1// Protocol Buffers - Google's data interchange format
2// Copyright 2014 Google Inc.  All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31#include "protobuf.h"
32
33#include <math.h>
34
35#include <ruby/encoding.h>
36
37// -----------------------------------------------------------------------------
38// Ruby <-> native slot management.
39// -----------------------------------------------------------------------------
40
41#define DEREF(memory, type) *(type*)(memory)
42
43size_t native_slot_size(upb_fieldtype_t type) {
44  switch (type) {
45    case UPB_TYPE_FLOAT:   return 4;
46    case UPB_TYPE_DOUBLE:  return 8;
47    case UPB_TYPE_BOOL:    return 1;
48    case UPB_TYPE_STRING:  return sizeof(VALUE);
49    case UPB_TYPE_BYTES:   return sizeof(VALUE);
50    case UPB_TYPE_MESSAGE: return sizeof(VALUE);
51    case UPB_TYPE_ENUM:    return 4;
52    case UPB_TYPE_INT32:   return 4;
53    case UPB_TYPE_INT64:   return 8;
54    case UPB_TYPE_UINT32:  return 4;
55    case UPB_TYPE_UINT64:  return 8;
56    default: return 0;
57  }
58}
59
60static bool is_ruby_num(VALUE value) {
61  return (TYPE(value) == T_FLOAT ||
62          TYPE(value) == T_FIXNUM ||
63          TYPE(value) == T_BIGNUM);
64}
65
66void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) {
67  if (!is_ruby_num(val)) {
68    rb_raise(rb_eTypeError, "Expected number type for integral field.");
69  }
70
71  // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
72  // bound; we just need to do precision checks (i.e., disallow rounding) and
73  // check for < 0 on unsigned types.
74  if (TYPE(val) == T_FLOAT) {
75    double dbl_val = NUM2DBL(val);
76    if (floor(dbl_val) != dbl_val) {
77      rb_raise(rb_eRangeError,
78               "Non-integral floating point value assigned to integer field.");
79    }
80  }
81  if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
82    if (NUM2DBL(val) < 0) {
83      rb_raise(rb_eRangeError,
84               "Assigning negative value to unsigned integer field.");
85    }
86  }
87}
88
89void native_slot_validate_string_encoding(upb_fieldtype_t type, VALUE value) {
90  bool bad_encoding = false;
91  rb_encoding* string_encoding = rb_enc_from_index(ENCODING_GET(value));
92  if (type == UPB_TYPE_STRING) {
93    bad_encoding =
94        string_encoding != kRubyStringUtf8Encoding &&
95        string_encoding != kRubyStringASCIIEncoding;
96  } else {
97    bad_encoding =
98        string_encoding != kRubyString8bitEncoding;
99  }
100  // Check that encoding is UTF-8 or ASCII (for string fields) or ASCII-8BIT
101  // (for bytes fields).
102  if (bad_encoding) {
103    rb_raise(rb_eTypeError, "Encoding for '%s' fields must be %s (was %s)",
104             (type == UPB_TYPE_STRING) ? "string" : "bytes",
105             (type == UPB_TYPE_STRING) ? "UTF-8 or ASCII" : "ASCII-8BIT",
106             rb_enc_name(string_encoding));
107  }
108}
109
110void native_slot_set(upb_fieldtype_t type, VALUE type_class,
111                     void* memory, VALUE value) {
112  native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0);
113}
114
115void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class,
116                                    void* memory, VALUE value,
117                                    uint32_t* case_memory,
118                                    uint32_t case_number) {
119  // Note that in order to atomically change the value in memory and the case
120  // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
121  // all Ruby VM calls are complete. The case is then set at the bottom of this
122  // function.
