1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "anv_private.h"
25
26#include "genxml/gen_macros.h"
27#include "genxml/genX_pack.h"
28
29#include "common/gen_l3_config.h"
30#include "common/gen_sample_positions.h"
31#include "vk_format_info.h"
32
33static uint32_t
34vertex_element_comp_control(enum isl_format format, unsigned comp)
35{
36   uint8_t bits;
37   switch (comp) {
38   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
39   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
40   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
41   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
42   default: unreachable("Invalid component");
43   }
44
45   /*
46    * Take in account hardware restrictions when dealing with 64-bit floats.
47    *
48    * From Broadwell spec, command reference structures, page 586:
49    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
50    *   64-bit components are stored * in the URB without any conversion. In
51    *   this case, vertex elements must be written as 128 or 256 bits, with
52    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
53    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
54    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
55    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
56    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
57    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
58    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
59    *   256-bit vertex element."
60    */
61   if (bits) {
62      return VFCOMP_STORE_SRC;
63   } else if (comp >= 2 &&
64              !isl_format_layouts[format].channels.b.bits &&
65              isl_format_layouts[format].channels.r.type == ISL_RAW) {
66      /* When emitting 64-bit attributes, we need to write either 128 or 256
67       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
68       * VFCOMP_STORE_0 to pad the written chunk */
69      return VFCOMP_NOSTORE;
70   } else if (comp < 3 ||
71              isl_format_layouts[format].channels.r.type == ISL_RAW) {
72      /* Note we need to pad with value 0, not 1, due hardware restrictions
73       * (see comment above) */
74      return VFCOMP_STORE_0;
75   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
76            isl_format_layouts[format].channels.r.type == ISL_SINT) {
77      assert(comp == 3);
78      return VFCOMP_STORE_1_INT;
79   } else {
80      assert(comp == 3);
81      return VFCOMP_STORE_1_FP;
82   }
83}
84
85static void
86emit_vertex_input(struct anv_pipeline *pipeline,
87                  const VkPipelineVertexInputStateCreateInfo *info)
88{
89   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
90
91   /* Pull inputs_read out of the VS prog data */
92   const uint64_t inputs_read = vs_prog_data->inputs_read;
93   const uint64_t double_inputs_read = vs_prog_data->double_inputs_read;
94   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
95   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
96   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
97
98#if GEN_GEN >= 8
99   /* On BDW+, we only need to allocate space for base ids.  Setting up
100    * the actual vertex and instance id is a separate packet.
101    */
102   const bool needs_svgs_elem = vs_prog_data->uses_basevertex ||
103                                vs_prog_data->uses_baseinstance;
104#else
105   /* On Haswell and prior, vertex and instance id are created by using the
106    * ComponentControl fields, so we need an element for any of them.
107    */
108   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
109                                vs_prog_data->uses_instanceid ||
110                                vs_prog_data->uses_basevertex ||
111                                vs_prog_data->uses_baseinstance;
112#endif
113
114   uint32_t elem_count = __builtin_popcount(elements) -
115      __builtin_popcount(elements_double) / 2;
116
117   uint32_t total_elems = elem_count + needs_svgs_elem;
118   if (total_elems == 0)
119      return;
120
121   uint32_t *p;
122
123   const uint32_t num_dwords = 1 + total_elems * 2;
124   p = anv_batch_emitn(&pipeline->batch, num_dwords,
125                       GENX(3DSTATE_VERTEX_ELEMENTS));
126   memset(p + 1, 0, (num_dwords - 1) * 4);
127
128   for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
129      const VkVertexInputAttributeDescription *desc =
130         &info->pVertexAttributeDescriptions[i];
131      enum isl_format format = anv_get_isl_format(&pipeline->device->info,
132                                                  desc->format,
133                                                  VK_IMAGE_ASPECT_COLOR_BIT,
134                                                  VK_IMAGE_TILING_LINEAR);
135
136      assert(desc->binding < 32);
137
138      if ((elements & (1 << desc->location)) == 0)
139         continue; /* Binding unused */
140
141      uint32_t slot =
142         __builtin_popcount(elements & ((1 << desc->location) - 1)) -
143         DIV_ROUND_UP(__builtin_popcount(elements_double &
144                                        ((1 << desc->location) -1)), 2);
145
146      struct GENX(VERTEX_ELEMENT_STATE) element = {
147         .VertexBufferIndex = desc->binding,
148         .Valid = true,
149         .SourceElementFormat = format,
150         .EdgeFlagEnable = false,
151         .SourceElementOffset = desc->offset,
152         .Component0Control = vertex_element_comp_control(format, 0),
153         .Component1Control = vertex_element_comp_control(format, 1),
154         .Component2Control = vertex_element_comp_control(format, 2),
155         .Component3Control = vertex_element_comp_control(format, 3),
156      };
157      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
158
159#if GEN_GEN >= 8
160      /* On Broadwell and later, we have a separate VF_INSTANCING packet
161       * that controls instancing.  On Haswell and prior, that's part of
162       * VERTEX_BUFFER_STATE which we emit later.
163       */
164      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
165         vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
166         vfi.VertexElementIndex = slot;
167         /* Vulkan so far doesn't have an instance divisor, so
168          * this is always 1 (ignored if not instancing). */
169         vfi.InstanceDataStepRate = 1;
170      }
171#endif
172   }
173
174   const uint32_t id_slot = elem_count;
175   if (needs_svgs_elem) {
176      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
177       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
178       *    Control field is set to something other than VFCOMP_STORE_SRC,
179       *    no higher-numbered Component Control fields may be set to
180       *    VFCOMP_STORE_SRC"
181       *
182       * This means, that if we have BaseInstance, we need BaseVertex as
183       * well.  Just do all or nothing.
184       */
185      uint32_t base_ctrl = (vs_prog_data->uses_basevertex ||
186                            vs_prog_data->uses_baseinstance) ?
