1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc.  All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30#include "main/glheader.h"
31#include "main/context.h"
32#include "main/imports.h"
33#include "main/macros.h"
34#include "main/samplerobj.h"
35#include "main/shaderobj.h"
36#include "main/texenvprogram.h"
37#include "main/texobj.h"
38#include "main/uniforms.h"
39#include "compiler/glsl/ir_builder.h"
40#include "compiler/glsl/ir_optimization.h"
41#include "compiler/glsl/glsl_parser_extras.h"
42#include "compiler/glsl/glsl_symbol_table.h"
43#include "compiler/glsl_types.h"
44#include "program/ir_to_mesa.h"
45#include "program/program.h"
46#include "program/programopt.h"
47#include "program/prog_cache.h"
48#include "program/prog_instruction.h"
49#include "program/prog_parameter.h"
50#include "program/prog_print.h"
51#include "program/prog_statevars.h"
52#include "util/bitscan.h"
53
54using namespace ir_builder;
55
56/*
57 * Note on texture units:
58 *
59 * The number of texture units supported by fixed-function fragment
60 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
61 * That's because there's a one-to-one correspondence between texture
62 * coordinates and samplers in fixed-function processing.
63 *
64 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
65 * sets of texcoords, so is fixed-function fragment processing.
66 *
67 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
68 */
69
70
71struct texenvprog_cache_item
72{
73   GLuint hash;
74   void *key;
75   struct gl_shader_program *data;
76   struct texenvprog_cache_item *next;
77};
78
79static GLboolean
80texenv_doing_secondary_color(struct gl_context *ctx)
81{
82   if (ctx->Light.Enabled &&
83       (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
84      return GL_TRUE;
85
86   if (ctx->Fog.ColorSumEnabled)
87      return GL_TRUE;
88
89   return GL_FALSE;
90}
91
92struct mode_opt {
93#ifdef __GNUC__
94   __extension__ GLubyte Source:4;  /**< SRC_x */
95   __extension__ GLubyte Operand:3; /**< OPR_x */
96#else
97   GLubyte Source;  /**< SRC_x */
98   GLubyte Operand; /**< OPR_x */
99#endif
100};
101
102struct state_key {
103   GLuint nr_enabled_units:8;
104   GLuint enabled_units:8;
105   GLuint separate_specular:1;
106   GLuint fog_mode:2;          /**< FOG_x */
107   GLuint inputs_available:12;
108   GLuint num_draw_buffers:4;
109
110   /* NOTE: This array of structs must be last! (see "keySize" below) */
111   struct {
112      GLuint enabled:1;
113      GLuint source_index:4;   /**< TEXTURE_x_INDEX */
114      GLuint shadow:1;
115      GLuint ScaleShiftRGB:2;
116      GLuint ScaleShiftA:2;
117
118      GLuint NumArgsRGB:3;  /**< up to MAX_COMBINER_TERMS */
119      GLuint ModeRGB:5;     /**< MODE_x */
120
121      GLuint NumArgsA:3;  /**< up to MAX_COMBINER_TERMS */
122      GLuint ModeA:5;     /**< MODE_x */
123
124      struct mode_opt OptRGB[MAX_COMBINER_TERMS];
125      struct mode_opt OptA[MAX_COMBINER_TERMS];
126   } unit[MAX_TEXTURE_UNITS];
127};
128
129#define FOG_NONE    0
130#define FOG_LINEAR  1
131#define FOG_EXP     2
132#define FOG_EXP2    3
133
134static GLuint translate_fog_mode( GLenum mode )
135{
136   switch (mode) {
137   case GL_LINEAR: return FOG_LINEAR;
138   case GL_EXP: return FOG_EXP;
139   case GL_EXP2: return FOG_EXP2;
140   default: return FOG_NONE;
141   }
142}
143
144#define OPR_SRC_COLOR           0
145#define OPR_ONE_MINUS_SRC_COLOR 1
146#define OPR_SRC_ALPHA           2
147#define OPR_ONE_MINUS_SRC_ALPHA	3
148#define OPR_ZERO                4
149#define OPR_ONE                 5
150#define OPR_UNKNOWN             7
151
152static GLuint translate_operand( GLenum operand )
153{
154   switch (operand) {
155   case GL_SRC_COLOR: return OPR_SRC_COLOR;
156   case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
157   case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
158   case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
159   case GL_ZERO: return OPR_ZERO;
160   case GL_ONE: return OPR_ONE;
161   default:
162      assert(0);
163      return OPR_UNKNOWN;
164   }
165}
166
167#define SRC_TEXTURE  0
168#define SRC_TEXTURE0 1
169#define SRC_TEXTURE1 2
170#define SRC_TEXTURE2 3
171#define SRC_TEXTURE3 4
172#define SRC_TEXTURE4 5
173#define SRC_TEXTURE5 6
174#define SRC_TEXTURE6 7
175#define SRC_TEXTURE7 8
176#define SRC_CONSTANT 9
177#define SRC_PRIMARY_COLOR 10
178#define SRC_PREVIOUS 11
179#define SRC_ZERO     12
180#define SRC_UNKNOWN  15
181
182static GLuint translate_source( GLenum src )
183{
184   switch (src) {
185   case GL_TEXTURE: return SRC_TEXTURE;
186   case GL_TEXTURE0:
187   case GL_TEXTURE1:
188   case GL_TEXTURE2:
