1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Metadata.h"
20#include "llvm/Module.h"
21#include "llvm/Type.h"
22#include "llvm/Value.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInstrDesc.h"
31#include "llvm/MC/MCSymbol.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/DebugInfo.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/LeakDetector.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/FoldingSet.h"
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46// MachineOperand Implementation
47//===----------------------------------------------------------------------===//
48
49/// AddRegOperandToRegInfo - Add this register operand to the specified
50/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
51/// explicitly nulled out.
52void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
53  assert(isReg() && "Can only add reg operand to use lists");
54
55  // If the reginfo pointer is null, just explicitly null out or next/prev
56  // pointers, to ensure they are not garbage.
57  if (RegInfo == 0) {
58    Contents.Reg.Prev = 0;
59    Contents.Reg.Next = 0;
60    return;
61  }
62
63  // Otherwise, add this operand to the head of the registers use/def list.
64  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
65
66  // For SSA values, we prefer to keep the definition at the start of the list.
67  // we do this by skipping over the definition if it is at the head of the
68  // list.
69  if (*Head && (*Head)->isDef())
70    Head = &(*Head)->Contents.Reg.Next;
71
72  Contents.Reg.Next = *Head;
73  if (Contents.Reg.Next) {
74    assert(getReg() == Contents.Reg.Next->getReg() &&
75           "Different regs on the same list!");
76    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
77  }
78
79  Contents.Reg.Prev = Head;
80  *Head = this;
81}
82
83/// RemoveRegOperandFromRegInfo - Remove this register operand from the
84/// MachineRegisterInfo it is linked with.
85void MachineOperand::RemoveRegOperandFromRegInfo() {
86  assert(isOnRegUseList() && "Reg operand is not on a use list");
87  // Unlink this from the doubly linked list of operands.
88  MachineOperand *NextOp = Contents.Reg.Next;
89  *Contents.Reg.Prev = NextOp;
90  if (NextOp) {
91    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
92    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
93  }
94  Contents.Reg.Prev = 0;
95  Contents.Reg.Next = 0;
96}
97
98void MachineOperand::setReg(unsigned Reg) {
99  if (getReg() == Reg) return; // No change.
100
101  // Otherwise, we have to change the register.  If this operand is embedded
102  // into a machine function, we need to update the old and new register's
103  // use/def lists.
104  if (MachineInstr *MI = getParent())
105    if (MachineBasicBlock *MBB = MI->getParent())
106      if (MachineFunction *MF = MBB->getParent()) {
107        RemoveRegOperandFromRegInfo();
108        SmallContents.RegNo = Reg;
109        AddRegOperandToRegInfo(&MF->getRegInfo());
110        return;
111      }
112
113  // Otherwise, just change the register, no problem.  :)
114  SmallContents.RegNo = Reg;
115}
116
117void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
118                                  const TargetRegisterInfo &TRI) {
119  assert(TargetRegisterInfo::isVirtualRegister(Reg));
120  if (SubIdx && getSubReg())
121    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
122  setReg(Reg);
123  if (SubIdx)
124    setSubReg(SubIdx);
125}
126
127void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
128  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
129  if (getSubReg()) {
130    Reg = TRI.getSubReg(Reg, getSubReg());
131    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
132    // That won't happen in legal code.
133    setSubReg(0);
134  }
135  setReg(Reg);
136}
137
138/// ChangeToImmediate - Replace this operand with a new immediate operand of
139/// the specified value.  If an operand is known to be an immediate already,
140/// the setImm method should be used.
141void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
142  // If this operand is currently a register operand, and if this is in a
143  // function, deregister the operand from the register's use/def list.
144  if (isReg() && getParent() && getParent()->getParent() &&
145      getParent()->getParent()->getParent())
146    RemoveRegOperandFromRegInfo();
147
148  OpKind = MO_Immediate;
149  Contents.ImmVal = ImmVal;
150}
151
152/// ChangeToRegister - Replace this operand with a new register operand of
153/// the specified value.  If an operand is known to be an register already,
154/// the setReg method should be used.
155void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
156                                      bool isKill, bool isDead, bool isUndef,
157                                      bool isDebug) {
158  // If this operand is already a register operand, use setReg to update the
159  // register's use/def lists.
160  if (isReg()) {
161    assert(!isEarlyClobber());
162    setReg(Reg);
163  } else {
164    // Otherwise, change this to a register and set the reg#.
165    OpKind = MO_Register;
166    SmallContents.RegNo = Reg;
167
168    // If this operand is embedded in a function, add the operand to the
169    // register's use/def list.
170    if (MachineInstr *MI = getParent())
171      if (MachineBasicBlock *MBB = MI->getParent())
172        if (MachineFunction *MF = MBB->getParent())
173          AddRegOperandToRegInfo(&MF->getRegInfo());
174  }
175
176  IsDef = isDef;
177  IsImp = isImp;
178  IsKill = isKill;
179  IsDead = isDead;
180  IsUndef = isUndef;
181  IsEarlyClobber = false;
182  IsDebug = isDebug;
183  SubReg = 0;
184}
185
186/// isIdenticalTo - Return true if this operand is identical to the specified
187/// operand.
188bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189  if (getType() != Other.getType() ||
190      getTargetFlags() != Other.getTargetFlags())
191    return false;
192
193  switch (getType()) {
194  default: llvm_unreachable("Unrecognized operand type");
195  case MachineOperand::MO_Register:
196    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
197           getSubReg() == Other.getSubReg();
198  case MachineOperand::MO_Immediate:
199    return getImm() == Other.getImm();
200  case MachineOperand::MO_CImmediate:
201    return getCImm() == Other.getCImm();
202  case MachineOperand::MO_FPImmediate:
203    return getFPImm() == Other.getFPImm();
204  case MachineOperand::MO_MachineBasicBlock:
205    return getMBB() == Other.getMBB();
206  case MachineOperand::MO_FrameIndex:
207    return getIndex() == Other.getIndex();
208  case MachineOperand::MO_ConstantPoolIndex:
209    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210  case MachineOperand::MO_JumpTableIndex:
211    return getIndex() == Other.getIndex();
212  case MachineOperand::MO_GlobalAddress:
213    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214  case MachineOperand::MO_ExternalSymbol:
215    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216           getOffset() == Other.getOffset();
217  case MachineOperand::MO_BlockAddress:
218    return getBlockAddress() == Other.getBlockAddress();
219  case MachineOperand::MO_MCSymbol:
220    return getMCSymbol() == Other.getMCSymbol();
221  case MachineOperand::MO_Metadata:
222    return getMetadata() == Other.getMetadata();
223  }
224}
225
226/// print - Print the specified machine operand.
227///
228void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
229  // If the instruction is embedded into a basic block, we can find the
230  // target info for the instruction.