187                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;
188
189      struct GENX(VERTEX_ELEMENT_STATE) element = {
190         .VertexBufferIndex = 32, /* Reserved for this */
191         .Valid = true,
192         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
193         .Component0Control = base_ctrl,
194         .Component1Control = base_ctrl,
195#if GEN_GEN >= 8
196         .Component2Control = VFCOMP_STORE_0,
197         .Component3Control = VFCOMP_STORE_0,
198#else
199         .Component2Control = VFCOMP_STORE_VID,
200         .Component3Control = VFCOMP_STORE_IID,
201#endif
202      };
203      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
204   }
205
206#if GEN_GEN >= 8
207   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
208      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
209      sgvs.VertexIDComponentNumber     = 2;
210      sgvs.VertexIDElementOffset       = id_slot;
211      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
212      sgvs.InstanceIDComponentNumber   = 3;
213      sgvs.InstanceIDElementOffset     = id_slot;
214   }
215#endif
216}
217
218void
219genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
220                     const struct gen_l3_config *l3_config,
221                     VkShaderStageFlags active_stages,
222                     const unsigned entry_size[4])
223{
224   const struct gen_device_info *devinfo = &device->info;
225#if GEN_IS_HASWELL
226   const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
227#else
228   const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
229#endif
230
231   const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
232
233   unsigned entries[4];
234   unsigned start[4];
235   gen_get_urb_config(devinfo,
236                      1024 * push_constant_kb, 1024 * urb_size_kb,
237                      active_stages &
238                         VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
239                      active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
240                      entry_size, entries, start);
241
242#if GEN_GEN == 7 && !GEN_IS_HASWELL
243   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
244    *
245    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
246    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
247    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
248    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
249    *    needs to be sent before any combination of VS associated 3DSTATE."
250    */
251   anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
252      pc.DepthStallEnable  = true;
253      pc.PostSyncOperation = WriteImmediateData;
254      pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
255   }
256#endif
257
258   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
259      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
260         urb._3DCommandSubOpcode      += i;
261         urb.VSURBStartingAddress      = start[i];
262         urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
263         urb.VSNumberofURBEntries      = entries[i];
264      }
265   }
266}
267
268static inline void
269emit_urb_setup(struct anv_pipeline *pipeline)
270{
271   unsigned entry_size[4];
272   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
273      const struct brw_vue_prog_data *prog_data =
274         !anv_pipeline_has_stage(pipeline, i) ? NULL :
275         (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
276
277      entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
278   }
279
280   genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
281                        pipeline->urb.l3_config,
282                        pipeline->active_stages, entry_size);
283}
284
285static void
286emit_3dstate_sbe(struct anv_pipeline *pipeline)
287{
288   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
289
290   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
291      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
292#if GEN_GEN >= 8
293      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
294#endif
295      return;
296   }
297
298   const struct brw_vue_map *fs_input_map =
299      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
300
301   struct GENX(3DSTATE_SBE) sbe = {
302      GENX(3DSTATE_SBE_header),
303      .AttributeSwizzleEnable = true,
304      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
305      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
306      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
307   };
308
309#if GEN_GEN >= 9
310   for (unsigned i = 0; i < 32; i++)
311      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
312#endif
313
314#if GEN_GEN >= 8
315   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
316   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
317      GENX(3DSTATE_SBE_SWIZ_header),
318   };
319#else
320#  define swiz sbe
321#endif
322
323   /* Skip the VUE header and position slots by default */
324   unsigned urb_entry_read_offset = 1;
325   int max_source_attr = 0;
326   for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
327      int input_index = wm_prog_data->urb_setup[attr];
328
329      if (input_index < 0)
330         continue;
331
332      /* gl_Layer is stored in the VUE header */
333      if (attr == VARYING_SLOT_LAYER) {
334         urb_entry_read_offset = 0;
335         continue;
336      }
337
338      if (attr == VARYING_SLOT_PNTC) {
339         sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
340         continue;
341      }
342
343      const int slot = fs_input_map->varying_to_slot[attr];
344
345      if (input_index >= 16)
346         continue;
347
348      if (slot == -1) {
349         /* This attribute does not exist in the VUE--that means that the
350          * vertex shader did not write to it.  It could be that it's a
351          * regular varying read by the fragment shader but not written by
352          * the vertex shader or it's gl_PrimitiveID. In the first case the
353          * value is undefined, in the second it needs to be
354          * gl_PrimitiveID.
355          */
356         swiz.Attribute[input_index].ConstantSource = PRIM_ID;
357         swiz.Attribute[input_index].ComponentOverrideX = true;
358         swiz.Attribute[input_index].ComponentOverrideY = true;
359         swiz.Attribute[input_index].ComponentOverrideZ = true;
360         swiz.Attribute[input_index].ComponentOverrideW = true;
361      } else {
362         /* We have to subtract two slots to accout for the URB entry output
363          * read offset in the VS and GS stages.
364          */
365         assert(slot >= 2);
366         const int source_attr = slot - 2 * urb_entry_read_offset;
367         max_source_attr = MAX2(max_source_attr, source_attr);
368         swiz.Attribute[input_index].SourceAttribute = source_attr;
369      }
370   }
371
372   sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
373   sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
374#if GEN_GEN >= 8
375   sbe.ForceVertexURBEntryReadOffset = true;
376   sbe.ForceVertexURBEntryReadLength = true;
377#endif
378
379   uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
380                                        GENX(3DSTATE_SBE_length));
381   GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
382
383#if GEN_GEN >= 8
384   dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
385   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
386#endif
387}
388
389static const uint32_t vk_to_gen_cullmode[] = {
390   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
391   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
392   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
393   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
394};
395
396static const uint32_t vk_to_gen_fillmode[] = {
397   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
398   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
399   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
400};
401
402static const uint32_t vk_to_gen_front_face[] = {
403   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
404   [VK_FRONT_FACE_CLOCKWISE]                 = 0
405};
406
407static void
408emit_rs_state(struct anv_pipeline *pipeline,
409              const VkPipelineRasterizationStateCreateInfo *rs_info,
410              const VkPipelineMultisampleStateCreateInfo *ms_info,
411              const struct anv_render_pass *pass,
412              const struct anv_subpass *subpass)
413{
414   struct GENX(3DSTATE_SF) sf = {
415      GENX(3DSTATE_SF_header),
416   };
417
418   sf.ViewportTransformEnable = true;
419   sf.StatisticsEnable = true;
420   sf.TriangleStripListProvokingVertexSelect = 0;
421   sf.LineStripListProvokingVertexSelect = 0;
422   sf.TriangleFanProvokingVertexSelect = 1;
423
424   const struct brw_vue_prog_data *last_vue_prog_data =
425      anv_pipeline_get_last_vue_prog_data(pipeline);
426
427   if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
428      sf.PointWidthSource = Vertex;
429   } else {
430      sf.PointWidthSource = State;
431      sf.PointWidth = 1.0;
432   }
433
434#if GEN_GEN >= 8
435   struct GENX(3DSTATE_RASTER) raster = {
436      GENX(3DSTATE_RASTER_header),
437   };
438#else
439#  define raster sf
440#endif
441
442   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
443    * "Multisample Modes State".