189   case GL_TEXTURE3:
190   case GL_TEXTURE4:
191   case GL_TEXTURE5:
192   case GL_TEXTURE6:
193   case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
194   case GL_CONSTANT: return SRC_CONSTANT;
195   case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
196   case GL_PREVIOUS: return SRC_PREVIOUS;
197   case GL_ZERO:
198      return SRC_ZERO;
199   default:
200      assert(0);
201      return SRC_UNKNOWN;
202   }
203}
204
205#define MODE_REPLACE                     0  /* r = a0 */
206#define MODE_MODULATE                    1  /* r = a0 * a1 */
207#define MODE_ADD                         2  /* r = a0 + a1 */
208#define MODE_ADD_SIGNED                  3  /* r = a0 + a1 - 0.5 */
209#define MODE_INTERPOLATE                 4  /* r = a0 * a2 + a1 * (1 - a2) */
210#define MODE_SUBTRACT                    5  /* r = a0 - a1 */
211#define MODE_DOT3_RGB                    6  /* r = a0 . a1 */
212#define MODE_DOT3_RGB_EXT                7  /* r = a0 . a1 */
213#define MODE_DOT3_RGBA                   8  /* r = a0 . a1 */
214#define MODE_DOT3_RGBA_EXT               9  /* r = a0 . a1 */
215#define MODE_MODULATE_ADD_ATI           10  /* r = a0 * a2 + a1 */
216#define MODE_MODULATE_SIGNED_ADD_ATI    11  /* r = a0 * a2 + a1 - 0.5 */
217#define MODE_MODULATE_SUBTRACT_ATI      12  /* r = a0 * a2 - a1 */
218#define MODE_ADD_PRODUCTS               13  /* r = a0 * a1 + a2 * a3 */
219#define MODE_ADD_PRODUCTS_SIGNED        14  /* r = a0 * a1 + a2 * a3 - 0.5 */
220#define MODE_UNKNOWN                    16
221
222/**
223 * Translate GL combiner state into a MODE_x value
224 */
225static GLuint translate_mode( GLenum envMode, GLenum mode )
226{
227   switch (mode) {
228   case GL_REPLACE: return MODE_REPLACE;
229   case GL_MODULATE: return MODE_MODULATE;
230   case GL_ADD:
231      if (envMode == GL_COMBINE4_NV)
232         return MODE_ADD_PRODUCTS;
233      else
234         return MODE_ADD;
235   case GL_ADD_SIGNED:
236      if (envMode == GL_COMBINE4_NV)
237         return MODE_ADD_PRODUCTS_SIGNED;
238      else
239         return MODE_ADD_SIGNED;
240   case GL_INTERPOLATE: return MODE_INTERPOLATE;
241   case GL_SUBTRACT: return MODE_SUBTRACT;
242   case GL_DOT3_RGB: return MODE_DOT3_RGB;
243   case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
244   case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
245   case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
246   case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
247   case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
248   case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
249   default:
250      assert(0);
251      return MODE_UNKNOWN;
252   }
253}
254
255
256/**
257 * Do we need to clamp the results of the given texture env/combine mode?
258 * If the inputs to the mode are in [0,1] we don't always have to clamp
259 * the results.
260 */
261static GLboolean
262need_saturate( GLuint mode )
263{
264   switch (mode) {
265   case MODE_REPLACE:
266   case MODE_MODULATE:
267   case MODE_INTERPOLATE:
268      return GL_FALSE;
269   case MODE_ADD:
270   case MODE_ADD_SIGNED:
271   case MODE_SUBTRACT:
272   case MODE_DOT3_RGB:
273   case MODE_DOT3_RGB_EXT:
274   case MODE_DOT3_RGBA:
275   case MODE_DOT3_RGBA_EXT:
276   case MODE_MODULATE_ADD_ATI:
277   case MODE_MODULATE_SIGNED_ADD_ATI:
278   case MODE_MODULATE_SUBTRACT_ATI:
279   case MODE_ADD_PRODUCTS:
280   case MODE_ADD_PRODUCTS_SIGNED:
281      return GL_TRUE;
282   default:
283      assert(0);
284      return GL_FALSE;
285   }
286}
287
288#define VERT_BIT_TEX_ANY    (0xff << VERT_ATTRIB_TEX0)
289
290/**
291 * Identify all possible varying inputs.  The fragment program will
292 * never reference non-varying inputs, but will track them via state
293 * constants instead.
294 *
295 * This function figures out all the inputs that the fragment program
296 * has access to.  The bitmask is later reduced to just those which
297 * are actually referenced.
298 */
299static GLbitfield get_fp_input_mask( struct gl_context *ctx )
300{
301   /* _NEW_PROGRAM */
302   const GLboolean vertexShader =
303      (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] &&
304       ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->data->LinkStatus &&
305       ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]);
306   const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
307   GLbitfield fp_inputs = 0x0;
308
309   if (ctx->VertexProgram._Overriden) {
310      /* Somebody's messing with the vertex program and we don't have
311       * a clue what's happening.  Assume that it could be producing
312       * all possible outputs.
