1//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the set of low-level target independent types which various
11// values in the code generator are.  This allows the target specific behavior
12// of instructions to be described to target independent passes.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_VALUETYPES_H
17#define LLVM_CODEGEN_VALUETYPES_H
18
19#include <cassert>
20#include <string>
21#include "llvm/Support/DataTypes.h"
22#include "llvm/Support/MathExtras.h"
23
24namespace llvm {
25  class Type;
26  class LLVMContext;
27  struct EVT;
28
29  /// MVT - Machine Value Type.  Every type that is supported natively by some
30  /// processor targeted by LLVM occurs here.  This means that any legal value
31  /// type can be represented by a MVT.
32  class MVT {
33  public:
34    enum SimpleValueType {
35      // If you change this numbering, you must change the values in
36      // ValueTypes.td as well!
37      Other          =   0,   // This is a non-standard value
38      i1             =   1,   // This is a 1 bit integer value
39      i8             =   2,   // This is an 8 bit integer value
40      i16            =   3,   // This is a 16 bit integer value
41      i32            =   4,   // This is a 32 bit integer value
42      i64            =   5,   // This is a 64 bit integer value
43      i128           =   6,   // This is a 128 bit integer value
44
45      FIRST_INTEGER_VALUETYPE = i1,
46      LAST_INTEGER_VALUETYPE  = i128,
47
48      f32            =   7,   // This is a 32 bit floating point value
49      f64            =   8,   // This is a 64 bit floating point value
50      f80            =   9,   // This is a 80 bit floating point value
51      f128           =  10,   // This is a 128 bit floating point value
52      ppcf128        =  11,   // This is a PPC 128-bit floating point value
53
54      v2i8           =  12,   //  2 x i8
55      v4i8           =  13,   //  4 x i8
56      v8i8           =  14,   //  8 x i8
57      v16i8          =  15,   // 16 x i8
58      v32i8          =  16,   // 32 x i8
59      v2i16          =  17,   //  2 x i16
60      v4i16          =  18,   //  4 x i16
61      v8i16          =  19,   //  8 x i16
62      v16i16         =  20,   // 16 x i16
63      v2i32          =  21,   //  2 x i32
64      v4i32          =  22,   //  4 x i32
65      v8i32          =  23,   //  8 x i32
66      v1i64          =  24,   //  1 x i64
67      v2i64          =  25,   //  2 x i64
68      v4i64          =  26,   //  4 x i64
69      v8i64          =  27,   //  8 x i64
70
71      v2f32          =  28,   //  2 x f32
72      v4f32          =  29,   //  4 x f32
73      v8f32          =  30,   //  8 x f32
74      v2f64          =  31,   //  2 x f64
75      v4f64          =  32,   //  4 x f64
76
77      FIRST_VECTOR_VALUETYPE = v2i8,
78      LAST_VECTOR_VALUETYPE  = v4f64,
79
80      x86mmx         =  33,   // This is an X86 MMX value
81
82      Glue           =  34,   // This glues nodes together during pre-RA sched
83
84      isVoid         =  35,   // This has no value
85
86      untyped        =  36,   // This value takes a register, but has
87                              // unspecified type.  The register class
88                              // will be determined by the opcode.
89
90      LAST_VALUETYPE =  37,   // This always remains at the end of the list.
91
92      // This is the current maximum for LAST_VALUETYPE.
93      // MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
94      // This value must be a multiple of 32.
95      MAX_ALLOWED_VALUETYPE = 64,
96
97      // Metadata - This is MDNode or MDString.
98      Metadata       = 250,
99
100      // iPTRAny - An int value the size of the pointer of the current
101      // target to any address space. This must only be used internal to
102      // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
103      iPTRAny        = 251,
104
105      // vAny - A vector with any length and element size. This is used
106      // for intrinsics that have overloadings based on vector types.
107      // This is only for tblgen's consumption!
108      vAny           = 252,
109
110      // fAny - Any floating-point or vector floating-point value. This is used
111      // for intrinsics that have overloadings based on floating-point types.
112      // This is only for tblgen's consumption!
113      fAny           = 253,
114
115      // iAny - An integer or vector integer value of any bit width. This is
116      // used for intrinsics that have overloadings based on integer bit widths.
