1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "AntiDepBreaker.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "CriticalAntiDepBreaker.h"
25#include "RegisterClassInfo.h"
26#include "ScheduleDAGInstrs.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/LatencyPriorityQueue.h"
29#include "llvm/CodeGen/SchedulerRegistry.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/Statistic.h"
48#include <set>
49using namespace llvm;
50
51STATISTIC(NumNoops, "Number of noops inserted");
52STATISTIC(NumStalls, "Number of pipeline stalls");
53STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54
55// Post-RA scheduling is enabled with
56// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57// override the target.
58static cl::opt<bool>
59EnablePostRAScheduler("post-RA-scheduler",
60                       cl::desc("Enable scheduling after register allocation"),
61                       cl::init(false), cl::Hidden);
62static cl::opt<std::string>
63EnableAntiDepBreaking("break-anti-dependencies",
64                      cl::desc("Break post-RA scheduling anti-dependencies: "
65                               "\"critical\", \"all\", or \"none\""),
66                      cl::init("none"), cl::Hidden);
67
68// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69static cl::opt<int>
70DebugDiv("postra-sched-debugdiv",
71                      cl::desc("Debug control MBBs that are scheduled"),
72                      cl::init(0), cl::Hidden);
73static cl::opt<int>
74DebugMod("postra-sched-debugmod",
75                      cl::desc("Debug control MBBs that are scheduled"),
76                      cl::init(0), cl::Hidden);
77
78AntiDepBreaker::~AntiDepBreaker() { }
79
80namespace {
81  class PostRAScheduler : public MachineFunctionPass {
82    AliasAnalysis *AA;
83    const TargetInstrInfo *TII;
84    RegisterClassInfo RegClassInfo;
85    CodeGenOpt::Level OptLevel;
86
87  public:
88    static char ID;
89    PostRAScheduler(CodeGenOpt::Level ol) :
90      MachineFunctionPass(ID), OptLevel(ol) {}
91
92    void getAnalysisUsage(AnalysisUsage &AU) const {
93      AU.setPreservesCFG();
94      AU.addRequired<AliasAnalysis>();
95      AU.addRequired<MachineDominatorTree>();
96      AU.addPreserved<MachineDominatorTree>();
97      AU.addRequired<MachineLoopInfo>();
98      AU.addPreserved<MachineLoopInfo>();
99      MachineFunctionPass::getAnalysisUsage(AU);
100    }
101
102    const char *getPassName() const {
103      return "Post RA top-down list latency scheduler";
104    }
105
106    bool runOnMachineFunction(MachineFunction &Fn);
107  };
108  char PostRAScheduler::ID = 0;
109
110  class SchedulePostRATDList : public ScheduleDAGInstrs {
111    /// AvailableQueue - The priority queue to use for the available SUnits.
112    ///
113    LatencyPriorityQueue AvailableQueue;
114
115    /// PendingQueue - This contains all of the instructions whose operands have
116    /// been issued, but their results are not ready yet (due to the latency of
117    /// the operation).  Once the operands becomes available, the instruction is
118    /// added to the AvailableQueue.
119    std::vector<SUnit*> PendingQueue;
120
121    /// Topo - A topological ordering for SUnits.
122    ScheduleDAGTopologicalSort Topo;
123
124    /// HazardRec - The hazard recognizer to use.
125    ScheduleHazardRecognizer *HazardRec;
126
127    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
128    AntiDepBreaker *AntiDepBreak;
129
130    /// AA - AliasAnalysis for making memory reference queries.
131    AliasAnalysis *AA;
132
133    /// KillIndices - The index of the most recent kill (proceding bottom-up),
134    /// or ~0u if the register is not live.
135    std::vector<unsigned> KillIndices;
136
137  public:
138    SchedulePostRATDList(
139      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
140      AliasAnalysis *AA, const RegisterClassInfo&,
141      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
142      SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs);
143
144    ~SchedulePostRATDList();
145
146    /// StartBlock - Initialize register live-range state for scheduling in
147    /// this block.
148    ///
149    void StartBlock(MachineBasicBlock *BB);
150
151    /// Schedule - Schedule the instruction range using list scheduling.
152    ///
153    void Schedule();
154
155    /// Observe - Update liveness information to account for the current
156    /// instruction, which will not be scheduled.
157    ///
158    void Observe(MachineInstr *MI, unsigned Count);
159
160    /// FinishBlock - Clean up register live-range state.