123  switch (type) {
124    case UPB_TYPE_FLOAT:
125      if (!is_ruby_num(value)) {
126        rb_raise(rb_eTypeError, "Expected number type for float field.");
127      }
128      DEREF(memory, float) = NUM2DBL(value);
129      break;
130    case UPB_TYPE_DOUBLE:
131      if (!is_ruby_num(value)) {
132        rb_raise(rb_eTypeError, "Expected number type for double field.");
133      }
134      DEREF(memory, double) = NUM2DBL(value);
135      break;
136    case UPB_TYPE_BOOL: {
137      int8_t val = -1;
138      if (value == Qtrue) {
139        val = 1;
140      } else if (value == Qfalse) {
141        val = 0;
142      } else {
143        rb_raise(rb_eTypeError, "Invalid argument for boolean field.");
144      }
145      DEREF(memory, int8_t) = val;
146      break;
147    }
148    case UPB_TYPE_STRING:
149    case UPB_TYPE_BYTES: {
150      if (CLASS_OF(value) != rb_cString) {
151        rb_raise(rb_eTypeError, "Invalid argument for string field.");
152      }
153      native_slot_validate_string_encoding(type, value);
154      DEREF(memory, VALUE) = value;
155      break;
156    }
157    case UPB_TYPE_MESSAGE: {
158      if (CLASS_OF(value) == CLASS_OF(Qnil)) {
159        value = Qnil;
160      } else if (CLASS_OF(value) != type_class) {
161        rb_raise(rb_eTypeError,
162                 "Invalid type %s to assign to submessage field.",
163                 rb_class2name(CLASS_OF(value)));
164      }
165      DEREF(memory, VALUE) = value;
166      break;
167    }
168    case UPB_TYPE_ENUM: {
169      int32_t int_val = 0;
170      if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
171        rb_raise(rb_eTypeError,
172                 "Expected number or symbol type for enum field.");
173      }
174      if (TYPE(value) == T_SYMBOL) {
175        // Ensure that the given symbol exists in the enum module.
176        VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
177        if (lookup == Qnil) {
178          rb_raise(rb_eRangeError, "Unknown symbol value for enum field.");
179        } else {
180          int_val = NUM2INT(lookup);
181        }
182      } else {
183        native_slot_check_int_range_precision(UPB_TYPE_INT32, value);
184        int_val = NUM2INT(value);
185      }
186      DEREF(memory, int32_t) = int_val;
187      break;
188    }
189    case UPB_TYPE_INT32:
190    case UPB_TYPE_INT64:
191    case UPB_TYPE_UINT32:
192    case UPB_TYPE_UINT64:
193      native_slot_check_int_range_precision(type, value);
194      switch (type) {
195      case UPB_TYPE_INT32:
196        DEREF(memory, int32_t) = NUM2INT(value);
197        break;
198      case UPB_TYPE_INT64:
199        DEREF(memory, int64_t) = NUM2LL(value);
200        break;
201      case UPB_TYPE_UINT32:
202        DEREF(memory, uint32_t) = NUM2UINT(value);
203        break;
204      case UPB_TYPE_UINT64:
205        DEREF(memory, uint64_t) = NUM2ULL(value);
206        break;
207      default:
208        break;
209      }
210      break;
211    default:
212      break;
213  }
214
215  if (case_memory != NULL) {
216    *case_memory = case_number;
217  }
218}
219
220VALUE native_slot_get(upb_fieldtype_t type,
221                      VALUE type_class,
222                      const void* memory) {
223  switch (type) {
224    case UPB_TYPE_FLOAT:
225      return DBL2NUM(DEREF(memory, float));
226    case UPB_TYPE_DOUBLE:
227      return DBL2NUM(DEREF(memory, double));
228    case UPB_TYPE_BOOL:
229      return DEREF(memory, int8_t) ? Qtrue : Qfalse;
230    case UPB_TYPE_STRING:
231    case UPB_TYPE_BYTES:
232    case UPB_TYPE_MESSAGE:
233      return DEREF(memory, VALUE);
234    case UPB_TYPE_ENUM: {
235      int32_t val = DEREF(memory, int32_t);
236      VALUE symbol = enum_lookup(type_class, INT2NUM(val));
237      if (symbol == Qnil) {
238        return INT2NUM(val);
239      } else {
240        return symbol;
241      }
242    }
243    case UPB_TYPE_INT32:
244      return INT2NUM(DEREF(memory, int32_t));
245    case UPB_TYPE_INT64:
246      return LL2NUM(DEREF(memory, int64_t));
247    case UPB_TYPE_UINT32:
248      return UINT2NUM(DEREF(memory, uint32_t));
249    case UPB_TYPE_UINT64:
250      return ULL2NUM(DEREF(memory, uint64_t));
251    default:
252      return Qnil;
