1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This tool implements a just-in-time compiler for LLVM, allowing direct 11// execution of LLVM bitcode in an efficient manner. 12// 13//===----------------------------------------------------------------------===// 14 15#include "JIT.h" 16#include "llvm/Constants.h" 17#include "llvm/DerivedTypes.h" 18#include "llvm/Function.h" 19#include "llvm/GlobalVariable.h" 20#include "llvm/Instructions.h" 21#include "llvm/ADT/SmallPtrSet.h" 22#include "llvm/CodeGen/JITCodeEmitter.h" 23#include "llvm/CodeGen/MachineCodeInfo.h" 24#include "llvm/ExecutionEngine/GenericValue.h" 25#include "llvm/ExecutionEngine/JITEventListener.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Target/TargetMachine.h" 28#include "llvm/Target/TargetJITInfo.h" 29#include "llvm/Support/Dwarf.h" 30#include "llvm/Support/ErrorHandling.h" 31#include "llvm/Support/ManagedStatic.h" 32#include "llvm/Support/MutexGuard.h" 33#include "llvm/Support/DynamicLibrary.h" 34#include "llvm/Config/config.h" 35 36using namespace llvm; 37 38#ifdef __APPLE__ 39// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead 40// of atexit). It passes the address of linker generated symbol __dso_handle 41// to the function. 42// This configuration change happened at version 5330. 43# include <AvailabilityMacros.h> 44# if defined(MAC_OS_X_VERSION_10_4) && \ 45 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ 46 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ 47 __APPLE_CC__ >= 5330)) 48# ifndef HAVE___DSO_HANDLE 49# define HAVE___DSO_HANDLE 1 50# endif 51# endif 52#endif 53 54#if HAVE___DSO_HANDLE 55extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); 56#endif 57 58namespace { 59 60static struct RegisterJIT { 61 RegisterJIT() { JIT::Register(); } 62} JITRegistrator; 63 64} 65 66extern "C" void LLVMLinkInJIT() { 67} 68 69// Determine whether we can register EH tables. 70#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \ 71 !defined(__USING_SJLJ_EXCEPTIONS__)) 72#define HAVE_EHTABLE_SUPPORT 1 73#else 74#define HAVE_EHTABLE_SUPPORT 0 75#endif 76 77#if HAVE_EHTABLE_SUPPORT 78 79// libgcc defines the __register_frame function to dynamically register new 80// dwarf frames for exception handling. This functionality is not portable 81// across compilers and is only provided by GCC. We use the __register_frame 82// function here so that code generated by the JIT cooperates with the unwinding 83// runtime of libgcc. When JITting with exception handling enable, LLVM 84// generates dwarf frames and registers it to libgcc with __register_frame. 85// 86// The __register_frame function works with Linux. 87// 88// Unfortunately, this functionality seems to be in libgcc after the unwinding 89// library of libgcc for darwin was written. The code for darwin overwrites the 90// value updated by __register_frame with a value fetched with "keymgr". 91// "keymgr" is an obsolete functionality, which should be rewritten some day. 92// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we 93// need a workaround in LLVM which uses the "keymgr" to dynamically modify the 94// values of an opaque key, used by libgcc to find dwarf tables. 95 96extern "C" void __register_frame(void*); 97extern "C" void __deregister_frame(void*); 98 99#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050 100# define USE_KEYMGR 1 101#else 102# define USE_KEYMGR 0 103#endif 104 105#if USE_KEYMGR 106 107namespace { 108 109// LibgccObject - This is the structure defined in libgcc. There is no #include 110// provided for this structure, so we also define it here. libgcc calls it 111// "struct object". The structure is undocumented in libgcc. 112struct LibgccObject { 113 void *unused1; 114 void *unused2; 115 void *unused3; 116 117 /// frame - Pointer to the exception table. 118 void *frame; 119 120 /// encoding - The encoding of the object? 