313       */
314      fp_inputs = ~0;
315   }
316   else if (ctx->RenderMode == GL_FEEDBACK) {
317      /* _NEW_RENDERMODE */
318      fp_inputs = (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
319   }
320   else if (!(vertexProgram || vertexShader)) {
321      /* Fixed function vertex logic */
322      /* _NEW_VARYING_VP_INPUTS */
323      GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
324
325      /* These get generated in the setup routine regardless of the
326       * vertex program:
327       */
328      /* _NEW_POINT */
329      if (ctx->Point.PointSprite)
330         varying_inputs |= VARYING_BITS_TEX_ANY;
331
332      /* First look at what values may be computed by the generated
333       * vertex program:
334       */
335      /* _NEW_LIGHT */
336      if (ctx->Light.Enabled) {
337         fp_inputs |= VARYING_BIT_COL0;
338
339         if (texenv_doing_secondary_color(ctx))
340            fp_inputs |= VARYING_BIT_COL1;
341      }
342
343      /* _NEW_TEXTURE */
344      fp_inputs |= (ctx->Texture._TexGenEnabled |
345                    ctx->Texture._TexMatEnabled) << VARYING_SLOT_TEX0;
346
347      /* Then look at what might be varying as a result of enabled
348       * arrays, etc:
349       */
350      if (varying_inputs & VERT_BIT_COLOR0)
351         fp_inputs |= VARYING_BIT_COL0;
352      if (varying_inputs & VERT_BIT_COLOR1)
353         fp_inputs |= VARYING_BIT_COL1;
354
355      fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
356                    << VARYING_SLOT_TEX0);
357
358   }
359   else {
360      /* calculate from vp->outputs */
361      struct gl_program *vprog;
362      GLbitfield64 vp_outputs;
363
364      /* Choose GLSL vertex shader over ARB vertex program.  Need this
365       * since vertex shader state validation comes after fragment state
366       * validation (see additional comments in state.c).
367       */
368      if (vertexShader)
369         vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
370      else
371         vprog = ctx->VertexProgram.Current;
372
373      vp_outputs = vprog->info.outputs_written;
374
375      /* These get generated in the setup routine regardless of the
376       * vertex program:
377       */
378      /* _NEW_POINT */
379      if (ctx->Point.PointSprite)
380         vp_outputs |= VARYING_BITS_TEX_ANY;
381
382      if (vp_outputs & (1 << VARYING_SLOT_COL0))
383         fp_inputs |= VARYING_BIT_COL0;
384      if (vp_outputs & (1 << VARYING_SLOT_COL1))
385         fp_inputs |= VARYING_BIT_COL1;
386
387      fp_inputs |= (((vp_outputs & VARYING_BITS_TEX_ANY) >> VARYING_SLOT_TEX0)
388                    << VARYING_SLOT_TEX0);
389   }
390
391   return fp_inputs;
392}
393
394
395/**
396 * Examine current texture environment state and generate a unique
397 * key to identify it.
398 */
399static GLuint make_state_key( struct gl_context *ctx,  struct state_key *key )
400{
401   GLuint j;
402   GLbitfield inputs_referenced = VARYING_BIT_COL0;
403   const GLbitfield inputs_available = get_fp_input_mask( ctx );
404   GLbitfield mask;
405   GLuint keySize;
406
407   memset(key, 0, sizeof(*key));
408
409   /* _NEW_TEXTURE */
410   mask = ctx->Texture._EnabledCoordUnits;
411   while (mask) {
412      const int i = u_bit_scan(&mask);
413      const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
414      const struct gl_texture_object *texObj = texUnit->_Current;
415      const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
416      const struct gl_sampler_object *samp;
417      GLenum format;
418
419      if (!texObj)
420         continue;
421
422      samp = _mesa_get_samplerobj(ctx, i);
423      format = _mesa_texture_base_format(texObj);
424
425      key->unit[i].enabled = 1;
426      key->enabled_units |= (1<<i);
427      key->nr_enabled_units = i + 1;
428      inputs_referenced |= VARYING_BIT_TEX(i);
429
430      key->unit[i].source_index = _mesa_tex_target_to_index(ctx,
431                                                            texObj->Target);
432
433      key->unit[i].shadow =
434         ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
435          ((format == GL_DEPTH_COMPONENT) ||
436           (format == GL_DEPTH_STENCIL_EXT)));
437
438      key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
439      key->unit[i].NumArgsA = comb->_NumArgsA;
440
441      key->unit[i].ModeRGB =
442	 translate_mode(texUnit->EnvMode, comb->ModeRGB);
443      key->unit[i].ModeA =
444	 translate_mode(texUnit->EnvMode, comb->ModeA);
445
446      key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
447      key->unit[i].ScaleShiftA = comb->ScaleShiftA;
448
449      for (j = 0; j < MAX_COMBINER_TERMS; j++) {
450         key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
451         key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
452         key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
453         key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
454      }
455   }
456
457   /* _NEW_LIGHT | _NEW_FOG */
458   if (texenv_doing_secondary_color(ctx)) {
459      key->separate_specular = 1;
460      inputs_referenced |= VARYING_BIT_COL1;
461   }
462
463   /* _NEW_FOG */
464   if (ctx->Fog.Enabled) {
465      key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
466      inputs_referenced |= VARYING_BIT_FOGC; /* maybe */
467   }
468
469   /* _NEW_BUFFERS */
470   key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
471
472   /* _NEW_COLOR */
473   if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
474      /* if alpha test is enabled we need to emit at least one color */
475      key->num_draw_buffers = 1;
476   }
477
478   key->inputs_available = (inputs_available & inputs_referenced);
479
480   /* compute size of state key, ignoring unused texture units */
481   keySize = sizeof(*key) - sizeof(key->unit)
482      + key->nr_enabled_units * sizeof(key->unit[0]);
483
484   return keySize;
485}
486
487
488/** State used to build the fragment program:
489 */
490class texenv_fragment_program : public ir_factory {
491public:
492   struct gl_shader_program *shader_program;
493   struct gl_shader *shader;
494   exec_list *top_instructions;
495   struct state_key *state;
496
497   ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
498   /* Reg containing each texture unit's sampled texture color,
499    * else undef.
