1/*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file brw_vec4_gs_visitor.cpp
26 *
27 * Geometry-shader-specific code derived from the vec4_visitor class.
28 */
29
30#include "brw_vec4_gs_visitor.h"
31#include "gen6_gs_visitor.h"
32#include "brw_fs.h"
33#include "brw_nir.h"
34
35namespace brw {
36
37vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
38                                 void *log_data,
39                                 struct brw_gs_compile *c,
40                                 struct brw_gs_prog_data *prog_data,
41                                 const nir_shader *shader,
42                                 void *mem_ctx,
43                                 bool no_spills,
44                                 int shader_time_index)
45   : vec4_visitor(compiler, log_data, &c->key.tex,
46                  &prog_data->base, shader,  mem_ctx,
47                  no_spills, shader_time_index),
48     c(c),
49     gs_prog_data(prog_data)
50{
51}
52
53
54dst_reg *
55vec4_gs_visitor::make_reg_for_system_value(int location)
56{
57   dst_reg *reg = new(mem_ctx) dst_reg(this, glsl_type::int_type);
58
59   switch (location) {
60   case SYSTEM_VALUE_INVOCATION_ID:
61      this->current_annotation = "initialize gl_InvocationID";
62      if (gs_prog_data->invocations > 1)
63         emit(GS_OPCODE_GET_INSTANCE_ID, *reg);
64      else
65         emit(MOV(*reg, brw_imm_ud(0)));
66      break;
67   default:
68      unreachable("not reached");
69   }
70
71   return reg;
72}
73
74
75int
76vec4_gs_visitor::setup_varying_inputs(int payload_reg, int *attribute_map,
77                                      int attributes_per_reg)
78{
79   /* For geometry shaders there are N copies of the input attributes, where N
80    * is the number of input vertices.  attribute_map[BRW_VARYING_SLOT_COUNT *
81    * i + j] represents attribute j for vertex i.
82    *
83    * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
84    * so the total number of input slots that will be delivered to the GS (and
85    * thus the stride of the input arrays) is urb_read_length * 2.
86    */
87   const unsigned num_input_vertices = nir->info->gs.vertices_in;
88   assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
89   unsigned input_array_stride = prog_data->urb_read_length * 2;
90
91   for (int slot = 0; slot < c->input_vue_map.num_slots; slot++) {
92      int varying = c->input_vue_map.slot_to_varying[slot];
93      for (unsigned vertex = 0; vertex < num_input_vertices; vertex++) {
94         attribute_map[BRW_VARYING_SLOT_COUNT * vertex + varying] =
95            attributes_per_reg * payload_reg + input_array_stride * vertex +
96            slot;
97      }
98   }
99
100   int regs_used = ALIGN(input_array_stride * num_input_vertices,
101                         attributes_per_reg) / attributes_per_reg;
102   return payload_reg + regs_used;
103}
104
105
106void
107vec4_gs_visitor::setup_payload()
108{
109   int attribute_map[BRW_VARYING_SLOT_COUNT * MAX_GS_INPUT_VERTICES];
110
111   /* If we are in dual instanced or single mode, then attributes are going
112    * to be interleaved, so one register contains two attribute slots.
113    */
114   int attributes_per_reg =
115      prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
116
117   /* If a geometry shader tries to read from an input that wasn't written by
118    * the vertex shader, that produces undefined results, but it shouldn't
119    * crash anything.  So initialize attribute_map to zeros--that ensures that
120    * these undefined results are read from r0.
121    */
122   memset(attribute_map, 0, sizeof(attribute_map));
123
124   int reg = 0;
125
126   /* The payload always contains important data in r0, which contains
127    * the URB handles that are passed on to the URB write at the end
128    * of the thread.