121 union { 122 struct { 123 unsigned long sorted : 1; 124 unsigned long from_array : 1; 125 unsigned long mixed_encoding : 1; 126 unsigned long encoding : 8; 127 unsigned long count : 21; 128 } b; 129 size_t i; 130 } encoding; 131 132 /// fde_end - libgcc defines this field only if some macro is defined. We 133 /// include this field even if it may not there, to make libgcc happy. 134 char *fde_end; 135 136 /// next - At least we know it's a chained list! 137 struct LibgccObject *next; 138}; 139 140// "kemgr" stuff. Apparently, all frame tables are stored there. 141extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *); 142extern "C" void *_keymgr_get_and_lock_processwide_ptr(int); 143#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */ 144 145/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It 146/// probably contains all dwarf tables that are loaded. 147struct LibgccObjectInfo { 148 149 /// seenObjects - LibgccObjects already parsed by the unwinding runtime. 150 /// 151 struct LibgccObject* seenObjects; 152 153 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime. 154 /// 155 struct LibgccObject* unseenObjects; 156 157 unsigned unused[2]; 158}; 159 160/// darwin_register_frame - Since __register_frame does not work with darwin's 161/// libgcc,we provide our own function, which "tricks" libgcc by modifying the 162/// "Dwarf2 object list" key. 163void DarwinRegisterFrame(void* FrameBegin) { 164 // Get the key. 165 LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) 166 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); 167 assert(LOI && "This should be preallocated by the runtime"); 168 169 // Allocate a new LibgccObject to represent this frame. Deallocation of this 170 // object may be impossible: since darwin code in libgcc was written after 171 // the ability to dynamically register frames, things may crash if we 172 // deallocate it. 173 struct LibgccObject* ob = (struct LibgccObject*) 174 malloc(sizeof(struct LibgccObject)); 175 176 // Do like libgcc for the values of the field. 177 ob->unused1 = (void *)-1; 178 ob->unused2 = 0; 179 ob->unused3 = 0; 180 ob->frame = FrameBegin; 181 ob->encoding.i = 0; 182 ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit; 183 184 // Put the info on both places, as libgcc uses the first or the second 185 // field. Note that we rely on having two pointers here. If fde_end was a 186 // char, things would get complicated. 187 ob->fde_end = (char*)LOI->unseenObjects; 188 ob->next = LOI->unseenObjects; 189 190 // Update the key's unseenObjects list. 191 LOI->unseenObjects = ob; 192 193 // Finally update the "key". Apparently, libgcc requires it. 194 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, 195 LOI); 196 197} 198 199} 200#endif // __APPLE__ 201#endif // HAVE_EHTABLE_SUPPORT 202 203/// createJIT - This is the factory method for creating a JIT for the current 204/// machine, it does not fall back to the interpreter. This takes ownership 205/// of the module. 206ExecutionEngine *JIT::createJIT(Module *M, 207 std::string *ErrorStr, 208 JITMemoryManager *JMM, 209 CodeGenOpt::Level OptLevel, 210 bool GVsWithCode, 211 TargetMachine *TM) { 212 // Try to register the program as a source of symbols to resolve against. 213 // 214 // FIXME: Don't do this here. 215 sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); 216 217 // If the target supports JIT code generation, create the JIT. 218 if (TargetJITInfo *TJ = TM->getJITInfo()) { 219 return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode); 220 } else { 221 if (ErrorStr) 222 *ErrorStr = "target does not support JIT code generation"; 223 return 0; 224 } 225} 226 227namespace { 228/// This class supports the global getPointerToNamedFunction(), which allows 229/// bugpoint or gdb users to search for a function by name without any context. 