161    ///
162    void FinishBlock();
163
164    /// FixupKills - Fix register kill flags that have been made
165    /// invalid due to scheduling
166    ///
167    void FixupKills(MachineBasicBlock *MBB);
168
169  private:
170    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
171    void ReleaseSuccessors(SUnit *SU);
172    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
173    void ListScheduleTopDown();
174    void StartBlockForKills(MachineBasicBlock *BB);
175
176    // ToggleKillFlag - Toggle a register operand kill flag. Other
177    // adjustments may be made to the instruction if necessary. Return
178    // true if the operand has been deleted, false if not.
179    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
180  };
181}
182
183SchedulePostRATDList::SchedulePostRATDList(
184  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
185  AliasAnalysis *AA, const RegisterClassInfo &RCI,
186  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
187  SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs)
188  : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), AA(AA),
189    KillIndices(TRI->getNumRegs())
190{
191  const TargetMachine &TM = MF.getTarget();
192  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
193  HazardRec =
194    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
195  AntiDepBreak =
196    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
197     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
198     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
199      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
200}
201
202SchedulePostRATDList::~SchedulePostRATDList() {
203  delete HazardRec;
204  delete AntiDepBreak;
205}
206
207bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
208  TII = Fn.getTarget().getInstrInfo();
209  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
210  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
211  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
212  RegClassInfo.runOnMachineFunction(Fn);
213
214  // Check for explicit enable/disable of post-ra scheduling.
215  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = TargetSubtargetInfo::ANTIDEP_NONE;
216  SmallVector<TargetRegisterClass*, 4> CriticalPathRCs;
217  if (EnablePostRAScheduler.getPosition() > 0) {
218    if (!EnablePostRAScheduler)
219      return false;
220  } else {
221    // Check that post-RA scheduling is enabled for this target.
222    // This may upgrade the AntiDepMode.
223    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
224    if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs))
225      return false;
226  }
227
228  // Check for antidep breaking override...
229  if (EnableAntiDepBreaking.getPosition() > 0) {
230    AntiDepMode = (EnableAntiDepBreaking == "all")
231      ? TargetSubtargetInfo::ANTIDEP_ALL
232      : ((EnableAntiDepBreaking == "critical")
233         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
234         : TargetSubtargetInfo::ANTIDEP_NONE);
235  }
236
237  DEBUG(dbgs() << "PostRAScheduler\n");
238
239  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
240                                 CriticalPathRCs);
241
242  // Loop over all of the basic blocks
243  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
244       MBB != MBBe; ++MBB) {
245#ifndef NDEBUG
246    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
247    if (DebugDiv > 0) {
248      static int bbcnt = 0;
249      if (bbcnt++ % DebugDiv != DebugMod)
250        continue;
251      dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
252        ":BB#" << MBB->getNumber() << " ***\n";
253    }
254#endif
255
256    // Initialize register live-range state for scheduling in this block.
257    Scheduler.StartBlock(MBB);
258
259    // Schedule each sequence of instructions not interrupted by a label
260    // or anything else that effectively needs to shut down scheduling.
261    MachineBasicBlock::iterator Current = MBB->end();
262    unsigned Count = MBB->size(), CurrentCount = Count;
263    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
264      MachineInstr *MI = llvm::prior(I);
265      if (TII->isSchedulingBoundary(MI, MBB, Fn)) {
266        Scheduler.Run(MBB, I, Current, CurrentCount);
267        Scheduler.EmitSchedule();
268        Current = MI;
269        CurrentCount = Count - 1;
270        Scheduler.Observe(MI, CurrentCount);
271      }
272      I = MI;
273      --Count;
274    }
275    assert(Count == 0 && "Instruction count mismatch!");
276    assert((MBB->begin() == Current || CurrentCount != 0) &&
277           "Instruction count mismatch!");
278    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
279    Scheduler.EmitSchedule();
280
281    // Clean up register live-range state.
282    Scheduler.FinishBlock();
283
284    // Update register kills
285    Scheduler.FixupKills(MBB);
286  }
287
288  return true;
289}
290
291/// StartBlock - Initialize register live-range state for scheduling in
292/// this block.
293///
294void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
295  // Call the superclass.
296  ScheduleDAGInstrs::StartBlock(BB);
297
298  // Reset the hazard recognizer and anti-dep breaker.