129    */
130   reg++;
131
132   /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
133   if (gs_prog_data->include_primitive_id)
134      attribute_map[VARYING_SLOT_PRIMITIVE_ID] = attributes_per_reg * reg++;
135
136   reg = setup_uniforms(reg);
137
138   reg = setup_varying_inputs(reg, attribute_map, attributes_per_reg);
139
140   lower_attributes_to_hw_regs(attribute_map, attributes_per_reg > 1);
141
142   this->first_non_payload_grf = reg;
143}
144
145
146void
147vec4_gs_visitor::emit_prolog()
148{
149   /* In vertex shaders, r0.2 is guaranteed to be initialized to zero.  In
150    * geometry shaders, it isn't (it contains a bunch of information we don't
151    * need, like the input primitive type).  We need r0.2 to be zero in order
152    * to build scratch read/write messages correctly (otherwise this value
153    * will be interpreted as a global offset, causing us to do our scratch
154    * reads/writes to garbage memory).  So just set it to zero at the top of
155    * the shader.
156    */
157   this->current_annotation = "clear r0.2";
158   dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
159   vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
160   inst->force_writemask_all = true;
161
162   /* Create a virtual register to hold the vertex count */
163   this->vertex_count = src_reg(this, glsl_type::uint_type);
164
165   /* Initialize the vertex_count register to 0 */
166   this->current_annotation = "initialize vertex_count";
167   inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
168   inst->force_writemask_all = true;
169
170   if (c->control_data_header_size_bits > 0) {
171      /* Create a virtual register to hold the current set of control data
172       * bits.
173       */
174      this->control_data_bits = src_reg(this, glsl_type::uint_type);
175
176      /* If we're outputting more than 32 control data bits, then EmitVertex()
177       * will set control_data_bits to 0 after emitting the first vertex.
178       * Otherwise, we need to initialize it to 0 here.
179       */
180      if (c->control_data_header_size_bits <= 32) {
181         this->current_annotation = "initialize control data bits";
182         inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
183         inst->force_writemask_all = true;
184      }
185   }
186
187   this->current_annotation = NULL;
188}
189
190void
191vec4_gs_visitor::emit_thread_end()
192{
193   if (c->control_data_header_size_bits > 0) {
194      /* During shader execution, we only ever call emit_control_data_bits()
195       * just prior to outputting a vertex.  Therefore, the control data bits
196       * corresponding to the most recently output vertex still need to be
197       * emitted.
198       */
199      current_annotation = "thread end: emit control data bits";
200      emit_control_data_bits();
201   }
202
203   /* MRF 0 is reserved for the debugger, so start with message header
204    * in MRF 1.
205    */
206   int base_mrf = 1;
207
208   bool static_vertex_count = gs_prog_data->static_vertex_count != -1;
209
210   /* If the previous instruction was a URB write, we don't need to issue
211    * a second one - we can just set the EOT bit on the previous write.
212    *
213    * Skip this on Gen8+ unless there's a static vertex count, as we also
214    * need to write the vertex count out, and combining the two may not be
215    * possible (or at least not straightforward).
216    */
217   vec4_instruction *last = (vec4_instruction *) instructions.get_tail();
218   if (last && last->opcode == GS_OPCODE_URB_WRITE &&
219       !(INTEL_DEBUG & DEBUG_SHADER_TIME) &&
220       devinfo->gen >= 8 && static_vertex_count) {
221      last->urb_write_flags = BRW_URB_WRITE_EOT | last->urb_write_flags;
222      return;
223   }
224
225   current_annotation = "thread end";
226   dst_reg mrf_reg(MRF, base_mrf);
227   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
228   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
229   inst->force_writemask_all = true;
230   if (devinfo->gen < 8 || !static_vertex_count)
231      emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
232   if (INTEL_DEBUG & DEBUG_SHADER_TIME)
233      emit_shader_time_end();
234   inst = emit(GS_OPCODE_THREAD_END);
235   inst->base_mrf = base_mrf;
236   inst->mlen = devinfo->gen >= 8 && !static_vertex_count ? 2 : 1;
237}
238
239
240void
241vec4_gs_visitor::emit_urb_write_header(int mrf)
242{
243   /* The SEND instruction that writes the vertex data to the VUE will use
244    * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
245    * header specify an offset (in multiples of 256 bits) into the URB entry
246    * at which the write should take place.