253  }
254}
255
256void native_slot_init(upb_fieldtype_t type, void* memory) {
257  switch (type) {
258    case UPB_TYPE_FLOAT:
259      DEREF(memory, float) = 0.0;
260      break;
261    case UPB_TYPE_DOUBLE:
262      DEREF(memory, double) = 0.0;
263      break;
264    case UPB_TYPE_BOOL:
265      DEREF(memory, int8_t) = 0;
266      break;
267    case UPB_TYPE_STRING:
268    case UPB_TYPE_BYTES:
269      DEREF(memory, VALUE) = rb_str_new2("");
270      rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
271                       kRubyString8bitEncoding : kRubyStringUtf8Encoding);
272      break;
273    case UPB_TYPE_MESSAGE:
274      DEREF(memory, VALUE) = Qnil;
275      break;
276    case UPB_TYPE_ENUM:
277    case UPB_TYPE_INT32:
278      DEREF(memory, int32_t) = 0;
279      break;
280    case UPB_TYPE_INT64:
281      DEREF(memory, int64_t) = 0;
282      break;
283    case UPB_TYPE_UINT32:
284      DEREF(memory, uint32_t) = 0;
285      break;
286    case UPB_TYPE_UINT64:
287      DEREF(memory, uint64_t) = 0;
288      break;
289    default:
290      break;
291  }
292}
293
294void native_slot_mark(upb_fieldtype_t type, void* memory) {
295  switch (type) {
296    case UPB_TYPE_STRING:
297    case UPB_TYPE_BYTES:
298    case UPB_TYPE_MESSAGE:
299      rb_gc_mark(DEREF(memory, VALUE));
300      break;
301    default:
302      break;
303  }
304}
305
306void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
307  memcpy(to, from, native_slot_size(type));
308}
309
310void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
311  switch (type) {
312    case UPB_TYPE_STRING:
313    case UPB_TYPE_BYTES: {
314      VALUE from_val = DEREF(from, VALUE);
315      DEREF(to, VALUE) = (from_val != Qnil) ?
316          rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
317      break;
318    }
319    case UPB_TYPE_MESSAGE: {
320      VALUE from_val = DEREF(from, VALUE);
321      DEREF(to, VALUE) = (from_val != Qnil) ?
322          Message_deep_copy(from_val) : Qnil;
323      break;
324    }
325    default:
326      memcpy(to, from, native_slot_size(type));
327  }
328}
329
330bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
331  switch (type) {
332    case UPB_TYPE_STRING:
333    case UPB_TYPE_BYTES:
334    case UPB_TYPE_MESSAGE: {
335      VALUE val1 = DEREF(mem1, VALUE);
336      VALUE val2 = DEREF(mem2, VALUE);
337      VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
338      return ret == Qtrue;
339    }
340    default:
341      return !memcmp(mem1, mem2, native_slot_size(type));
342  }
343}
344
345// -----------------------------------------------------------------------------
346// Map field utilities.
347// -----------------------------------------------------------------------------
348
349const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
350  const upb_msgdef* subdef;
351  if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
352      upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
353    return NULL;
354  }
355  subdef = upb_fielddef_msgsubdef(field);
356  return upb_msgdef_mapentry(subdef) ? subdef : NULL;
357}
358
359const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
360  const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
361  assert(subdef);
362  return subdef;
363}
364
365bool is_map_field(const upb_fielddef *field) {
366  return tryget_map_entry_msgdef(field) != NULL;
367}
368
369const upb_fielddef* map_field_key(const upb_fielddef* field) {
370  const upb_msgdef* subdef = map_entry_msgdef(field);
371  return map_entry_key(subdef);
372}
373
374const upb_fielddef* map_field_value(const upb_fielddef* field) {
375  const upb_msgdef* subdef = map_entry_msgdef(field);
376  return map_entry_value(subdef);
377}
378
379const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
380  const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
381  assert(key_field != NULL);
382  return key_field;
383}
384
385const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
386  const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
387  assert(value_field != NULL);
388  return value_field;
389}
390
391// -----------------------------------------------------------------------------
392// Memory layout management.