500    */
501
502   /* Texcoord override from bumpmapping. */
503   ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
504
505   /* Reg containing texcoord for a texture unit,
506    * needed for bump mapping, else undef.
507    */
508
509   ir_rvalue *src_previous;	/**< Reg containing color from previous
510				 * stage.  May need to be decl'd.
511				 */
512};
513
514static ir_rvalue *
515get_current_attrib(texenv_fragment_program *p, GLuint attrib)
516{
517   ir_variable *current;
518   ir_rvalue *val;
519
520   current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
521   assert(current);
522   current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
523   val = new(p->mem_ctx) ir_dereference_variable(current);
524   ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
525   return new(p->mem_ctx) ir_dereference_array(val, index);
526}
527
528static ir_rvalue *
529get_gl_Color(texenv_fragment_program *p)
530{
531   if (p->state->inputs_available & VARYING_BIT_COL0) {
532      ir_variable *var = p->shader->symbols->get_variable("gl_Color");
533      assert(var);
534      return new(p->mem_ctx) ir_dereference_variable(var);
535   } else {
536      return get_current_attrib(p, VERT_ATTRIB_COLOR0);
537   }
538}
539
540static ir_rvalue *
541get_source(texenv_fragment_program *p,
542	   GLuint src, GLuint unit)
543{
544   ir_variable *var;
545   ir_dereference *deref;
546
547   switch (src) {
548   case SRC_TEXTURE:
549      return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
550
551   case SRC_TEXTURE0:
552   case SRC_TEXTURE1:
553   case SRC_TEXTURE2:
554   case SRC_TEXTURE3:
555   case SRC_TEXTURE4:
556   case SRC_TEXTURE5:
557   case SRC_TEXTURE6:
558   case SRC_TEXTURE7:
559      return new(p->mem_ctx)
560	 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
561
562   case SRC_CONSTANT:
563      var = p->shader->symbols->get_variable("gl_TextureEnvColor");
564      assert(var);
565      deref = new(p->mem_ctx) ir_dereference_variable(var);
566      var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
567      return new(p->mem_ctx) ir_dereference_array(deref,
568						  new(p->mem_ctx) ir_constant(unit));
569
570   case SRC_PRIMARY_COLOR:
571      var = p->shader->symbols->get_variable("gl_Color");
572      assert(var);
573      return new(p->mem_ctx) ir_dereference_variable(var);
574
575   case SRC_ZERO:
576      return new(p->mem_ctx) ir_constant(0.0f);
577
578   case SRC_PREVIOUS:
579      if (!p->src_previous) {
580	 return get_gl_Color(p);
581      } else {
582	 return p->src_previous->clone(p->mem_ctx, NULL);
583      }
584
585   default:
586      assert(0);
587      return NULL;
588   }
589}
590
591static ir_rvalue *
592emit_combine_source(texenv_fragment_program *p,
593		    GLuint unit,
594		    GLuint source,
595		    GLuint operand)
596{
597   ir_rvalue *src;
598
599   src = get_source(p, source, unit);
600
601   switch (operand) {
602   case OPR_ONE_MINUS_SRC_COLOR:
603      return sub(new(p->mem_ctx) ir_constant(1.0f), src);
604
605   case OPR_SRC_ALPHA:
606      return src->type->is_scalar() ? src : swizzle_w(src);
607
608   case OPR_ONE_MINUS_SRC_ALPHA: {
609      ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
610
611      return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
612   }
613
614   case OPR_ZERO:
615      return new(p->mem_ctx) ir_constant(0.0f);
616   case OPR_ONE:
617      return new(p->mem_ctx) ir_constant(1.0f);
618   case OPR_SRC_COLOR:
619      return src;
620   default:
621      assert(0);
622      return src;
623   }
624}
625
626/**
627 * Check if the RGB and Alpha sources and operands match for the given
628 * texture unit's combinder state.  When the RGB and A sources and
629 * operands match, we can emit fewer instructions.