247    *
248    * So we have to prepare a message header with the appropriate offset
249    * values.
250    */
251   dst_reg mrf_reg(MRF, mrf);
252   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
253   this->current_annotation = "URB write header";
254   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
255   inst->force_writemask_all = true;
256   emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
257        brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
258}
259
260
261vec4_instruction *
262vec4_gs_visitor::emit_urb_write_opcode(bool complete)
263{
264   /* We don't care whether the vertex is complete, because in general
265    * geometry shaders output multiple vertices, and we don't terminate the
266    * thread until all vertices are complete.
267    */
268   (void) complete;
269
270   vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
271   inst->offset = gs_prog_data->control_data_header_size_hwords;
272
273   /* We need to increment Global Offset by 1 to make room for Broadwell's
274    * extra "Vertex Count" payload at the beginning of the URB entry.
275    */
276   if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
277      inst->offset++;
278
279   inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
280   return inst;
281}
282
283
284/**
285 * Write out a batch of 32 control data bits from the control_data_bits
286 * register to the URB.
287 *
288 * The current value of the vertex_count register determines which DWORD in
289 * the URB receives the control data bits.  The control_data_bits register is
290 * assumed to contain the correct data for the vertex that was most recently
291 * output, and all previous vertices that share the same DWORD.
292 *
293 * This function takes care of ensuring that if no vertices have been output
294 * yet, no control bits are emitted.
295 */
296void
297vec4_gs_visitor::emit_control_data_bits()
298{
299   assert(c->control_data_bits_per_vertex != 0);
300
301   /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
302    * granularity, we need to use two tricks to ensure that the batch of 32
303    * control data bits is written to the appropriate DWORD in the URB.  To
304    * select which vec4 we are writing to, we use the "slot {0,1} offset"
305    * fields of the message header.  To select which DWORD in the vec4 we are
306    * writing to, we use the channel mask fields of the message header.  To
307    * avoid penalizing geometry shaders that emit a small number of vertices
308    * with extra bookkeeping, we only do each of these tricks when
309    * c->prog_data.control_data_header_size_bits is large enough to make it
310    * necessary.
311    *
312    * Note: this means that if we're outputting just a single DWORD of control
313    * data bits, we'll actually replicate it four times since we won't do any
314    * channel masking.  But that's not a problem since in this case the
315    * hardware only pays attention to the first DWORD.
316    */
317   enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
318   if (c->control_data_header_size_bits > 32)
319      urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
320   if (c->control_data_header_size_bits > 128)
321      urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
322
323   /* If we are using either channel masks or a per-slot offset, then we
324    * need to figure out which DWORD we are trying to write to, using the
325    * formula:
326    *
327    *     dword_index = (vertex_count - 1) * bits_per_vertex / 32
328    *
329    * Since bits_per_vertex is a power of two, and is known at compile
330    * time, this can be optimized to:
331    *
332    *     dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
333    */
334   src_reg dword_index(this, glsl_type::uint_type);
335   if (urb_write_flags) {
336      src_reg prev_count(this, glsl_type::uint_type);
337      emit(ADD(dst_reg(prev_count), this->vertex_count,
338               brw_imm_ud(0xffffffffu)));
339      unsigned log2_bits_per_vertex =
340         util_last_bit(c->control_data_bits_per_vertex);
341      emit(SHR(dst_reg(dword_index), prev_count,
342               brw_imm_ud(6 - log2_bits_per_vertex)));
343   }
344
345   /* Start building the URB write message.  The first MRF gets a copy of
346    * R0.
347    */
348   int base_mrf = 1;
349   dst_reg mrf_reg(MRF, base_mrf);
350   src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
351   vec4_instruction *inst = emit(MOV(mrf_reg, r0));
352   inst->force_writemask_all = true;
353
354   if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
355      /* Set the per-slot offset to dword_index / 4, to that we'll write to
356       * the appropriate OWORD within the control data header.
