1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//         atenasio@google.com (Chris Atenasio) (ZigZag transform)
33//         wink@google.com (Wink Saville) (refactored from wire_format.h)
34//  Based on original Protocol Buffers design by
35//  Sanjay Ghemawat, Jeff Dean, and others.
36//
37// This header is logically internal, but is made public because it is used
38// from protocol-compiler-generated code, which may reside in other components.
39
40#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
41#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
42
43#include <string>
44#include <google/protobuf/stubs/common.h>
45#include <google/protobuf/message_lite.h>
46#include <google/protobuf/io/coded_stream.h>  // for CodedOutputStream::Varint32Size
47
48namespace google {
49
50namespace protobuf {
51  template <typename T> class RepeatedField;  // repeated_field.h
52}
53
54namespace protobuf {
55namespace internal {
56
57class StringPieceField;
58
59// This class is for internal use by the protocol buffer library and by
60// protocol-complier-generated message classes.  It must not be called
61// directly by clients.
62//
63// This class contains helpers for implementing the binary protocol buffer
64// wire format without the need for reflection. Use WireFormat when using
65// reflection.
66//
67// This class is really a namespace that contains only static methods.
68class LIBPROTOBUF_EXPORT WireFormatLite {
69 public:
70
71  // -----------------------------------------------------------------
72  // Helper constants and functions related to the format.  These are
73  // mostly meant for internal and generated code to use.
74
75  // The wire format is composed of a sequence of tag/value pairs, each
76  // of which contains the value of one field (or one element of a repeated
77  // field).  Each tag is encoded as a varint.  The lower bits of the tag
78  // identify its wire type, which specifies the format of the data to follow.
79  // The rest of the bits contain the field number.  Each type of field (as
80  // declared by FieldDescriptor::Type, in descriptor.h) maps to one of
81  // these wire types.  Immediately following each tag is the field's value,
82  // encoded in the format specified by the wire type.  Because the tag
83  // identifies the encoding of this data, it is possible to skip
84  // unrecognized fields for forwards compatibility.
85
86  enum WireType {
87    WIRETYPE_VARINT           = 0,
88    WIRETYPE_FIXED64          = 1,
89    WIRETYPE_LENGTH_DELIMITED = 2,
90    WIRETYPE_START_GROUP      = 3,
91    WIRETYPE_END_GROUP        = 4,
92    WIRETYPE_FIXED32          = 5,
93  };
94
95  // Lite alternative to FieldDescriptor::Type.  Must be kept in sync.
96  enum FieldType {
97    TYPE_DOUBLE         = 1,
98    TYPE_FLOAT          = 2,
99    TYPE_INT64          = 3,
100    TYPE_UINT64         = 4,
101    TYPE_INT32          = 5,
102    TYPE_FIXED64        = 6,
103    TYPE_FIXED32        = 7,
104    TYPE_BOOL           = 8,
105    TYPE_STRING         = 9,
106    TYPE_GROUP          = 10,
107    TYPE_MESSAGE        = 11,
108    TYPE_BYTES          = 12,
109    TYPE_UINT32         = 13,
110    TYPE_ENUM           = 14,
111    TYPE_SFIXED32       = 15,
112    TYPE_SFIXED64       = 16,
113    TYPE_SINT32         = 17,
114    TYPE_SINT64         = 18,
115    MAX_FIELD_TYPE      = 18,
116  };
117
118  // Lite alternative to FieldDescriptor::CppType.  Must be kept in sync.
119  enum CppType {
120    CPPTYPE_INT32       = 1,
121    CPPTYPE_INT64       = 2,
122    CPPTYPE_UINT32      = 3,
123    CPPTYPE_UINT64      = 4,
124    CPPTYPE_DOUBLE      = 5,
125    CPPTYPE_FLOAT       = 6,
126    CPPTYPE_BOOL        = 7,
127    CPPTYPE_ENUM        = 8,
128    CPPTYPE_STRING      = 9,
129    CPPTYPE_MESSAGE     = 10,
130    MAX_CPPTYPE         = 10,
131  };
132
133  // Helper method to get the CppType for a particular Type.