231  if (!TM)
232    if (const MachineInstr *MI = getParent())
233      if (const MachineBasicBlock *MBB = MI->getParent())
234        if (const MachineFunction *MF = MBB->getParent())
235          TM = &MF->getTarget();
236  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
237
238  switch (getType()) {
239  case MachineOperand::MO_Register:
240    OS << PrintReg(getReg(), TRI, getSubReg());
241
242    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
243        isEarlyClobber()) {
244      OS << '<';
245      bool NeedComma = false;
246      if (isDef()) {
247        if (NeedComma) OS << ',';
248        if (isEarlyClobber())
249          OS << "earlyclobber,";
250        if (isImplicit())
251          OS << "imp-";
252        OS << "def";
253        NeedComma = true;
254      } else if (isImplicit()) {
255          OS << "imp-use";
256          NeedComma = true;
257      }
258
259      if (isKill() || isDead() || isUndef()) {
260        if (NeedComma) OS << ',';
261        if (isKill())  OS << "kill";
262        if (isDead())  OS << "dead";
263        if (isUndef()) {
264          if (isKill() || isDead())
265            OS << ',';
266          OS << "undef";
267        }
268      }
269      OS << '>';
270    }
271    break;
272  case MachineOperand::MO_Immediate:
273    OS << getImm();
274    break;
275  case MachineOperand::MO_CImmediate:
276    getCImm()->getValue().print(OS, false);
277    break;
278  case MachineOperand::MO_FPImmediate:
279    if (getFPImm()->getType()->isFloatTy())
280      OS << getFPImm()->getValueAPF().convertToFloat();
281    else
282      OS << getFPImm()->getValueAPF().convertToDouble();
283    break;
284  case MachineOperand::MO_MachineBasicBlock:
285    OS << "<BB#" << getMBB()->getNumber() << ">";
286    break;
287  case MachineOperand::MO_FrameIndex:
288    OS << "<fi#" << getIndex() << '>';
289    break;
290  case MachineOperand::MO_ConstantPoolIndex:
291    OS << "<cp#" << getIndex();
292    if (getOffset()) OS << "+" << getOffset();
293    OS << '>';
294    break;
295  case MachineOperand::MO_JumpTableIndex:
296    OS << "<jt#" << getIndex() << '>';
297    break;
298  case MachineOperand::MO_GlobalAddress:
299    OS << "<ga:";
300    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
301    if (getOffset()) OS << "+" << getOffset();
302    OS << '>';
303    break;
304  case MachineOperand::MO_ExternalSymbol:
305    OS << "<es:" << getSymbolName();
306    if (getOffset()) OS << "+" << getOffset();
307    OS << '>';
308    break;
309  case MachineOperand::MO_BlockAddress:
310    OS << '<';
311    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
312    OS << '>';
313    break;
314  case MachineOperand::MO_Metadata:
315    OS << '<';
316    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
317    OS << '>';
318    break;
319  case MachineOperand::MO_MCSymbol:
320    OS << "<MCSym=" << *getMCSymbol() << '>';
321    break;
322  default:
323    llvm_unreachable("Unrecognized operand type");
324  }
325
326  if (unsigned TF = getTargetFlags())
327    OS << "[TF=" << TF << ']';
328}
329
330//===----------------------------------------------------------------------===//
331// MachineMemOperand Implementation
332//===----------------------------------------------------------------------===//
333
334/// getAddrSpace - Return the LLVM IR address space number that this pointer
335/// points into.
336unsigned MachinePointerInfo::getAddrSpace() const {
337  if (V == 0) return 0;
338  return cast<PointerType>(V->getType())->getAddressSpace();
339}
340
341/// getConstantPool - Return a MachinePointerInfo record that refers to the
342/// constant pool.
343MachinePointerInfo MachinePointerInfo::getConstantPool() {
344  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
345}
346
347/// getFixedStack - Return a MachinePointerInfo record that refers to the
348/// the specified FrameIndex.
349MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
350  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
351}
352
353MachinePointerInfo MachinePointerInfo::getJumpTable() {
354  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
355}
356
357MachinePointerInfo MachinePointerInfo::getGOT() {
358  return MachinePointerInfo(PseudoSourceValue::getGOT());
359}
360
361MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
362  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
363}
364
365MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
366                                     uint64_t s, unsigned int a,
367                                     const MDNode *TBAAInfo)
368  : PtrInfo(ptrinfo), Size(s),
369    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
370    TBAAInfo(TBAAInfo) {
371  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
372         "invalid pointer value");
373  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
374  assert((isLoad() || isStore()) && "Not a load/store!");
375}
376
377/// Profile - Gather unique data for the object.
378///
379void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
380  ID.AddInteger(getOffset());
381  ID.AddInteger(Size);
382  ID.AddPointer(getValue());
383  ID.AddInteger(Flags);
384}
385
386void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
387  // The Value and Offset may differ due to CSE. But the flags and size
388  // should be the same.
389  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
390  assert(MMO->getSize() == getSize() && "Size mismatch!");
391
392  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
393    // Update the alignment value.
394    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
395      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
396    // Also update the base and offset, because the new alignment may
397    // not be applicable with the old ones.
398    PtrInfo = MMO->PtrInfo;
399  }
400}
401
402/// getAlignment - Return the minimum known alignment in bytes of the
403/// actual memory reference.
404uint64_t MachineMemOperand::getAlignment() const {
405  return MinAlign(getBaseAlignment(), getOffset());
406}
407
408raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
409  assert((MMO.isLoad() || MMO.isStore()) &&
410         "SV has to be a load, store or both.");
411
412  if (MMO.isVolatile())
413    OS << "Volatile ";
414
415  if (MMO.isLoad())
416    OS << "LD";
417  if (MMO.isStore())
418    OS << "ST";
419  OS << MMO.getSize();
420
421  // Print the address information.
422  OS << "[";
423  if (!MMO.getValue())
424    OS << "<unknown>";
425  else
426    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
427
428  // If the alignment of the memory reference itself differs from the alignment
429  // of the base pointer, print the base alignment explicitly, next to the base
430  // pointer.
431  if (MMO.getBaseAlignment() != MMO.getAlignment())
432    OS << "(align=" << MMO.getBaseAlignment() << ")";
433
434  if (MMO.getOffset() != 0)
435    OS << "+" << MMO.getOffset();
436  OS << "]";
437
438  // Print the alignment of the reference.
439  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
440      MMO.getBaseAlignment() != MMO.getSize())
441    OS << "(align=" << MMO.getAlignment() << ")";
442
443  // Print TBAA info.
444  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
445    OS << "(tbaa=";
446    if (TBAAInfo->getNumOperands() > 0)
447      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
448    else
449      OS << "<unknown>";
450    OS << ")";
451  }
452
453  // Print nontemporal info.
454  if (MMO.isNonTemporal())
455    OS << "(nontemporal)";
456
457  return OS;
458}
459
460//===----------------------------------------------------------------------===//
461// MachineInstr Implementation
462//===----------------------------------------------------------------------===//
463
464/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
465/// MCID NULL and no operands.