357       */
358      src_reg per_slot_offset(this, glsl_type::uint_type);
359      emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
360      emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
361           brw_imm_ud(1u));
362   }
363
364   if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
365      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
366       * write to the appropriate DWORD within the OWORD.  We need to do
367       * this computation with force_writemask_all, otherwise garbage data
368       * from invocation 0 might clobber the mask for invocation 1 when
369       * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
370       * together.
371       */
372      src_reg channel(this, glsl_type::uint_type);
373      inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
374      inst->force_writemask_all = true;
375      src_reg one(this, glsl_type::uint_type);
376      inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
377      inst->force_writemask_all = true;
378      src_reg channel_mask(this, glsl_type::uint_type);
379      inst = emit(SHL(dst_reg(channel_mask), one, channel));
380      inst->force_writemask_all = true;
381      emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
382                                            channel_mask);
383      emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
384   }
385
386   /* Store the control data bits in the message payload and send it. */
387   dst_reg mrf_reg2(MRF, base_mrf + 1);
388   inst = emit(MOV(mrf_reg2, this->control_data_bits));
389   inst->force_writemask_all = true;
390   inst = emit(GS_OPCODE_URB_WRITE);
391   inst->urb_write_flags = urb_write_flags;
392   /* We need to increment Global Offset by 256-bits to make room for
393    * Broadwell's extra "Vertex Count" payload at the beginning of the
394    * URB entry.  Since this is an OWord message, Global Offset is counted
395    * in 128-bit units, so we must set it to 2.
396    */
397   if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
398      inst->offset = 2;
399   inst->base_mrf = base_mrf;
400   inst->mlen = 2;
401}
402
403void
404vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
405{
406   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
407
408   /* Note: we are calling this *before* increasing vertex_count, so
409    * this->vertex_count == vertex_count - 1 in the formula above.
410    */
411
412   /* Stream mode uses 2 bits per vertex */
413   assert(c->control_data_bits_per_vertex == 2);
414
415   /* Must be a valid stream */
416   assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
417
418   /* Control data bits are initialized to 0 so we don't have to set any
419    * bits when sending vertices to stream 0.
420    */
421   if (stream_id == 0)
422      return;
423
424   /* reg::sid = stream_id */
425   src_reg sid(this, glsl_type::uint_type);
426   emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
427
428   /* reg:shift_count = 2 * (vertex_count - 1) */
429   src_reg shift_count(this, glsl_type::uint_type);
430   emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
431
432   /* Note: we're relying on the fact that the GEN SHL instruction only pays
433    * attention to the lower 5 bits of its second source argument, so on this
434    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
435    * stream_id << ((2 * (vertex_count - 1)) % 32).
436    */
437   src_reg mask(this, glsl_type::uint_type);
438   emit(SHL(dst_reg(mask), sid, shift_count));
439   emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
440}
441
442void
443vec4_gs_visitor::gs_emit_vertex(int stream_id)
444{
445   this->current_annotation = "emit vertex: safety check";
446
447   /* Haswell and later hardware ignores the "Render Stream Select" bits
448    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
449    * and instead sends all primitives down the pipeline for rasterization.
450    * If the SOL stage is enabled, "Render Stream Select" is honored and
451    * primitives bound to non-zero streams are discarded after stream output.
452    *
453    * Since the only purpose of primives sent to non-zero streams is to
454    * be recorded by transform feedback, we can simply discard all geometry
455    * bound to these streams when transform feedback is disabled.
456    */
457   if (stream_id > 0 && !nir->info->has_transform_feedback_varyings)
458      return;
459
460   /* If we're outputting 32 control data bits or less, then we can wait
461    * until the shader is over to output them all.  Otherwise we need to
462    * output them as we go.  Now is the time to do it, since we're about to
463    * output the vertex_count'th vertex, so it's guaranteed that the
464    * control data bits associated with the (vertex_count - 1)th vertex are
465    * correct.