230class JitPool { 231 SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT. 232 mutable sys::Mutex Lock; 233public: 234 void Add(JIT *jit) { 235 MutexGuard guard(Lock); 236 JITs.insert(jit); 237 } 238 void Remove(JIT *jit) { 239 MutexGuard guard(Lock); 240 JITs.erase(jit); 241 } 242 void *getPointerToNamedFunction(const char *Name) const { 243 MutexGuard guard(Lock); 244 assert(JITs.size() != 0 && "No Jit registered"); 245 //search function in every instance of JIT 246 for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(), 247 end = JITs.end(); 248 Jit != end; ++Jit) { 249 if (Function *F = (*Jit)->FindFunctionNamed(Name)) 250 return (*Jit)->getPointerToFunction(F); 251 } 252 // The function is not available : fallback on the first created (will 253 // search in symbol of the current program/library) 254 return (*JITs.begin())->getPointerToNamedFunction(Name); 255 } 256}; 257ManagedStatic<JitPool> AllJits; 258} 259extern "C" { 260 // getPointerToNamedFunction - This function is used as a global wrapper to 261 // JIT::getPointerToNamedFunction for the purpose of resolving symbols when 262 // bugpoint is debugging the JIT. In that scenario, we are loading an .so and 263 // need to resolve function(s) that are being mis-codegenerated, so we need to 264 // resolve their addresses at runtime, and this is the way to do it. 265 void *getPointerToNamedFunction(const char *Name) { 266 return AllJits->getPointerToNamedFunction(Name); 267 } 268} 269 270JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji, 271 JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode) 272 : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode), 273 isAlreadyCodeGenerating(false) { 274 setTargetData(TM.getTargetData()); 275 276 jitstate = new JITState(M); 277 278 // Initialize JCE 279 JCE = createEmitter(*this, JMM, TM); 280 281 // Register in global list of all JITs. 282 AllJits->Add(this); 283 284 // Add target data 285 MutexGuard locked(lock); 286 FunctionPassManager &PM = jitstate->getPM(locked); 287 PM.add(new TargetData(*TM.getTargetData())); 288 289 // Turn the machine code intermediate representation into bytes in memory that 290 // may be executed. 291 if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) { 292 report_fatal_error("Target does not support machine code emission!"); 293 } 294 295 // Register routine for informing unwinding runtime about new EH frames 296#if HAVE_EHTABLE_SUPPORT 297#if USE_KEYMGR 298 struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) 299 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); 300 301 // The key is created on demand, and libgcc creates it the first time an 302 // exception occurs. Since we need the key to register frames, we create 303 // it now. 304 if (!LOI) 305 LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1); 306 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); 307 InstallExceptionTableRegister(DarwinRegisterFrame); 308 // Not sure about how to deregister on Darwin. 309#else 310 InstallExceptionTableRegister(__register_frame); 311 InstallExceptionTableDeregister(__deregister_frame); 312#endif // __APPLE__ 313#endif // HAVE_EHTABLE_SUPPORT 314 315 // Initialize passes. 316 PM.doInitialization(); 317} 318 319JIT::~JIT() { 320 // Unregister all exception tables registered by this JIT. 321 DeregisterAllTables(); 322 // Cleanup. 323 AllJits->Remove(this); 324 delete jitstate; 325 delete JCE; 326 delete &TM; 327} 328 329/// addModule - Add a new Module to the JIT. If we previously removed the last 330/// Module, we need re-initialize jitstate with a valid Module. 331void JIT::addModule(Module *M) { 332 MutexGuard locked(lock); 333 334 if (Modules.empty()) { 335 assert(!jitstate && "jitstate should be NULL if Modules vector is empty!"); 336 337 jitstate = new JITState(M); 338 339 FunctionPassManager &PM = jitstate->getPM(locked); 340 PM.add(new TargetData(*TM.getTargetData())); 341 342 // Turn the machine code intermediate representation into bytes in memory 343 // that may be executed. 344 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { 345 report_fatal_error("Target does not support machine code emission!"); 346 } 347 348 // Initialize passes. 