393// -----------------------------------------------------------------------------
394
395static size_t align_up_to(size_t offset, size_t granularity) {
396  // Granularity must be a power of two.
397  return (offset + granularity - 1) & ~(granularity - 1);
398}
399
400MessageLayout* create_layout(const upb_msgdef* msgdef) {
401  MessageLayout* layout = ALLOC(MessageLayout);
402  int nfields = upb_msgdef_numfields(msgdef);
403  upb_msg_field_iter it;
404  upb_msg_oneof_iter oit;
405  size_t off = 0;
406
407  layout->fields = ALLOC_N(MessageField, nfields);
408
409  for (upb_msg_field_begin(&it, msgdef);
410       !upb_msg_field_done(&it);
411       upb_msg_field_next(&it)) {
412    const upb_fielddef* field = upb_msg_iter_field(&it);
413    size_t field_size;
414
415    if (upb_fielddef_containingoneof(field)) {
416      // Oneofs are handled separately below.
417      continue;
418    }
419
420    // Allocate |field_size| bytes for this field in the layout.
421    field_size = 0;
422    if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
423      field_size = sizeof(VALUE);
424    } else {
425      field_size = native_slot_size(upb_fielddef_type(field));
426    }
427    // Align current offset up to |size| granularity.
428    off = align_up_to(off, field_size);
429    layout->fields[upb_fielddef_index(field)].offset = off;
430    layout->fields[upb_fielddef_index(field)].case_offset =
431        MESSAGE_FIELD_NO_CASE;
432    off += field_size;
433  }
434
435  // Handle oneofs now -- we iterate over oneofs specifically and allocate only
436  // one slot per oneof.
437  //
438  // We assign all value slots first, then pack the 'case' fields at the end,
439  // since in the common case (modern 64-bit platform) these are 8 bytes and 4
440  // bytes respectively and we want to avoid alignment overhead.
441  //
442  // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
443  // space for oneof cases is conceptually as wide as field tag numbers. In
444  // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
445  // members (8 or 16 bits respectively), so conceivably we could assign
446  // consecutive case numbers and then pick a smaller oneof case slot size, but
447  // the complexity to implement this indirection is probably not worthwhile.
448  for (upb_msg_oneof_begin(&oit, msgdef);
449       !upb_msg_oneof_done(&oit);
450       upb_msg_oneof_next(&oit)) {
451    const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
452    upb_oneof_iter fit;
453
454    // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
455    // all fields.
456    size_t field_size = NATIVE_SLOT_MAX_SIZE;
457    // Align the offset.
458    off = align_up_to(off, field_size);
459    // Assign all fields in the oneof this same offset.
460    for (upb_oneof_begin(&fit, oneof);
461         !upb_oneof_done(&fit);
462         upb_oneof_next(&fit)) {
463      const upb_fielddef* field = upb_oneof_iter_field(&fit);
464      layout->fields[upb_fielddef_index(field)].offset = off;
465    }
466    off += field_size;
467  }
468
469  // Now the case fields.
470  for (upb_msg_oneof_begin(&oit, msgdef);
471       !upb_msg_oneof_done(&oit);
472       upb_msg_oneof_next(&oit)) {
473    const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
474    upb_oneof_iter fit;
475
476    size_t field_size = sizeof(uint32_t);
477    // Align the offset.
478    off = (off + field_size - 1) & ~(field_size - 1);
479    // Assign all fields in the oneof this same offset.