466    */
467   if (c->control_data_header_size_bits > 32) {
468      this->current_annotation = "emit vertex: emit control data bits";
469      /* Only emit control data bits if we've finished accumulating a batch
470       * of 32 bits.  This is the case when:
471       *
472       *     (vertex_count * bits_per_vertex) % 32 == 0
473       *
474       * (in other words, when the last 5 bits of vertex_count *
475       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
476       * integer n (which is always the case, since bits_per_vertex is
477       * always 1 or 2), this is equivalent to requiring that the last 5-n
478       * bits of vertex_count are 0:
479       *
480       *     vertex_count & (2^(5-n) - 1) == 0
481       *
482       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
483       * equivalent to:
484       *
485       *     vertex_count & (32 / bits_per_vertex - 1) == 0
486       */
487      vec4_instruction *inst =
488         emit(AND(dst_null_ud(), this->vertex_count,
489                  brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
490      inst->conditional_mod = BRW_CONDITIONAL_Z;
491
492      emit(IF(BRW_PREDICATE_NORMAL));
493      {
494         /* If vertex_count is 0, then no control data bits have been
495          * accumulated yet, so we skip emitting them.
496          */
497         emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
498                  BRW_CONDITIONAL_NEQ));
499         emit(IF(BRW_PREDICATE_NORMAL));
500         emit_control_data_bits();
501         emit(BRW_OPCODE_ENDIF);
502
503         /* Reset control_data_bits to 0 so we can start accumulating a new
504          * batch.
505          *
506          * Note: in the case where vertex_count == 0, this neutralizes the
507          * effect of any call to EndPrimitive() that the shader may have
508          * made before outputting its first vertex.
509          */
510         inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
511         inst->force_writemask_all = true;
512      }
513      emit(BRW_OPCODE_ENDIF);
514   }
515
516   this->current_annotation = "emit vertex: vertex data";
517   emit_vertex();
518
519   /* In stream mode we have to set control data bits for all vertices
520    * unless we have disabled control data bits completely (which we do
521    * do for GL_POINTS outputs that don't use streams).
522    */
523   if (c->control_data_header_size_bits > 0 &&
524       gs_prog_data->control_data_format ==
525          GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
526       this->current_annotation = "emit vertex: Stream control data bits";
527       set_stream_control_data_bits(stream_id);
528   }
529
530   this->current_annotation = NULL;
531}
532
533void
534vec4_gs_visitor::gs_end_primitive()
535{
536   /* We can only do EndPrimitive() functionality when the control data
537    * consists of cut bits.  Fortunately, the only time it isn't is when the
538    * output type is points, in which case EndPrimitive() is a no-op.
539    */
540   if (gs_prog_data->control_data_format !=
541       GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
542      return;
543   }
544
545   if (c->control_data_header_size_bits == 0)
546      return;
547
548   /* Cut bits use one bit per vertex. */
549   assert(c->control_data_bits_per_vertex == 1);
550
551   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
552    * vertex n, 0 otherwise.  So all we need to do here is mark bit
553    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
554    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
555    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
556    *
557    * Note that if EndPrimitve() is called before emitting any vertices, this
558    * will cause us to set bit 31 of the control_data_bits register to 1.
559    * That's fine because:
560    *
561    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
562    *   output, so the hardware will ignore cut bit 31.
563    *
564    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
565    *   last vertex, so setting cut bit 31 has no effect (since the primitive
566    *   is automatically ended when the GS terminates).
567    *
568    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
569    *   control_data_bits register to 0 when the first vertex is emitted.
570    */
571
572   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
573   src_reg one(this, glsl_type::uint_type);
574   emit(MOV(dst_reg(one), brw_imm_ud(1u)));
575   src_reg prev_count(this, glsl_type::uint_type);
576   emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
577   src_reg mask(this, glsl_type::uint_type);
578   /* Note: we're relying on the fact that the GEN SHL instruction only pays
579    * attention to the lower 5 bits of its second source argument, so on this
580    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
581    * ((vertex_count - 1) % 32).