349 PM.doInitialization(); 350 } 351 352 ExecutionEngine::addModule(M); 353} 354 355/// removeModule - If we are removing the last Module, invalidate the jitstate 356/// since the PassManager it contains references a released Module. 357bool JIT::removeModule(Module *M) { 358 bool result = ExecutionEngine::removeModule(M); 359 360 MutexGuard locked(lock); 361 362 if (jitstate->getModule() == M) { 363 delete jitstate; 364 jitstate = 0; 365 } 366 367 if (!jitstate && !Modules.empty()) { 368 jitstate = new JITState(Modules[0]); 369 370 FunctionPassManager &PM = jitstate->getPM(locked); 371 PM.add(new TargetData(*TM.getTargetData())); 372 373 // Turn the machine code intermediate representation into bytes in memory 374 // that may be executed. 375 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { 376 report_fatal_error("Target does not support machine code emission!"); 377 } 378 379 // Initialize passes. 380 PM.doInitialization(); 381 } 382 return result; 383} 384 385/// run - Start execution with the specified function and arguments. 386/// 387GenericValue JIT::runFunction(Function *F, 388 const std::vector<GenericValue> &ArgValues) { 389 assert(F && "Function *F was null at entry to run()"); 390 391 void *FPtr = getPointerToFunction(F); 392 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); 393 FunctionType *FTy = F->getFunctionType(); 394 Type *RetTy = FTy->getReturnType(); 395 396 assert((FTy->getNumParams() == ArgValues.size() || 397 (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && 398 "Wrong number of arguments passed into function!"); 399 assert(FTy->getNumParams() == ArgValues.size() && 400 "This doesn't support passing arguments through varargs (yet)!"); 401 402 // Handle some common cases first. These cases correspond to common `main' 403 // prototypes. 404 if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) { 405 switch (ArgValues.size()) { 406 case 3: 407 if (FTy->getParamType(0)->isIntegerTy(32) && 408 FTy->getParamType(1)->isPointerTy() && 409 FTy->getParamType(2)->isPointerTy()) { 410 int (*PF)(int, char **, const char **) = 411 (int(*)(int, char **, const char **))(intptr_t)FPtr; 412 413 // Call the function. 414 GenericValue rv; 415 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 416 (char **)GVTOP(ArgValues[1]), 417 (const char **)GVTOP(ArgValues[2]))); 418 return rv; 419 } 420 break; 421 case 2: 422 if (FTy->getParamType(0)->isIntegerTy(32) && 423 FTy->getParamType(1)->isPointerTy()) { 424 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; 425 426 // Call the function. 427 GenericValue rv; 428 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 429 (char **)GVTOP(ArgValues[1]))); 430 return rv; 431 } 432 break; 433 case 1: 434 if (FTy->getNumParams() == 1 && 435 FTy->getParamType(0)->isIntegerTy(32)) { 436 GenericValue rv; 437 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; 438 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); 439 return rv; 440 } 441 break; 442 } 443 } 444 445 // Handle cases where no arguments are passed first. 446 if (ArgValues.empty()) { 447 GenericValue rv; 448 switch (RetTy->getTypeID()) { 449 default: llvm_unreachable("Unknown return type for function call!"); 450 case Type::IntegerTyID: { 451 unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); 452 if (BitWidth == 1) 453 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); 454 else if (BitWidth <= 8) 455 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); 456 else if (BitWidth <= 16) 457 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); 458 else if (BitWidth <= 32) 459 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); 460 else if (BitWidth <= 64) 461 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); 462 else 463 llvm_unreachable("Integer types > 64 bits not supported"); 464 return rv; 465 } 466 case Type::VoidTyID: 467 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); 468 return rv; 469 case Type::FloatTyID: 470 rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); 471 return rv; 472 case Type::DoubleTyID: 473 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); 474 return rv; 475 case Type::X86_FP80TyID: 476 case Type::FP128TyID: 477 case Type::PPC_FP128TyID: 478 llvm_unreachable("long double not supported yet"); 479 return rv; 480 case Type::PointerTyID: 481 return PTOGV(((void*(*)())(intptr_t)FPtr)()); 482 } 483 } 484 485 // Okay, this is not one of our quick and easy cases. Because we don't have a 486 // full FFI, we have to codegen a nullary stub function that just calls the 487 // function we are interested in, passing in constants for all of the 488 // arguments. Make this function and return. 