1//===-- CBackend.cpp - Library for converting LLVM code to C --------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This library converts LLVM code to C code, compilable by GCC and other C 11// compilers. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CTargetMachine.h" 16#include "llvm/CallingConv.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Module.h" 20#include "llvm/Instructions.h" 21#include "llvm/Pass.h" 22#include "llvm/PassManager.h" 23#include "llvm/Intrinsics.h" 24#include "llvm/IntrinsicInst.h" 25#include "llvm/InlineAsm.h" 26#include "llvm/ADT/StringExtras.h" 27#include "llvm/ADT/SmallString.h" 28#include "llvm/ADT/STLExtras.h" 29#include "llvm/Analysis/ConstantsScanner.h" 30#include "llvm/Analysis/FindUsedTypes.h" 31#include "llvm/Analysis/LoopInfo.h" 32#include "llvm/Analysis/ValueTracking.h" 33#include "llvm/CodeGen/Passes.h" 34#include "llvm/CodeGen/IntrinsicLowering.h" 35#include "llvm/Target/Mangler.h" 36#include "llvm/Transforms/Scalar.h" 37#include "llvm/MC/MCAsmInfo.h" 38#include "llvm/MC/MCContext.h" 39#include "llvm/MC/MCInstrInfo.h" 40#include "llvm/MC/MCObjectFileInfo.h" 41#include "llvm/MC/MCRegisterInfo.h" 42#include "llvm/MC/MCSubtargetInfo.h" 43#include "llvm/MC/MCSymbol.h" 44#include "llvm/Target/TargetData.h" 45#include "llvm/Support/CallSite.h" 46#include "llvm/Support/CFG.h" 47#include "llvm/Support/ErrorHandling.h" 48#include "llvm/Support/FormattedStream.h" 49#include "llvm/Support/GetElementPtrTypeIterator.h" 50#include "llvm/Support/InstVisitor.h" 51#include "llvm/Support/MathExtras.h" 52#include "llvm/Support/TargetRegistry.h" 53#include "llvm/Support/Host.h" 54#include "llvm/Config/config.h" 55#include <algorithm> 56// Some ms header decided to define setjmp as _setjmp, undo this for this file. 57#ifdef _MSC_VER 58#undef setjmp 59#endif 60using namespace llvm; 61 62extern "C" void LLVMInitializeCBackendTarget() { 63 // Register the target. 64 RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget); 65} 66 67namespace { 68 class CBEMCAsmInfo : public MCAsmInfo { 69 public: 70 CBEMCAsmInfo() { 71 GlobalPrefix = ""; 72 PrivateGlobalPrefix = ""; 73 } 74 }; 75 76 /// CWriter - This class is the main chunk of code that converts an LLVM 77 /// module to a C translation unit. 78 class CWriter : public FunctionPass, public InstVisitor<CWriter> { 79 formatted_raw_ostream &Out; 80 IntrinsicLowering *IL; 81 Mangler *Mang; 82 LoopInfo *LI; 83 const Module *TheModule; 84 const MCAsmInfo* TAsm; 85 const MCRegisterInfo *MRI; 86 const MCObjectFileInfo *MOFI; 87 MCContext *TCtx; 88 const TargetData* TD; 89 90 std::map<const ConstantFP *, unsigned> FPConstantMap; 91 std::set<Function*> intrinsicPrototypesAlreadyGenerated; 92 std::set<const Argument*> ByValParams; 93 unsigned FPCounter; 94 unsigned OpaqueCounter; 95 DenseMap<const Value*, unsigned> AnonValueNumbers; 96 unsigned NextAnonValueNumber; 97 98 /// UnnamedStructIDs - This contains a unique ID for each struct that is 99 /// either anonymous or has no name. 100 DenseMap<StructType*, unsigned> UnnamedStructIDs; 101 102 public: 103 static char ID; 104 explicit CWriter(formatted_raw_ostream &o) 105 : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0), 106 TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0), 107 OpaqueCounter(0), NextAnonValueNumber(0) { 108 initializeLoopInfoPass(*PassRegistry::getPassRegistry()); 109 FPCounter = 0; 110 } 111 112 virtual const char *getPassName() const { return "C backend"; } 113 114 void getAnalysisUsage(AnalysisUsage &AU) const { 115 AU.addRequired<LoopInfo>(); 116 AU.setPreservesAll(); 117 } 118 119 virtual bool doInitialization(Module &M); 120 121 bool runOnFunction(Function &F) { 122 // Do not codegen any 'available_externally' functions at all, they have 123 // definitions outside the translation unit. 124 if (F.hasAvailableExternallyLinkage()) 125 return false; 126 127 LI = &getAnalysis<LoopInfo>(); 128 129 // Get rid of intrinsics we can't handle. 