582    */
583   emit(SHL(dst_reg(mask), one, prev_count));
584   emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
585}
586
587extern "C" const unsigned *
588brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
589               void *mem_ctx,
590               const struct brw_gs_prog_key *key,
591               struct brw_gs_prog_data *prog_data,
592               const nir_shader *src_shader,
593               struct gl_program *prog,
594               int shader_time_index,
595               unsigned *final_assembly_size,
596               char **error_str)
597{
598   struct brw_gs_compile c;
599   memset(&c, 0, sizeof(c));
600   c.key = *key;
601
602   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
603   nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
604
605   /* The GLSL linker will have already matched up GS inputs and the outputs
606    * of prior stages.  The driver does extend VS outputs in some cases, but
607    * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
608    * geometry shader support.  So we can safely ignore that.
609    *
610    * For SSO pipelines, we use a fixed VUE map layout based on variable
611    * locations, so we can rely on rendezvous-by-location making this work.
612    */
613   GLbitfield64 inputs_read = shader->info->inputs_read;
614   brw_compute_vue_map(compiler->devinfo,
615                       &c.input_vue_map, inputs_read,
616                       shader->info->separate_shader);
617
618   shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
619   brw_nir_lower_vue_inputs(shader, is_scalar, &c.input_vue_map);
620   brw_nir_lower_vue_outputs(shader, is_scalar);
621   shader = brw_postprocess_nir(shader, compiler, is_scalar);
622
623   prog_data->base.clip_distance_mask =
624      ((1 << shader->info->clip_distance_array_size) - 1);
625   prog_data->base.cull_distance_mask =
626      ((1 << shader->info->cull_distance_array_size) - 1) <<
627      shader->info->clip_distance_array_size;
628
629   prog_data->include_primitive_id =
630      (shader->info->system_values_read & (1 << SYSTEM_VALUE_PRIMITIVE_ID)) != 0;
631
632   prog_data->invocations = shader->info->gs.invocations;
633
634   if (compiler->devinfo->gen >= 8)
635      prog_data->static_vertex_count = nir_gs_count_vertices(shader);
636
637   if (compiler->devinfo->gen >= 7) {
638      if (shader->info->gs.output_primitive == GL_POINTS) {
639         /* When the output type is points, the geometry shader may output data
640          * to multiple streams, and EndPrimitive() has no effect.  So we
641          * configure the hardware to interpret the control data as stream ID.
642          */
643         prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
644
645         /* We only have to emit control bits if we are using streams */
646         if (prog && prog->info.gs.uses_streams)
647            c.control_data_bits_per_vertex = 2;
648         else
649            c.control_data_bits_per_vertex = 0;
650      } else {
651         /* When the output type is triangle_strip or line_strip, EndPrimitive()
652          * may be used to terminate the current strip and start a new one
653          * (similar to primitive restart), and outputting data to multiple
654          * streams is not supported.  So we configure the hardware to interpret
655          * the control data as EndPrimitive information (a.k.a. "cut bits").
656          */
657         prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
658
659         /* We only need to output control data if the shader actually calls
660          * EndPrimitive().
661          */
662         c.control_data_bits_per_vertex =
663            shader->info->gs.uses_end_primitive ? 1 : 0;
664      }
665   } else {
666      /* There are no control data bits in gen6. */
667      c.control_data_bits_per_vertex = 0;
668   }
669   c.control_data_header_size_bits =
670      shader->info->gs.vertices_out * c.control_data_bits_per_vertex;
671
672   /* 1 HWORD = 32 bytes = 256 bits */
673   prog_data->control_data_header_size_hwords =
674      ALIGN(c.control_data_header_size_bits, 256) / 256;
675
676   /* Compute the output vertex size.