489 490 // First, create the function. 491 FunctionType *STy=FunctionType::get(RetTy, false); 492 Function *Stub = Function::Create(STy, Function::InternalLinkage, "", 493 F->getParent()); 494 495 // Insert a basic block. 496 BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub); 497 498 // Convert all of the GenericValue arguments over to constants. Note that we 499 // currently don't support varargs. 500 SmallVector<Value*, 8> Args; 501 for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { 502 Constant *C = 0; 503 Type *ArgTy = FTy->getParamType(i); 504 const GenericValue &AV = ArgValues[i]; 505 switch (ArgTy->getTypeID()) { 506 default: llvm_unreachable("Unknown argument type for function call!"); 507 case Type::IntegerTyID: 508 C = ConstantInt::get(F->getContext(), AV.IntVal); 509 break; 510 case Type::FloatTyID: 511 C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal)); 512 break; 513 case Type::DoubleTyID: 514 C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal)); 515 break; 516 case Type::PPC_FP128TyID: 517 case Type::X86_FP80TyID: 518 case Type::FP128TyID: 519 C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal)); 520 break; 521 case Type::PointerTyID: 522 void *ArgPtr = GVTOP(AV); 523 if (sizeof(void*) == 4) 524 C = ConstantInt::get(Type::getInt32Ty(F->getContext()), 525 (int)(intptr_t)ArgPtr); 526 else 527 C = ConstantInt::get(Type::getInt64Ty(F->getContext()), 528 (intptr_t)ArgPtr); 529 // Cast the integer to pointer 530 C = ConstantExpr::getIntToPtr(C, ArgTy); 531 break; 532 } 533 Args.push_back(C); 534 } 535 536 CallInst *TheCall = CallInst::Create(F, Args, "", StubBB); 537 TheCall->setCallingConv(F->getCallingConv()); 538 TheCall->setTailCall(); 539 if (!TheCall->getType()->isVoidTy()) 540 // Return result of the call. 541 ReturnInst::Create(F->getContext(), TheCall, StubBB); 542 else 543 ReturnInst::Create(F->getContext(), StubBB); // Just return void. 544 545 // Finally, call our nullary stub function. 546 GenericValue Result = runFunction(Stub, std::vector<GenericValue>()); 547 // Erase it, since no other function can have a reference to it. 548 Stub->eraseFromParent(); 549 // And return the result. 550 return Result; 551} 552 553void JIT::RegisterJITEventListener(JITEventListener *L) { 554 if (L == NULL) 555 return; 556 MutexGuard locked(lock); 557 EventListeners.push_back(L); 558} 559void JIT::UnregisterJITEventListener(JITEventListener *L) { 560 if (L == NULL) 561 return; 562 MutexGuard locked(lock); 563 std::vector<JITEventListener*>::reverse_iterator I= 564 std::find(EventListeners.rbegin(), EventListeners.rend(), L); 565 if (I != EventListeners.rend()) { 566 std::swap(*I, EventListeners.back()); 567 EventListeners.pop_back(); 568 } 569} 570void JIT::NotifyFunctionEmitted( 571 const Function &F, 572 void *Code, size_t Size, 573 const JITEvent_EmittedFunctionDetails &Details) { 574 MutexGuard locked(lock); 575 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { 576 EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details); 577 } 578} 579 580void JIT::NotifyFreeingMachineCode(void *OldPtr) { 581 MutexGuard locked(lock); 582 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { 583 EventListeners[I]->NotifyFreeingMachineCode(OldPtr); 584 } 585} 586 587/// runJITOnFunction - Run the FunctionPassManager full of 588/// just-in-time compilation passes on F, hopefully filling in 