630 */
631static GLboolean args_match( const struct state_key *key, GLuint unit )
632{
633   GLuint i, numArgs = key->unit[unit].NumArgsRGB;
634
635   for (i = 0; i < numArgs; i++) {
636      if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
637	 return GL_FALSE;
638
639      switch (key->unit[unit].OptA[i].Operand) {
640      case OPR_SRC_ALPHA:
641	 switch (key->unit[unit].OptRGB[i].Operand) {
642	 case OPR_SRC_COLOR:
643	 case OPR_SRC_ALPHA:
644	    break;
645	 default:
646	    return GL_FALSE;
647	 }
648	 break;
649      case OPR_ONE_MINUS_SRC_ALPHA:
650	 switch (key->unit[unit].OptRGB[i].Operand) {
651	 case OPR_ONE_MINUS_SRC_COLOR:
652	 case OPR_ONE_MINUS_SRC_ALPHA:
653	    break;
654	 default:
655	    return GL_FALSE;
656	 }
657	 break;
658      default:
659	 return GL_FALSE;	/* impossible */
660      }
661   }
662
663   return GL_TRUE;
664}
665
666static ir_rvalue *
667smear(ir_rvalue *val)
668{
669   if (!val->type->is_scalar())
670      return val;
671
672   return swizzle_xxxx(val);
673}
674
675static ir_rvalue *
676emit_combine(texenv_fragment_program *p,
677	     GLuint unit,
678	     GLuint nr,
679	     GLuint mode,
680	     const struct mode_opt *opt)
681{
682   ir_rvalue *src[MAX_COMBINER_TERMS];
683   ir_rvalue *tmp0, *tmp1;
684   GLuint i;
685
686   assert(nr <= MAX_COMBINER_TERMS);
687
688   for (i = 0; i < nr; i++)
689      src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
690
691   switch (mode) {
692   case MODE_REPLACE:
693      return src[0];
694
695   case MODE_MODULATE:
696      return mul(src[0], src[1]);
697
698   case MODE_ADD:
699      return add(src[0], src[1]);
700
701   case MODE_ADD_SIGNED:
702      return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
703
704   case MODE_INTERPOLATE:
705      /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
706      tmp0 = mul(src[0], src[2]);
707      tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
708			     src[2]->clone(p->mem_ctx, NULL)));
709      return add(tmp0, tmp1);
710
711   case MODE_SUBTRACT:
712      return sub(src[0], src[1]);
713
714   case MODE_DOT3_RGBA:
715   case MODE_DOT3_RGBA_EXT:
716   case MODE_DOT3_RGB_EXT:
717   case MODE_DOT3_RGB: {
718      tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
719      tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
720
721      tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
722      tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
723
724      return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
725   }
726   case MODE_MODULATE_ADD_ATI:
727      return add(mul(src[0], src[2]), src[1]);
728
729   case MODE_MODULATE_SIGNED_ADD_ATI:
730      return add(add(mul(src[0], src[2]), src[1]),
731		 new(p->mem_ctx) ir_constant(-0.5f));
732
733   case MODE_MODULATE_SUBTRACT_ATI:
734      return sub(mul(src[0], src[2]), src[1]);
735
736   case MODE_ADD_PRODUCTS:
737      return add(mul(src[0], src[1]), mul(src[2], src[3]));
738
739   case MODE_ADD_PRODUCTS_SIGNED:
740      return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
741		 new(p->mem_ctx) ir_constant(-0.5f));
742   default:
743      assert(0);
744      return src[0];
745   }
746}
747
748/**
749 * Generate instructions for one texture unit's env/combiner mode.
750 */
751static ir_rvalue *
752emit_texenv(texenv_fragment_program *p, GLuint unit)
753{
754   const struct state_key *key = p->state;
755   GLboolean rgb_saturate, alpha_saturate;
756   GLuint rgb_shift, alpha_shift;
757
758   if (!key->unit[unit].enabled) {
759      return get_source(p, SRC_PREVIOUS, 0);
760   }
761
762   switch (key->unit[unit].ModeRGB) {
763   case MODE_DOT3_RGB_EXT:
764      alpha_shift = key->unit[unit].ScaleShiftA;
765      rgb_shift = 0;
766      break;
767   case MODE_DOT3_RGBA_EXT:
768      alpha_shift = 0;
769      rgb_shift = 0;
770      break;
771   default:
772      rgb_shift = key->unit[unit].ScaleShiftRGB;
773      alpha_shift = key->unit[unit].ScaleShiftA;
774      break;
775   }
776
777   /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
778    * We don't want to clamp twice.