130 lowerIntrinsics(F); 131 132 // Output all floating point constants that cannot be printed accurately. 133 printFloatingPointConstants(F); 134 135 printFunction(F); 136 return false; 137 } 138 139 virtual bool doFinalization(Module &M) { 140 // Free memory... 141 delete IL; 142 delete TD; 143 delete Mang; 144 delete TCtx; 145 delete TAsm; 146 delete MRI; 147 delete MOFI; 148 FPConstantMap.clear(); 149 ByValParams.clear(); 150 intrinsicPrototypesAlreadyGenerated.clear(); 151 UnnamedStructIDs.clear(); 152 return false; 153 } 154 155 raw_ostream &printType(raw_ostream &Out, Type *Ty, 156 bool isSigned = false, 157 const std::string &VariableName = "", 158 bool IgnoreName = false, 159 const AttrListPtr &PAL = AttrListPtr()); 160 raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty, 161 bool isSigned, 162 const std::string &NameSoFar = ""); 163 164 void printStructReturnPointerFunctionType(raw_ostream &Out, 165 const AttrListPtr &PAL, 166 PointerType *Ty); 167 168 std::string getStructName(StructType *ST); 169 170 /// writeOperandDeref - Print the result of dereferencing the specified 171 /// operand with '*'. This is equivalent to printing '*' then using 172 /// writeOperand, but avoids excess syntax in some cases. 173 void writeOperandDeref(Value *Operand) { 174 if (isAddressExposed(Operand)) { 175 // Already something with an address exposed. 176 writeOperandInternal(Operand); 177 } else { 178 Out << "*("; 179 writeOperand(Operand); 180 Out << ")"; 181 } 182 } 183 184 void writeOperand(Value *Operand, bool Static = false); 185 void writeInstComputationInline(Instruction &I); 186 void writeOperandInternal(Value *Operand, bool Static = false); 187 void writeOperandWithCast(Value* Operand, unsigned Opcode); 188 void writeOperandWithCast(Value* Operand, const ICmpInst &I); 189 bool writeInstructionCast(const Instruction &I); 190 191 void writeMemoryAccess(Value *Operand, Type *OperandType, 192 bool IsVolatile, unsigned Alignment); 193 194 private : 195 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); 196 197 void lowerIntrinsics(Function &F); 198 /// Prints the definition of the intrinsic function F. Supports the 199 /// intrinsics which need to be explicitly defined in the CBackend. 200 void printIntrinsicDefinition(const Function &F, raw_ostream &Out); 201 202 void printModuleTypes(); 203 void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &); 204 void printFloatingPointConstants(Function &F); 205 void printFloatingPointConstants(const Constant *C); 206 void printFunctionSignature(const Function *F, bool Prototype); 207 208 void printFunction(Function &); 209 void printBasicBlock(BasicBlock *BB); 210 void printLoop(Loop *L); 211 212 void printCast(unsigned opcode, Type *SrcTy, Type *DstTy); 213 void printConstant(Constant *CPV, bool Static); 214 void printConstantWithCast(Constant *CPV, unsigned Opcode); 215 bool printConstExprCast(const ConstantExpr *CE, bool Static); 216 void printConstantArray(ConstantArray *CPA, bool Static); 217 void printConstantVector(ConstantVector *CV, bool Static); 218 219 /// isAddressExposed - Return true if the specified value's name needs to 220 /// have its address taken in order to get a C value of the correct type. 221 /// This happens for global variables, byval parameters, and direct allocas. 