466MachineInstr::MachineInstr()
467  : MCID(0), Flags(0), AsmPrinterFlags(0),
468    MemRefs(0), MemRefsEnd(0),
469    Parent(0) {
470  // Make sure that we get added to a machine basicblock
471  LeakDetector::addGarbageObject(this);
472}
473
474void MachineInstr::addImplicitDefUseOperands() {
475  if (MCID->ImplicitDefs)
476    for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
477      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
478  if (MCID->ImplicitUses)
479    for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
480      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
481}
482
483/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
484/// implicit operands. It reserves space for the number of operands specified by
485/// the MCInstrDesc.
486MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
487  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
488    MemRefs(0), MemRefsEnd(0), Parent(0) {
489  unsigned NumImplicitOps = 0;
490  if (!NoImp)
491    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
492  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
493  if (!NoImp)
494    addImplicitDefUseOperands();
495  // Make sure that we get added to a machine basicblock
496  LeakDetector::addGarbageObject(this);
497}
498
499/// MachineInstr ctor - As above, but with a DebugLoc.
500MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
501                           bool NoImp)
502  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
503    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
504  unsigned NumImplicitOps = 0;
505  if (!NoImp)
506    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
507  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
508  if (!NoImp)
509    addImplicitDefUseOperands();
510  // Make sure that we get added to a machine basicblock
511  LeakDetector::addGarbageObject(this);
512}
513
514/// MachineInstr ctor - Work exactly the same as the ctor two above, except
515/// that the MachineInstr is created and added to the end of the specified
516/// basic block.
517MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
518  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
519    MemRefs(0), MemRefsEnd(0), Parent(0) {
520  assert(MBB && "Cannot use inserting ctor with null basic block!");
521  unsigned NumImplicitOps =
522    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
523  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
524  addImplicitDefUseOperands();
525  // Make sure that we get added to a machine basicblock
526  LeakDetector::addGarbageObject(this);
527  MBB->push_back(this);  // Add instruction to end of basic block!
528}
529
530/// MachineInstr ctor - As above, but with a DebugLoc.
531///
532MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
533                           const MCInstrDesc &tid)
534  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
535    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
536  assert(MBB && "Cannot use inserting ctor with null basic block!");
537  unsigned NumImplicitOps =
538    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
539  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
540  addImplicitDefUseOperands();
541  // Make sure that we get added to a machine basicblock
542  LeakDetector::addGarbageObject(this);
543  MBB->push_back(this);  // Add instruction to end of basic block!
544}
545
546/// MachineInstr ctor - Copies MachineInstr arg exactly
547///
548MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
549  : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
550    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
551    Parent(0), debugLoc(MI.getDebugLoc()) {
552  Operands.reserve(MI.getNumOperands());
553
554  // Add operands
555  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
556    addOperand(MI.getOperand(i));
557
558  // Copy all the flags.
559  Flags = MI.Flags;
560
561  // Set parent to null.
562  Parent = 0;
563
564  LeakDetector::addGarbageObject(this);
565}
566
567MachineInstr::~MachineInstr() {
568  LeakDetector::removeGarbageObject(this);
569#ifndef NDEBUG
570  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
571    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
572    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
573           "Reg operand def/use list corrupted");
574  }
575#endif
576}
577
578/// getRegInfo - If this instruction is embedded into a MachineFunction,
579/// return the MachineRegisterInfo object for the current function, otherwise
580/// return null.
581MachineRegisterInfo *MachineInstr::getRegInfo() {
582  if (MachineBasicBlock *MBB = getParent())
583    return &MBB->getParent()->getRegInfo();
584  return 0;
585}
586
587/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
588/// this instruction from their respective use lists.  This requires that the
589/// operands already be on their use lists.
590void MachineInstr::RemoveRegOperandsFromUseLists() {
591  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
592    if (Operands[i].isReg())
593      Operands[i].RemoveRegOperandFromRegInfo();
594  }
595}
596
597/// AddRegOperandsToUseLists - Add all of the register operands in
598/// this instruction from their respective use lists.  This requires that the
599/// operands not be on their use lists yet.
600void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
601  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
602    if (Operands[i].isReg())
603      Operands[i].AddRegOperandToRegInfo(&RegInfo);
604  }
605}
606
607
608/// addOperand - Add the specified operand to the instruction.  If it is an
609/// implicit operand, it is added to the end of the operand list.  If it is
610/// an explicit operand it is added at the end of the explicit operand list
611/// (before the first implicit operand).
612void MachineInstr::addOperand(const MachineOperand &Op) {
613  assert(MCID && "Cannot add operands before providing an instr descriptor");
614  bool isImpReg = Op.isReg() && Op.isImplicit();
615  MachineRegisterInfo *RegInfo = getRegInfo();
616
617  // If the Operands backing store is reallocated, all register operands must
618  // be removed and re-added to RegInfo.  It is storing pointers to operands.
619  bool Reallocate = RegInfo &&
620    !Operands.empty() && Operands.size() == Operands.capacity();
621
622  // Find the insert location for the new operand.  Implicit registers go at
623  // the end, everything goes before the implicit regs.
624  unsigned OpNo = Operands.size();
625
626  // Remove all the implicit operands from RegInfo if they need to be shifted.
627  // FIXME: Allow mixed explicit and implicit operands on inline asm.
628  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
629  // implicit-defs, but they must not be moved around.  See the FIXME in
630  // InstrEmitter.cpp.
631  if (!isImpReg && !isInlineAsm()) {
632    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
633      --OpNo;
634      if (RegInfo)
635        Operands[OpNo].RemoveRegOperandFromRegInfo();
636    }
637  }
638
639  // OpNo now points as the desired insertion point.  Unless this is a variadic
640  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
641  assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
642         "Trying to add an operand to a machine instr that is already done!");
643
644  // All operands from OpNo have been removed from RegInfo.  If the Operands
645  // backing store needs to be reallocated, we also need to remove any other
646  // register operands.
647  if (Reallocate)
648    for (unsigned i = 0; i != OpNo; ++i)
649      if (Operands[i].isReg())
650        Operands[i].RemoveRegOperandFromRegInfo();
651
652  // Insert the new operand at OpNo.
653  Operands.insert(Operands.begin() + OpNo, Op);
654  Operands[OpNo].ParentMI = this;
655
656  // The Operands backing store has now been reallocated, so we can re-add the
657  // operands before OpNo.
658  if (Reallocate)
659    for (unsigned i = 0; i != OpNo; ++i)
660      if (Operands[i].isReg())
661        Operands[i].AddRegOperandToRegInfo(RegInfo);
662
663  // When adding a register operand, tell RegInfo about it.
664  if (Operands[OpNo].isReg()) {
665    // Add the new operand to RegInfo, even when RegInfo is NULL.
666    // This will initialize the linked list pointers.
667    Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
668    // If the register operand is flagged as early, mark the operand as such.
669    if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
670      Operands[OpNo].setIsEarlyClobber(true);
671  }
672
673  // Re-add all the implicit ops.
674  if (RegInfo) {
675    for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
676      assert(Operands[i].isReg() && "Should only be an implicit reg!");
677      Operands[i].AddRegOperandToRegInfo(RegInfo);
678    }
679  }
680}
681
682/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
683/// fewer operand than it started with.