117      // This is only for tblgen's consumption!
118      iAny           = 254,
119
120      // iPTR - An int value the size of the pointer of the current
121      // target.  This should only be used internal to tblgen!
122      iPTR           = 255,
123
124      // LastSimpleValueType - The greatest valid SimpleValueType value.
125      LastSimpleValueType = 255,
126
127      // INVALID_SIMPLE_VALUE_TYPE - Simple value types greater than or equal
128      // to this are considered extended value types.
129      INVALID_SIMPLE_VALUE_TYPE = LastSimpleValueType + 1
130    };
131
132    SimpleValueType SimpleTy;
133
134    MVT() : SimpleTy((SimpleValueType)(INVALID_SIMPLE_VALUE_TYPE)) {}
135    MVT(SimpleValueType SVT) : SimpleTy(SVT) { }
136
137    bool operator>(const MVT& S)  const { return SimpleTy >  S.SimpleTy; }
138    bool operator<(const MVT& S)  const { return SimpleTy <  S.SimpleTy; }
139    bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
140    bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
141    bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
142    bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
143
144    /// isFloatingPoint - Return true if this is a FP, or a vector FP type.
145    bool isFloatingPoint() const {
146      return ((SimpleTy >= MVT::f32 && SimpleTy <= MVT::ppcf128) ||
147	      (SimpleTy >= MVT::v2f32 && SimpleTy <= MVT::v4f64));
148    }
149
150    /// isInteger - Return true if this is an integer, or a vector integer type.
151    bool isInteger() const {
152      return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
153               SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
154	      (SimpleTy >= MVT::v2i8 && SimpleTy <= MVT::v8i64));
155    }
156
157    /// isVector - Return true if this is a vector value type.
158    bool isVector() const {
159      return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
160              SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
161    }
162
163    /// isPow2VectorType - Returns true if the given vector is a power of 2.
164    bool isPow2VectorType() const {
165      unsigned NElts = getVectorNumElements();
166      return !(NElts & (NElts - 1));
167    }
168
169    /// getPow2VectorType - Widens the length of the given vector MVT up to
170    /// the nearest power of 2 and returns that type.
171    MVT getPow2VectorType() const {
172      if (isPow2VectorType())
173        return *this;
174
175      unsigned NElts = getVectorNumElements();
176      unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
177      return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
178    }
179
180    /// getScalarType - If this is a vector type, return the element type,
181    /// otherwise return this.
182    MVT getScalarType() const {
183      return isVector() ? getVectorElementType() : *this;
184    }
185
186    MVT getVectorElementType() const {
187      switch (SimpleTy) {
188      default:
189        return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
190      case v2i8 :
191      case v4i8 :
192      case v8i8 :
193      case v16i8:
194      case v32i8: return i8;
195      case v2i16:
196      case v4i16:
197      case v8i16:
198      case v16i16: return i16;
199      case v2i32:
200      case v4i32:
201      case v8i32: return i32;
202      case v1i64:
203      case v2i64:
204      case v4i64:
205      case v8i64: return i64;
206      case v2f32:
207      case v4f32:
208      case v8f32: return f32;
209      case v2f64:
210      case v4f64: return f64;
211      }
212    }
213
214    unsigned getVectorNumElements() const {
215      switch (SimpleTy) {
216      default:
217        return ~0U;
218      case v32i8: return 32;
219      case v16i8:
220      case v16i16: return 16;
221      case v8i8 :
222      case v8i16:
223      case v8i32:
224      case v8i64:
225      case v8f32: return 8;
226      case v4i8:
227      case v4i16:
228      case v4i32:
229      case v4i64:
230      case v4f32:
231      case v4f64: return 4;
232      case v2i8:
233      case v2i16:
234      case v2i32:
235      case v2i64:
236      case v2f32:
237      case v2f64: return 2;
238      case v1i64: return 1;
239      }
240    }
241
242    unsigned getSizeInBits() const {
243      switch (SimpleTy) {
244      case iPTR:
245        assert(0 && "Value type size is target-dependent. Ask TLI.");
246      case iPTRAny:
247      case iAny:
248      case fAny:
249        assert(0 && "Value type is overloaded.");
250      default:
251        assert(0 && "getSizeInBits called on extended MVT.");
252      case i1  :  return 1;
253      case i8  :  return 8;
254      case i16 :
255      case v2i8:  return 16;
256      case f32 :
257      case i32 :
258      case v4i8:
259      case v2i16: return 32;
260      case x86mmx:
261      case f64 :
262      case i64 :
263      case v8i8:
264      case v4i16:
265      case v2i32:
266      case v1i64:
267      case v2f32: return 64;
268      case f80 :  return 80;
269      case f128:
270      case ppcf128:
271      case i128:
272      case v16i8:
273      case v8i16:
274      case v4i32:
275      case v2i64:
276      case v4f32:
277      case v2f64: return 128;
278      case v32i8:
279      case v16i16:
280      case v8i32:
281      case v4i64:
282      case v8f32:
283      case v4f64: return 256;
284      case v8i64: return 512;
285      }
286    }
287
288    /// getStoreSize - Return the number of bytes overwritten by a store
289    /// of the specified value type.