299  HazardRec->Reset();
300  if (AntiDepBreak != NULL)
301    AntiDepBreak->StartBlock(BB);
302}
303
304/// Schedule - Schedule the instruction range using list scheduling.
305///
306void SchedulePostRATDList::Schedule() {
307  // Build the scheduling graph.
308  BuildSchedGraph(AA);
309
310  if (AntiDepBreak != NULL) {
311    unsigned Broken =
312      AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos,
313                                          InsertPosIndex, DbgValues);
314
315    if (Broken != 0) {
316      // We made changes. Update the dependency graph.
317      // Theoretically we could update the graph in place:
318      // When a live range is changed to use a different register, remove
319      // the def's anti-dependence *and* output-dependence edges due to
320      // that register, and add new anti-dependence and output-dependence
321      // edges based on the next live range of the register.
322      SUnits.clear();
323      Sequence.clear();
324      EntrySU = SUnit();
325      ExitSU = SUnit();
326      BuildSchedGraph(AA);
327
328      NumFixedAnti += Broken;
329    }
330  }
331
332  DEBUG(dbgs() << "********** List Scheduling **********\n");
333  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
334          SUnits[su].dumpAll(this));
335
336  AvailableQueue.initNodes(SUnits);
337  ListScheduleTopDown();
338  AvailableQueue.releaseState();
339}
340
341/// Observe - Update liveness information to account for the current
342/// instruction, which will not be scheduled.
343///
344void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
345  if (AntiDepBreak != NULL)
346    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
347}
348
349/// FinishBlock - Clean up register live-range state.
350///
351void SchedulePostRATDList::FinishBlock() {
352  if (AntiDepBreak != NULL)
353    AntiDepBreak->FinishBlock();
354
355  // Call the superclass.
356  ScheduleDAGInstrs::FinishBlock();
357}
358
359/// StartBlockForKills - Initialize register live-range state for updating kills
360///
361void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
362  // Initialize the indices to indicate that no registers are live.
363  for (unsigned i = 0; i < TRI->getNumRegs(); ++i)
364    KillIndices[i] = ~0u;
365
366  // Determine the live-out physregs for this block.
367  if (!BB->empty() && BB->back().getDesc().isReturn()) {
368    // In a return block, examine the function live-out regs.
369    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
370           E = MRI.liveout_end(); I != E; ++I) {
371      unsigned Reg = *I;
372      KillIndices[Reg] = BB->size();
373      // Repeat, for all subregs.
374      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
375           *Subreg; ++Subreg) {
376        KillIndices[*Subreg] = BB->size();
377      }
378    }
379  }
380  else {
381    // In a non-return block, examine the live-in regs of all successors.
382    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
383           SE = BB->succ_end(); SI != SE; ++SI) {
384      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
385             E = (*SI)->livein_end(); I != E; ++I) {
386        unsigned Reg = *I;
387        KillIndices[Reg] = BB->size();
388        // Repeat, for all subregs.
389        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
390             *Subreg; ++Subreg) {
391          KillIndices[*Subreg] = BB->size();
392        }
393      }
394    }
395  }
396}
397
398bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
399                                          MachineOperand &MO) {
400  // Setting kill flag...
401  if (!MO.isKill()) {
402    MO.setIsKill(true);
403    return false;
404  }
405
406  // If MO itself is live, clear the kill flag...
407  if (KillIndices[MO.getReg()] != ~0u) {
408    MO.setIsKill(false);
409    return false;
410  }
411
412  // If any subreg of MO is live, then create an imp-def for that
413  // subreg and keep MO marked as killed.
414  MO.setIsKill(false);
415  bool AllDead = true;
416  const unsigned SuperReg = MO.getReg();
417  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
418       *Subreg; ++Subreg) {
419    if (KillIndices[*Subreg] != ~0u) {
420      MI->addOperand(MachineOperand::CreateReg(*Subreg,
421                                               true  /*IsDef*/,
422                                               true  /*IsImp*/,
423                                               false /*IsKill*/,
424                                               false /*IsDead*/));
425      AllDead = false;
426    }
427  }
428
429  if(AllDead)
430    MO.setIsKill(true);
431  return false;
432}
433
434/// FixupKills - Fix the register kill flags, they may have been made
435/// incorrect by instruction reordering.