684///
685void MachineInstr::RemoveOperand(unsigned OpNo) {
686  assert(OpNo < Operands.size() && "Invalid operand number");
687
688  // Special case removing the last one.
689  if (OpNo == Operands.size()-1) {
690    // If needed, remove from the reg def/use list.
691    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
692      Operands.back().RemoveRegOperandFromRegInfo();
693
694    Operands.pop_back();
695    return;
696  }
697
698  // Otherwise, we are removing an interior operand.  If we have reginfo to
699  // update, remove all operands that will be shifted down from their reg lists,
700  // move everything down, then re-add them.
701  MachineRegisterInfo *RegInfo = getRegInfo();
702  if (RegInfo) {
703    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
704      if (Operands[i].isReg())
705        Operands[i].RemoveRegOperandFromRegInfo();
706    }
707  }
708
709  Operands.erase(Operands.begin()+OpNo);
710
711  if (RegInfo) {
712    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
713      if (Operands[i].isReg())
714        Operands[i].AddRegOperandToRegInfo(RegInfo);
715    }
716  }
717}
718
719/// addMemOperand - Add a MachineMemOperand to the machine instruction.
720/// This function should be used only occasionally. The setMemRefs function
721/// is the primary method for setting up a MachineInstr's MemRefs list.
722void MachineInstr::addMemOperand(MachineFunction &MF,
723                                 MachineMemOperand *MO) {
724  mmo_iterator OldMemRefs = MemRefs;
725  mmo_iterator OldMemRefsEnd = MemRefsEnd;
726
727  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
728  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
729  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
730
731  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
732  NewMemRefs[NewNum - 1] = MO;
733
734  MemRefs = NewMemRefs;
735  MemRefsEnd = NewMemRefsEnd;
736}
737
738bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
739                                 MICheckType Check) const {
740  // If opcodes or number of operands are not the same then the two
741  // instructions are obviously not identical.
742  if (Other->getOpcode() != getOpcode() ||
743      Other->getNumOperands() != getNumOperands())
744    return false;
745
746  // Check operands to make sure they match.
747  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
748    const MachineOperand &MO = getOperand(i);
749    const MachineOperand &OMO = Other->getOperand(i);
750    if (!MO.isReg()) {
751      if (!MO.isIdenticalTo(OMO))
752        return false;
753      continue;
754    }
755
756    // Clients may or may not want to ignore defs when testing for equality.
757    // For example, machine CSE pass only cares about finding common
758    // subexpressions, so it's safe to ignore virtual register defs.
759    if (MO.isDef()) {
760      if (Check == IgnoreDefs)
761        continue;
762      else if (Check == IgnoreVRegDefs) {
763        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
764            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
765          if (MO.getReg() != OMO.getReg())
766            return false;
767      } else {
768        if (!MO.isIdenticalTo(OMO))
769          return false;
770        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
771          return false;
772      }
773    } else {
774      if (!MO.isIdenticalTo(OMO))
775        return false;
776      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
777        return false;
778    }
779  }
780  // If DebugLoc does not match then two dbg.values are not identical.
781  if (isDebugValue())
782    if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
783        && getDebugLoc() != Other->getDebugLoc())
784      return false;
785  return true;
786}
787
788/// removeFromParent - This method unlinks 'this' from the containing basic
789/// block, and returns it, but does not delete it.
790MachineInstr *MachineInstr::removeFromParent() {
791  assert(getParent() && "Not embedded in a basic block!");
792  getParent()->remove(this);
793  return this;
794}
795
796
797/// eraseFromParent - This method unlinks 'this' from the containing basic
798/// block, and deletes it.
799void MachineInstr::eraseFromParent() {
800  assert(getParent() && "Not embedded in a basic block!");
801  getParent()->erase(this);
802}
803
804
805/// getNumExplicitOperands - Returns the number of non-implicit operands.
806///
807unsigned MachineInstr::getNumExplicitOperands() const {
808  unsigned NumOperands = MCID->getNumOperands();
809  if (!MCID->isVariadic())
810    return NumOperands;
811
812  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
813    const MachineOperand &MO = getOperand(i);
814    if (!MO.isReg() || !MO.isImplicit())
815      NumOperands++;
816  }
817  return NumOperands;
818}
819
820bool MachineInstr::isStackAligningInlineAsm() const {
821  if (isInlineAsm()) {
822    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
823    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
824      return true;
825  }
826  return false;
827}
828
829int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
830                                       unsigned *GroupNo) const {
831  assert(isInlineAsm() && "Expected an inline asm instruction");
832  assert(OpIdx < getNumOperands() && "OpIdx out of range");
833
834  // Ignore queries about the initial operands.
835  if (OpIdx < InlineAsm::MIOp_FirstOperand)
836    return -1;
837
838  unsigned Group = 0;
839  unsigned NumOps;
840  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
841       i += NumOps) {
842    const MachineOperand &FlagMO = getOperand(i);
843    // If we reach the implicit register operands, stop looking.
844    if (!FlagMO.isImm())
845      return -1;
846    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
847    if (i + NumOps > OpIdx) {
848      if (GroupNo)
849        *GroupNo = Group;
850      return i;
851    }
852    ++Group;
853  }
854  return -1;
855}
856
857const TargetRegisterClass*
858MachineInstr::getRegClassConstraint(unsigned OpIdx,
859                                    const TargetInstrInfo *TII,
860                                    const TargetRegisterInfo *TRI) const {
861  // Most opcodes have fixed constraints in their MCInstrDesc.
862  if (!isInlineAsm())
863    return TII->getRegClass(getDesc(), OpIdx, TRI);
864
865  if (!getOperand(OpIdx).isReg())
866    return NULL;
867
868  // For tied uses on inline asm, get the constraint from the def.
869  unsigned DefIdx;
870  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
871    OpIdx = DefIdx;
872
873  // Inline asm stores register class constraints in the flag word.
874  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
875  if (FlagIdx < 0)
876    return NULL;
877
878  unsigned Flag = getOperand(FlagIdx).getImm();
879  unsigned RCID;
880  if (InlineAsm::hasRegClassConstraint(Flag, RCID))
881    return TRI->getRegClass(RCID);
882
883  // Assume that all registers in a memory operand are pointers.
884  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
885    return TRI->getPointerRegClass();
886
887  return NULL;
888}
889
890/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
891/// the specific register or -1 if it is not found. It further tightens
892/// the search criteria to a use that kills the register if isKill is true.
893int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
894                                          const TargetRegisterInfo *TRI) const {
895  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
896    const MachineOperand &MO = getOperand(i);
897    if (!MO.isReg() || !MO.isUse())
898      continue;
899    unsigned MOReg = MO.getReg();
900    if (!MOReg)
901      continue;
902    if (MOReg == Reg ||
903        (TRI &&
904         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
905         TargetRegisterInfo::isPhysicalRegister(Reg) &&
906         TRI->isSubRegister(MOReg, Reg)))
907      if (!isKill || MO.isKill())
908        return i;
909  }
910  return -1;
911}
912
913/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
914/// indicating if this instruction reads or writes Reg. This also considers
915/// partial defines.