290    unsigned getStoreSize() const {
291      return (getSizeInBits() + 7) / 8;
292    }
293
294    /// getStoreSizeInBits - Return the number of bits overwritten by a store
295    /// of the specified value type.
296    unsigned getStoreSizeInBits() const {
297      return getStoreSize() * 8;
298    }
299
300    static MVT getFloatingPointVT(unsigned BitWidth) {
301      switch (BitWidth) {
302      default:
303        assert(false && "Bad bit width!");
304      case 32:
305        return MVT::f32;
306      case 64:
307        return MVT::f64;
308      case 80:
309        return MVT::f80;
310      case 128:
311        return MVT::f128;
312      }
313    }
314
315    static MVT getIntegerVT(unsigned BitWidth) {
316      switch (BitWidth) {
317      default:
318        return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
319      case 1:
320        return MVT::i1;
321      case 8:
322        return MVT::i8;
323      case 16:
324        return MVT::i16;
325      case 32:
326        return MVT::i32;
327      case 64:
328        return MVT::i64;
329      case 128:
330        return MVT::i128;
331      }
332    }
333
334    static MVT getVectorVT(MVT VT, unsigned NumElements) {
335      switch (VT.SimpleTy) {
336      default:
337        break;
338      case MVT::i8:
339        if (NumElements == 2)  return MVT::v2i8;
340        if (NumElements == 4)  return MVT::v4i8;
341        if (NumElements == 8)  return MVT::v8i8;
342        if (NumElements == 16) return MVT::v16i8;
343        if (NumElements == 32) return MVT::v32i8;
344        break;
345      case MVT::i16:
346        if (NumElements == 2)  return MVT::v2i16;
347        if (NumElements == 4)  return MVT::v4i16;
348        if (NumElements == 8)  return MVT::v8i16;
349        if (NumElements == 16) return MVT::v16i16;
350        break;
351      case MVT::i32:
352        if (NumElements == 2)  return MVT::v2i32;
353        if (NumElements == 4)  return MVT::v4i32;
354        if (NumElements == 8)  return MVT::v8i32;
355        break;
356      case MVT::i64:
357        if (NumElements == 1)  return MVT::v1i64;
358        if (NumElements == 2)  return MVT::v2i64;
359        if (NumElements == 4)  return MVT::v4i64;
360        if (NumElements == 8)  return MVT::v8i64;
361        break;
362      case MVT::f32:
363        if (NumElements == 2)  return MVT::v2f32;
364        if (NumElements == 4)  return MVT::v4f32;
365        if (NumElements == 8)  return MVT::v8f32;
366        break;
367      case MVT::f64:
368        if (NumElements == 2)  return MVT::v2f64;
369        if (NumElements == 4)  return MVT::v4f64;
370        break;
371      }
372      return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
373    }
374  };
375
376
377  /// EVT - Extended Value Type.  Capable of holding value types which are not
378  /// native for any processor (such as the i12345 type), as well as the types
379  /// a MVT can represent.