134  static CppType FieldTypeToCppType(FieldType type);
135
136  // Given a FieldSescriptor::Type return its WireType
137  static inline WireFormatLite::WireType WireTypeForFieldType(
138      WireFormatLite::FieldType type) {
139    return kWireTypeForFieldType[type];
140  }
141
142  // Number of bits in a tag which identify the wire type.
143  static const int kTagTypeBits = 3;
144  // Mask for those bits.
145  static const uint32 kTagTypeMask = (1 << kTagTypeBits) - 1;
146
147  // Helper functions for encoding and decoding tags.  (Inlined below and in
148  // _inl.h)
149  //
150  // This is different from MakeTag(field->number(), field->type()) in the case
151  // of packed repeated fields.
152  static uint32 MakeTag(int field_number, WireType type);
153  static WireType GetTagWireType(uint32 tag);
154  static int GetTagFieldNumber(uint32 tag);
155
156  // Compute the byte size of a tag.  For groups, this includes both the start
157  // and end tags.
158  static inline int TagSize(int field_number, WireFormatLite::FieldType type);
159
160  // Skips a field value with the given tag.  The input should start
161  // positioned immediately after the tag.  Skipped values are simply discarded,
162  // not recorded anywhere.  See WireFormat::SkipField() for a version that
163  // records to an UnknownFieldSet.
164  static bool SkipField(io::CodedInputStream* input, uint32 tag);
165
166  // Skips a field value with the given tag.  The input should start
167  // positioned immediately after the tag. Skipped values are recorded to a
168  // CodedOutputStream.
169  static bool SkipField(io::CodedInputStream* input, uint32 tag,
170                        io::CodedOutputStream* output);
171
172  // Reads and ignores a message from the input.  Skipped values are simply
173  // discarded, not recorded anywhere.  See WireFormat::SkipMessage() for a
174  // version that records to an UnknownFieldSet.
175  static bool SkipMessage(io::CodedInputStream* input);
176
177  // Reads and ignores a message from the input.  Skipped values are recorded
178  // to a CodedOutputStream.
179  static bool SkipMessage(io::CodedInputStream* input,
180                          io::CodedOutputStream* output);
181
182// This macro does the same thing as WireFormatLite::MakeTag(), but the
183// result is usable as a compile-time constant, which makes it usable
184// as a switch case or a template input.  WireFormatLite::MakeTag() is more
185// type-safe, though, so prefer it if possible.
186#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE)                  \
187  static_cast<uint32>(                                                   \
188    ((FIELD_NUMBER) << ::google::protobuf::internal::WireFormatLite::kTagTypeBits) \
189      | (TYPE))
190
191  // These are the tags for the old MessageSet format, which was defined as:
192  //   message MessageSet {
193  //     repeated group Item = 1 {
194  //       required int32 type_id = 2;
195  //       required string message = 3;
196  //     }
197  //   }
198  static const int kMessageSetItemNumber = 1;
199  static const int kMessageSetTypeIdNumber = 2;
200  static const int kMessageSetMessageNumber = 3;
201  static const int kMessageSetItemStartTag =
202    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
203                                WireFormatLite::WIRETYPE_START_GROUP);
204  static const int kMessageSetItemEndTag =
205    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber,
206                                WireFormatLite::WIRETYPE_END_GROUP);
207  static const int kMessageSetTypeIdTag =
208    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetTypeIdNumber,
209                                WireFormatLite::WIRETYPE_VARINT);
210  static const int kMessageSetMessageTag =
211    GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetMessageNumber,
212                                WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
213
214  // Byte size of all tags of a MessageSet::Item combined.
215  static const int kMessageSetItemTagsSize;
216
217  // Helper functions for converting between floats/doubles and IEEE-754
218  // uint32s/uint64s so that they can be written.  (Assumes your platform
219  // uses IEEE-754 floats.)
