color, mrt,
8444				    num_params - 1,
8445				    mrt == last_color_export, &exp);
8446	}
8447
8448	/* Process depth, stencil, samplemask. */
8449	if (key->ps_epilog.writes_z)
8450		depth = LLVMGetParam(ctx->main_fn, vgpr++);
8451	if (key->ps_epilog.writes_stencil)
8452		stencil = LLVMGetParam(ctx->main_fn, vgpr++);
8453	if (key->ps_epilog.writes_samplemask)
8454		samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
8455
8456	if (depth || stencil || samplemask)
8457		si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
8458	else if (last_color_export == -1)
8459		si_export_null(bld_base);
8460
8461	if (exp.num)
8462		si_emit_ps_exports(ctx, &exp);
8463
8464	/* Compile. */
8465	LLVMBuildRetVoid(gallivm->builder);
8466}
8467
8468/**
8469 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
8470 */
8471static bool si_shader_select_ps_parts(struct si_screen *sscreen,
8472				      LLVMTargetMachineRef tm,
8473				      struct si_shader *shader,
8474				      struct pipe_debug_callback *debug)
8475{
8476	union si_shader_part_key prolog_key;
8477	union si_shader_part_key epilog_key;
8478
8479	/* Get the prolog. */
8480	si_get_ps_prolog_key(shader, &prolog_key, true);
8481
8482	/* The prolog is a no-op if these aren't set. */
8483	if (si_need_ps_prolog(&prolog_key)) {
8484		shader->prolog =
8485			si_get_shader_part(sscreen, &sscreen->ps_prologs,
8486					   PIPE_SHADER_FRAGMENT, true,
8487					   &prolog_key, tm, debug,
8488					   si_build_ps_prolog_function,
8489					   "Fragment Shader Prolog");
8490		if (!shader->prolog)
8491			return false;
8492	}
8493
8494	/* Get the epilog. */
8495	si_get_ps_epilog_key(shader, &epilog_key);
8496
8497	shader->epilog =
8498		si_get_shader_part(sscreen, &sscreen->ps_epilogs,
8499				   PIPE_SHADER_FRAGMENT, false,
8500				   &epilog_key, tm, debug,
8501				   si_build_ps_epilog_function,
8502				   "Fragment Shader Epilog");
8503	if (!shader->epilog)
8504		return false;
8505
8506	/* Enable POS_FIXED_PT if polygon stippling is enabled. */
8507	if (shader->key.part.ps.prolog.poly_stipple) {
8508		shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
8509		assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
8510	}
8511
8512	/* Set up the enable bits for per-sample shading if needed. */
8513	if (shader->key.part.ps.prolog.force_persp_sample_interp &&
8514	    (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8515	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8516		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
8517		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8518		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
8519	}
8520	if (shader->key.part.ps.prolog.force_linear_sample_interp &&
8521	    (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
8522	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8523		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
8524		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8525		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
8526	}
8527	if (shader->key.part.ps.prolog.force_persp_center_interp &&
8528	    (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8529	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8530		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
8531		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
8532		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8533	}
8534	if (shader->key.part.ps.prolog.force_linear_center_interp &&
8535	    (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
8536	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
8537		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
8538		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
8539		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8540	}
8541
8542	/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
8543	if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
8544	    !(shader->config.spi_ps_input_ena & 0xf)) {
8545		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
8546		assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
8547	}
8548
8549	/* At least one pair of interpolation weights must be enabled. */
8550	if (!(shader->config.spi_ps_input_ena & 0x7f)) {
8551		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
8552		assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
8553	}
8554
8555	/* The sample mask input is always enabled, because the API shader always
8556	 * passes it through to the epilog. Disable it here if it's unused.
8557	 */
8558	if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8559	    !shader->selector->info.reads_samplemask)
8560		shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8561
8562	return true;
8563}
8564
8565void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8566				      unsigned *lds_size)
8567{
8568	/* SPI barrier management bug:
8569	 *   Make sure we have at least 4k of LDS in use to avoid the bug.
8570	 *   It applies to workgroup sizes of more than one wavefront.