380  struct EVT {
381  private:
382    MVT V;
383    Type *LLVMTy;
384
385  public:
386    EVT() : V((MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE)),
387            LLVMTy(0) {}
388    EVT(MVT::SimpleValueType SVT) : V(SVT), LLVMTy(0) { }
389    EVT(MVT S) : V(S), LLVMTy(0) {}
390
391    bool operator==(EVT VT) const {
392      return !(*this != VT);
393    }
394    bool operator!=(EVT VT) const {
395      if (V.SimpleTy != VT.V.SimpleTy)
396        return true;
397      if (V.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
398        return LLVMTy != VT.LLVMTy;
399      return false;
400    }
401
402    /// getFloatingPointVT - Returns the EVT that represents a floating point
403    /// type with the given number of bits.  There are two floating point types
404    /// with 128 bits - this returns f128 rather than ppcf128.
405    static EVT getFloatingPointVT(unsigned BitWidth) {
406      return MVT::getFloatingPointVT(BitWidth);
407    }
408
409    /// getIntegerVT - Returns the EVT that represents an integer with the given
410    /// number of bits.
411    static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) {
412      MVT M = MVT::getIntegerVT(BitWidth);
413      if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE)
414        return M;
415      return getExtendedIntegerVT(Context, BitWidth);
416    }
417
418    /// getVectorVT - Returns the EVT that represents a vector NumElements in
419    /// length, where each element is of type VT.
420    static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements) {
421      MVT M = MVT::getVectorVT(VT.V, NumElements);
422      if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE)
423        return M;
424      return getExtendedVectorVT(Context, VT, NumElements);
425    }
426
427    /// getIntVectorWithNumElements - Return any integer vector type that has
428    /// the specified number of elements.
429    static EVT getIntVectorWithNumElements(LLVMContext &C, unsigned NumElts) {
430      switch (NumElts) {
431      default: return getVectorVT(C, MVT::i8, NumElts);
432      case  1: return MVT::v1i64;
433      case  2: return MVT::v2i32;
434      case  4: return MVT::v4i16;
435      case  8: return MVT::v8i8;
436      case 16: return MVT::v16i8;
437      }
438      return MVT::INVALID_SIMPLE_VALUE_TYPE;
439    }
440
441    /// changeVectorElementTypeToInteger - Return a vector with the same number
442    /// of elements as this vector, but with the element type converted to an
443    /// integer type with the same bitwidth.
444    EVT changeVectorElementTypeToInteger() const {
445      if (!isSimple())
446        return changeExtendedVectorElementTypeToInteger();
447      MVT EltTy = getSimpleVT().getVectorElementType();
448      unsigned BitWidth = EltTy.getSizeInBits();
449      MVT IntTy = MVT::getIntegerVT(BitWidth);
450      MVT VecTy = MVT::getVectorVT(IntTy, getVectorNumElements());
451      assert(VecTy != MVT::INVALID_SIMPLE_VALUE_TYPE &&
452             "Simple vector VT not representable by simple integer vector VT!");
453      return VecTy;
454    }
455
456    /// isSimple - Test if the given EVT is simple (as opposed to being
457    /// extended).
458    bool isSimple() const {
459      return V.SimpleTy <= MVT::LastSimpleValueType;
460    }
461
462    /// isExtended - Test if the given EVT is extended (as opposed to
463    /// being simple).
464    bool isExtended() const {
465      return !isSimple();
466    }
467
468    /// isFloatingPoint - Return true if this is a FP, or a vector FP type.
469    bool isFloatingPoint() const {
470      return isSimple() ? V.isFloatingPoint() : isExtendedFloatingPoint();
471    }
472
473    /// isInteger - Return true if this is an integer, or a vector integer type.
474    bool isInteger() const {
475      return isSimple() ? V.isInteger() : isExtendedInteger();
476    }
477
478    /// isVector - Return true if this is a vector value type.
479    bool isVector() const {
480      return isSimple() ? V.isVector() : isExtendedVector();
481    }
482
483    /// is64BitVector - Return true if this is a 64-bit vector type.
484    bool is64BitVector() const {
485      if (!isSimple())
486        return isExtended64BitVector();
487
488      return (V == MVT::v8i8  || V==MVT::v4i16 || V==MVT::v2i32 ||
489              V == MVT::v1i64 || V==MVT::v2f32);
490    }
491
492    /// is128BitVector - Return true if this is a 128-bit vector type.