677    *
678    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
679    * Size (p168):
680    *
681    *     [0,62] indicating [1,63] 16B units
682    *
683    *     Specifies the size of each vertex stored in the GS output entry
684    *     (following any Control Header data) as a number of 128-bit units
685    *     (minus one).
686    *
687    *     Programming Restrictions: The vertex size must be programmed as a
688    *     multiple of 32B units with the following exception: Rendering is
689    *     disabled (as per SOL stage state) and the vertex size output by the
690    *     GS thread is 16B.
691    *
692    *     If rendering is enabled (as per SOL state) the vertex size must be
693    *     programmed as a multiple of 32B units. In other words, the only time
694    *     software can program a vertex size with an odd number of 16B units
695    *     is when rendering is disabled.
696    *
697    * Note: B=bytes in the above text.
698    *
699    * It doesn't seem worth the extra trouble to optimize the case where the
700    * vertex size is 16B (especially since this would require special-casing
701    * the GEN assembly that writes to the URB).  So we just set the vertex
702    * size to a multiple of 32B (2 vec4's) in all cases.
703    *
704    * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
705    * budget that as follows:
706    *
707    *   512 bytes for varyings (a varying component is 4 bytes and
708    *             gl_MaxGeometryOutputComponents = 128)
709    *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
710    *             bytes)
711    *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
712    *             even if it's not used)
713    *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
714    *             whenever clip planes are enabled, even if the shader doesn't
715    *             write to gl_ClipDistance)
716    *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
717    *             (see below)--this causes up to 1 VUE slot to be wasted
718    *   400 bytes available for varying packing overhead
719    *
720    * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
721    * per interpolation type, so this is plenty.
722    *
723    */
724   unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
725   assert(compiler->devinfo->gen == 6 ||
726          output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
727   prog_data->output_vertex_size_hwords =
728      ALIGN(output_vertex_size_bytes, 32) / 32;
729
730   /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
731    * That divides up as follows:
732    *
733    *     64 bytes for the control data header (cut indices or StreamID bits)
734    *   4096 bytes for varyings (a varying component is 4 bytes and
735    *              gl_MaxGeometryTotalOutputComponents = 1024)
736    *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
737    *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
738    *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
739    *              even if it's not used)
740    *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
741    *              whenever clip planes are enabled, even if the shader doesn't
742    *              write to gl_ClipDistance)
743    *   4096 bytes overhead since the VUE size must be a multiple of 32
744    *              bytes (see above)--this causes up to 1 VUE slot to be wasted
745    *   8128 bytes available for varying packing overhead
746    *
747    * Worst-case varying packing overhead is 3/4 of a varying slot per
748    * interpolation type, which works out to 3072 bytes, so this would allow
749    * us to accommodate 2 interpolation types without any danger of running
750    * out of URB space.
751    *
752    * In practice, the risk of running out of URB space is very small, since
753    * the above figures are all worst-case, and most of them scale with the
754    * number of output vertices.  So we'll just calculate the amount of space
755    * we need, and if it's too large, fail to compile.
756    *
757    * The above is for gen7+ where we have a single URB entry that will hold
758    * all the output. In gen6, we will have to allocate URB entries for every
759    * vertex we emit, so our URB entries only need to be large enough to hold
760    * a single vertex. Also, gen6 does not have a control data header.
761    */
762   unsigned output_size_bytes;
763   if (compiler->devinfo->gen >= 7) {
764      output_size_bytes =
765         prog_data->output_vertex_size_hwords * 32 * shader->info->gs.vertices_out;
766      output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
767   } else {
768      output_size_bytes = prog_data->output_vertex_size_hwords * 32;
769   }
770
771   /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
772    * which comes before the control header.
773    */
774   if (compiler->devinfo->gen >= 8)
775      output_size_bytes += 32;
776
777   /* Shaders can technically set max_vertices = 0, at which point we
778    * may have a URB size of 0 bytes.  Nothing good can come from that,
779    * so enforce a minimum size.