480    for (upb_oneof_begin(&fit, oneof);
481         !upb_oneof_done(&fit);
482         upb_oneof_next(&fit)) {
483      const upb_fielddef* field = upb_oneof_iter_field(&fit);
484      layout->fields[upb_fielddef_index(field)].case_offset = off;
485    }
486    off += field_size;
487  }
488
489  layout->size = off;
490
491  layout->msgdef = msgdef;
492  upb_msgdef_ref(layout->msgdef, &layout->msgdef);
493
494  return layout;
495}
496
497void free_layout(MessageLayout* layout) {
498  xfree(layout->fields);
499  upb_msgdef_unref(layout->msgdef, &layout->msgdef);
500  xfree(layout);
501}
502
503VALUE field_type_class(const upb_fielddef* field) {
504  VALUE type_class = Qnil;
505  if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
506    VALUE submsgdesc =
507        get_def_obj(upb_fielddef_subdef(field));
508    type_class = Descriptor_msgclass(submsgdesc);
509  } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
510    VALUE subenumdesc =
511        get_def_obj(upb_fielddef_subdef(field));
512    type_class = EnumDescriptor_enummodule(subenumdesc);
513  }
514  return type_class;
515}
516
517static void* slot_memory(MessageLayout* layout,
518                         const void* storage,
519                         const upb_fielddef* field) {
520  return ((uint8_t *)storage) +
521      layout->fields[upb_fielddef_index(field)].offset;
522}
523
524static uint32_t* slot_oneof_case(MessageLayout* layout,
525                                 const void* storage,
526                                 const upb_fielddef* field) {
527  return (uint32_t *)(((uint8_t *)storage) +
528      layout->fields[upb_fielddef_index(field)].case_offset);
529}
530
531
532VALUE layout_get(MessageLayout* layout,
533                 const void* storage,
534                 const upb_fielddef* field) {
535  void* memory = slot_memory(layout, storage, field);
536  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
537
538  if (upb_fielddef_containingoneof(field)) {
539    if (*oneof_case != upb_fielddef_number(field)) {
540      return Qnil;
541    }
542    return native_slot_get(upb_fielddef_type(field),
543                           field_type_class(field),
544                           memory);
545  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
546    return *((VALUE *)memory);
547  } else {
548    return native_slot_get(upb_fielddef_type(field),
549                           field_type_class(field),
550                           memory);
551  }
552}
553
554static void check_repeated_field_type(VALUE val, const upb_fielddef* field) {
555  RepeatedField* self;
556  assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
557
558  if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
559      RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
560    rb_raise(rb_eTypeError, "Expected repeated field array");
561  }
562
563  self = ruby_to_RepeatedField(val);
564  if (self->field_type != upb_fielddef_type(field)) {
565    rb_raise(rb_eTypeError, "Repeated field array has wrong element type");
566  }
567
568  if (self->field_type == UPB_TYPE_MESSAGE ||
569      self->field_type == UPB_TYPE_ENUM) {
570    if (self->field_type_class !=
571        get_def_obj(upb_fielddef_subdef(field))) {
572      rb_raise(rb_eTypeError,
573               "Repeated field array has wrong message/enum class");
574    }
575  }
576}
577
578static void check_map_field_type(VALUE val, const upb_fielddef* field) {
579  const upb_fielddef* key_field = map_field_key(field);
580  const upb_fielddef* value_field = map_field_value(field);
581  Map* self;
582
583  if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
584      RTYPEDDATA_TYPE(val) != &Map_type) {
585    rb_raise(rb_eTypeError, "Expected Map instance");
586  }
587
588  self = ruby_to_Map(val);
589  if (self->key_type != upb_fielddef_type(key_field)) {
590    rb_raise(rb_eTypeError, "Map key type does not match field's key type");
591  }
592  if (self->value_type != upb_fielddef_type(value_field)) {
593    rb_raise(rb_eTypeError, "Map value type does not match field's value type");
594  }
595  if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE ||
596      upb_fielddef_type(value_field) == UPB_TYPE_ENUM) {
597    if (self->value_type_class !=
598        get_def_obj(upb_fielddef_subdef(value_field))) {
599      rb_raise(rb_eTypeError,
600               "Map value type has wrong message/enum class");
601    }
602  }
603}
604
605
606void layout_set(MessageLayout* layout,
607                void* storage,
608                const upb_fielddef* field,
609                VALUE val) {
610  void* memory = slot_memory(layout, storage, field);
611  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
612
613  if (upb_fielddef_containingoneof(field)) {
614    if (val == Qnil) {
615      // Assigning nil to a oneof field clears the oneof completely.
616      *oneof_case = ONEOF_CASE_NONE;
617      memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
618    } else {
619      // The transition between field types for a single oneof (union) slot is
620      // somewhat complex because we need to ensure that a GC triggered at any
621      // point by a call into the Ruby VM sees a valid state for this field and
622      // does not either go off into the weeds (following what it thinks is a
623      // VALUE but is actually a different field type) or miss an object (seeing
624      // what it thinks is a primitive field but is actually a VALUE for the new
625      // field type).