493    bool is128BitVector() const {
494      if (!isSimple())
495        return isExtended128BitVector();
496      return (V==MVT::v16i8 || V==MVT::v8i16 || V==MVT::v4i32 ||
497              V==MVT::v2i64 || V==MVT::v4f32 || V==MVT::v2f64);
498    }
499
500    /// is256BitVector - Return true if this is a 256-bit vector type.
501    inline bool is256BitVector() const {
502      if (!isSimple())
503        return isExtended256BitVector();
504      return (V == MVT::v8f32  || V == MVT::v4f64 || V == MVT::v32i8 ||
505              V == MVT::v16i16 || V == MVT::v8i32 || V == MVT::v4i64);
506    }
507
508    /// is512BitVector - Return true if this is a 512-bit vector type.
509    inline bool is512BitVector() const {
510      return isSimple() ? (V == MVT::v8i64) : isExtended512BitVector();
511    }
512
513    /// isOverloaded - Return true if this is an overloaded type for TableGen.
514    bool isOverloaded() const {
515      return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny);
516    }
517
518    /// isByteSized - Return true if the bit size is a multiple of 8.
519    bool isByteSized() const {
520      return (getSizeInBits() & 7) == 0;
521    }
522
523    /// isRound - Return true if the size is a power-of-two number of bytes.
524    bool isRound() const {
525      unsigned BitSize = getSizeInBits();
526      return BitSize >= 8 && !(BitSize & (BitSize - 1));
527    }
528
529    /// bitsEq - Return true if this has the same number of bits as VT.
530    bool bitsEq(EVT VT) const {
531      if (EVT::operator==(VT)) return true;
532      return getSizeInBits() == VT.getSizeInBits();
533    }
534
535    /// bitsGT - Return true if this has more bits than VT.
536    bool bitsGT(EVT VT) const {
537      if (EVT::operator==(VT)) return false;
538      return getSizeInBits() > VT.getSizeInBits();
539    }
540
541    /// bitsGE - Return true if this has no less bits than VT.
542    bool bitsGE(EVT VT) const {
543      if (EVT::operator==(VT)) return true;
544      return getSizeInBits() >= VT.getSizeInBits();
545    }
546
547    /// bitsLT - Return true if this has less bits than VT.
548    bool bitsLT(EVT VT) const {
549      if (EVT::operator==(VT)) return false;
550      return getSizeInBits() < VT.getSizeInBits();
551    }
552
553    /// bitsLE - Return true if this has no more bits than VT.
554    bool bitsLE(EVT VT) const {
555      if (EVT::operator==(VT)) return true;
556      return getSizeInBits() <= VT.getSizeInBits();
557    }
558
559
560    /// getSimpleVT - Return the SimpleValueType held in the specified
561    /// simple EVT.
562    MVT getSimpleVT() const {
563      assert(isSimple() && "Expected a SimpleValueType!");
564      return V;
565    }
566
567    /// getScalarType - If this is a vector type, return the element type,
568    /// otherwise return this.
569    EVT getScalarType() const {
570      return isVector() ? getVectorElementType() : *this;
571    }
572
573    /// getVectorElementType - Given a vector type, return the type of
574    /// each element.
575    EVT getVectorElementType() const {
576      assert(isVector() && "Invalid vector type!");
577      if (isSimple())
578        return V.getVectorElementType();
579      return getExtendedVectorElementType();
580    }
581
582    /// getVectorNumElements - Given a vector type, return the number of
583    /// elements it contains.
584    unsigned getVectorNumElements() const {
585      assert(isVector() && "Invalid vector type!");
586      if (isSimple())
587        return V.getVectorNumElements();
588      return getExtendedVectorNumElements();
589    }
590
591    /// getSizeInBits - Return the size of the specified value type in bits.
592    unsigned getSizeInBits() const {
593      if (isSimple())
594        return V.getSizeInBits();
595      return getExtendedSizeInBits();
596    }
597
598    /// getStoreSize - Return the number of bytes overwritten by a store
599    /// of the specified value type.
600    unsigned getStoreSize() const {
601      return (getSizeInBits() + 7) / 8;
602    }
603
604    /// getStoreSizeInBits - Return the number of bits overwritten by a store
605    /// of the specified value type.