779    */
780   if (rgb_shift)
781      rgb_saturate = GL_FALSE;  /* saturate after rgb shift */
782   else if (need_saturate(key->unit[unit].ModeRGB))
783      rgb_saturate = GL_TRUE;
784   else
785      rgb_saturate = GL_FALSE;
786
787   if (alpha_shift)
788      alpha_saturate = GL_FALSE;  /* saturate after alpha shift */
789   else if (need_saturate(key->unit[unit].ModeA))
790      alpha_saturate = GL_TRUE;
791   else
792      alpha_saturate = GL_FALSE;
793
794   ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
795   ir_dereference *deref;
796   ir_rvalue *val;
797
798   /* Emit the RGB and A combine ops
799    */
800   if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
801       args_match(key, unit)) {
802      val = emit_combine(p, unit,
803			 key->unit[unit].NumArgsRGB,
804			 key->unit[unit].ModeRGB,
805			 key->unit[unit].OptRGB);
806      val = smear(val);
807      if (rgb_saturate)
808	 val = saturate(val);
809
810      p->emit(assign(temp_var, val));
811   }
812   else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
813	    key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
814      ir_rvalue *val = emit_combine(p, unit,
815				    key->unit[unit].NumArgsRGB,
816				    key->unit[unit].ModeRGB,
817				    key->unit[unit].OptRGB);
818      val = smear(val);
819      if (rgb_saturate)
820	 val = saturate(val);
821      p->emit(assign(temp_var, val));
822   }
823   else {
824      /* Need to do something to stop from re-emitting identical
825       * argument calculations here:
826       */
827      val = emit_combine(p, unit,
828			 key->unit[unit].NumArgsRGB,
829			 key->unit[unit].ModeRGB,
830			 key->unit[unit].OptRGB);
831      val = swizzle_xyz(smear(val));
832      if (rgb_saturate)
833	 val = saturate(val);
834      p->emit(assign(temp_var, val, WRITEMASK_XYZ));
835
836      val = emit_combine(p, unit,
837			 key->unit[unit].NumArgsA,
838			 key->unit[unit].ModeA,
839			 key->unit[unit].OptA);
840      val = swizzle_w(smear(val));
841      if (alpha_saturate)
842	 val = saturate(val);
843      p->emit(assign(temp_var, val, WRITEMASK_W));
844   }
845
846   deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
847
848   /* Deal with the final shift:
849    */
850   if (alpha_shift || rgb_shift) {
851      ir_constant *shift;
852
853      if (rgb_shift == alpha_shift) {
854	 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
855      }
856      else {
857         ir_constant_data const_data;
858
859         const_data.f[0] = float(1 << rgb_shift);
860         const_data.f[1] = float(1 << rgb_shift);
861         const_data.f[2] = float(1 << rgb_shift);
862         const_data.f[3] = float(1 << alpha_shift);
863
864         shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
865                                             &const_data);
866      }
867
868      return saturate(mul(deref, shift));
869   }
870   else
871      return deref;
872}
873
874
875/**
876 * Generate instruction for getting a texture source term.
877 */
878static void load_texture( texenv_fragment_program *p, GLuint unit )
879{
880   ir_dereference *deref;
881
882   if (p->src_texture[unit])
883      return;
884
885   const GLuint texTarget = p->state->unit[unit].source_index;
886   ir_rvalue *texcoord;
887
888   if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
889      texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
890   } else if (p->texcoord_tex[unit]) {
891      texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
892   } else {
893      ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
894      assert(tc_array);
895      texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
896      ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
897      texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
898      tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
899   }
900
901   if (!p->state->unit[unit].enabled) {
902      p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
903					  "dummy_tex");
904      p->emit(p->src_texture[unit]);
905
906      p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
907      return ;
908   }
909
910   const glsl_type *sampler_type = NULL;
911   int coords = 0;
912
913   switch (texTarget) {
914   case TEXTURE_1D_INDEX:
915      if (p->state->unit[unit].shadow)
916	 sampler_type = glsl_type::sampler1DShadow_type;
917      else
918	 sampler_type = glsl_type::sampler1D_type;
919      coords = 1;
920      break;
921   case TEXTURE_1D_ARRAY_INDEX:
922      if (p->state->unit[unit].shadow)
923	 sampler_type = glsl_type::sampler1DArrayShadow_type;
924      else
925	 sampler_type = glsl_type::sampler1DArray_type;
926      coords = 2;
927      break;
928   case TEXTURE_2D_INDEX:
929      if (p->state->unit[unit].shadow)
930	 sampler_type = glsl_type::sampler2DShadow_type;
931      else
932	 sampler_type = glsl_type::sampler2D_type;
933      coords = 2;
934      break;
935   case TEXTURE_2D_ARRAY_INDEX:
936      if (p->state->unit[unit].shadow)
937	 sampler_type = glsl_type::sampler2DArrayShadow_type;
938      else
939	 sampler_type = glsl_type::sampler2DArray_type;
940      coords = 3;
941      break;
942   case TEXTURE_RECT_INDEX:
943      if (p->state->unit[unit].shadow)
944	 sampler_type = glsl_type::sampler2DRectShadow_type;
945      else
946	 sampler_type = glsl_type::sampler2DRect_type;
947      coords = 2;
948      break;
949   case TEXTURE_3D_INDEX:
950      assert(!p->state->unit[unit].shadow);
951      sampler_type = glsl_type::sampler3D_type;
952      coords = 3;
953      break;
954   case TEXTURE_CUBE_INDEX:
955      if (p->state->unit[unit].shadow)
956	 sampler_type = glsl_type::samplerCubeShadow_type;
957      else
958	 sampler_type = glsl_type::samplerCube_type;
959      coords = 3;
960      break;
961   case TEXTURE_EXTERNAL_INDEX:
962      assert(!p->state->unit[unit].shadow);
963      sampler_type = glsl_type::samplerExternalOES_type;
964      coords = 2;
965      break;
966   }
967
968   p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
969				       "tex");
970
971   ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
972
973
974   char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
975   ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
976						      sampler_name,
977						      ir_var_uniform);
978   p->top_instructions->push_head(sampler);
979
980   /* Set the texture unit for this sampler in the same way that
981    * layout(binding=X) would.
