1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18#include "llvm/Constants.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/Module.h" 21#include "llvm/ExecutionEngine/GenericValue.h" 22#include "llvm/ADT/SmallString.h" 23#include "llvm/ADT/Statistic.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/ErrorHandling.h" 26#include "llvm/Support/MutexGuard.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/Support/DynamicLibrary.h" 30#include "llvm/Support/Host.h" 31#include "llvm/Target/TargetData.h" 32#include "llvm/Target/TargetMachine.h" 33#include <cmath> 34#include <cstring> 35using namespace llvm; 36 37STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 38STATISTIC(NumGlobals , "Number of global vars initialized"); 39 40ExecutionEngine *(*ExecutionEngine::JITCtor)( 41 Module *M, 42 std::string *ErrorStr, 43 JITMemoryManager *JMM, 44 CodeGenOpt::Level OptLevel, 45 bool GVsWithCode, 46 TargetMachine *TM) = 0; 47ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 48 Module *M, 49 std::string *ErrorStr, 50 JITMemoryManager *JMM, 51 CodeGenOpt::Level OptLevel, 52 bool GVsWithCode, 53 TargetMachine *TM) = 0; 54ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 55 std::string *ErrorStr) = 0; 56 57ExecutionEngine::ExecutionEngine(Module *M) 58 : EEState(*this), 59 LazyFunctionCreator(0), 60 ExceptionTableRegister(0), 61 ExceptionTableDeregister(0) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 Modules.push_back(M); 66 assert(M && "Module is null?"); 67} 68 69ExecutionEngine::~ExecutionEngine() { 70 clearAllGlobalMappings(); 71 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 72 delete Modules[i]; 73} 74 75void ExecutionEngine::DeregisterAllTables() { 76 if (ExceptionTableDeregister) { 77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 79 for (; it != ite; ++it) 80 ExceptionTableDeregister(it->second); 81 AllExceptionTables.clear(); 82 } 83} 84 85namespace { 86/// \brief Helper class which uses a value handler to automatically deletes the 87/// memory block when the GlobalVariable is destroyed. 88class GVMemoryBlock : public CallbackVH { 89 GVMemoryBlock(const GlobalVariable *GV) 90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 91 92public: 93 /// \brief Returns the address the GlobalVariable should be written into. The 94 /// GVMemoryBlock object prefixes that. 95 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 96 Type *ElTy = GV->getType()->getElementType(); 97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 98 void *RawMemory = ::operator new( 99 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 100 TD.getPreferredAlignment(GV)) 101 + GVSize); 102 new(RawMemory) GVMemoryBlock(GV); 103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 104 } 105 106 virtual void deleted() { 107 // We allocated with operator new and with some extra memory hanging off the 108 // end, so don't just delete this. I'm not sure if this is actually 109 // required. 110 this->~GVMemoryBlock(); 111 ::operator delete(this); 112 } 113}; 114} // anonymous namespace 115 116char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 117 return GVMemoryBlock::Create(GV, *getTargetData()); 118} 119 120bool ExecutionEngine::removeModule(Module *M) { 121 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 122 E = Modules.end(); I != E; ++I) { 123 Module *Found = *I; 124 if (Found == M) { 125 Modules.erase(I); 126 clearGlobalMappingsFromModule(M); 127 return true; 128 } 129 } 130 return false; 131} 132 133Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 135 if (Function *F = Modules[i]->getFunction(FnName)) 136 return F; 137 } 138 return 0; 139} 140 141 142void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 143 const GlobalValue *ToUnmap) { 144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 145 void *OldVal; 146 147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 148 // GlobalAddressMap. 