222 bool isAddressExposed(const Value *V) const { 223 if (const Argument *A = dyn_cast<Argument>(V)) 224 return ByValParams.count(A); 225 return isa<GlobalVariable>(V) || isDirectAlloca(V); 226 } 227 228 // isInlinableInst - Attempt to inline instructions into their uses to build 229 // trees as much as possible. To do this, we have to consistently decide 230 // what is acceptable to inline, so that variable declarations don't get 231 // printed and an extra copy of the expr is not emitted. 232 // 233 static bool isInlinableInst(const Instruction &I) { 234 // Always inline cmp instructions, even if they are shared by multiple 235 // expressions. GCC generates horrible code if we don't. 236 if (isa<CmpInst>(I)) 237 return true; 238 239 // Must be an expression, must be used exactly once. If it is dead, we 240 // emit it inline where it would go. 241 if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() || 242 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || 243 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) || 244 isa<InsertValueInst>(I)) 245 // Don't inline a load across a store or other bad things! 246 return false; 247 248 // Must not be used in inline asm, extractelement, or shufflevector. 249 if (I.hasOneUse()) { 250 const Instruction &User = cast<Instruction>(*I.use_back()); 251 if (isInlineAsm(User) || isa<ExtractElementInst>(User) || 252 isa<ShuffleVectorInst>(User)) 253 return false; 254 } 255 256 // Only inline instruction it if it's use is in the same BB as the inst. 257 return I.getParent() == cast<Instruction>(I.use_back())->getParent(); 258 } 259 260 // isDirectAlloca - Define fixed sized allocas in the entry block as direct 261 // variables which are accessed with the & operator. This causes GCC to 262 // generate significantly better code than to emit alloca calls directly. 263 // 264 static const AllocaInst *isDirectAlloca(const Value *V) { 265 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 266 if (!AI) return 0; 267 if (AI->isArrayAllocation()) 268 return 0; // FIXME: we can also inline fixed size array allocas! 269 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) 270 return 0; 271 return AI; 272 } 273 274 // isInlineAsm - Check if the instruction is a call to an inline asm chunk. 275 static bool isInlineAsm(const Instruction& I) { 276 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 277 return isa<InlineAsm>(CI->getCalledValue()); 278 return false; 279 } 280 281 // Instruction visitation functions 282 friend class InstVisitor<CWriter>; 283 284 void visitReturnInst(ReturnInst &I); 285 void visitBranchInst(BranchInst &I); 286 void visitSwitchInst(SwitchInst &I); 287 void visitIndirectBrInst(IndirectBrInst &I); 288 void visitInvokeInst(InvokeInst &I) { 289 llvm_unreachable("Lowerinvoke pass didn't work!"); 290 } 291 void visitUnwindInst(UnwindInst &I) { 292 llvm_unreachable("Lowerinvoke pass didn't work!"); 293 } 294 void visitResumeInst(ResumeInst &I) { 295 llvm_unreachable("DwarfEHPrepare pass didn't work!"); 296 } 297 void visitUnreachableInst(UnreachableInst &I); 298 299 void visitPHINode(PHINode &I); 300 void visitBinaryOperator(Instruction &I); 301 void visitICmpInst(ICmpInst &I); 302 void visitFCmpInst(FCmpInst &I); 303 304 void visitCastInst (CastInst &I); 305 void visitSelectInst(SelectInst &I); 306 void visitCallInst (CallInst &I); 307 void visitInlineAsm(CallInst &I); 308 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee); 309 310 void visitAllocaInst(AllocaInst &I); 311 void visitLoadInst (LoadInst &I); 312 void visitStoreInst (StoreInst &I); 313 void visitGetElementPtrInst(GetElementPtrInst &I); 314 void visitVAArgInst (VAArgInst &I); 315 316 void visitInsertElementInst(InsertElementInst &I); 317 void visitExtractElementInst(ExtractElementInst &I); 318 void visitShuffleVectorInst(ShuffleVectorInst &SVI); 319 320 void visitInsertValueInst(InsertValueInst &I); 321 void visitExtractValueInst(ExtractValueInst &I); 322 323 void