444    */
445#if GEN_GEN >= 8
446   raster.DXMultisampleRasterizationEnable = true;
447   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
448   raster.ForceMultisampling = false;
449#else
450   raster.MultisampleRasterizationMode =
451      (ms_info && ms_info->rasterizationSamples > 1) ?
452      MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
453#endif
454
455   raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
456   raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
457   raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
458   raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
459   raster.ScissorRectangleEnable = true;
460
461#if GEN_GEN >= 9
462   /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
463   raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
464   raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
465#elif GEN_GEN >= 8
466   raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
467#endif
468
469   raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
470   raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
471   raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
472
473#if GEN_GEN == 7
474   /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
475    * can get the depth offsets correct.
476    */
477   if (subpass->depth_stencil_attachment < pass->attachment_count) {
478      VkFormat vk_format =
479         pass->attachments[subpass->depth_stencil_attachment].format;
480      assert(vk_format_is_depth_or_stencil(vk_format));
481      if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
482         enum isl_format isl_format =
483            anv_get_isl_format(&pipeline->device->info, vk_format,
484                               VK_IMAGE_ASPECT_DEPTH_BIT,
485                               VK_IMAGE_TILING_OPTIMAL);
486         sf.DepthBufferSurfaceFormat =
487            isl_format_get_depth_format(isl_format, false);
488      }
489   }
490#endif
491
492#if GEN_GEN >= 8
493   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
494   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
495#else
496#  undef raster
497   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
498#endif
499}
500
501static void
502emit_ms_state(struct anv_pipeline *pipeline,
503              const VkPipelineMultisampleStateCreateInfo *info)
504{
505   uint32_t samples = 1;
506   uint32_t log2_samples = 0;
507
508   /* From the Vulkan 1.0 spec:
509    *    If pSampleMask is NULL, it is treated as if the mask has all bits
510    *    enabled, i.e. no coverage is removed from fragments.
511    *
512    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
513    */
514#if GEN_GEN >= 8
515   uint32_t sample_mask = 0xffff;
516#else
517   uint32_t sample_mask = 0xff;
518#endif
519
520   if (info) {
521      samples = info->rasterizationSamples;
522      log2_samples = __builtin_ffs(samples) - 1;
523   }
524
525   if (info && info->pSampleMask)
526      sample_mask &= info->pSampleMask[0];
527
528   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
529      ms.NumberofMultisamples       = log2_samples;
530
531#if GEN_GEN >= 8
532      /* The PRM says that this bit is valid only for DX9:
533       *
534       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
535       *    should not have any effect by setting or not setting this bit.
536       */
537      ms.PixelPositionOffsetEnable  = false;
538      ms.PixelLocation              = CENTER;
539#else
540      ms.PixelLocation              = PIXLOC_CENTER;
541
542      switch (samples) {
543      case 1:
544         GEN_SAMPLE_POS_1X(ms.Sample);
545         break;
546      case 2:
547         GEN_SAMPLE_POS_2X(ms.Sample);
548         break;
549      case 4:
550         GEN_SAMPLE_POS_4X(ms.Sample);
551         break;
552      case 8:
553         GEN_SAMPLE_POS_8X(ms.Sample);
554         break;
555      default:
556         break;
557      }
558#endif
559   }
560
561   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
562      sm.SampleMask = sample_mask;
563   }
564}
565
566static const uint32_t vk_to_gen_logic_op[] = {
567   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
568   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
569   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
570   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
571   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
572   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
573   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
574   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
575   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
576   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
577   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
578   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
579   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
580   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
581   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
582   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
583};
584
585static const uint32_t vk_to_gen_blend[] = {
586   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
587   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
588   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
589   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
590   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
591   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
592   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
593   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
594   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
595   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
596   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
597   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
598   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
599   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
600   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
601   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
602   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
603   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
604   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
605};
606
607static const uint32_t vk_to_gen_blend_op[] = {
608   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
609   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
610   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
611   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
612   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
613};
614
615static const uint32_t vk_to_gen_compare_op[] = {
616   [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
617   [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
618   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
619   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
620   [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
621   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
622   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
623   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
624};
625
626static const uint32_t vk_to_gen_stencil_op[] = {
627   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
628   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
629   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
630   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
631   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
632   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
633   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
634   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
635};
636
637static void
638emit_ds_state(struct anv_pipeline *pipeline,
639              const VkPipelineDepthStencilStateCreateInfo *info,
640              const struct anv_render_pass *pass,
641              const struct anv_subpass *subpass)
642{
643#if GEN_GEN == 7
644#  define depth_stencil_dw pipeline->gen7.depth_stencil_state
645#elif GEN_GEN == 8
646#  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
647#else
648#  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
649#endif
650
651   if (info == NULL) {
652      /* We're going to OR this together with the dynamic state.  We need
653       * to make sure it's initialized to something useful.
654       */
655      memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
656      return;
657   }
658
659   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
660
661#if GEN_GEN <= 7
662   struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
663#else
664   struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
665#endif
666      .DepthTestEnable = info->depthTestEnable,
667      .DepthBufferWriteEnable = info->depthWriteEnable,
668      .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
669      .DoubleSidedStencilEnable = true,
670
671      .StencilTestEnable = info->stencilTestEnable,
672      .StencilBufferWriteEnable = info->stencilTestEnable,
673      .StencilFailOp = vk_to_gen_stencil_op[info->front.failOp],
674      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.passOp],
675      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.depthFailOp],
676      .StencilTestFunction = vk_to_gen_compare_op[info->front.compareOp],
677      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.failOp],
678      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.passOp],
679      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.depthFailOp],
680      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.compareOp],
681   };
682
683   VkImageAspectFlags aspects = 0;
684   if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
685      VkFormat depth_stencil_format =
686         pass->attachments[subpass->depth_stencil_attachment].format;
687      aspects = vk_format_aspects(depth_stencil_format);
688   }
689
690   /* The Vulkan spec requires that if either depth or stencil is not present,
691    * the pipeline is to act as if the test silently passes.
692    */
693   if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
694      depth_stencil.DepthBufferWriteEnable = false;
695      depth_stencil.DepthTestFunction = PREFILTEROPALWAYS;
696   }
697
698   if (!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
699      depth_stencil.StencilBufferWriteEnable = false;
700      depth_stencil.StencilTestFunction = PREFILTEROPALWAYS;
701      depth_stencil.BackfaceStencilTestFunction = PREFILTEROPALWAYS;
702   }
703
704   /* From the Broadwell PRM:
705    *
706    *    "If Depth_Test_Enable = 1 AND Depth_Test_func = EQUAL, the
707    *    Depth_Write_Enable must be set to 0."