982    */
983   sampler->data.explicit_binding = true;
984   sampler->data.binding = unit;
985
986   deref = new(p->mem_ctx) ir_dereference_variable(sampler);
987   tex->set_sampler(deref, glsl_type::vec4_type);
988
989   tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
990
991   if (p->state->unit[unit].shadow) {
992      texcoord = texcoord->clone(p->mem_ctx, NULL);
993      tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
994							  coords, 0, 0, 0,
995							  1);
996      coords++;
997   }
998
999   texcoord = texcoord->clone(p->mem_ctx, NULL);
1000   tex->projector = swizzle_w(texcoord);
1001
1002   p->emit(assign(p->src_texture[unit], tex));
1003}
1004
1005static void
1006load_texenv_source(texenv_fragment_program *p,
1007		   GLuint src, GLuint unit)
1008{
1009   switch (src) {
1010   case SRC_TEXTURE:
1011      load_texture(p, unit);
1012      break;
1013
1014   case SRC_TEXTURE0:
1015   case SRC_TEXTURE1:
1016   case SRC_TEXTURE2:
1017   case SRC_TEXTURE3:
1018   case SRC_TEXTURE4:
1019   case SRC_TEXTURE5:
1020   case SRC_TEXTURE6:
1021   case SRC_TEXTURE7:
1022      load_texture(p, src - SRC_TEXTURE0);
1023      break;
1024
1025   default:
1026      /* not a texture src - do nothing */
1027      break;
1028   }
1029}
1030
1031
1032/**
1033 * Generate instructions for loading all texture source terms.
1034 */
1035static GLboolean
1036load_texunit_sources( texenv_fragment_program *p, GLuint unit )
1037{
1038   const struct state_key *key = p->state;
1039   GLuint i;
1040
1041   for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1042      load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1043   }
1044
1045   for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1046      load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1047   }
1048
1049   return GL_TRUE;
1050}
1051
1052/**
1053 * Applies the fog calculations.
1054 *
1055 * This is basically like the ARB_fragment_prorgam fog options.  Note
1056 * that ffvertex_prog.c produces fogcoord for us when
1057 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
1058 */
1059static ir_rvalue *
1060emit_fog_instructions(texenv_fragment_program *p,
1061		      ir_rvalue *fragcolor)
1062{
1063   struct state_key *key = p->state;
1064   ir_rvalue *f, *temp;
1065   ir_variable *params, *oparams;
1066   ir_variable *fogcoord;
1067
1068   /* Temporary storage for the whole fog result.  Fog calculations
1069    * only affect rgb so we're hanging on to the .a value of fragcolor
1070    * this way.
1071    */
1072   ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
1073   p->emit(assign(fog_result, fragcolor));
1074
1075   fragcolor = swizzle_xyz(fog_result);
1076
1077   oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
1078   assert(oparams);
1079   fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
1080   assert(fogcoord);
1081   params = p->shader->symbols->get_variable("gl_Fog");
1082   assert(params);
1083   f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
1084
1085   ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
1086
1087   switch (key->fog_mode) {
1088   case FOG_LINEAR:
1089      /* f = (end - z) / (end - start)
1090       *
1091       * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
1092       * (end / (end - start)) so we can generate a single MAD.
1093       */
1094      f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
1095      break;
1096   case FOG_EXP:
1097      /* f = e^(-(density * fogcoord))
1098       *
1099       * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
1100       * use EXP2 which is generally the native instruction without
1101       * having to do any further math on the fog density uniform.
1102       */
1103      f = mul(f, swizzle_z(oparams));
1104      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1105      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1106      break;
1107   case FOG_EXP2:
1108      /* f = e^(-(density * fogcoord)^2)
1109       *
1110       * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
1111       * can do this like FOG_EXP but with a squaring after the
1112       * multiply by density.
1113       */
1114      ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
1115      p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
1116
1117      f = mul(temp_var, temp_var);
1118      f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1119      f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1120      break;
1121   }
1122
1123   p->emit(assign(f_var, saturate(f)));
1124
1125   f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
1126   temp = new(p->mem_ctx) ir_dereference_variable(params);
1127   temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
1128   temp = mul(swizzle_xyz(temp), f);
1129
1130   p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
1131
1132   return new(p->mem_ctx) ir_dereference_variable(fog_result);
1133}
1134
1135static void
1136emit_instructions(texenv_fragment_program *p)
1137{
1138   struct state_key *key = p->state;
1139   GLuint unit;
1140
1141   if (key->enabled_units) {
1142      /* First pass - to support texture_env_crossbar, first identify
1143       * all referenced texture sources and emit texld instructions
1144       * for each:
1145       */
1146      for (unit = 0; unit < key->nr_enabled_units; unit++)
1147	 if (key->unit[unit].enabled) {
1148	    load_texunit_sources(p, unit);
1149	 }
1150
1151      /* Second pass - emit combine instructions to build final color:
1152       */
1153      for (unit = 0; unit < key->nr_enabled_units; unit++) {
1154	 if (key->unit[unit].enabled) {
1155	    p->src_previous = emit_texenv(p, unit);
1156	 }
1157      }
1158   }
1159
1160   ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
1161
1162   if (key->separate_specular) {
1163      ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1164					      "specular_add");
1165      p->emit(assign(spec_result, cf));
1166
1167      ir_rvalue *secondary;
1168      if (p->state->inputs_available & VARYING_BIT_COL1) {
1169	 ir_variable *var =
1170	    p->shader->symbols->get_variable("gl_SecondaryColor");
1171	 assert(var);
1172	 secondary = swizzle_xyz(var);
1173      } else {
1174	 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1175      }
1176
1177      p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1178		     WRITEMASK_XYZ));
1179
1180      cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1181   }
1182
1183   if (key->fog_mode) {
1184      cf = emit_fog_instructions(p, cf);
1185   }
1186
1187   ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1188   assert(frag_color);
1189   p->emit(assign(frag_color, cf));
1190}
1191
1192/**
1193 * Generate a new fragment program which implements the context's
1194 * current texture env/combine mode.