436///
437void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
438  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
439
440  std::set<unsigned> killedRegs;
441  BitVector ReservedRegs = TRI->getReservedRegs(MF);
442
443  StartBlockForKills(MBB);
444
445  // Examine block from end to start...
446  unsigned Count = MBB->size();
447  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
448       I != E; --Count) {
449    MachineInstr *MI = --I;
450    if (MI->isDebugValue())
451      continue;
452
453    // Update liveness.  Registers that are defed but not used in this
454    // instruction are now dead. Mark register and all subregs as they
455    // are completely defined.
456    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
457      MachineOperand &MO = MI->getOperand(i);
458      if (!MO.isReg()) continue;
459      unsigned Reg = MO.getReg();
460      if (Reg == 0) continue;
461      if (!MO.isDef()) continue;
462      // Ignore two-addr defs.
463      if (MI->isRegTiedToUseOperand(i)) continue;
464
465      KillIndices[Reg] = ~0u;
466
467      // Repeat for all subregs.
468      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
469           *Subreg; ++Subreg) {
470        KillIndices[*Subreg] = ~0u;
471      }
472    }
473
474    // Examine all used registers and set/clear kill flag. When a
475    // register is used multiple times we only set the kill flag on
476    // the first use.
477    killedRegs.clear();
478    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
479      MachineOperand &MO = MI->getOperand(i);
480      if (!MO.isReg() || !MO.isUse()) continue;
481      unsigned Reg = MO.getReg();
482      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
483
484      bool kill = false;
485      if (killedRegs.find(Reg) == killedRegs.end()) {
486        kill = true;
487        // A register is not killed if any subregs are live...
488        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
489             *Subreg; ++Subreg) {
490          if (KillIndices[*Subreg] != ~0u) {
491            kill = false;
492            break;
493          }
494        }
495
496        // If subreg is not live, then register is killed if it became
497        // live in this instruction
498        if (kill)
499          kill = (KillIndices[Reg] == ~0u);
500      }
501
502      if (MO.isKill() != kill) {
503        DEBUG(dbgs() << "Fixing " << MO << " in ");
504        // Warning: ToggleKillFlag may invalidate MO.
505        ToggleKillFlag(MI, MO);
506        DEBUG(MI->dump());
507      }
508
509      killedRegs.insert(Reg);
510    }
511
512    // Mark any used register (that is not using undef) and subregs as
513    // now live...
514    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
515      MachineOperand &MO = MI->getOperand(i);
516      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
517      unsigned Reg = MO.getReg();
518      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
519
520      KillIndices[Reg] = Count;
521
522      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
523           *Subreg; ++Subreg) {
524        KillIndices[*Subreg] = Count;
525      }
526    }
527  }
528}
529
530//===----------------------------------------------------------------------===//
531//  Top-Down Scheduling
532//===----------------------------------------------------------------------===//
533
534/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
535/// the PendingQueue if the count reaches zero. Also update its cycle bound.
536void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
537  SUnit *SuccSU = SuccEdge->getSUnit();
538
539#ifndef NDEBUG
540  if (SuccSU->NumPredsLeft == 0) {
541    dbgs() << "*** Scheduling failed! ***\n";
542    SuccSU->dump(this);
543    dbgs() << " has been released too many times!\n";
544    llvm_unreachable(0);
545  }
546#endif
547  --SuccSU->NumPredsLeft;
548
549  // Standard scheduler algorithms will recompute the depth of the successor
550  // here as such:
551  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
552  //
553  // However, we lazily compute node depth instead. Note that
554  // ScheduleNodeTopDown has already updated the depth of this node which causes
555  // all descendents to be marked dirty. Setting the successor depth explicitly
556  // here would cause depth to be recomputed for all its ancestors. If the
557  // successor is not yet ready (because of a transitively redundant edge) then
558  // this causes depth computation to be quadratic in the size of the DAG.
559
560  // If all the node's predecessors are scheduled, this node is ready
561  // to be scheduled. Ignore the special ExitSU node.
562  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
563    PendingQueue.push_back(SuccSU);
564}
565
566/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
567void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
568  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
569       I != E; ++I) {
570    ReleaseSucc(SU, &*I);
571  }
572}
573
574/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
575/// count of its successors. If a successor pending count is zero, add it to
576/// the Available queue.