8571	 */
8572	if (sscreen->b.family == CHIP_BONAIRE ||
8573	    sscreen->b.family == CHIP_KABINI ||
8574	    sscreen->b.family == CHIP_MULLINS)
8575		*lds_size = MAX2(*lds_size, 8);
8576}
8577
8578static void si_fix_resource_usage(struct si_screen *sscreen,
8579				  struct si_shader *shader)
8580{
8581	unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8582
8583	shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8584
8585	if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8586	    si_get_max_workgroup_size(shader) > 64) {
8587		si_multiwave_lds_size_workaround(sscreen,
8588						 &shader->config.lds_size);
8589	}
8590}
8591
8592int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
8593		     struct si_shader *shader,
8594		     struct pipe_debug_callback *debug)
8595{
8596	struct si_shader_selector *sel = shader->selector;
8597	struct si_shader *mainp = sel->main_shader_part;
8598	int r;
8599
8600	/* LS, ES, VS are compiled on demand if the main part hasn't been
8601	 * compiled for that stage.
8602	 *
8603	 * Vertex shaders are compiled on demand when a vertex fetch
8604	 * workaround must be applied.
8605	 */
8606	if (shader->is_monolithic) {
8607		/* Monolithic shader (compiled as a whole, has many variants,
8608		 * may take a long time to compile).
8609		 */
8610		r = si_compile_tgsi_shader(sscreen, tm, shader, true, debug);
8611		if (r)
8612			return r;
8613	} else {
8614		/* The shader consists of 2-3 parts:
8615		 *
8616		 * - the middle part is the user shader, it has 1 variant only
8617		 *   and it was compiled during the creation of the shader
8618		 *   selector
8619		 * - the prolog part is inserted at the beginning
8620		 * - the epilog part is inserted at the end
8621		 *
8622		 * The prolog and epilog have many (but simple) variants.
8623		 */
8624
8625		/* Copy the compiled TGSI shader data over. */
8626		shader->is_binary_shared = true;
8627		shader->binary = mainp->binary;
8628		shader->config = mainp->config;
8629		shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8630		shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8631		shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8632		memcpy(shader->info.vs_output_param_offset,
8633		       mainp->info.vs_output_param_offset,
8634		       sizeof(mainp->info.vs_output_param_offset));
8635		shader->info.uses_instanceid = mainp->info.uses_instanceid;
8636		shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8637		shader->info.nr_param_exports = mainp->info.nr_param_exports;
8638
8639		/* Select prologs and/or epilogs. */
8640		switch (sel->type) {
8641		case PIPE_SHADER_VERTEX:
8642			if (!si_shader_select_vs_parts(sscreen, tm, shader, debug))
8643				return -1;
8644			break;
8645		case PIPE_SHADER_TESS_CTRL:
8646			if (!si_shader_select_tcs_parts(sscreen, tm, shader, debug))
8647				return -1;
8648			break;
8649		case PIPE_SHADER_TESS_EVAL:
8650			if (!si_shader_select_tes_parts(sscreen, tm, shader, debug))
8651				return -1;
8652			break;
8653		case PIPE_SHADER_GEOMETRY:
8654			if (!si_shader_select_gs_parts(sscreen, tm, shader, debug))
8655				return -1;
8656			break;
8657		case PIPE_SHADER_FRAGMENT:
8658			if (!si_shader_select_ps_parts(sscreen, tm, shader, debug))
8659				return -1;
8660
8661			/* Make sure we have at least as many VGPRs as there
8662			 * are allocated inputs.
8663			 */
8664			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8665							shader->info.num_input_vgprs);
8666			break;
8667		}
8668
8669		/* Update SGPR and VGPR counts. */
8670		if (shader->prolog) {
8671			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8672							shader->prolog->config.num_sgprs);
8673			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8674							shader->prolog->config.num_vgprs);
8675		}
8676		if (shader->epilog) {
8677			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8678							shader->epilog->config.num_sgprs);
8679			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8680							shader->epilog->config.num_vgprs);
8681		}
8682	}
8683
8684	si_fix_resource_usage(sscreen, shader);
8685	si_shader_dump(sscreen, shader, debug, sel->info.processor,
8686		       stderr, true);
8687
8688	/* Upload. */
8689	r = si_shader_binary_upload(sscreen, shader);
8690	if (r) {
8691		fprintf(stderr, "LLVM failed to upload shader\n");
8692		return r;
8693	}
8694
8695	return 0;
8696}
8697
8698void si_shader_destroy(struct si_shader *shader)
8699{
8700	if (shader->scratch_bo)
8701		r600_resource_reference(&shader->scratch_bo, NULL);
8702
8703	r600_resource_reference(&shader->bo, NULL);
8704
8705	if (!shader->is_binary_shared)
8706		radeon_shader_binary_clean(&shader->binary);
8707
8708	free(shader->shader_log);
8709}
8710