916std::pair<bool,bool>
917MachineInstr::readsWritesVirtualRegister(unsigned Reg,
918                                         SmallVectorImpl<unsigned> *Ops) const {
919  bool PartDef = false; // Partial redefine.
920  bool FullDef = false; // Full define.
921  bool Use = false;
922
923  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
924    const MachineOperand &MO = getOperand(i);
925    if (!MO.isReg() || MO.getReg() != Reg)
926      continue;
927    if (Ops)
928      Ops->push_back(i);
929    if (MO.isUse())
930      Use |= !MO.isUndef();
931    else if (MO.getSubReg() && !MO.isUndef())
932      // A partial <def,undef> doesn't count as reading the register.
933      PartDef = true;
934    else
935      FullDef = true;
936  }
937  // A partial redefine uses Reg unless there is also a full define.
938  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
939}
940
941/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
942/// the specified register or -1 if it is not found. If isDead is true, defs
943/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
944/// also checks if there is a def of a super-register.
945int
946MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
947                                        const TargetRegisterInfo *TRI) const {
948  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
949  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
950    const MachineOperand &MO = getOperand(i);
951    if (!MO.isReg() || !MO.isDef())
952      continue;
953    unsigned MOReg = MO.getReg();
954    bool Found = (MOReg == Reg);
955    if (!Found && TRI && isPhys &&
956        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
957      if (Overlap)
958        Found = TRI->regsOverlap(MOReg, Reg);
959      else
960        Found = TRI->isSubRegister(MOReg, Reg);
961    }
962    if (Found && (!isDead || MO.isDead()))
963      return i;
964  }
965  return -1;
966}
967
968/// findFirstPredOperandIdx() - Find the index of the first operand in the
969/// operand list that is used to represent the predicate. It returns -1 if
970/// none is found.
971int MachineInstr::findFirstPredOperandIdx() const {
972  // Don't call MCID.findFirstPredOperandIdx() because this variant
973  // is sometimes called on an instruction that's not yet complete, and
974  // so the number of operands is less than the MCID indicates. In
975  // particular, the PTX target does this.
976  const MCInstrDesc &MCID = getDesc();
977  if (MCID.isPredicable()) {
978    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
979      if (MCID.OpInfo[i].isPredicate())
980        return i;
981  }
982
983  return -1;
984}
985
986/// isRegTiedToUseOperand - Given the index of a register def operand,
987/// check if the register def is tied to a source operand, due to either
988/// two-address elimination or inline assembly constraints. Returns the
989/// first tied use operand index by reference is UseOpIdx is not null.
990bool MachineInstr::
991isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
992  if (isInlineAsm()) {
993    assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
994    const MachineOperand &MO = getOperand(DefOpIdx);
995    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
996      return false;
997    // Determine the actual operand index that corresponds to this index.
998    unsigned DefNo = 0;
999    int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1000    if (FlagIdx < 0)
1001      return false;
1002
1003    // Which part of the group is DefOpIdx?
1004    unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1005
1006    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1007         i != e; ++i) {
1008      const MachineOperand &FMO = getOperand(i);
1009      if (!FMO.isImm())
1010        continue;
1011      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1012        continue;
1013      unsigned Idx;
1014      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1015          Idx == DefNo) {
1016        if (UseOpIdx)
1017          *UseOpIdx = (unsigned)i + 1 + DefPart;
1018        return true;
1019      }
1020    }
1021    return false;
1022  }
1023
1024  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1025  const MCInstrDesc &MCID = getDesc();
1026  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1027    const MachineOperand &MO = getOperand(i);
1028    if (MO.isReg() && MO.isUse() &&
1029        MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1030      if (UseOpIdx)
1031        *UseOpIdx = (unsigned)i;
1032      return true;
1033    }
1034  }
1035  return false;
1036}
1037
1038/// isRegTiedToDefOperand - Return true if the operand of the specified index
1039/// is a register use and it is tied to an def operand. It also returns the def
1040/// operand index by reference.
1041bool MachineInstr::
1042isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1043  if (isInlineAsm()) {
1044    const MachineOperand &MO = getOperand(UseOpIdx);
1045    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1046      return false;
1047
1048    // Find the flag operand corresponding to UseOpIdx
1049    int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1050    if (FlagIdx < 0)
1051      return false;
1052
1053    const MachineOperand &UFMO = getOperand(FlagIdx);
1054    unsigned DefNo;
1055    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1056      if (!DefOpIdx)
1057        return true;
1058
1059      unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1060      // Remember to adjust the index. First operand is asm string, second is
1061      // the HasSideEffects and AlignStack bits, then there is a flag for each.
1062      while (DefNo) {
1063        const MachineOperand &FMO = getOperand(DefIdx);
1064        assert(FMO.isImm());
1065        // Skip over this def.
1066        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1067        --DefNo;
1068      }
1069      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1070      return true;
1071    }
1072    return false;
1073  }
1074
1075  const MCInstrDesc &MCID = getDesc();
1076  if (UseOpIdx >= MCID.getNumOperands())
1077    return false;
1078  const MachineOperand &MO = getOperand(UseOpIdx);
1079  if (!MO.isReg() || !MO.isUse())
1080    return false;
1081  int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1082  if (DefIdx == -1)
1083    return false;
1084  if (DefOpIdx)
1085    *DefOpIdx = (unsigned)DefIdx;
1086  return true;
1087}
1088
1089/// clearKillInfo - Clears kill flags on all operands.
1090///
1091void MachineInstr::clearKillInfo() {
1092  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1093    MachineOperand &MO = getOperand(i);
1094    if (MO.isReg() && MO.isUse())
1095      MO.setIsKill(false);
1096  }
1097}
1098
1099/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1100///
1101void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1102  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1103    const MachineOperand &MO = MI->getOperand(i);
1104    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1105      continue;
1106    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1107      MachineOperand &MOp = getOperand(j);
1108      if (!MOp.isIdenticalTo(MO))
1109        continue;
1110      if (MO.isKill())
1111        MOp.setIsKill();
1112      else
1113        MOp.setIsDead();
1114      break;
1115    }
1116  }
1117}
1118
1119/// copyPredicates - Copies predicate operand(s) from MI.
1120void MachineInstr::copyPredicates(const MachineInstr *MI) {
1121  const MCInstrDesc &MCID = MI->getDesc();
1122  if (!MCID.isPredicable())
1123    return;
1124  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1125    if (MCID.OpInfo[i].isPredicate()) {
1126      // Predicated operands must be last operands.