149 if (I == GlobalAddressMap.end()) 150 OldVal = 0; 151 else { 152 OldVal = I->second; 153 GlobalAddressMap.erase(I); 154 } 155 156 GlobalAddressReverseMap.erase(OldVal); 157 return OldVal; 158} 159 160void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 161 MutexGuard locked(lock); 162 163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 164 << "\' to [" << Addr << "]\n";); 165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 167 CurVal = Addr; 168 169 // If we are using the reverse mapping, add it too. 170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 171 AssertingVH<const GlobalValue> &V = 172 EEState.getGlobalAddressReverseMap(locked)[Addr]; 173 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 174 V = GV; 175 } 176} 177 178void ExecutionEngine::clearAllGlobalMappings() { 179 MutexGuard locked(lock); 180 181 EEState.getGlobalAddressMap(locked).clear(); 182 EEState.getGlobalAddressReverseMap(locked).clear(); 183} 184 185void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 186 MutexGuard locked(lock); 187 188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 189 EEState.RemoveMapping(locked, FI); 190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 191 GI != GE; ++GI) 192 EEState.RemoveMapping(locked, GI); 193} 194 195void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 196 MutexGuard locked(lock); 197 198 ExecutionEngineState::GlobalAddressMapTy &Map = 199 EEState.getGlobalAddressMap(locked); 200 201 // Deleting from the mapping? 202 if (Addr == 0) 203 return EEState.RemoveMapping(locked, GV); 204 205 void *&CurVal = Map[GV]; 206 void *OldVal = CurVal; 207 208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too. 213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 214 AssertingVH<const GlobalValue> &V = 215 EEState.getGlobalAddressReverseMap(locked)[Addr]; 216 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 217 V = GV; 218 } 219 return OldVal; 220} 221 222void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 223 MutexGuard locked(lock); 224 225 ExecutionEngineState::GlobalAddressMapTy::iterator I = 226 EEState.getGlobalAddressMap(locked).find(GV); 227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 228} 229 230const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 231 MutexGuard locked(lock); 232 233 // If we haven't computed the reverse mapping yet, do so first. 234 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 235 for (ExecutionEngineState::GlobalAddressMapTy::iterator 236 I = EEState.getGlobalAddressMap(locked).begin(), 237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 239 I->second, I->first)); 240 } 241 242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 243 EEState.getGlobalAddressReverseMap(locked).find(Addr); 244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 245} 246 247namespace { 248class ArgvArray { 249 char *Array; 250 std::vector<char*> Values; 251public: 252 ArgvArray() : Array(NULL) {} 253 ~ArgvArray() { clear(); } 254 void clear() { 255 delete[] Array; 256 Array = NULL; 257 for (size_t I = 0, E = Values.size(); I != E; ++I) { 258 delete[] Values[I]; 259 } 260 Values.clear(); 261 } 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266}; 267} // anonymous namespace 268void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 clear(); // Free the old contents. 271 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 272 Array = new char[(InputArgv.size()+1)*PtrSize]; 273 274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 275 Type *SBytePtr = Type::getInt8PtrTy(C); 276 277 for (unsigned i = 0; i != InputArgv.size(); ++i) { 278 unsigned Size = InputArgv[i].size()+1; 279 char *Dest = new char[Size]; 280 Values.push_back(Dest); 281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 282 283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 284 Dest[Size-1] = 0; 285 286 // Endian safe: Array[i] = (PointerTy)Dest; 287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 288 SBytePtr); 289 } 290 291 // Null terminate it 292 EE->StoreValueToMemory(PTOGV(0), 293 (GenericValue*)(Array+InputArgv.size()*PtrSize), 294 SBytePtr); 295 return Array; 296} 297 298void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 299 bool isDtors) { 300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 301 GlobalVariable *GV = module->getNamedGlobal(Name); 302 303 // If this global has internal linkage, or if it has a use, then it must be 304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 305 // this is the case, don't execute any of the global ctors, __main will do 306 // it. 307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 308 309 // Should be an array of '{ i32, void ()* }' structs. The first value is 310 // the init priority, which we ignore. 311 if (isa<ConstantAggregateZero>(GV->getInitializer())) 312 return; 313 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 315 if (isa<ConstantAggregateZero>(InitList->getOperand(i))) 316 continue; 317 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i)); 318 319 Constant *FP = CS->getOperand(1); 320 if (FP->isNullValue()) 321 continue; // Found a sentinal value, ignore. 322 323 // Strip off constant expression casts. 324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 325 if (CE->isCast()) 326 FP = CE->getOperand(0); 327 328 // Execute the ctor/dtor function! 