1195 */
1196static struct gl_shader_program *
1197create_new_program(struct gl_context *ctx, struct state_key *key)
1198{
1199   texenv_fragment_program p;
1200   unsigned int unit;
1201   _mesa_glsl_parse_state *state;
1202
1203   p.mem_ctx = ralloc_context(NULL);
1204   p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1205#ifdef DEBUG
1206   p.shader->SourceChecksum = 0xf18ed; /* fixed */
1207#endif
1208   p.shader->ir = new(p.shader) exec_list;
1209   state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1210						p.shader);
1211   p.shader->symbols = state->symbols;
1212   p.top_instructions = p.shader->ir;
1213   p.instructions = p.shader->ir;
1214   p.state = key;
1215   p.shader_program = _mesa_new_shader_program(0);
1216
1217   /* Tell the linker to ignore the fact that we're building a
1218    * separate shader, in case we're in a GLES2 context that would
1219    * normally reject that.  The real problem is that we're building a
1220    * fixed function program in a GLES2 context at all, but that's a
1221    * big mess to clean up.
1222    */
1223   p.shader_program->SeparateShader = GL_TRUE;
1224
1225   /* The legacy GLSL shadow functions follow the depth texture
1226    * mode and return vec4. The GLSL 1.30 shadow functions return float and
1227    * ignore the depth texture mode. That's a shader and state dependency
1228    * that's difficult to deal with. st/mesa uses a simple but not
1229    * completely correct solution: if the shader declares GLSL >= 1.30 and
1230    * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1231    * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1232    * and legacy shadow functions will get it in .w as expected.
1233    * For the fixed-function fragment shader, use 120 to get correct behavior
1234    * for GL_ALPHA.
1235    */
1236   state->language_version = 120;
1237
1238   state->es_shader = false;
1239   if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1240      state->OES_EGL_image_external_enable = true;
1241   _mesa_glsl_initialize_types(state);
1242   _mesa_glsl_initialize_variables(p.instructions, state);
1243
1244   for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1245      p.src_texture[unit] = NULL;
1246      p.texcoord_tex[unit] = NULL;
1247   }
1248
1249   p.src_previous = NULL;
1250
1251   ir_function *main_f = new(p.mem_ctx) ir_function("main");
1252   p.emit(main_f);
1253   state->symbols->add_function(main_f);
1254
1255   ir_function_signature *main_sig =
1256      new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1257   main_sig->is_defined = true;
1258   main_f->add_signature(main_sig);
1259
1260   p.instructions = &main_sig->body;
1261   if (key->num_draw_buffers)
1262      emit_instructions(&p);
1263
1264   validate_ir_tree(p.shader->ir);
1265
1266   const struct gl_shader_compiler_options *options =
1267      &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1268
1269   /* Conservative approach: Don't optimize here, the linker does it too. */
1270   if (!ctx->Const.GLSLOptimizeConservatively) {
1271      while (do_common_optimization(p.shader->ir, false, false, options,
1272                                    ctx->Const.NativeIntegers))
1273         ;
1274   }
1275
1276   reparent_ir(p.shader->ir, p.shader->ir);
1277
1278   p.shader->CompileStatus = true;
1279   p.shader->Version = state->language_version;
1280   p.shader_program->Shaders =
1281      (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1282   p.shader_program->Shaders[0] = p.shader;
1283   p.shader_program->NumShaders = 1;
1284
1285   _mesa_glsl_link_shader(ctx, p.shader_program);
1286
1287   if (!p.shader_program->data->LinkStatus)
1288      _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1289                    p.shader_program->data->InfoLog);
1290
1291   ralloc_free(p.mem_ctx);
1292   return p.shader_program;
1293}
1294
1295extern "C" {
1296
1297/**
1298 * Return a fragment program which implements the current
1299 * fixed-function texture, fog and color-sum operations.
1300 */
1301struct gl_shader_program *
1302_mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1303{
1304   struct gl_shader_program *shader_program;
1305   struct state_key key;
1306   GLuint keySize;
1307
1308   keySize = make_state_key(ctx, &key);
1309
1310   shader_program = (struct gl_shader_program *)
1311      _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1312                                 &key, keySize);
1313
1314   if (!shader_program) {
1315      shader_program = create_new_program(ctx, &key);
1316
1317      _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1318				&key, keySize, shader_program);
1319   }
1320
1321   return shader_program;
1322}
1323
1324}
1325