220  static uint32 EncodeFloat(float value);
221  static float DecodeFloat(uint32 value);
222  static uint64 EncodeDouble(double value);
223  static double DecodeDouble(uint64 value);
224
225  // Helper functions for mapping signed integers to unsigned integers in
226  // such a way that numbers with small magnitudes will encode to smaller
227  // varints.  If you simply static_cast a negative number to an unsigned
228  // number and varint-encode it, it will always take 10 bytes, defeating
229  // the purpose of varint.  So, for the "sint32" and "sint64" field types,
230  // we ZigZag-encode the values.
231  static uint32 ZigZagEncode32(int32 n);
232  static int32  ZigZagDecode32(uint32 n);
233  static uint64 ZigZagEncode64(int64 n);
234  static int64  ZigZagDecode64(uint64 n);
235
236  // =================================================================
237  // Methods for reading/writing individual field.  The implementations
238  // of these methods are defined in wire_format_lite_inl.h; you must #include
239  // that file to use these.
240
241// Avoid ugly line wrapping
242#define input  io::CodedInputStream*  input_arg
243#define output io::CodedOutputStream* output_arg
244#define field_number int field_number_arg
245#define INL GOOGLE_ATTRIBUTE_ALWAYS_INLINE
246
247  // Read fields, not including tags.  The assumption is that you already
248  // read the tag to determine what field to read.
249
250  // For primitive fields, we just use a templatized routine parameterized by
251  // the represented type and the FieldType. These are specialized with the
252  // appropriate definition for each declared type.
253  template <typename CType, enum FieldType DeclaredType> INL
254  static bool ReadPrimitive(input, CType* value);
255
256  // Reads repeated primitive values, with optimizations for repeats.
257  // tag_size and tag should both be compile-time constants provided by the
258  // protocol compiler.
259  template <typename CType, enum FieldType DeclaredType> INL
260  static bool ReadRepeatedPrimitive(int tag_size,
261                                    uint32 tag,
262                                    input,
263                                    RepeatedField<CType>* value);
264
265  // Identical to ReadRepeatedPrimitive, except will not inline the
266  // implementation.
267  template <typename CType, enum FieldType DeclaredType>
268  static bool ReadRepeatedPrimitiveNoInline(int tag_size,
269                                            uint32 tag,
270                                            input,
271                                            RepeatedField<CType>* value);
272
273  // Reads a primitive value directly from the provided buffer. It returns a
274  // pointer past the segment of data that was read.
275  //
276  // This is only implemented for the types with fixed wire size, e.g.
277  // float, double, and the (s)fixed* types.
278  template <typename CType, enum FieldType DeclaredType> INL
279  static const uint8* ReadPrimitiveFromArray(const uint8* buffer, CType* value);
280
281  // Reads a primitive packed field.
282  //
283  // This is only implemented for packable types.
284  template <typename CType, enum FieldType DeclaredType> INL
285  static bool ReadPackedPrimitive(input, RepeatedField<CType>* value);
286
287  // Identical to ReadPackedPrimitive, except will not inline the
288  // implementation.
289  template <typename CType, enum FieldType DeclaredType>
290  static bool ReadPackedPrimitiveNoInline(input, RepeatedField<CType>* value);
291
292  // Read a packed enum field. If the is_valid function is not NULL, values for
293  // which is_valid(value) returns false are silently dropped.
294  static bool ReadPackedEnumNoInline(input,
295                                     bool (*is_valid)(int),
296                                     RepeatedField<int>* values);
297
298  // Read a packed enum field. If the is_valid function is not NULL, values for
299  // which is_valid(value) returns false are appended to unknown_fields_stream.
300  static bool ReadPackedEnumPreserveUnknowns(
301      input,
302      field_number,
303      bool (*is_valid)(int),
304      io::CodedOutputStream* unknown_fields_stream,
305      RepeatedField<int>* values);
306
307  // Read a string.  ReadString(..., string* value) requires an existing string.
308  static inline bool ReadString(input, string* value);
309  // ReadString(..., string** p) is internal-only, and should only be called
310  // from generated code. It starts by setting *p to "new string"
311  // if *p == &GetEmptyStringAlreadyInited().  It then invokes
312  // ReadString(input, *p).  This is useful for reducing code size.