708    */
709   if (info->depthTestEnable && info->depthCompareOp == VK_COMPARE_OP_EQUAL)
710      depth_stencil.DepthBufferWriteEnable = false;
711
712#if GEN_GEN <= 7
713   GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
714#else
715   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
716#endif
717}
718
719static void
720emit_cb_state(struct anv_pipeline *pipeline,
721              const VkPipelineColorBlendStateCreateInfo *info,
722              const VkPipelineMultisampleStateCreateInfo *ms_info)
723{
724   struct anv_device *device = pipeline->device;
725
726   const uint32_t num_dwords = GENX(BLEND_STATE_length);
727   pipeline->blend_state =
728      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
729
730   struct GENX(BLEND_STATE) blend_state = {
731#if GEN_GEN >= 8
732      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
733      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
734#else
735      /* Make sure it gets zeroed */
736      .Entry = { { 0, }, },
737#endif
738   };
739
740   /* Default everything to disabled */
741   for (uint32_t i = 0; i < 8; i++) {
742      blend_state.Entry[i].WriteDisableAlpha = true;
743      blend_state.Entry[i].WriteDisableRed = true;
744      blend_state.Entry[i].WriteDisableGreen = true;
745      blend_state.Entry[i].WriteDisableBlue = true;
746   }
747
748   uint32_t surface_count = 0;
749   struct anv_pipeline_bind_map *map;
750   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
751      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
752      surface_count = map->surface_count;
753   }
754
755   bool has_writeable_rt = false;
756   for (unsigned i = 0; i < surface_count; i++) {
757      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
758
759      /* All color attachments are at the beginning of the binding table */
760      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
761         break;
762
763      /* We can have at most 8 attachments */
764      assert(i < 8);
765
766      if (info == NULL || binding->index >= info->attachmentCount)
767         continue;
768
769      assert(binding->binding == 0);
770      const VkPipelineColorBlendAttachmentState *a =
771         &info->pAttachments[binding->index];
772
773      blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
774#if GEN_GEN < 8
775         .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
776         .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
777#endif
778         .LogicOpEnable = info->logicOpEnable,
779         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
780         .ColorBufferBlendEnable = a->blendEnable,
781         .ColorClampRange = COLORCLAMP_RTFORMAT,
782         .PreBlendColorClampEnable = true,
783         .PostBlendColorClampEnable = true,
784         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
785         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
786         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
787         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
788         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
789         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
790         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
791         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
792         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
793         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
794      };
795
796      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
797          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
798          a->colorBlendOp != a->alphaBlendOp) {
799#if GEN_GEN >= 8
800         blend_state.IndependentAlphaBlendEnable = true;
801#else
802         blend_state.Entry[i].IndependentAlphaBlendEnable = true;
803#endif
804      }
805
806      if (a->colorWriteMask != 0)
807         has_writeable_rt = true;
808
809      /* Our hardware applies the blend factor prior to the blend function
810       * regardless of what function is used.  Technically, this means the
811       * hardware can do MORE than GL or Vulkan specify.  However, it also
812       * means that, for MIN and MAX, we have to stomp the blend factor to
813       * ONE to make it a no-op.
814       */
815      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
816          a->colorBlendOp == VK_BLEND_OP_MAX) {
817         blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
818         blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
819      }
820      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
821          a->alphaBlendOp == VK_BLEND_OP_MAX) {
822         blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
823         blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
824      }
825   }
826
827#if GEN_GEN >= 8
828   struct GENX(BLEND_STATE_ENTRY) *bs0 = &blend_state.Entry[0];
829   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
830      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
831      blend.HasWriteableRT                = has_writeable_rt;
832      blend.ColorBufferBlendEnable        = bs0->ColorBufferBlendEnable;
833      blend.SourceAlphaBlendFactor        = bs0->SourceAlphaBlendFactor;
834      blend.DestinationAlphaBlendFactor   = bs0->DestinationAlphaBlendFactor;
835      blend.SourceBlendFactor             = bs0->SourceBlendFactor;
836      blend.DestinationBlendFactor        = bs0->DestinationBlendFactor;
837      blend.AlphaTestEnable               = false;
838      blend.IndependentAlphaBlendEnable   =
839         blend_state.IndependentAlphaBlendEnable;
840   }
841#else
842   (void)has_writeable_rt;
843#endif
844
845   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
846   if (!device->info.has_llc)
847      anv_state_clflush(pipeline->blend_state);
848
849   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
850      bsp.BlendStatePointer      = pipeline->blend_state.offset;
851#if GEN_GEN >= 8
852      bsp.BlendStatePointerValid = true;
853#endif
854   }
855}
856
857static void
858emit_3dstate_clip(struct anv_pipeline *pipeline,
859                  const VkPipelineViewportStateCreateInfo *vp_info,
860                  const VkPipelineRasterizationStateCreateInfo *rs_info)
861{
862   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
863   (void) wm_prog_data;
864   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
865      clip.ClipEnable               = true;
866      clip.EarlyCullEnable          = true;
867      clip.APIMode                  = APIMODE_D3D,
868      clip.ViewportXYClipTestEnable = true;
869
870      clip.ClipMode = CLIPMODE_NORMAL;
871
872      clip.TriangleStripListProvokingVertexSelect = 0;
873      clip.LineStripListProvokingVertexSelect     = 0;
874      clip.TriangleFanProvokingVertexSelect       = 1;
875
876      clip.MinimumPointWidth = 0.125;
877      clip.MaximumPointWidth = 255.875;
878
879      const struct brw_vue_prog_data *last =
880         anv_pipeline_get_last_vue_prog_data(pipeline);
881
882      /* From the Vulkan 1.0.45 spec:
883       *
884       *    "If the last active vertex processing stage shader entry point's
885       *    interface does not include a variable decorated with
886       *    ViewportIndex, then the first viewport is used."
887       */
888      if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
889         clip.MaximumVPIndex = vp_info->viewportCount - 1;
890      } else {
891         clip.MaximumVPIndex = 0;
892      }
893
894      /* From the Vulkan 1.0.45 spec:
895       *
896       *    "If the last active vertex processing stage shader entry point's
897       *    interface does not include a variable decorated with Layer, then
898       *    the first layer is used."