329 if (Function *F = dyn_cast<Function>(FP)) 330 runFunction(F, std::vector<GenericValue>()); 331 332 // FIXME: It is marginally lame that we just do nothing here if we see an 333 // entry we don't recognize. It might not be unreasonable for the verifier 334 // to not even allow this and just assert here. 335 } 336} 337 338void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 339 // Execute global ctors/dtors for each module in the program. 340 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 341 runStaticConstructorsDestructors(Modules[i], isDtors); 342} 343 344#ifndef NDEBUG 345/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 346static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 347 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 348 for (unsigned i = 0; i < PtrSize; ++i) 349 if (*(i + (uint8_t*)Loc)) 350 return false; 351 return true; 352} 353#endif 354 355int ExecutionEngine::runFunctionAsMain(Function *Fn, 356 const std::vector<std::string> &argv, 357 const char * const * envp) { 358 std::vector<GenericValue> GVArgs; 359 GenericValue GVArgc; 360 GVArgc.IntVal = APInt(32, argv.size()); 361 362 // Check main() type 363 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 364 FunctionType *FTy = Fn->getFunctionType(); 365 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 366 367 // Check the argument types. 368 if (NumArgs > 3) 369 report_fatal_error("Invalid number of arguments of main() supplied"); 370 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 371 report_fatal_error("Invalid type for third argument of main() supplied"); 372 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 373 report_fatal_error("Invalid type for second argument of main() supplied"); 374 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 375 report_fatal_error("Invalid type for first argument of main() supplied"); 376 if (!FTy->getReturnType()->isIntegerTy() && 377 !FTy->getReturnType()->isVoidTy()) 378 report_fatal_error("Invalid return type of main() supplied"); 379 380 ArgvArray CArgv; 381 ArgvArray CEnv; 382 if (NumArgs) { 383 GVArgs.push_back(GVArgc); // Arg #0 = argc. 384 if (NumArgs > 1) { 385 // Arg #1 = argv. 386 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 387 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 388 "argv[0] was null after CreateArgv"); 389 if (NumArgs > 2) { 390 std::vector<std::string> EnvVars; 391 for (unsigned i = 0; envp[i]; ++i) 392 EnvVars.push_back(envp[i]); 393 // Arg #2 = envp. 394 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 395 } 396 } 397 } 398 399 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 400} 401 402ExecutionEngine *ExecutionEngine::create(Module *M, 403 bool ForceInterpreter, 404 std::string *ErrorStr, 405 CodeGenOpt::Level OptLevel, 406 bool GVsWithCode) { 407 return EngineBuilder(M) 408 .setEngineKind(ForceInterpreter 409 ? EngineKind::Interpreter 410 : EngineKind::JIT) 411 .setErrorStr(ErrorStr) 412 .setOptLevel(OptLevel) 413 .setAllocateGVsWithCode(GVsWithCode) 414 .create(); 415} 416 417/// createJIT - This is the factory method for creating a JIT for the current 418/// machine, it does not fall back to the interpreter. This takes ownership 419/// of the module. 420ExecutionEngine *ExecutionEngine::createJIT(Module *M, 421 std::string *ErrorStr, 422 JITMemoryManager *JMM, 423 CodeGenOpt::Level OptLevel, 424 bool GVsWithCode, 425 Reloc::Model RM, 426 CodeModel::Model CMM) { 427 if (ExecutionEngine::JITCtor == 0) { 428 if (ErrorStr) 429 *ErrorStr = "JIT has not been linked in."; 430 return 0; 431 } 432 433 // Use the defaults for extra parameters. Users can use EngineBuilder to 434 // set them. 435 StringRef MArch = ""; 436 StringRef MCPU = ""; 437 SmallVector<std::string, 1> MAttrs; 438 439 TargetMachine *TM = 440 EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, RM, CMM, ErrorStr); 441 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 442 443 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, GVsWithCode, TM); 444} 445 446ExecutionEngine *EngineBuilder::create() { 447 // Make sure we can resolve symbols in the program as well. The zero arg 448 // to the function tells DynamicLibrary to load the program, not a library. 449 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 450 return 0; 451 452 // If the user specified a memory manager but didn't specify which engine to 453 // create, we assume they only want the JIT, and we fail if they only want 454 // the interpreter. 