626      //
627      // In order for the transition to be safe, the oneof case slot must be in
628      // sync with the value slot whenever the Ruby VM has been called. Thus, we
629      // use native_slot_set_value_and_case(), which ensures that both the value
630      // and case number are altered atomically (w.r.t. the Ruby VM).
631      native_slot_set_value_and_case(
632          upb_fielddef_type(field), field_type_class(field),
633          memory, val,
634          oneof_case, upb_fielddef_number(field));
635    }
636  } else if (is_map_field(field)) {
637    check_map_field_type(val, field);
638    DEREF(memory, VALUE) = val;
639  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
640    check_repeated_field_type(val, field);
641    DEREF(memory, VALUE) = val;
642  } else {
643    native_slot_set(upb_fielddef_type(field), field_type_class(field),
644                    memory, val);
645  }
646}
647
648void layout_init(MessageLayout* layout,
649                 void* storage) {
650  upb_msg_field_iter it;
651  for (upb_msg_field_begin(&it, layout->msgdef);
652       !upb_msg_field_done(&it);
653       upb_msg_field_next(&it)) {
654    const upb_fielddef* field = upb_msg_iter_field(&it);
655    void* memory = slot_memory(layout, storage, field);
656    uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
657
658    if (upb_fielddef_containingoneof(field)) {
659      memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
660      *oneof_case = ONEOF_CASE_NONE;
661    } else if (is_map_field(field)) {
662      VALUE map = Qnil;
663
664      const upb_fielddef* key_field = map_field_key(field);
665      const upb_fielddef* value_field = map_field_value(field);
666      VALUE type_class = field_type_class(value_field);
667
668      if (type_class != Qnil) {
669        VALUE args[3] = {
670          fieldtype_to_ruby(upb_fielddef_type(key_field)),
671          fieldtype_to_ruby(upb_fielddef_type(value_field)),
672          type_class,
673        };
674        map = rb_class_new_instance(3, args, cMap);
675      } else {
676        VALUE args[2] = {
677          fieldtype_to_ruby(upb_fielddef_type(key_field)),
678          fieldtype_to_ruby(upb_fielddef_type(value_field)),
679        };
680        map = rb_class_new_instance(2, args, cMap);
681      }
682
683      DEREF(memory, VALUE) = map;
684    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
685      VALUE ary = Qnil;
686
687      VALUE type_class = field_type_class(field);
688
689      if (type_class != Qnil) {
690        VALUE args[2] = {
691          fieldtype_to_ruby(upb_fielddef_type(field)),
692          type_class,
693        };
694        ary = rb_class_new_instance(2, args, cRepeatedField);
695      } else {
696        VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
697        ary = rb_class_new_instance(1, args, cRepeatedField);
698      }
699
700      DEREF(memory, VALUE) = ary;
701    } else {
702      native_slot_init(upb_fielddef_type(field), memory);
703    }
704  }
705}
706
707void layout_mark(MessageLayout* layout, void* storage) {
708  upb_msg_field_iter it;
709  for (upb_msg_field_begin(&it, layout->msgdef);
710       !upb_msg_field_done(&it);
711       upb_msg_field_next(&it)) {
712    const upb_fielddef* field = upb_msg_iter_field(&it);
713    void* memory = slot_memory(layout, storage, field);
714    uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
715
716    if (upb_fielddef_containingoneof(field)) {
717      if (*oneof_case == upb_fielddef_number(field)) {
718        native_slot_mark(upb_fielddef_type(field), memory);
719      }
720    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
721      rb_gc_mark(DEREF(memory, VALUE));
722    } else {
723      native_slot_mark(upb_fielddef_type(field), memory);
724    }
725  }
726}
727
728void layout_dup(MessageLayout* layout, void* to, void* from) {
729  upb_msg_field_iter it;
730  for (upb_msg_field_begin(&it, layout->msgdef);
731       !upb_msg_field_done(&it);
732       upb_msg_field_next(&it)) {
733    const upb_fielddef* field = upb_msg_iter_field(&it);
734
735    void* to_memory = slot_memory(layout, to, field);
736    uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
737    void* from_memory = slot_memory(layout, from, field);
738    uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
739
740    if (upb_fielddef_containingoneof(field)) {