899       */
900      clip.ForceZeroRTAIndexEnable =
901         !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
902
903#if GEN_GEN == 7
904      clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
905      clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
906      clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
907      if (last) {
908         clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
909         clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
910      }
911#else
912      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
913         (wm_prog_data->barycentric_interp_modes & 0x38) != 0 : 0;
914#endif
915   }
916}
917
918static void
919emit_3dstate_streamout(struct anv_pipeline *pipeline,
920                       const VkPipelineRasterizationStateCreateInfo *rs_info)
921{
922   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
923      so.RenderingDisable = rs_info->rasterizerDiscardEnable;
924   }
925}
926
927static inline uint32_t
928get_sampler_count(const struct anv_shader_bin *bin)
929{
930   return DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
931}
932
933static inline uint32_t
934get_binding_table_entry_count(const struct anv_shader_bin *bin)
935{
936   return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
937}
938
939static inline struct anv_address
940get_scratch_address(struct anv_pipeline *pipeline,
941                    gl_shader_stage stage,
942                    const struct anv_shader_bin *bin)
943{
944   return (struct anv_address) {
945      .bo = anv_scratch_pool_alloc(pipeline->device,
946                                   &pipeline->device->scratch_pool,
947                                   stage, bin->prog_data->total_scratch),
948      .offset = 0,
949   };
950}
951
952static inline uint32_t
953get_scratch_space(const struct anv_shader_bin *bin)
954{
955   return ffs(bin->prog_data->total_scratch / 2048);
956}
957
958static inline uint32_t
959get_urb_output_offset()
960{
961   /* Skip the VUE header and position slots */
962   return 1;
963}
964
965static inline uint32_t
966get_urb_output_length(const struct anv_shader_bin *bin)
967{
968   const struct brw_vue_prog_data *prog_data =
969      (const struct brw_vue_prog_data *)bin->prog_data;
970
971   return (prog_data->vue_map.num_slots + 1) / 2 - get_urb_output_offset();
972}
973
974static void
975emit_3dstate_vs(struct anv_pipeline *pipeline)
976{
977   const struct gen_device_info *devinfo = &pipeline->device->info;
978   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
979   const struct anv_shader_bin *vs_bin =
980      pipeline->shaders[MESA_SHADER_VERTEX];
981
982   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
983
984   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
985      vs.FunctionEnable       = true;
986      vs.StatisticsEnable     = true;
987      vs.KernelStartPointer   = vs_bin->kernel.offset;
988#if GEN_GEN >= 8
989      vs.SIMD8DispatchEnable  =
990         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
991#endif
992
993      assert(!vs_prog_data->base.base.use_alt_mode);
994      vs.SingleVertexDispatch       = false;
995      vs.VectorMaskEnable           = false;
996      vs.SamplerCount               = get_sampler_count(vs_bin);
997      vs.BindingTableEntryCount     = get_binding_table_entry_count(vs_bin);
998      vs.FloatingPointMode          = IEEE754;
999      vs.IllegalOpcodeExceptionEnable = false;
1000      vs.SoftwareExceptionEnable    = false;
1001      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
1002      vs.VertexCacheDisable         = false;
1003
1004      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
1005      vs.VertexURBEntryReadOffset      = 0;
1006      vs.DispatchGRFStartRegisterForURBData =
1007         vs_prog_data->base.base.dispatch_grf_start_reg;
1008
1009#if GEN_GEN >= 8
1010      vs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
1011      vs.VertexURBEntryOutputLength     = get_urb_output_length(vs_bin);
1012
1013      vs.UserClipDistanceClipTestEnableBitmask =
1014         vs_prog_data->base.clip_distance_mask;
1015      vs.UserClipDistanceCullTestEnableBitmask =
1016         vs_prog_data->base.cull_distance_mask;
1017#endif
1018
1019      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
1020      vs.ScratchSpaceBasePointer =
1021         get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1022   }
1023}
1024
1025static void
1026emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline)
1027{
1028   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1029      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1030      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1031      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1032      return;
1033   }
1034
1035   const struct gen_device_info *devinfo = &pipeline->device->info;
1036   const struct anv_shader_bin *tcs_bin =
1037      pipeline->shaders[MESA_SHADER_TESS_CTRL];
1038   const struct anv_shader_bin *tes_bin =
1039      pipeline->shaders[MESA_SHADER_TESS_EVAL];
1040
1041   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1042   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1043
1044   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1045      hs.FunctionEnable = true;
1046      hs.StatisticsEnable = true;
1047      hs.KernelStartPointer = tcs_bin->kernel.offset;
1048
1049      hs.SamplerCount = get_sampler_count(tcs_bin);
1050      hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
1051      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1052      hs.IncludeVertexHandles = true;
1053      hs.InstanceCount = tcs_prog_data->instances - 1;
1054
1055      hs.VertexURBEntryReadLength = 0;
1056      hs.VertexURBEntryReadOffset = 0;
1057      hs.DispatchGRFStartRegisterForURBData =
1058         tcs_prog_data->base.base.dispatch_grf_start_reg;
1059
1060      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1061      hs.ScratchSpaceBasePointer =
1062         get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1063   }
1064
1065   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1066      te.Partitioning = tes_prog_data->partitioning;
1067      te.OutputTopology = tes_prog_data->output_topology;
1068      te.TEDomain = tes_prog_data->domain;
1069      te.TEEnable = true;
1070      te.MaximumTessellationFactorOdd = 63.0;
1071      te.MaximumTessellationFactorNotOdd = 64.0;
1072   }
1073
1074   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1075      ds.FunctionEnable = true;
1076      ds.StatisticsEnable = true;
1077      ds.KernelStartPointer = tes_bin->kernel.offset;
1078
1079      ds.SamplerCount = get_sampler_count(tes_bin);
1080      ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
1081      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1082
1083      ds.ComputeWCoordinateEnable =
1084         tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1085
1086      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1087      ds.PatchURBEntryReadOffset = 0;
1088      ds.DispatchGRFStartRegisterForURBData =
1089         tes_prog_data->base.base.dispatch_grf_start_reg;
1090
1091#if GEN_GEN >= 8
1092      ds.VertexURBEntryOutputReadOffset = 1;
1093      ds.VertexURBEntryOutputLength =
1094         (tes_prog_data->base.vue_map.num_slots + 1) / 2 - 1;
1095
1096      ds.DispatchMode =
1097         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1098            DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1099            DISPATCH_MODE_SIMD4X2;
1100
1101      ds.UserClipDistanceClipTestEnableBitmask =
1102         tes_prog_data->base.clip_distance_mask;
1103      ds.UserClipDistanceCullTestEnableBitmask =
1104         tes_prog_data->base.cull_distance_mask;
1105#endif
1106
1107      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1108      ds.ScratchSpaceBasePointer =
1109         get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1110   }
1111}
1112
1113static void
1114emit_3dstate_gs(struct anv_pipeline *pipeline)
1115{
1116   const struct gen_device_info *devinfo = &pipeline->device->info;
1117   const struct anv_shader_bin *gs_bin =
1118      pipeline->shaders[MESA_SHADER_GEOMETRY];
1119
1120   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1121      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1122      return;
1123   }
1124
1125   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1126
1127   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1128      gs.FunctionEnable          = true;
1129      gs.StatisticsEnable        = true;