455 if (JMM) { 456 if (WhichEngine & EngineKind::JIT) 457 WhichEngine = EngineKind::JIT; 458 else { 459 if (ErrorStr) 460 *ErrorStr = "Cannot create an interpreter with a memory manager."; 461 return 0; 462 } 463 } 464 465 // Unless the interpreter was explicitly selected or the JIT is not linked, 466 // try making a JIT. 467 if (WhichEngine & EngineKind::JIT) { 468 if (TargetMachine *TM = EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, 469 RelocModel, CMModel, 470 ErrorStr)) { 471 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 472 ExecutionEngine *EE = 473 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel, 474 AllocateGVsWithCode, TM); 475 if (EE) return EE; 476 } else if (ExecutionEngine::JITCtor) { 477 ExecutionEngine *EE = 478 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 479 AllocateGVsWithCode, TM); 480 if (EE) return EE; 481 } 482 } 483 } 484 485 // If we can't make a JIT and we didn't request one specifically, try making 486 // an interpreter instead. 487 if (WhichEngine & EngineKind::Interpreter) { 488 if (ExecutionEngine::InterpCtor) 489 return ExecutionEngine::InterpCtor(M, ErrorStr); 490 if (ErrorStr) 491 *ErrorStr = "Interpreter has not been linked in."; 492 return 0; 493 } 494 495 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 496 if (ErrorStr) 497 *ErrorStr = "JIT has not been linked in."; 498 } 499 500 return 0; 501} 502 503void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 504 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 505 return getPointerToFunction(F); 506 507 MutexGuard locked(lock); 508 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 509 return P; 510 511 // Global variable might have been added since interpreter started. 512 if (GlobalVariable *GVar = 513 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 514 EmitGlobalVariable(GVar); 515 else 516 llvm_unreachable("Global hasn't had an address allocated yet!"); 517 518 return EEState.getGlobalAddressMap(locked)[GV]; 519} 520 521/// \brief Converts a Constant* into a GenericValue, including handling of 522/// ConstantExpr values. 523GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 524 // If its undefined, return the garbage. 525 if (isa<UndefValue>(C)) { 526 GenericValue Result; 527 switch (C->getType()->getTypeID()) { 528 case Type::IntegerTyID: 529 case Type::X86_FP80TyID: 530 case Type::FP128TyID: 531 case Type::PPC_FP128TyID: 532 // Although the value is undefined, we still have to construct an APInt 533 // with the correct bit width. 534 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 535 break; 536 default: 537 break; 538 } 539 return Result; 540 } 541 542 // Otherwise, if the value is a ConstantExpr... 543 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 544 Constant *Op0 = CE->getOperand(0); 545 switch (CE->getOpcode()) { 546 case Instruction::GetElementPtr: { 547 // Compute the index 548 GenericValue Result = getConstantValue(Op0); 549 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 550 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices); 551 552 char* tmp = (char*) Result.PointerVal; 553 Result = PTOGV(tmp + Offset); 554 return Result; 555 } 556 case Instruction::Trunc: { 557 GenericValue GV = getConstantValue(Op0); 558 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 559 GV.IntVal = GV.IntVal.trunc(BitWidth); 560 return GV; 561 } 562 case Instruction::ZExt: { 563 GenericValue GV = getConstantValue(Op0); 564 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 565 GV.IntVal = GV.IntVal.zext(BitWidth); 566 return GV; 567 } 568 case Instruction::SExt: { 569 GenericValue GV = getConstantValue(Op0); 570 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 571 GV.IntVal = GV.IntVal.sext(BitWidth); 572 return GV; 573 } 574 case Instruction::FPTrunc: { 575 // FIXME long double 576 GenericValue GV = getConstantValue(Op0); 577 GV.FloatVal = float(GV.DoubleVal); 578 return GV; 579 } 580 case Instruction::FPExt:{ 581 // FIXME long double 582 GenericValue GV = getConstantValue(Op0); 583 GV.DoubleVal = double(GV.FloatVal); 584 return GV; 585 } 586 case Instruction::UIToFP: { 587 GenericValue GV = getConstantValue(Op0); 588 if (CE->getType()->isFloatTy()) 589 GV.FloatVal = float(GV.IntVal.roundToDouble()); 590 else if (CE->getType()->isDoubleTy()) 591 GV.DoubleVal = GV.IntVal.roundToDouble(); 592 else if (CE->getType()->isX86_FP80Ty()) { 593 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 594 (void)apf.convertFromAPInt(GV.IntVal, 595 false, 596 APFloat::rmNearestTiesToEven); 597 GV.IntVal = apf.bitcastToAPInt(); 598 } 599 return GV; 600 } 601 case Instruction::SIToFP: { 602 GenericValue GV = getConstantValue(Op0); 603 if (CE->getType()->isFloatTy()) 604 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 605 else if (CE->getType()->isDoubleTy()) 606 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 607 else if (CE->getType()->isX86_FP80Ty()) { 608 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 609 (void)apf.convertFromAPInt(GV.IntVal, 610 true, 611 APFloat::rmNearestTiesToEven); 612 GV.IntVal = apf.bitcastToAPInt(); 613 } 614 return GV; 615 } 616 case Instruction::FPToUI: // double->APInt conversion handles sign 617 case Instruction::FPToSI: { 618 GenericValue GV = getConstantValue(Op0); 619 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 620 if (Op0->getType()->isFloatTy()) 621 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 622 else if (Op0->getType()->isDoubleTy()) 623 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 624 else if (Op0->getType()->isX86_FP80Ty()) { 625 APFloat apf = APFloat(GV.IntVal); 626 uint64_t v; 627 bool ignored; 628 (void)apf.convertToInteger(&v, BitWidth, 629 CE->getOpcode()==Instruction::FPToSI, 630 APFloat::rmTowardZero, &ignored); 631 GV.IntVal = v; // endian? 632 } 633 return GV; 634 } 635 case Instruction::PtrToInt: { 636 GenericValue GV = getConstantValue(Op0); 637 uint32_t PtrWidth = TD->getPointerSizeInBits(); 638 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 639 return GV; 640 } 641 case Instruction::IntToPtr: { 642 GenericValue GV = getConstantValue(Op0); 643 uint32_t PtrWidth = TD->getPointerSizeInBits(); 644 if (PtrWidth != GV.IntVal.getBitWidth()) 645 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 646 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 647 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 648 return GV; 649 } 650 case Instruction::BitCast: { 651 GenericValue GV = getConstantValue(Op0); 652 Type* DestTy = CE->getType(); 653 switch (Op0->getType()->getTypeID()) { 654 default: llvm_unreachable("Invalid bitcast operand"); 655 case Type::IntegerTyID: 656 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 657 if (DestTy->isFloatTy()) 658 GV.FloatVal = GV.IntVal.bitsToFloat(); 659 else if (DestTy->isDoubleTy()) 660 GV.DoubleVal = GV.IntVal.bitsToDouble(); 661 break; 662 case Type::FloatTyID: 663 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 664 GV.IntVal = APInt::floatToBits(GV.FloatVal); 665 break; 666 case Type::DoubleTyID: 667 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 668 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 669 break; 670 case Type::PointerTyID: 671 assert(DestTy->isPointerTy() && "Invalid bitcast"); 672 break; // getConstantValue(Op0) above already converted it 673 } 674 return GV; 675 } 676 case Instruction::Add: 677 case Instruction::FAdd: 678 case Instruction::Sub: 679 case Instruction::FSub: 680 case Instruction::Mul: 681 case Instruction::FMul: 682 case Instruction::UDiv: 683 case Instruction::SDiv: 684 case Instruction::URem: 685 case Instruction::SRem: 686 case Instruction::And: 687 case Instruction::Or: 688 case Instruction::Xor: { 689 GenericValue LHS = getConstantValue(Op0); 690 GenericValue RHS = getConstantValue(CE->getOperand(1)); 691 GenericValue GV; 692 switch (CE->getOperand(0)->getType()->getTypeID()) { 693 default: llvm_unreachable("Bad add type!"); 694 case Type::IntegerTyID: 695 switch (CE->getOpcode()) { 696 default: llvm_unreachable("Invalid integer opcode"); 697 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 698 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 699 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 700 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 701 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 702 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 703 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 704 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 705 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 706 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 707 } 708 break; 709 case Type::FloatTyID: 710 switch (CE->getOpcode()) { 711 default: llvm_unreachable("Invalid float opcode"); 712 case Instruction::FAdd: 713 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 714 case Instruction::FSub: 715 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 716 case Instruction::FMul: 717 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 718 case Instruction::FDiv: 719 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 720 case Instruction::FRem: 721 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 722 } 723 break; 724 case Type::DoubleTyID: 725 switch (CE->getOpcode()) { 726 default: llvm_unreachable("Invalid double opcode"); 727 case Instruction::FAdd: 728 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 729 case Instruction::FSub: 730 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 731 case Instruction::FMul: 732 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 733 case Instruction::FDiv: 734 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 735 case Instruction::FRem: 736 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 737 } 738 break; 739 case Type::X86_FP80TyID: 740 case Type::PPC_FP128TyID: 741 case Type::FP128TyID: { 742 APFloat apfLHS = APFloat(LHS.IntVal); 743 switch (CE->getOpcode()) { 744 default: llvm_unreachable("Invalid long double opcode"); 745 case Instruction::FAdd: 746 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 747 GV.IntVal = apfLHS.bitcastToAPInt(); 748 break; 749 case Instruction::FSub: 750 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 751 GV.IntVal = apfLHS.bitcastToAPInt(); 752 break; 753 case Instruction::FMul: 754 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 755 GV.IntVal = apfLHS.bitcastToAPInt(); 756 break; 757 case Instruction::FDiv: 758 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 759 GV.IntVal = apfLHS.bitcastToAPInt(); 760 break; 761 case Instruction::FRem: 762 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 763 GV.IntVal = apfLHS.bitcastToAPInt(); 764 break; 765 } 766 } 767 break; 768 } 769 return GV; 770 } 771 default: 772 break; 773 } 774 775 SmallString<256> Msg; 776 raw_svector_ostream OS(Msg); 777 OS << "ConstantExpr not handled: " << *CE; 778 report_fatal_error(OS.str()); 779 } 780 781 // Otherwise, we have a simple constant. 782 GenericValue Result; 783 switch (C->getType()->getTypeID()) { 784 case Type::FloatTyID: 785 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 786 break; 787 case Type::DoubleTyID: 788 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 789 break; 790 case Type::X86_FP80TyID: 791 case Type::FP128TyID: 792 case Type::PPC_FP128TyID: 793 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 794 break; 795 case Type::IntegerTyID: 796 Result.IntVal = cast<ConstantInt>(C)->getValue(); 797 break; 798 case Type::PointerTyID: 799 if (isa<ConstantPointerNull>(C)) 800 Result.PointerVal = 0; 801 else if (const Function *F = dyn_cast<Function>(C)) 802 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 803 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 804 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 805 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 806 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 807 BA->getBasicBlock()))); 808 else 809 llvm_unreachable("Unknown constant pointer type!"); 810 break; 811 default: 812 SmallString<256> Msg; 813 raw_svector_ostream OS(Msg); 814 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 815 report_fatal_error(OS.str()); 816 } 817 818 return Result; 819} 820 821/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 822/// with the integer held in IntVal. 823static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 824 unsigned StoreBytes) { 825 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 826 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 827 828 if (sys::isLittleEndianHost()) { 829 // Little-endian host - the source is ordered from LSB to MSB. Order the 830 // destination from LSB to MSB: Do a straight copy. 831 memcpy(Dst, Src, StoreBytes); 832 } else { 833 // Big-endian host - the source is an array of 64 bit words ordered from 834 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 835 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 836 while (StoreBytes > sizeof(uint64_t)) { 837 StoreBytes -= sizeof(uint64_t); 838 // May not be aligned so use memcpy. 839 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 840 Src += sizeof(uint64_t); 841 } 842 843 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 844 } 845} 846 847void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 848 GenericValue *Ptr, Type *Ty) { 849 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 850 851 switch (Ty->getTypeID()) { 852 case Type::IntegerTyID: 853 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 854 break; 855 case Type::FloatTyID: 856 *((float*)Ptr) = Val.FloatVal; 857 break; 858 case Type::DoubleTyID: 859 *((double*)Ptr) = Val.DoubleVal; 860 break; 861 case Type::X86_FP80TyID: 862 memcpy(Ptr, Val.IntVal.getRawData(), 10); 863 break; 864 case Type::PointerTyID: 865 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 866 if (StoreBytes != sizeof(PointerTy)) 867 memset(&(Ptr->PointerVal), 0, StoreBytes); 868 869 *((PointerTy*)Ptr) = Val.PointerVal; 870 break; 871 default: 872 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 873 } 874 875 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 876 // Host and target are different endian - reverse the stored bytes. 