313  static inline bool ReadString(input, string** p);
314  // Analogous to ReadString().
315  static bool ReadBytes(input, string* value);
316  static bool ReadBytes(input, string** p);
317
318
319  enum Operation {
320    PARSE = 0,
321    SERIALIZE = 1,
322  };
323
324  // Returns true if the data is valid UTF-8.
325  static bool VerifyUtf8String(const char* data, int size,
326                               Operation op,
327                               const char* field_name);
328
329  static inline bool ReadGroup  (field_number, input, MessageLite* value);
330  static inline bool ReadMessage(input, MessageLite* value);
331
332  // Like above, but de-virtualize the call to MergePartialFromCodedStream().
333  // The pointer must point at an instance of MessageType, *not* a subclass (or
334  // the subclass must not override MergePartialFromCodedStream()).
335  template<typename MessageType>
336  static inline bool ReadGroupNoVirtual(field_number, input,
337                                        MessageType* value);
338  template<typename MessageType>
339  static inline bool ReadMessageNoVirtual(input, MessageType* value);
340
341  // The same, but do not modify input's recursion depth.  This is useful
342  // when reading a bunch of groups or messages in a loop, because then the
343  // recursion depth can be incremented before the loop and decremented after.
344  template<typename MessageType>
345  static inline bool ReadGroupNoVirtualNoRecursionDepth(field_number, input,
346                                                        MessageType* value);
347
348  template<typename MessageType>
349  static inline bool ReadMessageNoVirtualNoRecursionDepth(input,
350                                                          MessageType* value);
351
352  // Write a tag.  The Write*() functions typically include the tag, so
353  // normally there's no need to call this unless using the Write*NoTag()
354  // variants.
355  INL static void WriteTag(field_number, WireType type, output);
356
357  // Write fields, without tags.
358  INL static void WriteInt32NoTag   (int32 value, output);
359  INL static void WriteInt64NoTag   (int64 value, output);
360  INL static void WriteUInt32NoTag  (uint32 value, output);
361  INL static void WriteUInt64NoTag  (uint64 value, output);
362  INL static void WriteSInt32NoTag  (int32 value, output);
363  INL static void WriteSInt64NoTag  (int64 value, output);
364  INL static void WriteFixed32NoTag (uint32 value, output);
365  INL static void WriteFixed64NoTag (uint64 value, output);
366  INL static void WriteSFixed32NoTag(int32 value, output);
367  INL static void WriteSFixed64NoTag(int64 value, output);
368  INL static void WriteFloatNoTag   (float value, output);
369  INL static void WriteDoubleNoTag  (double value, output);
370  INL static void WriteBoolNoTag    (bool value, output);
371  INL static void WriteEnumNoTag    (int value, output);
372
373  // Write fields, including tags.
374  static void WriteInt32   (field_number,  int32 value, output);
375  static void WriteInt64   (field_number,  int64 value, output);
376  static void WriteUInt32  (field_number, uint32 value, output);
377  static void WriteUInt64  (field_number, uint64 value, output);
378  static void WriteSInt32  (field_number,  int32 value, output);
379  static void WriteSInt64  (field_number,  int64 value, output);
380  static void WriteFixed32 (field_number, uint32 value, output);
381  static void WriteFixed64 (field_number, uint64 value, output);
382  static void WriteSFixed32(field_number,  int32 value, output);
383  static void WriteSFixed64(field_number,  int64 value, output);
384  static void WriteFloat   (field_number,  float value, output);
385  static void WriteDouble  (field_number, double value, output);
386  static void WriteBool    (field_number,   bool value, output);
387  static void WriteEnum    (field_number,    int value, output);
388
389  static void WriteString(field_number, const string& value, output);
390  static void WriteBytes (field_number, const string& value, output);
391  static void WriteStringMaybeAliased(
392      field_number, const string& value, output);
393  static void WriteBytesMaybeAliased(
394      field_number, const string& value, output);
395
396  static void WriteGroup(
397    field_number, const MessageLite& value, output);
398  static void WriteMessage(
399    field_number, const MessageLite& value, output);
400  // Like above, but these will check if the output stream has enough
401  // space to write directly to a flat array.