visitInstruction(Instruction &I) { 324#ifndef NDEBUG 325 errs() << "C Writer does not know about " << I; 326#endif 327 llvm_unreachable(0); 328 } 329 330 void outputLValue(Instruction *I) { 331 Out << " " << GetValueName(I) << " = "; 332 } 333 334 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); 335 void printPHICopiesForSuccessor(BasicBlock *CurBlock, 336 BasicBlock *Successor, unsigned Indent); 337 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, 338 unsigned Indent); 339 void printGEPExpression(Value *Ptr, gep_type_iterator I, 340 gep_type_iterator E, bool Static); 341 342 std::string GetValueName(const Value *Operand); 343 }; 344} 345 346char CWriter::ID = 0; 347 348 349 350static std::string CBEMangle(const std::string &S) { 351 std::string Result; 352 353 for (unsigned i = 0, e = S.size(); i != e; ++i) 354 if (isalnum(S[i]) || S[i] == '_') { 355 Result += S[i]; 356 } else { 357 Result += '_'; 358 Result += 'A'+(S[i]&15); 359 Result += 'A'+((S[i]>>4)&15); 360 Result += '_'; 361 } 362 return Result; 363} 364 365std::string CWriter::getStructName(StructType *ST) { 366 if (!ST->isLiteral() && !ST->getName().empty()) 367 return CBEMangle("l_"+ST->getName().str()); 368 369 return "l_unnamed_" + utostr(UnnamedStructIDs[ST]); 370} 371 372 373/// printStructReturnPointerFunctionType - This is like printType for a struct 374/// return type, except, instead of printing the type as void (*)(Struct*, ...) 375/// print it as "Struct (*)(...)", for struct return functions. 376void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out, 377 const AttrListPtr &PAL, 378 PointerType *TheTy) { 379 FunctionType *FTy = cast<FunctionType>(TheTy->getElementType()); 380 std::string tstr; 381 raw_string_ostream FunctionInnards(tstr); 382 FunctionInnards << " (*) ("; 383 bool PrintedType = false; 384 385 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); 386 Type *RetTy = cast<PointerType>(*I)->getElementType(); 387 unsigned Idx = 1; 388 for (++I, ++Idx; I != E; ++I, ++Idx) { 389 if (PrintedType) 390 FunctionInnards << ", "; 391 Type *ArgTy = *I; 392 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 393 assert(ArgTy->isPointerTy()); 394 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 395 } 396 printType(FunctionInnards, ArgTy, 397 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); 398 PrintedType = true; 399 } 400 if (FTy->isVarArg()) { 401 if (!PrintedType) 402 FunctionInnards << " int"; //dummy argument for empty vararg functs 403 FunctionInnards << ", ..."; 404 } else if (!PrintedType) { 405 FunctionInnards << "void"; 406 } 407 FunctionInnards << ')'; 408 printType(Out, RetTy, 409 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); 410} 411 412raw_ostream & 413CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned, 414 const std::string &NameSoFar) { 415 assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) && 416 "Invalid type for printSimpleType"); 417 switch (Ty->getTypeID()) { 418 case Type::VoidTyID: return Out << "void " << NameSoFar; 419 case Type::IntegerTyID: { 420 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); 421 if (NumBits == 1) 422 return Out << "bool " << NameSoFar; 423 else if (NumBits <= 8) 424 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; 425 else if (NumBits <= 16) 426 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; 427 else if (NumBits <= 32) 428 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; 429 else if (NumBits <= 64) 430 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar; 431 else { 432 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet"); 433 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar; 434 } 435 } 436 case Type::FloatTyID: return Out << "float " << NameSoFar; 437 case Type::DoubleTyID: return Out << "double " << NameSoFar; 438 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is 439 // present matches host 'long double'. 