877 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 878} 879 880/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 881/// from Src into IntVal, which is assumed to be wide enough and to hold zero. 882static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 883 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 884 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 885 886 if (sys::isLittleEndianHost()) 887 // Little-endian host - the destination must be ordered from LSB to MSB. 888 // The source is ordered from LSB to MSB: Do a straight copy. 889 memcpy(Dst, Src, LoadBytes); 890 else { 891 // Big-endian - the destination is an array of 64 bit words ordered from 892 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 893 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 894 // a word. 895 while (LoadBytes > sizeof(uint64_t)) { 896 LoadBytes -= sizeof(uint64_t); 897 // May not be aligned so use memcpy. 898 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 899 Dst += sizeof(uint64_t); 900 } 901 902 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 903 } 904} 905 906/// FIXME: document 907/// 908void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 909 GenericValue *Ptr, 910 Type *Ty) { 911 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 912 913 switch (Ty->getTypeID()) { 914 case Type::IntegerTyID: 915 // An APInt with all words initially zero. 916 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 917 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 918 break; 919 case Type::FloatTyID: 920 Result.FloatVal = *((float*)Ptr); 921 break; 922 case Type::DoubleTyID: 923 Result.DoubleVal = *((double*)Ptr); 924 break; 925 case Type::PointerTyID: 926 Result.PointerVal = *((PointerTy*)Ptr); 927 break; 928 case Type::X86_FP80TyID: { 929 // This is endian dependent, but it will only work on x86 anyway. 930 // FIXME: Will not trap if loading a signaling NaN. 931 uint64_t y[2]; 932 memcpy(y, Ptr, 10); 933 Result.IntVal = APInt(80, y); 934 break; 935 } 936 default: 937 SmallString<256> Msg; 938 raw_svector_ostream OS(Msg); 939 OS << "Cannot load value of type " << *Ty << "!"; 940 report_fatal_error(OS.str()); 941 } 942} 943 944void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 945 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 946 DEBUG(Init->dump()); 947 if (isa<UndefValue>(Init)) { 948 return; 949 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 950 unsigned ElementSize = 951 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 952 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 953 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 954 return; 955 } else if (isa<ConstantAggregateZero>(Init)) { 956 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 957 return; 958 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 959 unsigned ElementSize = 960 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 961 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 962 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 963 return; 964 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 965 const StructLayout *SL = 966 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 967 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 968 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 969 return; 970 } else if (Init->getType()->isFirstClassType()) { 971 GenericValue Val = getConstantValue(Init); 972 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 973 return; 974 } 975 976 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 977 llvm_unreachable("Unknown constant type to initialize memory with!"); 978} 979 980/// EmitGlobals - Emit all of the global variables to memory, storing their 981/// addresses into GlobalAddress. This must make sure to copy the contents of 982/// their initializers into the memory. 983void ExecutionEngine::emitGlobals() { 984 // Loop over all of the global variables in the program, allocating the memory 985 // to hold them. If there is more than one module, do a prepass over globals 986 // to figure out how the different modules should link together. 