606    unsigned getStoreSizeInBits() const {
607      return getStoreSize() * 8;
608    }
609
610    /// getRoundIntegerType - Rounds the bit-width of the given integer EVT up
611    /// to the nearest power of two (and at least to eight), and returns the
612    /// integer EVT with that number of bits.
613    EVT getRoundIntegerType(LLVMContext &Context) const {
614      assert(isInteger() && !isVector() && "Invalid integer type!");
615      unsigned BitWidth = getSizeInBits();
616      if (BitWidth <= 8)
617        return EVT(MVT::i8);
618      return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth));
619    }
620
621    /// getHalfSizedIntegerVT - Finds the smallest simple value type that is
622    /// greater than or equal to half the width of this EVT. If no simple
623    /// value type can be found, an extended integer value type of half the
624    /// size (rounded up) is returned.
625    EVT getHalfSizedIntegerVT(LLVMContext &Context) const {
626      assert(isInteger() && !isVector() && "Invalid integer type!");
627      unsigned EVTSize = getSizeInBits();
628      for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
629          IntVT <= MVT::LAST_INTEGER_VALUETYPE; ++IntVT) {
630        EVT HalfVT = EVT((MVT::SimpleValueType)IntVT);
631        if (HalfVT.getSizeInBits() * 2 >= EVTSize)
632          return HalfVT;
633      }
634      return getIntegerVT(Context, (EVTSize + 1) / 2);
635    }
636
637    /// isPow2VectorType - Returns true if the given vector is a power of 2.
638    bool isPow2VectorType() const {
639      unsigned NElts = getVectorNumElements();
640      return !(NElts & (NElts - 1));
641    }
642
643    /// getPow2VectorType - Widens the length of the given vector EVT up to
644    /// the nearest power of 2 and returns that type.
645    EVT getPow2VectorType(LLVMContext &Context) const {
646      if (!isPow2VectorType()) {
647        unsigned NElts = getVectorNumElements();
648        unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
649        return EVT::getVectorVT(Context, getVectorElementType(), Pow2NElts);
650      }
651      else {
652        return *this;
653      }
654    }
655
656    /// getEVTString - This function returns value type as a string,
657    /// e.g. "i32".
658    std::string getEVTString() const;
659
660    /// getTypeForEVT - This method returns an LLVM type corresponding to the
661    /// specified EVT.  For integer types, this returns an unsigned type.  Note
662    /// that this will abort for types that cannot be represented.
663    Type *getTypeForEVT(LLVMContext &Context) const;
664
665    /// getEVT - Return the value type corresponding to the specified type.
666    /// This returns all pointers as iPTR.  If HandleUnknown is true, unknown
667    /// types are returned as Other, otherwise they are invalid.
668    static EVT getEVT(Type *Ty, bool HandleUnknown = false);
669
670    intptr_t getRawBits() {
671      if (isSimple())
672        return V.SimpleTy;
673      else
674        return (intptr_t)(LLVMTy);
675    }
676
677    /// compareRawBits - A meaningless but well-behaved order, useful for
678    /// constructing containers.
679    struct compareRawBits {
680      bool operator()(EVT L, EVT R) const {
681        if (L.V.SimpleTy == R.V.SimpleTy)
682          return L.LLVMTy < R.LLVMTy;
683        else
684          return L.V.SimpleTy < R.V.SimpleTy;
685      }
686    };
687
688  private:
689    // Methods for handling the Extended-type case in functions above.
690    // These are all out-of-line to prevent users of this header file
691    // from having a dependency on Type.h.
692    EVT changeExtendedVectorElementTypeToInteger() const;
693    static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth);
694    static EVT getExtendedVectorVT(LLVMContext &C, EVT VT,
695                                   unsigned NumElements);
696    bool isExtendedFloatingPoint() const;
697    bool isExtendedInteger() const;
698    bool isExtendedVector() const;
699    bool isExtended64BitVector() const;
700    bool isExtended128BitVector() const;
701    bool isExtended256BitVector() const;
702    bool isExtended512BitVector() const;
703    EVT getExtendedVectorElementType() const;
704    unsigned getExtendedVectorNumElements() const;
705    unsigned getExtendedSizeInBits() const;
706  };
707
708} // End llvm namespace
709
710#endif
711