1//===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DWARFDebugAranges.h"
11#include "DWARFCompileUnit.h"
12#include "DWARFContext.h"
13#include "llvm/Support/Format.h"
14#include "llvm/Support/raw_ostream.h"
15#include <algorithm>
16#include <cassert>
17using namespace llvm;
18
19// Compare function DWARFDebugAranges::Range structures
20static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
21                          const DWARFDebugAranges::Range &range2) {
22  return range1.LoPC < range2.LoPC;
23}
24
25namespace {
26  class CountArangeDescriptors {
27  public:
28    CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
29    void operator()(const DWARFDebugArangeSet &set) {
30      Count += set.getNumDescriptors();
31    }
32    uint32_t &Count;
33  };
34
35  class AddArangeDescriptors {
36  public:
37    AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
38      : RangeCollection(ranges) {}
39    void operator()(const DWARFDebugArangeSet& set) {
40      const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
41      DWARFDebugAranges::Range range;
42      range.Offset = set.getCompileUnitDIEOffset();
43
44      for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
45        range.LoPC = arange_desc_ptr->Address;
46        range.Length = arange_desc_ptr->Length;
47
48        // Insert each item in increasing address order so binary searching
49        // can later be done!
50        DWARFDebugAranges::RangeColl::iterator insert_pos =
51          std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
52                           range, RangeLessThan);
53        RangeCollection.insert(insert_pos, range);
54      }
55    }
56    DWARFDebugAranges::RangeColl& RangeCollection;
57  };
58}
59
60bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
61  if (debug_aranges_data.isValidOffset(0)) {
62    uint32_t offset = 0;
63
64    typedef std::vector<DWARFDebugArangeSet> SetCollection;
65    typedef SetCollection::const_iterator SetCollectionIter;
66    SetCollection sets;
67
68    DWARFDebugArangeSet set;
69    Range range;
70    while (set.extract(debug_aranges_data, &offset))
71      sets.push_back(set);
72
73    uint32_t count = 0;
74
75    std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
76
77    if (count > 0) {
78      Aranges.reserve(count);
79      AddArangeDescriptors range_adder(Aranges);
80      std::for_each(sets.begin(), sets.end(), range_adder);
81    }
82  }
83  return false;
84}
85
86bool DWARFDebugAranges::generate(DWARFContext *ctx) {
87  clear();
88  if (ctx) {
89    const uint32_t num_compile_units = ctx->getNumCompileUnits();
90    for (uint32_t cu_idx = 0; cu_idx < num_compile_units; ++cu_idx) {
91      DWARFCompileUnit *cu = ctx->getCompileUnitAtIndex(cu_idx);
92      if (cu)
93        cu->buildAddressRangeTable(this, true);
94    }
95  }
96  return !isEmpty();
97}
98
99void DWARFDebugAranges::dump(raw_ostream &OS) const {
100  const uint32_t num_ranges = getNumRanges();
101  for (uint32_t i = 0; i < num_ranges; ++i) {
102    const Range &range = Aranges[i];
103    OS << format("0x%8.8x: [0x%8.8llx - 0x%8.8llx)\n", range.Offset,
104                 (uint64_t)range.LoPC, (uint64_t)range.HiPC());
105  }
106}
107
108void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
109  OS << format("{0x%8.8x}: [0x%8.8llx - 0x%8.8llx)\n", Offset, LoPC, HiPC());
110}
111
112void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
113                                    uint64_t high_pc) {
114  if (!Aranges.empty()) {
115    if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
116      Aranges.back().setHiPC(high_pc);
117      return;
118    }
119  }
120  Aranges.push_back(Range(low_pc, high_pc, offset));
121}
122
123void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
124  const size_t orig_arange_size = Aranges.size();
125  // Size of one? If so, no sorting is needed
126  if (orig_arange_size <= 1)
127    return;
128  // Sort our address range entries
129  std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
130
131  if (!minimize)
132    return;
133
134  // Most address ranges are contiguous from function to function
135  // so our new ranges will likely be smaller. We calculate the size
136  // of the new ranges since although std::vector objects can be resized,
137  // the will never reduce their allocated block size and free any excesss
138  // memory, so we might as well start a brand new collection so it is as
139  // small as possible.
140
141  // First calculate the size of the new minimal arange vector
142  // so we don't have to do a bunch of re-allocations as we
143  // copy the new minimal stuff over to the new collection.
144  size_t minimal_size = 1;
145  for (size_t i = 1; i < orig_arange_size; ++i) {
146    if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
147      ++minimal_size;
148  }
149
150  // If the sizes are the same, then no consecutive aranges can be
151  // combined, we are done.
152  if (minimal_size == orig_arange_size)
153    return;
154
155  // Else, make a new RangeColl that _only_ contains what we need.
156  RangeColl minimal_aranges;
157  minimal_aranges.resize(minimal_size);
158  uint32_t j = 0;
159  minimal_aranges[j] = Aranges[0];
160  for (size_t i = 1; i < orig_arange_size; ++i) {
161    if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
162      minimal_aranges[j].setHiPC (Aranges[i].HiPC());
163    } else {
164      // Only increment j if we aren't merging
165      minimal_aranges[++j] = Aranges[i];
166    }
167  }
168  assert (j+1 == minimal_size);
169
170  // Now swap our new minimal aranges into place. The local
171  // minimal_aranges will then contian the old big collection
172  // which will get freed.
173  minimal_aranges.swap(Aranges);
174}
175
176uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
177  if (!Aranges.empty()) {
178    Range range(address);
179    RangeCollIterator begin = Aranges.begin();
180    RangeCollIterator end = Aranges.end();
181    RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
182
183    if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
184      return pos->Offset;
185    } else if (pos != begin) {
186      --pos;
187      if (pos->LoPC <= address && address < pos->HiPC())
188        return (*pos).Offset;
189    }
190  }
191  return -1U;
192}
193
194bool
195DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
196  if (Aranges.empty())
197    return false;
198
199  uint64_t next_addr = 0;
200  RangeCollIterator begin = Aranges.begin();
201  for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
202       ++pos) {
203    if (pos != begin && pos->LoPC != next_addr)
204      return false;
205    next_addr = pos->HiPC();
206  }
207  // We checked for empty at the start of function so front() will be valid.
208  LoPC = Aranges.front().LoPC;
209  // We checked for empty at the start of function so back() will be valid.
210  HiPC = Aranges.back().HiPC();
211  return true;
212}
213
214bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
215  if (Aranges.empty())
216    return false;
217  // We checked for empty at the start of function so front() will be valid.
218  LoPC = Aranges.front().LoPC;
219  // We checked for empty at the start of function so back() will be valid.
220  HiPC = Aranges.back().HiPC();
221  return true;
222}
223
224