1127      addOperand(MI->getOperand(i));
1128    }
1129  }
1130}
1131
1132void MachineInstr::substituteRegister(unsigned FromReg,
1133                                      unsigned ToReg,
1134                                      unsigned SubIdx,
1135                                      const TargetRegisterInfo &RegInfo) {
1136  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1137    if (SubIdx)
1138      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1139    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1140      MachineOperand &MO = getOperand(i);
1141      if (!MO.isReg() || MO.getReg() != FromReg)
1142        continue;
1143      MO.substPhysReg(ToReg, RegInfo);
1144    }
1145  } else {
1146    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1147      MachineOperand &MO = getOperand(i);
1148      if (!MO.isReg() || MO.getReg() != FromReg)
1149        continue;
1150      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1151    }
1152  }
1153}
1154
1155/// isSafeToMove - Return true if it is safe to move this instruction. If
1156/// SawStore is set to true, it means that there is a store (or call) between
1157/// the instruction's location and its intended destination.
1158bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1159                                AliasAnalysis *AA,
1160                                bool &SawStore) const {
1161  // Ignore stuff that we obviously can't move.
1162  if (MCID->mayStore() || MCID->isCall()) {
1163    SawStore = true;
1164    return false;
1165  }
1166
1167  if (isLabel() || isDebugValue() ||
1168      MCID->isTerminator() || hasUnmodeledSideEffects())
1169    return false;
1170
1171  // See if this instruction does a load.  If so, we have to guarantee that the
1172  // loaded value doesn't change between the load and the its intended
1173  // destination. The check for isInvariantLoad gives the targe the chance to
1174  // classify the load as always returning a constant, e.g. a constant pool
1175  // load.
1176  if (MCID->mayLoad() && !isInvariantLoad(AA))
1177    // Otherwise, this is a real load.  If there is a store between the load and
1178    // end of block, or if the load is volatile, we can't move it.
1179    return !SawStore && !hasVolatileMemoryRef();
1180
1181  return true;
1182}
1183
1184/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1185/// instruction which defined the specified register instead of copying it.
1186bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1187                                 AliasAnalysis *AA,
1188                                 unsigned DstReg) const {
1189  bool SawStore = false;
1190  if (!TII->isTriviallyReMaterializable(this, AA) ||
1191      !isSafeToMove(TII, AA, SawStore))
1192    return false;
1193  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1194    const MachineOperand &MO = getOperand(i);
1195    if (!MO.isReg())
1196      continue;
1197    // FIXME: For now, do not remat any instruction with register operands.
1198    // Later on, we can loosen the restriction is the register operands have
1199    // not been modified between the def and use. Note, this is different from
1200    // MachineSink because the code is no longer in two-address form (at least
1201    // partially).
1202    if (MO.isUse())
1203      return false;
1204    else if (!MO.isDead() && MO.getReg() != DstReg)
1205      return false;
1206  }
1207  return true;
1208}
1209
1210/// hasVolatileMemoryRef - Return true if this instruction may have a
1211/// volatile memory reference, or if the information describing the
1212/// memory reference is not available. Return false if it is known to
1213/// have no volatile memory references.
1214bool MachineInstr::hasVolatileMemoryRef() const {
1215  // An instruction known never to access memory won't have a volatile access.
1216  if (!MCID->mayStore() &&
1217      !MCID->mayLoad() &&
1218      !MCID->isCall() &&
1219      !hasUnmodeledSideEffects())
1220    return false;
1221
1222  // Otherwise, if the instruction has no memory reference information,
1223  // conservatively assume it wasn't preserved.
1224  if (memoperands_empty())
1225    return true;
1226
1227  // Check the memory reference information for volatile references.
1228  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1229    if ((*I)->isVolatile())
1230      return true;
1231
1232  return false;
1233}
1234
1235/// isInvariantLoad - Return true if this instruction is loading from a
1236/// location whose value is invariant across the function.  For example,
1237/// loading a value from the constant pool or from the argument area
1238/// of a function if it does not change.  This should only return true of
1239/// *all* loads the instruction does are invariant (if it does multiple loads).
1240bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1241  // If the instruction doesn't load at all, it isn't an invariant load.
1242  if (!MCID->mayLoad())
1243    return false;
1244
1245  // If the instruction has lost its memoperands, conservatively assume that
1246  // it may not be an invariant load.
1247  if (memoperands_empty())
1248    return false;
1249
1250  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1251
1252  for (mmo_iterator I = memoperands_begin(),
1253       E = memoperands_end(); I != E; ++I) {
1254    if ((*I)->isVolatile()) return false;
1255    if ((*I)->isStore()) return false;
1256
1257    if (const Value *V = (*I)->getValue()) {
1258      // A load from a constant PseudoSourceValue is invariant.
1259      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1260        if (PSV->isConstant(MFI))
1261          continue;
1262      // If we have an AliasAnalysis, ask it whether the memory is constant.
1263      if (AA && AA->pointsToConstantMemory(
1264                      AliasAnalysis::Location(V, (*I)->getSize(),
1265                                              (*I)->getTBAAInfo())))
1266        continue;
1267    }
1268
1269    // Otherwise assume conservatively.
1270    return false;
1271  }
1272
1273  // Everything checks out.
1274  return true;
1275}
1276
1277/// isConstantValuePHI - If the specified instruction is a PHI that always
1278/// merges together the same virtual register, return the register, otherwise
1279/// return 0.
1280unsigned MachineInstr::isConstantValuePHI() const {
1281  if (!isPHI())
1282    return 0;
1283  assert(getNumOperands() >= 3 &&
1284         "It's illegal to have a PHI without source operands");
1285
1286  unsigned Reg = getOperand(1).getReg();
1287  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1288    if (getOperand(i).getReg() != Reg)
1289      return 0;
1290  return Reg;
1291}
1292
1293bool MachineInstr::hasUnmodeledSideEffects() const {
1294  if (getDesc().hasUnmodeledSideEffects())
1295    return true;
1296  if (isInlineAsm()) {
1297    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1298    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1299      return true;
1300  }
1301
1302  return false;
1303}
1304
1305/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1306///
1307bool MachineInstr::allDefsAreDead() const {
1308  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1309    const MachineOperand &MO = getOperand(i);
1310    if (!MO.isReg() || MO.isUse())
1311      continue;
1312    if (!MO.isDead())
1313      return false;
1314  }
1315  return true;
1316}
1317
1318/// copyImplicitOps - Copy implicit register operands from specified
1319/// instruction to this instruction.
1320void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1321  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1322       i != e; ++i) {
1323    const MachineOperand &MO = MI->getOperand(i);
1324    if (MO.isReg() && MO.isImplicit())
1325      addOperand(MO);
1326  }
1327}
1328
1329void MachineInstr::dump() const {
1330  dbgs() << "  " << *this;
1331}
1332
1333static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1334                         raw_ostream &CommentOS) {
1335  const LLVMContext &Ctx = MF->getFunction()->getContext();
1336  if (!DL.isUnknown()) {          // Print source line info.
1337    DIScope Scope(DL.getScope(Ctx));
1338    // Omit the directory, because it's likely to be long and uninteresting.