402  static void WriteGroupMaybeToArray(
403    field_number, const MessageLite& value, output);
404  static void WriteMessageMaybeToArray(
405    field_number, const MessageLite& value, output);
406
407  // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
408  // pointer must point at an instance of MessageType, *not* a subclass (or
409  // the subclass must not override SerializeWithCachedSizes()).
410  template<typename MessageType>
411  static inline void WriteGroupNoVirtual(
412    field_number, const MessageType& value, output);
413  template<typename MessageType>
414  static inline void WriteMessageNoVirtual(
415    field_number, const MessageType& value, output);
416
417#undef output
418#define output uint8* target
419
420  // Like above, but use only *ToArray methods of CodedOutputStream.
421  INL static uint8* WriteTagToArray(field_number, WireType type, output);
422
423  // Write fields, without tags.
424  INL static uint8* WriteInt32NoTagToArray   (int32 value, output);
425  INL static uint8* WriteInt64NoTagToArray   (int64 value, output);
426  INL static uint8* WriteUInt32NoTagToArray  (uint32 value, output);
427  INL static uint8* WriteUInt64NoTagToArray  (uint64 value, output);
428  INL static uint8* WriteSInt32NoTagToArray  (int32 value, output);
429  INL static uint8* WriteSInt64NoTagToArray  (int64 value, output);
430  INL static uint8* WriteFixed32NoTagToArray (uint32 value, output);
431  INL static uint8* WriteFixed64NoTagToArray (uint64 value, output);
432  INL static uint8* WriteSFixed32NoTagToArray(int32 value, output);
433  INL static uint8* WriteSFixed64NoTagToArray(int64 value, output);
434  INL static uint8* WriteFloatNoTagToArray   (float value, output);
435  INL static uint8* WriteDoubleNoTagToArray  (double value, output);
436  INL static uint8* WriteBoolNoTagToArray    (bool value, output);
437  INL static uint8* WriteEnumNoTagToArray    (int value, output);
438
439  // Write fields, including tags.
440  INL static uint8* WriteInt32ToArray(field_number, int32 value, output);
441  INL static uint8* WriteInt64ToArray(field_number, int64 value, output);
442  INL static uint8* WriteUInt32ToArray(field_number, uint32 value, output);
443  INL static uint8* WriteUInt64ToArray(field_number, uint64 value, output);
444  INL static uint8* WriteSInt32ToArray(field_number, int32 value, output);
445  INL static uint8* WriteSInt64ToArray(field_number, int64 value, output);
446  INL static uint8* WriteFixed32ToArray(field_number, uint32 value, output);
447  INL static uint8* WriteFixed64ToArray(field_number, uint64 value, output);
448  INL static uint8* WriteSFixed32ToArray(field_number, int32 value, output);
449  INL static uint8* WriteSFixed64ToArray(field_number, int64 value, output);
450  INL static uint8* WriteFloatToArray(field_number, float value, output);
451  INL static uint8* WriteDoubleToArray(field_number, double value, output);
452  INL static uint8* WriteBoolToArray(field_number, bool value, output);
453  INL static uint8* WriteEnumToArray(field_number, int value, output);
454
455  INL static uint8* WriteStringToArray(
456    field_number, const string& value, output);
457  INL static uint8* WriteBytesToArray(
458    field_number, const string& value, output);
459
460  INL static uint8* WriteGroupToArray(
461      field_number, const MessageLite& value, output);
462  INL static uint8* WriteMessageToArray(
463      field_number, const MessageLite& value, output);
464
465  // Like above, but de-virtualize the call to SerializeWithCachedSizes().  The
466  // pointer must point at an instance of MessageType, *not* a subclass (or
467  // the subclass must not override SerializeWithCachedSizes()).