1130      gs.KernelStartPointer      = gs_bin->kernel.offset;
1131      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
1132
1133      gs.SingleProgramFlow       = false;
1134      gs.VectorMaskEnable        = false;
1135      gs.SamplerCount            = get_sampler_count(gs_bin);
1136      gs.BindingTableEntryCount  = get_binding_table_entry_count(gs_bin);
1137      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
1138      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
1139
1140      if (GEN_GEN == 8) {
1141         /* Broadwell is weird.  It needs us to divide by 2. */
1142         gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1143      } else {
1144         gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1145      }
1146
1147      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1148      gs.OutputTopology          = gs_prog_data->output_topology;
1149      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1150      gs.ControlDataFormat       = gs_prog_data->control_data_format;
1151      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
1152      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
1153#if GEN_GEN >= 8 || GEN_IS_HASWELL
1154      gs.ReorderMode             = TRAILING;
1155#else
1156      gs.ReorderEnable           = true;
1157#endif
1158
1159#if GEN_GEN >= 8
1160      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
1161      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
1162      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1163                                   gs_prog_data->static_vertex_count : 0;
1164#endif
1165
1166      gs.VertexURBEntryReadOffset = 0;
1167      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1168      gs.DispatchGRFStartRegisterForURBData =
1169         gs_prog_data->base.base.dispatch_grf_start_reg;
1170
1171#if GEN_GEN >= 8
1172      gs.VertexURBEntryOutputReadOffset = get_urb_output_offset();
1173      gs.VertexURBEntryOutputLength     = get_urb_output_length(gs_bin);
1174
1175      gs.UserClipDistanceClipTestEnableBitmask =
1176         gs_prog_data->base.clip_distance_mask;
1177      gs.UserClipDistanceCullTestEnableBitmask =
1178         gs_prog_data->base.cull_distance_mask;
1179#endif
1180
1181      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
1182      gs.ScratchSpaceBasePointer =
1183         get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1184   }
1185}
1186
1187static void
1188emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1189                const VkPipelineMultisampleStateCreateInfo *multisample)
1190{
1191   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1192
1193   MAYBE_UNUSED uint32_t samples =
1194      multisample ? multisample->rasterizationSamples : 1;
1195
1196   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1197      wm.StatisticsEnable                    = true;
1198      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
1199      wm.LineAntialiasingRegionWidth         = _10pixels;
1200      wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;
1201
1202      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1203         if (wm_prog_data->early_fragment_tests) {
1204            wm.EarlyDepthStencilControl         = EDSC_PREPS;
1205         } else if (wm_prog_data->has_side_effects) {
1206            wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
1207         } else {
1208            wm.EarlyDepthStencilControl         = EDSC_NORMAL;
1209         }
1210
1211         wm.BarycentricInterpolationMode =
1212            wm_prog_data->barycentric_interp_modes;
1213
1214#if GEN_GEN < 8
1215         /* FIXME: This needs a lot more work, cf gen7 upload_wm_state(). */
1216         wm.ThreadDispatchEnable          = true;
1217
1218         wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1219         wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1220         wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1221         wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1222
1223         /* If the subpass has a depth or stencil self-dependency, then we
1224          * need to force the hardware to do the depth/stencil write *after*
1225          * fragment shader execution.  Otherwise, the writes may hit memory
1226          * before we get around to fetching from the input attachment and we
1227          * may get the depth or stencil value from the current draw rather
1228          * than the previous one.
1229          */
1230         wm.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1231                                            wm_prog_data->uses_kill;
1232
1233         if (samples > 1) {
1234            wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1235            if (wm_prog_data->persample_dispatch) {
1236               wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1237            } else {
1238               wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1239            }
1240         } else {
1241            wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1242            wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1243         }
1244#endif
1245      }
1246   }
1247}
1248
1249static inline bool
1250is_dual_src_blend_factor(VkBlendFactor factor)
1251{
1252   return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1253          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1254          factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1255          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1256}
1257
1258static void
1259emit_3dstate_ps(struct anv_pipeline *pipeline,
1260                const VkPipelineColorBlendStateCreateInfo *blend)
1261{
1262   MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1263   const struct anv_shader_bin *fs_bin =
1264      pipeline->shaders[MESA_SHADER_FRAGMENT];
1265
1266   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1267      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1268#if GEN_GEN == 7
1269         /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1270          * we don't at least set the maximum number of threads.
1271          */
1272         ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1273#endif
1274      }
1275      return;
1276   }
1277
1278   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1279
1280#if GEN_GEN < 8
1281   /* The hardware wedges if you have this bit set but don't turn on any dual
1282    * source blend factors.
1283    */
1284   bool dual_src_blend = false;
1285   if (wm_prog_data->dual_src_blend && blend) {
1286      for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1287         const VkPipelineColorBlendAttachmentState *bstate =
1288            &blend->pAttachments[i];
1289
1290         if (bstate->blendEnable &&
1291             (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1292              is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1293              is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1294              is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1295            dual_src_blend = true;
1296            break;
1297         }
1298      }
1299   }
1300#endif
1301
1302   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1303      ps.KernelStartPointer0        = fs_bin->kernel.offset;
1304      ps.KernelStartPointer1        = 0;
1305      ps.KernelStartPointer2        = fs_bin->kernel.offset +
1306                                      wm_prog_data->prog_offset_2;
1307      ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
1308      ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
1309      ps._32PixelDispatchEnable     = false;
1310
1311      ps.SingleProgramFlow          = false;
1312      ps.VectorMaskEnable           = true;
1313      ps.SamplerCount               = get_sampler_count(fs_bin);
1314      ps.BindingTableEntryCount     = get_binding_table_entry_count(fs_bin);
1315      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0;
1316      ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
1317                                      POSOFFSET_SAMPLE: POSOFFSET_NONE;
1318#if GEN_GEN < 8
1319      ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
1320      ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1321      ps.DualSourceBlendEnable      = dual_src_blend;
1322#endif
1323
1324#if GEN_IS_HASWELL
1325      /* Haswell requires the sample mask to be set in this packet as well
1326       * as in 3DSTATE_SAMPLE_MASK; the values should match.