1339    if (Scope.Verify())
1340      CommentOS << Scope.getFilename();
1341    else
1342      CommentOS << "<unknown>";
1343    CommentOS << ':' << DL.getLine();
1344    if (DL.getCol() != 0)
1345      CommentOS << ':' << DL.getCol();
1346    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1347    if (!InlinedAtDL.isUnknown()) {
1348      CommentOS << " @[ ";
1349      printDebugLoc(InlinedAtDL, MF, CommentOS);
1350      CommentOS << " ]";
1351    }
1352  }
1353}
1354
1355void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1356  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1357  const MachineFunction *MF = 0;
1358  const MachineRegisterInfo *MRI = 0;
1359  if (const MachineBasicBlock *MBB = getParent()) {
1360    MF = MBB->getParent();
1361    if (!TM && MF)
1362      TM = &MF->getTarget();
1363    if (MF)
1364      MRI = &MF->getRegInfo();
1365  }
1366
1367  // Save a list of virtual registers.
1368  SmallVector<unsigned, 8> VirtRegs;
1369
1370  // Print explicitly defined operands on the left of an assignment syntax.
1371  unsigned StartOp = 0, e = getNumOperands();
1372  for (; StartOp < e && getOperand(StartOp).isReg() &&
1373         getOperand(StartOp).isDef() &&
1374         !getOperand(StartOp).isImplicit();
1375       ++StartOp) {
1376    if (StartOp != 0) OS << ", ";
1377    getOperand(StartOp).print(OS, TM);
1378    unsigned Reg = getOperand(StartOp).getReg();
1379    if (TargetRegisterInfo::isVirtualRegister(Reg))
1380      VirtRegs.push_back(Reg);
1381  }
1382
1383  if (StartOp != 0)
1384    OS << " = ";
1385
1386  // Print the opcode name.
1387  OS << getDesc().getName();
1388
1389  // Print the rest of the operands.
1390  bool OmittedAnyCallClobbers = false;
1391  bool FirstOp = true;
1392  unsigned AsmDescOp = ~0u;
1393  unsigned AsmOpCount = 0;
1394
1395  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1396    // Print asm string.
1397    OS << " ";
1398    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1399
1400    // Print HasSideEffects, IsAlignStack
1401    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1402    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1403      OS << " [sideeffect]";
1404    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1405      OS << " [alignstack]";
1406
1407    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1408    FirstOp = false;
1409  }
1410
1411
1412  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1413    const MachineOperand &MO = getOperand(i);
1414
1415    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1416      VirtRegs.push_back(MO.getReg());
1417
1418    // Omit call-clobbered registers which aren't used anywhere. This makes
1419    // call instructions much less noisy on targets where calls clobber lots
1420    // of registers. Don't rely on MO.isDead() because we may be called before
1421    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1422    if (MF && getDesc().isCall() &&
1423        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1424      unsigned Reg = MO.getReg();
1425      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1426        const MachineRegisterInfo &MRI = MF->getRegInfo();
1427        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1428          bool HasAliasLive = false;
1429          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1430               unsigned AliasReg = *Alias; ++Alias)
1431            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1432              HasAliasLive = true;
1433              break;
1434            }
1435          if (!HasAliasLive) {
1436            OmittedAnyCallClobbers = true;
1437            continue;
1438          }
1439        }
1440      }
1441    }
1442
1443    if (FirstOp) FirstOp = false; else OS << ",";
1444    OS << " ";
1445    if (i < getDesc().NumOperands) {
1446      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1447      if (MCOI.isPredicate())
1448        OS << "pred:";
1449      if (MCOI.isOptionalDef())
1450        OS << "opt:";
1451    }
1452    if (isDebugValue() && MO.isMetadata()) {
1453      // Pretty print DBG_VALUE instructions.
1454      const MDNode *MD = MO.getMetadata();
1455      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1456        OS << "!\"" << MDS->getString() << '\"';
1457      else
1458        MO.print(OS, TM);
1459    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1460      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1461    } else if (i == AsmDescOp && MO.isImm()) {
1462      // Pretty print the inline asm operand descriptor.
1463      OS << '$' << AsmOpCount++;
1464      unsigned Flag = MO.getImm();
1465      switch (InlineAsm::getKind(Flag)) {
1466      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1467      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1468      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1469      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1470      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1471      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1472      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1473      }
1474
1475      unsigned RCID = 0;
1476      if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1477        if (TM)
1478          OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1479        else
1480          OS << ":RC" << RCID;
1481      }
1482
1483      unsigned TiedTo = 0;
1484      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1485        OS << " tiedto:$" << TiedTo;
1486
1487      OS << ']';
1488
1489      // Compute the index of the next operand descriptor.
1490      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1491    } else
1492      MO.print(OS, TM);
1493  }
1494
1495  // Briefly indicate whether any call clobbers were omitted.
1496  if (OmittedAnyCallClobbers) {
1497    if (!FirstOp) OS << ",";
1498    OS << " ...";
1499  }
1500
1501  bool HaveSemi = false;
1502  if (Flags) {
1503    if (!HaveSemi) OS << ";"; HaveSemi = true;
1504    OS << " flags: ";
1505
1506    if (Flags & FrameSetup)
1507      OS << "FrameSetup";
1508  }
1509
1510  if (!memoperands_empty()) {
1511    if (!HaveSemi) OS << ";"; HaveSemi = true;
1512
1513    OS << " mem:";
1514    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1515         i != e; ++i) {
1516      OS << **i;
1517      if (llvm::next(i) != e)
1518        OS << " ";
1519    }
1520  }
1521
1522  // Print the regclass of any virtual registers encountered.
1523  if (MRI && !VirtRegs.empty()) {
1524    if (!HaveSemi) OS << ";"; HaveSemi = true;
1525    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1526      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1527      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1528      for (unsigned j = i+1; j != VirtRegs.size();) {
1529        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1530          ++j;
1531          continue;
1532        }
1533        if (VirtRegs[i] != VirtRegs[j])
1534          OS << "," << PrintReg(VirtRegs[j]);
1535        VirtRegs.erase(VirtRegs.begin()+j);
1536      }
1537    }
1538  }
1539
1540  // Print debug location information.
1541  if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1542    if (!HaveSemi) OS << ";"; HaveSemi = true;
1543    DIVariable DV(getOperand(e - 1).getMetadata());
1544    OS << " line no:" <<  DV.getLineNumber();
1545    if (MDNode *InlinedAt = DV.getInlinedAt()) {
1546      DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1547      if (!InlinedAtDL.isUnknown()) {
1548        OS << " inlined @[ ";
1549        printDebugLoc(InlinedAtDL, MF, OS);
1550        OS << " ]";
1551      }
1552    }
1553  } else if (!debugLoc.isUnknown() && MF) {
1554    if (!HaveSemi) OS << ";"; HaveSemi = true;
1555    OS << " dbg:";
1556    printDebugLoc(debugLoc, MF, OS);
1557  }
1558
1559  OS << '\n';
1560}
1561
1562bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1563                                     const TargetRegisterInfo *RegInfo,
1564                                     bool AddIfNotFound) {
1565  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1566  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1567  bool Found = false;
1568  SmallVector<unsigned,4> DeadOps;
1569  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1570    MachineOperand &MO = getOperand(i);
1571    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1572      continue;
1573    unsigned Reg = MO.getReg();
1574    if (!Reg)
1575      continue;
1576
1577    if (Reg == IncomingReg) {
1578      if (!Found) {
1579        if (MO.isKill())
1580          // The register is already marked kill.