468  template<typename MessageType>
469  INL static uint8* WriteGroupNoVirtualToArray(
470    field_number, const MessageType& value, output);
471  template<typename MessageType>
472  INL static uint8* WriteMessageNoVirtualToArray(
473    field_number, const MessageType& value, output);
474
475#undef output
476#undef input
477#undef INL
478
479#undef field_number
480
481  // Compute the byte size of a field.  The XxSize() functions do NOT include
482  // the tag, so you must also call TagSize().  (This is because, for repeated
483  // fields, you should only call TagSize() once and multiply it by the element
484  // count, but you may have to call XxSize() for each individual element.)
485  static inline int Int32Size   ( int32 value);
486  static inline int Int64Size   ( int64 value);
487  static inline int UInt32Size  (uint32 value);
488  static inline int UInt64Size  (uint64 value);
489  static inline int SInt32Size  ( int32 value);
490  static inline int SInt64Size  ( int64 value);
491  static inline int EnumSize    (   int value);
492
493  // These types always have the same size.
494  static const int kFixed32Size  = 4;
495  static const int kFixed64Size  = 8;
496  static const int kSFixed32Size = 4;
497  static const int kSFixed64Size = 8;
498  static const int kFloatSize    = 4;
499  static const int kDoubleSize   = 8;
500  static const int kBoolSize     = 1;
501
502  static inline int StringSize(const string& value);
503  static inline int BytesSize (const string& value);
504
505  static inline int GroupSize  (const MessageLite& value);
506  static inline int MessageSize(const MessageLite& value);
507
508  // Like above, but de-virtualize the call to ByteSize().  The
509  // pointer must point at an instance of MessageType, *not* a subclass (or
510  // the subclass must not override ByteSize()).
511  template<typename MessageType>
512  static inline int GroupSizeNoVirtual  (const MessageType& value);
513  template<typename MessageType>
514  static inline int MessageSizeNoVirtual(const MessageType& value);
515
516  // Given the length of data, calculate the byte size of the data on the
517  // wire if we encode the data as a length delimited field.
518  static inline int LengthDelimitedSize(int length);
519
520 private:
521  // A helper method for the repeated primitive reader. This method has
522  // optimizations for primitive types that have fixed size on the wire, and
523  // can be read using potentially faster paths.
524  template <typename CType, enum FieldType DeclaredType> GOOGLE_ATTRIBUTE_ALWAYS_INLINE
525  static bool ReadRepeatedFixedSizePrimitive(
526      int tag_size,
527      uint32 tag,
528      google::protobuf::io::CodedInputStream* input,
529      RepeatedField<CType>* value);
530
531  // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
532  template <typename CType, enum FieldType DeclaredType> GOOGLE_ATTRIBUTE_ALWAYS_INLINE
533  static bool ReadPackedFixedSizePrimitive(google::protobuf::io::CodedInputStream* input,
534                                           RepeatedField<CType>* value);
535
536  static const CppType kFieldTypeToCppTypeMap[];
537  static const WireFormatLite::WireType kWireTypeForFieldType[];
538
539  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite);
540};
541
542// A class which deals with unknown values.  The default implementation just
543// discards them.  WireFormat defines a subclass which writes to an
544// UnknownFieldSet.  This class is used by ExtensionSet::ParseField(), since
545// ExtensionSet is part of the lite library but UnknownFieldSet is not.
546class LIBPROTOBUF_EXPORT FieldSkipper {
547 public:
548  FieldSkipper() {}
549  virtual ~FieldSkipper() {}
550
551  // Skip a field whose tag has already been consumed.
552  virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
553
554  // Skip an entire message or group, up to an end-group tag (which is consumed)
555  // or end-of-stream.
556  virtual bool SkipMessage(io::CodedInputStream* input);
557
558  // Deal with an already-parsed unrecognized enum value.  The default
559  // implementation does nothing, but the UnknownFieldSet-based implementation
560  // saves it as an unknown varint.
561  virtual void SkipUnknownEnum(int field_number, int value);
562};
563
564// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.