1327       */
1328      ps.SampleMask                 = 0xff;
1329#endif
1330
1331#if GEN_GEN >= 9
1332      ps.MaximumNumberofThreadsPerPSD  = 64 - 1;
1333#elif GEN_GEN >= 8
1334      ps.MaximumNumberofThreadsPerPSD  = 64 - 2;
1335#else
1336      ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
1337#endif
1338
1339      ps.DispatchGRFStartRegisterForConstantSetupData0 =
1340         wm_prog_data->base.dispatch_grf_start_reg;
1341      ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
1342      ps.DispatchGRFStartRegisterForConstantSetupData2 =
1343         wm_prog_data->dispatch_grf_start_reg_2;
1344
1345      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
1346      ps.ScratchSpaceBasePointer =
1347         get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1348   }
1349}
1350
1351static inline bool
1352has_color_buffer_write_enabled(const struct anv_pipeline *pipeline)
1353{
1354   const struct anv_shader_bin *shader_bin =
1355      pipeline->shaders[MESA_SHADER_FRAGMENT];
1356   if (!shader_bin)
1357      return false;
1358
1359   const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1360   for (int i = 0; i < bind_map->surface_count; i++) {
1361      if (bind_map->surface_to_descriptor[i].set !=
1362          ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1363         continue;
1364      if (bind_map->surface_to_descriptor[i].index != UINT8_MAX)
1365         return true;
1366   }
1367
1368   return false;
1369}
1370
1371#if GEN_GEN >= 8
1372static void
1373emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1374                      struct anv_subpass *subpass)
1375{
1376   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1377
1378   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1379      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1380      return;
1381   }
1382
1383   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1384      ps.PixelShaderValid              = true;
1385      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
1386      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
1387      ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
1388      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1389      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1390      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1391
1392      /* If the subpass has a depth or stencil self-dependency, then we need
1393       * to force the hardware to do the depth/stencil write *after* fragment
1394       * shader execution.  Otherwise, the writes may hit memory before we get
1395       * around to fetching from the input attachment and we may get the depth
1396       * or stencil value from the current draw rather than the previous one.
1397       */
1398      ps.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1399                                         wm_prog_data->uses_kill;
1400
1401      /* The stricter cross-primitive coherency guarantees that the hardware
1402       * gives us with the "Accesses UAV" bit set for at least one shader stage
1403       * and the "UAV coherency required" bit set on the 3DPRIMITIVE command are
1404       * redundant within the current image, atomic counter and SSBO GL APIs,
1405       * which all have very loose ordering and coherency requirements and
1406       * generally rely on the application to insert explicit barriers when a
1407       * shader invocation is expected to see the memory writes performed by the
1408       * invocations of some previous primitive.  Regardless of the value of
1409       * "UAV coherency required", the "Accesses UAV" bits will implicitly cause
1410       * an in most cases useless DC flush when the lowermost stage with the bit
1411       * set finishes execution.
1412       *
1413       * It would be nice to disable it, but in some cases we can't because on
1414       * Gen8+ it also has an influence on rasterization via the PS UAV-only
1415       * signal (which could be set independently from the coherency mechanism
1416       * in the 3DSTATE_WM command on Gen7), and because in some cases it will
1417       * determine whether the hardware skips execution of the fragment shader
1418       * or not via the ThreadDispatchEnable signal.  However if we know that
1419       * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
1420       * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
1421       * difference so we may just disable it here.
1422       *
1423       * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
1424       * take into account KillPixels when no depth or stencil writes are
1425       * enabled. In order for occlusion queries to work correctly with no
1426       * attachments, we need to force-enable here.
1427       */
1428      if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1429          !has_color_buffer_write_enabled(pipeline))
1430         ps.PixelShaderHasUAV = true;
1431
1432#if GEN_GEN >= 9
1433      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
1434      ps.InputCoverageMaskState  = wm_prog_data->uses_sample_mask ?
1435                                   ICMS_INNER_CONSERVATIVE : ICMS_NONE;
1436#else
1437      ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1438#endif
1439   }
1440}
1441
1442static void
1443emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1444{
1445   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1446      vft.PrimitiveTopologyType = pipeline->topology;
1447   }
1448}
1449#endif
1450
1451static VkResult
1452genX(graphics_pipeline_create)(
1453    VkDevice                                    _device,
1454    struct anv_pipeline_cache *                 cache,
1455    const VkGraphicsPipelineCreateInfo*         pCreateInfo,
1456    const VkAllocationCallbacks*                pAllocator,
1457    VkPipeline*                                 pPipeline)
1458{
1459   ANV_FROM_HANDLE(anv_device, device, _device);
1460   ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1461   struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1462   struct anv_pipeline *pipeline;
1463   VkResult result;
1464
1465   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1466
1467   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1468                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1469   if (pipeline == NULL)
1470      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1471
1472   result = anv_pipeline_init(pipeline, device, cache,
1473                              pCreateInfo, pAllocator);
1474   if (result != VK_SUCCESS) {
1475      vk_free2(&device->alloc, pAllocator, pipeline);
1476      return result;
1477   }
1478
1479   assert(pCreateInfo->pVertexInputState);
1480   emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1481   assert(pCreateInfo->pRasterizationState);
1482   emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1483                 pCreateInfo->pMultisampleState, pass, subpass);
1484   emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1485   emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1486   emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1487                           pCreateInfo->pMultisampleState);
1488
1489   emit_urb_setup(pipeline);
1490
1491   emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1492                     pCreateInfo->pRasterizationState);
1493   emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1494
1495#if 0
1496   /* From gen7_vs_state.c */
1497
1498   /**
1499    * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1500    * Geometry > Geometry Shader > State:
1501    *
1502    *     "Note: Because of corruption in IVB:GT2, software needs to flush the
1503    *     whole fixed function pipeline when the GS enable changes value in
1504    *     the 3DSTATE_GS."
1505    *
1506    * The hardware architects have clarified that in this context "flush the
1507    * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1508    * Stall" bit set.