987 std::map<std::pair<std::string, Type*>, 988 const GlobalValue*> LinkedGlobalsMap; 989 990 if (Modules.size() != 1) { 991 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 992 Module &M = *Modules[m]; 993 for (Module::const_global_iterator I = M.global_begin(), 994 E = M.global_end(); I != E; ++I) { 995 const GlobalValue *GV = I; 996 if (GV->hasLocalLinkage() || GV->isDeclaration() || 997 GV->hasAppendingLinkage() || !GV->hasName()) 998 continue;// Ignore external globals and globals with internal linkage. 999 1000 const GlobalValue *&GVEntry = 1001 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1002 1003 // If this is the first time we've seen this global, it is the canonical 1004 // version. 1005 if (!GVEntry) { 1006 GVEntry = GV; 1007 continue; 1008 } 1009 1010 // If the existing global is strong, never replace it. 1011 if (GVEntry->hasExternalLinkage() || 1012 GVEntry->hasDLLImportLinkage() || 1013 GVEntry->hasDLLExportLinkage()) 1014 continue; 1015 1016 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1017 // symbol. FIXME is this right for common? 1018 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1019 GVEntry = GV; 1020 } 1021 } 1022 } 1023 1024 std::vector<const GlobalValue*> NonCanonicalGlobals; 1025 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1026 Module &M = *Modules[m]; 1027 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1028 I != E; ++I) { 1029 // In the multi-module case, see what this global maps to. 1030 if (!LinkedGlobalsMap.empty()) { 1031 if (const GlobalValue *GVEntry = 1032 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1033 // If something else is the canonical global, ignore this one. 1034 if (GVEntry != &*I) { 1035 NonCanonicalGlobals.push_back(I); 1036 continue; 1037 } 1038 } 1039 } 1040 1041 if (!I->isDeclaration()) { 1042 addGlobalMapping(I, getMemoryForGV(I)); 1043 } else { 1044 // External variable reference. Try to use the dynamic loader to 1045 // get a pointer to it. 1046 if (void *SymAddr = 1047 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1048 addGlobalMapping(I, SymAddr); 1049 else { 1050 report_fatal_error("Could not resolve external global address: " 1051 +I->getName()); 1052 } 1053 } 1054 } 1055 1056 // If there are multiple modules, map the non-canonical globals to their 1057 // canonical location. 1058 if (!NonCanonicalGlobals.empty()) { 1059 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1060 const GlobalValue *GV = NonCanonicalGlobals[i]; 1061 const GlobalValue *CGV = 1062 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1063 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1064 assert(Ptr && "Canonical global wasn't codegen'd!"); 1065 addGlobalMapping(GV, Ptr); 1066 } 1067 } 1068 1069 // Now that all of the globals are set up in memory, loop through them all 1070 // and initialize their contents. 1071 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1072 I != E; ++I) { 1073 if (!I->isDeclaration()) { 1074 if (!LinkedGlobalsMap.empty()) { 1075 if (const GlobalValue *GVEntry = 1076 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1077 if (GVEntry != &*I) // Not the canonical variable. 1078 continue; 1079 } 1080 EmitGlobalVariable(I); 1081 } 1082 } 1083 } 1084} 1085 1086// EmitGlobalVariable - This method emits the specified global variable to the 1087// address specified in GlobalAddresses, or allocates new memory if it's not 1088// already in the map. 1089void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1090 void *GA = getPointerToGlobalIfAvailable(GV); 1091 1092 if (GA == 0) { 1093 // If it's not already specified, allocate memory for the global. 1094 GA = getMemoryForGV(GV); 1095 addGlobalMapping(GV, GA); 1096 } 1097 1098 // Don't initialize if it's thread local, let the client do it. 1099 if (!GV->isThreadLocal()) 1100 InitializeMemory(GV->getInitializer(), GA); 1101 1102 Type *ElTy = GV->getType()->getElementType(); 1103 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1104 NumInitBytes += (unsigned)GVSize; 1105 ++NumGlobals; 1106} 1107 1108ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1109 : EE(EE), GlobalAddressMap(this) { 1110} 1111 1112sys::Mutex * 1113ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1114 return &EES->EE.lock; 1115} 1116 1117void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1118 const GlobalValue *Old) { 1119 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1120 EES->GlobalAddressReverseMap.erase(OldVal); 1121} 1122 1123void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1124 const GlobalValue *, 1125 const GlobalValue *) { 1126 assert(false && "The ExecutionEngine doesn't know how to handle a" 1127 " RAUW on a value it has a global mapping for."); 1128} 1129