577void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
578  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
579  DEBUG(SU->dump(this));
580
581  Sequence.push_back(SU);
582  assert(CurCycle >= SU->getDepth() &&
583         "Node scheduled above its depth!");
584  SU->setDepthToAtLeast(CurCycle);
585
586  ReleaseSuccessors(SU);
587  SU->isScheduled = true;
588  AvailableQueue.ScheduledNode(SU);
589}
590
591/// ListScheduleTopDown - The main loop of list scheduling for top-down
592/// schedulers.
593void SchedulePostRATDList::ListScheduleTopDown() {
594  unsigned CurCycle = 0;
595
596  // We're scheduling top-down but we're visiting the regions in
597  // bottom-up order, so we don't know the hazards at the start of a
598  // region. So assume no hazards (this should usually be ok as most
599  // blocks are a single region).
600  HazardRec->Reset();
601
602  // Release any successors of the special Entry node.
603  ReleaseSuccessors(&EntrySU);
604
605  // Add all leaves to Available queue.
606  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
607    // It is available if it has no predecessors.
608    bool available = SUnits[i].Preds.empty();
609    if (available) {
610      AvailableQueue.push(&SUnits[i]);
611      SUnits[i].isAvailable = true;
612    }
613  }
614
615  // In any cycle where we can't schedule any instructions, we must
616  // stall or emit a noop, depending on the target.
617  bool CycleHasInsts = false;
618
619  // While Available queue is not empty, grab the node with the highest
620  // priority. If it is not ready put it back.  Schedule the node.
621  std::vector<SUnit*> NotReady;
622  Sequence.reserve(SUnits.size());
623  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
624    // Check to see if any of the pending instructions are ready to issue.  If
625    // so, add them to the available queue.
626    unsigned MinDepth = ~0u;
627    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
628      if (PendingQueue[i]->getDepth() <= CurCycle) {
629        AvailableQueue.push(PendingQueue[i]);
630        PendingQueue[i]->isAvailable = true;
631        PendingQueue[i] = PendingQueue.back();
632        PendingQueue.pop_back();
633        --i; --e;
634      } else if (PendingQueue[i]->getDepth() < MinDepth)
635        MinDepth = PendingQueue[i]->getDepth();
636    }
637
638    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
639
640    SUnit *FoundSUnit = 0;
641    bool HasNoopHazards = false;
642    while (!AvailableQueue.empty()) {
643      SUnit *CurSUnit = AvailableQueue.pop();
644
645      ScheduleHazardRecognizer::HazardType HT =
646        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
647      if (HT == ScheduleHazardRecognizer::NoHazard) {
648        FoundSUnit = CurSUnit;
649        break;
650      }
651
652      // Remember if this is a noop hazard.
653      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
654
655      NotReady.push_back(CurSUnit);
656    }
657
658    // Add the nodes that aren't ready back onto the available list.
659    if (!NotReady.empty()) {
660      AvailableQueue.push_all(NotReady);
661      NotReady.clear();
662    }
663
664    // If we found a node to schedule...
665    if (FoundSUnit) {
666      // ... schedule the node...
667      ScheduleNodeTopDown(FoundSUnit, CurCycle);
668      HazardRec->EmitInstruction(FoundSUnit);
669      CycleHasInsts = true;
670      if (HazardRec->atIssueLimit()) {
671        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
672        HazardRec->AdvanceCycle();
673        ++CurCycle;
674        CycleHasInsts = false;
675      }
676    } else {
677      if (CycleHasInsts) {
678        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
679        HazardRec->AdvanceCycle();
680      } else if (!HasNoopHazards) {
681        // Otherwise, we have a pipeline stall, but no other problem,
682        // just advance the current cycle and try again.
683        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
684        HazardRec->AdvanceCycle();
685        ++NumStalls;
686      } else {
687        // Otherwise, we have no instructions to issue and we have instructions
688        // that will fault if we don't do this right.  This is the case for
689        // processors without pipeline interlocks and other cases.
690        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
691        HazardRec->EmitNoop();
692        Sequence.push_back(0);   // NULL here means noop
693        ++NumNoops;
694      }
695
696      ++CurCycle;
697      CycleHasInsts = false;
698    }
699  }
700
701#ifndef NDEBUG
702  VerifySchedule(/*isBottomUp=*/false);
703#endif
704}
705
706//===----------------------------------------------------------------------===//
707//                         Public Constructor Functions
708//===----------------------------------------------------------------------===//
709
710FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
711  return new PostRAScheduler(OptLevel);
712}
713