1509    */
1510   if (!brw->is_haswell && !brw->is_baytrail)
1511      gen7_emit_vs_workaround_flush(brw);
1512#endif
1513
1514   emit_3dstate_vs(pipeline);
1515   emit_3dstate_hs_te_ds(pipeline);
1516   emit_3dstate_gs(pipeline);
1517   emit_3dstate_sbe(pipeline);
1518   emit_3dstate_wm(pipeline, subpass, pCreateInfo->pMultisampleState);
1519   emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState);
1520#if GEN_GEN >= 8
1521   emit_3dstate_ps_extra(pipeline, subpass);
1522   emit_3dstate_vf_topology(pipeline);
1523#endif
1524
1525   *pPipeline = anv_pipeline_to_handle(pipeline);
1526
1527   return VK_SUCCESS;
1528}
1529
1530static VkResult
1531compute_pipeline_create(
1532    VkDevice                                    _device,
1533    struct anv_pipeline_cache *                 cache,
1534    const VkComputePipelineCreateInfo*          pCreateInfo,
1535    const VkAllocationCallbacks*                pAllocator,
1536    VkPipeline*                                 pPipeline)
1537{
1538   ANV_FROM_HANDLE(anv_device, device, _device);
1539   const struct anv_physical_device *physical_device =
1540      &device->instance->physicalDevice;
1541   const struct gen_device_info *devinfo = &physical_device->info;
1542   struct anv_pipeline *pipeline;
1543   VkResult result;
1544
1545   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1546
1547   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1548                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1549   if (pipeline == NULL)
1550      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1551
1552   pipeline->device = device;
1553   pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1554
1555   pipeline->blend_state.map = NULL;
1556
1557   result = anv_reloc_list_init(&pipeline->batch_relocs,
1558                                pAllocator ? pAllocator : &device->alloc);
1559   if (result != VK_SUCCESS) {
1560      vk_free2(&device->alloc, pAllocator, pipeline);
1561      return result;
1562   }
1563   pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1564   pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1565   pipeline->batch.relocs = &pipeline->batch_relocs;
1566
1567   /* When we free the pipeline, we detect stages based on the NULL status
1568    * of various prog_data pointers.  Make them NULL by default.
1569    */
1570   memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1571
1572   pipeline->active_stages = 0;
1573
1574   pipeline->needs_data_cache = false;
1575
1576   assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
1577   ANV_FROM_HANDLE(anv_shader_module, module,  pCreateInfo->stage.module);
1578   result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
1579                                    pCreateInfo->stage.pName,
1580                                    pCreateInfo->stage.pSpecializationInfo);
1581   if (result != VK_SUCCESS) {
1582      vk_free2(&device->alloc, pAllocator, pipeline);
1583      return result;
1584   }
1585
1586   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1587
1588   anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
1589
1590   uint32_t group_size = cs_prog_data->local_size[0] *
1591      cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
1592   uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
1593
1594   if (remainder > 0)
1595      pipeline->cs_right_mask = ~0u >> (32 - remainder);
1596   else
1597      pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
1598
1599   const uint32_t vfe_curbe_allocation =
1600      ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
1601            cs_prog_data->push.cross_thread.regs, 2);
1602
1603   const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
1604
1605   const struct anv_shader_bin *cs_bin =
1606      pipeline->shaders[MESA_SHADER_COMPUTE];
1607
1608   anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
1609#if GEN_GEN > 7
1610      vfe.StackSize              = 0;
1611#else
1612      vfe.GPGPUMode              = true;
1613#endif
1614      vfe.MaximumNumberofThreads =
1615         devinfo->max_cs_threads * subslices - 1;
1616      vfe.NumberofURBEntries     = GEN_GEN <= 7 ? 0 : 2;
1617      vfe.ResetGatewayTimer      = true;
1618#if GEN_GEN <= 8
1619      vfe.BypassGatewayControl   = true;
1620#endif
1621      vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
1622      vfe.CURBEAllocationSize    = vfe_curbe_allocation;
1623
1624      vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
1625      vfe.ScratchSpaceBasePointer =
1626         get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
1627   }
1628
1629   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1630      .KernelStartPointer     = cs_bin->kernel.offset,
1631
1632      .SamplerCount           = get_sampler_count(cs_bin),
1633      .BindingTableEntryCount = get_binding_table_entry_count(cs_bin),
1634      .BarrierEnable          = cs_prog_data->uses_barrier,
1635      .SharedLocalMemorySize  =
1636         encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
1637
1638#if !GEN_IS_HASWELL
1639      .ConstantURBEntryReadOffset = 0,
1640#endif
1641      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
1642#if GEN_GEN >= 8 || GEN_IS_HASWELL
1643      .CrossThreadConstantDataReadLength =
1644         cs_prog_data->push.cross_thread.regs,
1645#endif
1646
1647      .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
1648   };
1649   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
1650                                        pipeline->interface_descriptor_data,
1651                                        &desc);
1652
1653   *pPipeline = anv_pipeline_to_handle(pipeline);
1654
1655   return VK_SUCCESS;
1656}
1657
1658VkResult genX(CreateGraphicsPipelines)(
1659    VkDevice                                    _device,
1660    VkPipelineCache                             pipelineCache,
1661    uint32_t                                    count,
1662    const VkGraphicsPipelineCreateInfo*         pCreateInfos,
1663    const VkAllocationCallbacks*                pAllocator,
1664    VkPipeline*                                 pPipelines)
1665{
1666   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1667
1668   VkResult result = VK_SUCCESS;
1669
1670   unsigned i;
1671   for (i = 0; i < count; i++) {
1672      result = genX(graphics_pipeline_create)(_device,
1673                                              pipeline_cache,
1674                                              &pCreateInfos[i],
1675                                              pAllocator, &pPipelines[i]);
1676
1677      /* Bail out on the first error as it is not obvious what error should be
1678       * report upon 2 different failures. */
1679      if (result != VK_SUCCESS)
1680         break;
1681   }
1682
1683   for (; i < count; i++)
1684      pPipelines[i] = VK_NULL_HANDLE;
1685
1686   return result;
1687}
1688
1689VkResult genX(CreateComputePipelines)(
1690    VkDevice                                    _device,
1691    VkPipelineCache                             pipelineCache,
1692    uint32_t                                    count,
1693    const VkComputePipelineCreateInfo*          pCreateInfos,
1694    const VkAllocationCallbacks*                pAllocator,
1695    VkPipeline*                                 pPipelines)
1696{
1697   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1698
1699   VkResult result = VK_SUCCESS;
1700
1701   unsigned i;
1702   for (i = 0; i < count; i++) {
1703      result = compute_pipeline_create(_device, pipeline_cache,
1704                                       &pCreateInfos[i],
1705                                       pAllocator, &pPipelines[i]);
1706
1707      /* Bail out on the first error as it is not obvious what error should be
1708       * report upon 2 different failures. */
1709      if (result != VK_SUCCESS)
1710         break;
1711   }
1712
1713   for (; i < count; i++)
1714      pPipelines[i] = VK_NULL_HANDLE;
1715
1716   return result;
1717}
1718