780    */
781   if (output_size_bytes == 0)
782      output_size_bytes = 1;
783
784   unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
785   if (compiler->devinfo->gen == 6)
786      max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
787   if (output_size_bytes > max_output_size_bytes)
788      return NULL;
789
790
791   /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
792    * a multiple of 128 bytes in gen6.
793    */
794   if (compiler->devinfo->gen >= 7)
795      prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
796   else
797      prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
798
799   prog_data->output_topology =
800      get_hw_prim_for_gl_prim(shader->info->gs.output_primitive);
801
802   prog_data->vertices_in = shader->info->gs.vertices_in;
803
804   /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
805    * need to program a URB read length of ceiling(num_slots / 2).
806    */
807   prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
808
809   /* Now that prog_data setup is done, we are ready to actually compile the
810    * program.
811    */
812   if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
813      fprintf(stderr, "GS Input ");
814      brw_print_vue_map(stderr, &c.input_vue_map);
815      fprintf(stderr, "GS Output ");
816      brw_print_vue_map(stderr, &prog_data->base.vue_map);
817   }
818
819   if (is_scalar) {
820      fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, shader,
821                   shader_time_index);
822      if (v.run_gs()) {
823         prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
824         prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
825
826         fs_generator g(compiler, log_data, mem_ctx, &c.key,
827                        &prog_data->base.base, v.promoted_constants,
828                        false, MESA_SHADER_GEOMETRY);
829         if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
830            const char *label =
831               shader->info->label ? shader->info->label : "unnamed";
832            char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
833                                         label, shader->info->name);
834            g.enable_debug(name);
835         }
836         g.generate_code(v.cfg, 8);
837         return g.get_assembly(final_assembly_size);
838      }
839   }
840
841   if (compiler->devinfo->gen >= 7) {
842      /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
843       * so without spilling. If the GS invocations count > 1, then we can't use
844       * dual object mode.
845       */
846      if (prog_data->invocations <= 1 &&
847          likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
848         prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
849
850         vec4_gs_visitor v(compiler, log_data, &c, prog_data, shader,
851                           mem_ctx, true /* no_spills */, shader_time_index);
852         if (v.run()) {
853            return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
854                                              shader, &prog_data->base, v.cfg,
855                                              final_assembly_size);
856         }
857      }
858   }
859
860   /* Either we failed to compile in DUAL_OBJECT mode (probably because it
861    * would have required spilling) or DUAL_OBJECT mode is disabled.  So fall
862    * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
863    *
864    * FIXME: Single dispatch mode requires that the driver can handle
865    * interleaving of input registers, but this is already supported (dual
866    * instance mode has the same requirement). However, to take full advantage
867    * of single dispatch mode to reduce register pressure we would also need to
868    * do interleaved outputs, but currently, the vec4 visitor and generator
869    * classes do not support this, so at the moment register pressure in
870    * single and dual instance modes is the same.
871    *
872    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
873    * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
874    * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
875    * is also supported. When InstanceCount=1 (one instance per object) software
876    * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
877    * the best choice for performance, followed by SINGLE mode."
878    *
879    * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
880    * mode is more performant when invocations > 1. Gen6 only supports
881    * SINGLE mode.
882    */
883   if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
884      prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
885   else
886      prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
887
888   vec4_gs_visitor *gs = NULL;
889   const unsigned *ret = NULL;
890
891   if (compiler->devinfo->gen >= 7)
892      gs = new vec4_gs_visitor(compiler, log_data, &c, prog_data,
893                               shader, mem_ctx, false /* no_spills */,
894                               shader_time_index);
895   else
896      gs = new gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
897                               shader, mem_ctx, false /* no_spills */,
898                               shader_time_index);
899
900   if (!gs->run()) {
901      if (error_str)
902         *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
903   } else {
904      ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, shader,
905                                       &prog_data->base, gs->cfg,
906                                       final_assembly_size);
907   }
908
909   delete gs;
910   return ret;
911}
912
913
914} /* namespace brw */
915