565
566class LIBPROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
567 public:
568  explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
569      : unknown_fields_(unknown_fields) {}
570  virtual ~CodedOutputStreamFieldSkipper() {}
571
572  // implements FieldSkipper -----------------------------------------
573  virtual bool SkipField(io::CodedInputStream* input, uint32 tag);
574  virtual bool SkipMessage(io::CodedInputStream* input);
575  virtual void SkipUnknownEnum(int field_number, int value);
576
577 protected:
578  io::CodedOutputStream* unknown_fields_;
579};
580
581
582// inline methods ====================================================
583
584inline WireFormatLite::CppType
585WireFormatLite::FieldTypeToCppType(FieldType type) {
586  return kFieldTypeToCppTypeMap[type];
587}
588
589inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) {
590  return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
591}
592
593inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) {
594  return static_cast<WireType>(tag & kTagTypeMask);
595}
596
597inline int WireFormatLite::GetTagFieldNumber(uint32 tag) {
598  return static_cast<int>(tag >> kTagTypeBits);
599}
600
601inline int WireFormatLite::TagSize(int field_number,
602                                   WireFormatLite::FieldType type) {
603  int result = io::CodedOutputStream::VarintSize32(
604    field_number << kTagTypeBits);
605  if (type == TYPE_GROUP) {
606    // Groups have both a start and an end tag.
607    return result * 2;
608  } else {
609    return result;
610  }
611}
612
613inline uint32 WireFormatLite::EncodeFloat(float value) {
614  union {float f; uint32 i;};
615  f = value;
616  return i;
617}
618
619inline float WireFormatLite::DecodeFloat(uint32 value) {
620  union {float f; uint32 i;};
621  i = value;
622  return f;
623}
624
625inline uint64 WireFormatLite::EncodeDouble(double value) {
626  union {double f; uint64 i;};
627  f = value;
628  return i;
629}
630
631inline double WireFormatLite::DecodeDouble(uint64 value) {
632  union {double f; uint64 i;};
633  i = value;
634  return f;
635}
636
637// ZigZag Transform:  Encodes signed integers so that they can be
638// effectively used with varint encoding.
639//
640// varint operates on unsigned integers, encoding smaller numbers into
641// fewer bytes.  If you try to use it on a signed integer, it will treat
642// this number as a very large unsigned integer, which means that even
643// small signed numbers like -1 will take the maximum number of bytes
644// (10) to encode.  ZigZagEncode() maps signed integers to unsigned
645// in such a way that those with a small absolute value will have smaller
646// encoded values, making them appropriate for encoding using varint.
647//
648//       int32 ->     uint32
649// -------------------------
650//           0 ->          0
651//          -1 ->          1
652//           1 ->          2
653//          -2 ->          3
654//         ... ->        ...
655//  2147483647 -> 4294967294
656// -2147483648 -> 4294967295
657//
658//        >> encode >>
659//        << decode <<
660
661inline uint32 WireFormatLite::ZigZagEncode32(int32 n) {
662  // Note:  the right-shift must be arithmetic
663  return (static_cast<uint32>(n) << 1) ^ (n >> 31);
664}
665
666inline int32 WireFormatLite::ZigZagDecode32(uint32 n) {
667  return (n >> 1) ^ -static_cast<int32>(n & 1);
668}
669
670inline uint64 WireFormatLite::ZigZagEncode64(int64 n) {
671  // Note:  the right-shift must be arithmetic
672  return (static_cast<uint64>(n) << 1) ^ (n >> 63);
673}
674
675inline int64 WireFormatLite::ZigZagDecode64(uint64 n) {
676  return (n >> 1) ^ -static_cast<int64>(n & 1);
677}
678
679// String is for UTF-8 text only, but, even so, ReadString() can simply
680// call ReadBytes().
681
682inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
683                                       string* value) {
684  return ReadBytes(input, value);
685}
686
687inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
688                                       string** p) {
689  return ReadBytes(input, p);
690}
691
692}  // namespace internal
693}  // namespace protobuf
694
695}  // namespace google
696#endif  // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
697