1581          return true;
1582        if (isPhysReg && isRegTiedToDefOperand(i))
1583          // Two-address uses of physregs must not be marked kill.
1584          return true;
1585        MO.setIsKill();
1586        Found = true;
1587      }
1588    } else if (hasAliases && MO.isKill() &&
1589               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1590      // A super-register kill already exists.
1591      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1592        return true;
1593      if (RegInfo->isSubRegister(IncomingReg, Reg))
1594        DeadOps.push_back(i);
1595    }
1596  }
1597
1598  // Trim unneeded kill operands.
1599  while (!DeadOps.empty()) {
1600    unsigned OpIdx = DeadOps.back();
1601    if (getOperand(OpIdx).isImplicit())
1602      RemoveOperand(OpIdx);
1603    else
1604      getOperand(OpIdx).setIsKill(false);
1605    DeadOps.pop_back();
1606  }
1607
1608  // If not found, this means an alias of one of the operands is killed. Add a
1609  // new implicit operand if required.
1610  if (!Found && AddIfNotFound) {
1611    addOperand(MachineOperand::CreateReg(IncomingReg,
1612                                         false /*IsDef*/,
1613                                         true  /*IsImp*/,
1614                                         true  /*IsKill*/));
1615    return true;
1616  }
1617  return Found;
1618}
1619
1620bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1621                                   const TargetRegisterInfo *RegInfo,
1622                                   bool AddIfNotFound) {
1623  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1624  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1625  bool Found = false;
1626  SmallVector<unsigned,4> DeadOps;
1627  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1628    MachineOperand &MO = getOperand(i);
1629    if (!MO.isReg() || !MO.isDef())
1630      continue;
1631    unsigned Reg = MO.getReg();
1632    if (!Reg)
1633      continue;
1634
1635    if (Reg == IncomingReg) {
1636      MO.setIsDead();
1637      Found = true;
1638    } else if (hasAliases && MO.isDead() &&
1639               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1640      // There exists a super-register that's marked dead.
1641      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1642        return true;
1643      if (RegInfo->getSubRegisters(IncomingReg) &&
1644          RegInfo->getSuperRegisters(Reg) &&
1645          RegInfo->isSubRegister(IncomingReg, Reg))
1646        DeadOps.push_back(i);
1647    }
1648  }
1649
1650  // Trim unneeded dead operands.
1651  while (!DeadOps.empty()) {
1652    unsigned OpIdx = DeadOps.back();
1653    if (getOperand(OpIdx).isImplicit())
1654      RemoveOperand(OpIdx);
1655    else
1656      getOperand(OpIdx).setIsDead(false);
1657    DeadOps.pop_back();
1658  }
1659
1660  // If not found, this means an alias of one of the operands is dead. Add a
1661  // new implicit operand if required.
1662  if (Found || !AddIfNotFound)
1663    return Found;
1664
1665  addOperand(MachineOperand::CreateReg(IncomingReg,
1666                                       true  /*IsDef*/,
1667                                       true  /*IsImp*/,
1668                                       false /*IsKill*/,
1669                                       true  /*IsDead*/));
1670  return true;
1671}
1672
1673void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1674                                      const TargetRegisterInfo *RegInfo) {
1675  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1676    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1677    if (MO)
1678      return;
1679  } else {
1680    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1681      const MachineOperand &MO = getOperand(i);
1682      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1683          MO.getSubReg() == 0)
1684        return;
1685    }
1686  }
1687  addOperand(MachineOperand::CreateReg(IncomingReg,
1688                                       true  /*IsDef*/,
1689                                       true  /*IsImp*/));
1690}
1691
1692void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1693                                         const TargetRegisterInfo &TRI) {
1694  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1695    MachineOperand &MO = getOperand(i);
1696    if (!MO.isReg() || !MO.isDef()) continue;
1697    unsigned Reg = MO.getReg();
1698    if (Reg == 0) continue;
1699    bool Dead = true;
1700    for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1701         E = UsedRegs.end(); I != E; ++I)
1702      if (TRI.regsOverlap(*I, Reg)) {
1703        Dead = false;
1704        break;
1705      }
1706    // If there are no uses, including partial uses, the def is dead.
1707    if (Dead) MO.setIsDead();
1708  }
1709}
1710
1711unsigned
1712MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1713  unsigned Hash = MI->getOpcode() * 37;
1714  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1715    const MachineOperand &MO = MI->getOperand(i);
1716    uint64_t Key = (uint64_t)MO.getType() << 32;
1717    switch (MO.getType()) {
1718    default: break;
1719    case MachineOperand::MO_Register:
1720      if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1721        continue;  // Skip virtual register defs.
1722      Key |= MO.getReg();
1723      break;
1724    case MachineOperand::MO_Immediate:
1725      Key |= MO.getImm();
1726      break;
1727    case MachineOperand::MO_FrameIndex:
1728    case MachineOperand::MO_ConstantPoolIndex:
1729    case MachineOperand::MO_JumpTableIndex:
1730      Key |= MO.getIndex();
1731      break;
1732    case MachineOperand::MO_MachineBasicBlock:
1733      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1734      break;
1735    case MachineOperand::MO_GlobalAddress:
1736      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1737      break;
1738    case MachineOperand::MO_BlockAddress:
1739      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1740      break;
1741    case MachineOperand::MO_MCSymbol:
1742      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1743      break;
1744    }
1745    Key += ~(Key << 32);
1746    Key ^= (Key >> 22);
1747    Key += ~(Key << 13);
1748    Key ^= (Key >> 8);
1749    Key += (Key << 3);
1750    Key ^= (Key >> 15);
1751    Key += ~(Key << 27);
1752    Key ^= (Key >> 31);
1753    Hash = (unsigned)Key + Hash * 37;
1754  }
1755  return Hash;
1756}
1757
1758void MachineInstr::emitError(StringRef Msg) const {
1759  // Find the source location cookie.
1760  unsigned LocCookie = 0;
1761  const MDNode *LocMD = 0;
1762  for (unsigned i = getNumOperands(); i != 0; --i) {
1763    if (getOperand(i-1).isMetadata() &&
1764        (LocMD = getOperand(i-1).getMetadata()) &&
1765        LocMD->getNumOperands() != 0) {
1766      if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1767        LocCookie = CI->getZExtValue();
1768        break;
1769      }
1770    }
1771  }
1772
1773  if (const MachineBasicBlock *MBB = getParent())
1774    if (const MachineFunction *MF = MBB->getParent())
1775      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1776  report_fatal_error(Msg);
1777}
1778