589/// GlobalAddress[F] with the address of F's machine code. 590/// 591void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { 592 MutexGuard locked(lock); 593 594 class MCIListener : public JITEventListener { 595 MachineCodeInfo *const MCI; 596 public: 597 MCIListener(MachineCodeInfo *mci) : MCI(mci) {} 598 virtual void NotifyFunctionEmitted(const Function &, 599 void *Code, size_t Size, 600 const EmittedFunctionDetails &) { 601 MCI->setAddress(Code); 602 MCI->setSize(Size); 603 } 604 }; 605 MCIListener MCIL(MCI); 606 if (MCI) 607 RegisterJITEventListener(&MCIL); 608 609 runJITOnFunctionUnlocked(F, locked); 610 611 if (MCI) 612 UnregisterJITEventListener(&MCIL); 613} 614 615void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { 616 assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); 617 618 jitTheFunction(F, locked); 619 620 // If the function referred to another function that had not yet been 621 // read from bitcode, and we are jitting non-lazily, emit it now. 622 while (!jitstate->getPendingFunctions(locked).empty()) { 623 Function *PF = jitstate->getPendingFunctions(locked).back(); 624 jitstate->getPendingFunctions(locked).pop_back(); 625 626 assert(!PF->hasAvailableExternallyLinkage() && 627 "Externally-defined function should not be in pending list."); 628 629 jitTheFunction(PF, locked); 630 631 // Now that the function has been jitted, ask the JITEmitter to rewrite 632 // the stub with real address of the function. 633 updateFunctionStub(PF); 634 } 635} 636 637void JIT::jitTheFunction(Function *F, const MutexGuard &locked) { 638 isAlreadyCodeGenerating = true; 639 jitstate->getPM(locked).run(*F); 640 isAlreadyCodeGenerating = false; 641 642 // clear basic block addresses after this function is done 643 getBasicBlockAddressMap(locked).clear(); 644} 645 646/// getPointerToFunction - This method is used to get the address of the 647/// specified function, compiling it if necessary. 648/// 649void *JIT::getPointerToFunction(Function *F) { 650 651 if (void *Addr = getPointerToGlobalIfAvailable(F)) 652 return Addr; // Check if function already code gen'd 653 654 MutexGuard locked(lock); 655 656 // Now that this thread owns the lock, make sure we read in the function if it 657 // exists in this Module. 658 std::string ErrorMsg; 659 if (F->Materialize(&ErrorMsg)) { 660 report_fatal_error("Error reading function '" + F->getName()+ 661 "' from bitcode file: " + ErrorMsg); 662 } 663 664 // ... and check if another thread has already code gen'd the function. 665 if (void *Addr = getPointerToGlobalIfAvailable(F)) 666 return Addr; 667 668 if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { 669 bool AbortOnFailure = !F->hasExternalWeakLinkage(); 670 void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); 671 addGlobalMapping(F, Addr); 672 return Addr; 673 } 674 675 runJITOnFunctionUnlocked(F, locked); 676 677 void *Addr = getPointerToGlobalIfAvailable(F); 678 assert(Addr && "Code generation didn't add function to GlobalAddress table!"); 679 return Addr; 680} 681 682void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) { 683 MutexGuard locked(lock); 684 685 BasicBlockAddressMapTy::iterator I = 686 getBasicBlockAddressMap(locked).find(BB); 687 if (I == getBasicBlockAddressMap(locked).end()) { 688 getBasicBlockAddressMap(locked)[BB] = Addr; 689 } else { 690 // ignore repeats: some BBs can be split into few MBBs? 691 } 692} 693 694void JIT::clearPointerToBasicBlock(const BasicBlock *BB) { 695 MutexGuard locked(lock); 696 getBasicBlockAddressMap(locked).erase(BB); 697} 698 699void *JIT::getPointerToBasicBlock(BasicBlock *BB) { 700 // make sure it's function is compiled by JIT 701 (void)getPointerToFunction(BB->getParent()); 702 703 // resolve basic block address 704 MutexGuard locked(lock); 705 706 BasicBlockAddressMapTy::iterator I = 707 getBasicBlockAddressMap(locked).find(BB); 708 if (I != getBasicBlockAddressMap(locked).end()) { 709 return I->second; 710 } else { 711 assert(0 && "JIT does not have BB address for address-of-label, was" 712 " it eliminated by optimizer?"); 713 return 0; 714 } 715} 716 717/// getOrEmitGlobalVariable - Return the address of the specified global 718/// variable, possibly emitting it to memory if needed. This is used by the 719/// Emitter. 