741      if (*from_oneof_case == upb_fielddef_number(field)) {
742        *to_oneof_case = *from_oneof_case;
743        native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
744      }
745    } else if (is_map_field(field)) {
746      DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
747    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
748      DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
749    } else {
750      native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
751    }
752  }
753}
754
755void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
756  upb_msg_field_iter it;
757  for (upb_msg_field_begin(&it, layout->msgdef);
758       !upb_msg_field_done(&it);
759       upb_msg_field_next(&it)) {
760    const upb_fielddef* field = upb_msg_iter_field(&it);
761
762    void* to_memory = slot_memory(layout, to, field);
763    uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
764    void* from_memory = slot_memory(layout, from, field);
765    uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
766
767    if (upb_fielddef_containingoneof(field)) {
768      if (*from_oneof_case == upb_fielddef_number(field)) {
769        *to_oneof_case = *from_oneof_case;
770        native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
771      }
772    } else if (is_map_field(field)) {
773      DEREF(to_memory, VALUE) =
774          Map_deep_copy(DEREF(from_memory, VALUE));
775    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
776      DEREF(to_memory, VALUE) =
777          RepeatedField_deep_copy(DEREF(from_memory, VALUE));
778    } else {
779      native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
780    }
781  }
782}
783
784VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
785  upb_msg_field_iter it;
786  for (upb_msg_field_begin(&it, layout->msgdef);
787       !upb_msg_field_done(&it);
788       upb_msg_field_next(&it)) {
789    const upb_fielddef* field = upb_msg_iter_field(&it);
790
791    void* msg1_memory = slot_memory(layout, msg1, field);
792    uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
793    void* msg2_memory = slot_memory(layout, msg2, field);
794    uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);
795
796    if (upb_fielddef_containingoneof(field)) {
797      if (*msg1_oneof_case != *msg2_oneof_case ||
798          (*msg1_oneof_case == upb_fielddef_number(field) &&
799           !native_slot_eq(upb_fielddef_type(field),
800                           msg1_memory,
801                           msg2_memory))) {
802        return Qfalse;
803      }
804    } else if (is_map_field(field)) {
805      if (!Map_eq(DEREF(msg1_memory, VALUE),
806                  DEREF(msg2_memory, VALUE))) {
807        return Qfalse;
808      }
809    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
810      if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
811                            DEREF(msg2_memory, VALUE))) {
812        return Qfalse;
813      }
814    } else {
815      if (!native_slot_eq(upb_fielddef_type(field),
816                          msg1_memory, msg2_memory)) {
817        return Qfalse;
818      }
819    }
820  }
821  return Qtrue;
822}
823
824VALUE layout_hash(MessageLayout* layout, void* storage) {
825  upb_msg_field_iter it;
826  st_index_t h = rb_hash_start(0);
827  VALUE hash_sym = rb_intern("hash");
828  for (upb_msg_field_begin(&it, layout->msgdef);
829       !upb_msg_field_done(&it);
830       upb_msg_field_next(&it)) {
831    const upb_fielddef* field = upb_msg_iter_field(&it);
832    VALUE field_val = layout_get(layout, storage, field);
833    h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
834  }
835  h = rb_hash_end(h);
836
837  return INT2FIX(h);
838}
839
840VALUE layout_inspect(MessageLayout* layout, void* storage) {
841  VALUE str = rb_str_new2("");
842
843  upb_msg_field_iter it;
844  bool first = true;
845  for (upb_msg_field_begin(&it, layout->msgdef);
846       !upb_msg_field_done(&it);
847       upb_msg_field_next(&it)) {
848    const upb_fielddef* field = upb_msg_iter_field(&it);
849    VALUE field_val = layout_get(layout, storage, field);
850
851    if (!first) {
852      str = rb_str_cat2(str, ", ");
853    } else {
854      first = false;
855    }
856    str = rb_str_cat2(str, upb_fielddef_name(field));
857    str = rb_str_cat2(str, ": ");
858
859    str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
860  }
861
862  return str;
863}
864