720void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { 721 MutexGuard locked(lock); 722 723 void *Ptr = getPointerToGlobalIfAvailable(GV); 724 if (Ptr) return Ptr; 725 726 // If the global is external, just remember the address. 727 if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) { 728#if HAVE___DSO_HANDLE 729 if (GV->getName() == "__dso_handle") 730 return (void*)&__dso_handle; 731#endif 732 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName()); 733 if (Ptr == 0) { 734 report_fatal_error("Could not resolve external global address: " 735 +GV->getName()); 736 } 737 addGlobalMapping(GV, Ptr); 738 } else { 739 // If the global hasn't been emitted to memory yet, allocate space and 740 // emit it into memory. 741 Ptr = getMemoryForGV(GV); 742 addGlobalMapping(GV, Ptr); 743 EmitGlobalVariable(GV); // Initialize the variable. 744 } 745 return Ptr; 746} 747 748/// recompileAndRelinkFunction - This method is used to force a function 749/// which has already been compiled, to be compiled again, possibly 750/// after it has been modified. Then the entry to the old copy is overwritten 751/// with a branch to the new copy. If there was no old copy, this acts 752/// just like JIT::getPointerToFunction(). 753/// 754void *JIT::recompileAndRelinkFunction(Function *F) { 755 void *OldAddr = getPointerToGlobalIfAvailable(F); 756 757 // If it's not already compiled there is no reason to patch it up. 758 if (OldAddr == 0) { return getPointerToFunction(F); } 759 760 // Delete the old function mapping. 761 addGlobalMapping(F, 0); 762 763 // Recodegen the function 764 runJITOnFunction(F); 765 766 // Update state, forward the old function to the new function. 767 void *Addr = getPointerToGlobalIfAvailable(F); 768 assert(Addr && "Code generation didn't add function to GlobalAddress table!"); 769 TJI.replaceMachineCodeForFunction(OldAddr, Addr); 770 return Addr; 771} 772 773/// getMemoryForGV - This method abstracts memory allocation of global 774/// variable so that the JIT can allocate thread local variables depending 775/// on the target. 776/// 777char* JIT::getMemoryForGV(const GlobalVariable* GV) { 778 char *Ptr; 779 780 // GlobalVariable's which are not "constant" will cause trouble in a server 781 // situation. It's returned in the same block of memory as code which may 782 // not be writable. 783 if (isGVCompilationDisabled() && !GV->isConstant()) { 784 report_fatal_error("Compilation of non-internal GlobalValue is disabled!"); 785 } 786 787 // Some applications require globals and code to live together, so they may 788 // be allocated into the same buffer, but in general globals are allocated 789 // through the memory manager which puts them near the code but not in the 790 // same buffer. 791 Type *GlobalType = GV->getType()->getElementType(); 792 size_t S = getTargetData()->getTypeAllocSize(GlobalType); 793 size_t A = getTargetData()->getPreferredAlignment(GV); 794 if (GV->isThreadLocal()) { 795 MutexGuard locked(lock); 796 Ptr = TJI.allocateThreadLocalMemory(S); 797 } else if (TJI.allocateSeparateGVMemory()) { 798 if (A <= 8) { 799 Ptr = (char*)malloc(S); 800 } else { 801 // Allocate S+A bytes of memory, then use an aligned pointer within that 802 // space. 803 Ptr = (char*)malloc(S+A); 804 unsigned MisAligned = ((intptr_t)Ptr & (A-1)); 805 Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0); 806 } 807 } else if (AllocateGVsWithCode) { 808 Ptr = (char*)JCE->allocateSpace(S, A); 809 } else { 810 Ptr = (char*)JCE->allocateGlobal(S, A); 811 } 812 return Ptr; 813} 814 815void JIT::addPendingFunction(Function *F) { 816 MutexGuard locked(lock); 817 jitstate->getPendingFunctions(locked).push_back(F); 818} 819 820 821JITEventListener::~JITEventListener() {} 822