440 case Type::X86_FP80TyID: 441 case Type::PPC_FP128TyID: 442 case Type::FP128TyID: return Out << "long double " << NameSoFar; 443 444 case Type::X86_MMXTyID: 445 return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned, 446 " __attribute__((vector_size(64))) " + NameSoFar); 447 448 case Type::VectorTyID: { 449 VectorType *VTy = cast<VectorType>(Ty); 450 return printSimpleType(Out, VTy->getElementType(), isSigned, 451 " __attribute__((vector_size(" + 452 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar); 453 } 454 455 default: 456#ifndef NDEBUG 457 errs() << "Unknown primitive type: " << *Ty << "\n"; 458#endif 459 llvm_unreachable(0); 460 } 461} 462 463// Pass the Type* and the variable name and this prints out the variable 464// declaration. 465// 466raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty, 467 bool isSigned, const std::string &NameSoFar, 468 bool IgnoreName, const AttrListPtr &PAL) { 469 if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) { 470 printSimpleType(Out, Ty, isSigned, NameSoFar); 471 return Out; 472 } 473 474 switch (Ty->getTypeID()) { 475 case Type::FunctionTyID: { 476 FunctionType *FTy = cast<FunctionType>(Ty); 477 std::string tstr; 478 raw_string_ostream FunctionInnards(tstr); 479 FunctionInnards << " (" << NameSoFar << ") ("; 480 unsigned Idx = 1; 481 for (FunctionType::param_iterator I = FTy->param_begin(), 482 E = FTy->param_end(); I != E; ++I) { 483 Type *ArgTy = *I; 484 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 485 assert(ArgTy->isPointerTy()); 486 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 487 } 488 if (I != FTy->param_begin()) 489 FunctionInnards << ", "; 490 printType(FunctionInnards, ArgTy, 491 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); 492 ++Idx; 493 } 494 if (FTy->isVarArg()) { 495 if (!FTy->getNumParams()) 496 FunctionInnards << " int"; //dummy argument for empty vaarg functs 497 FunctionInnards << ", ..."; 498 } else if (!FTy->getNumParams()) { 499 FunctionInnards << "void"; 500 } 501 FunctionInnards << ')'; 502 printType(Out, FTy->getReturnType(), 503 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); 504 return Out; 505 } 506 case Type::StructTyID: { 507 StructType *STy = cast<StructType>(Ty); 508 509 // Check to see if the type is named. 510 if (!IgnoreName) 511 return Out << getStructName(STy) << ' ' << NameSoFar; 512 513 Out << NameSoFar + " {\n"; 514 unsigned Idx = 0; 515 for (StructType::element_iterator I = STy->element_begin(), 516 E = STy->element_end(); I != E; ++I) { 517 Out << " "; 518 printType(Out, *I, false, "field" + utostr(Idx++)); 519 Out << ";\n"; 520 } 521 Out << '}'; 522 if (STy->isPacked()) 523 Out << " __attribute__ ((packed))"; 524 return Out; 525 } 526 527 case Type::PointerTyID: { 528 PointerType *PTy = cast<PointerType>(Ty); 529 std::string ptrName = "*" + NameSoFar; 530 531 if (PTy->getElementType()->isArrayTy() || 532 PTy->getElementType()->isVectorTy()) 533 ptrName = "(" + ptrName + ")"; 534 535 if (!PAL.isEmpty()) 536 // Must be a function ptr cast! 537 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL); 538 return printType(Out, PTy->getElementType(), false, ptrName); 539 } 540 541 case Type::ArrayTyID: { 542 ArrayType *ATy = cast<ArrayType>(Ty); 543 unsigned NumElements = ATy->getNumElements(); 544 if (NumElements == 0) NumElements = 1; 545 // Arrays are wrapped in structs to allow them to have normal 546 // value semantics (avoiding the array "decay"). 547 Out << NameSoFar << " { "; 548 printType(Out, ATy->getElementType(), false, 549 "array[" + utostr(NumElements) + "]"); 550 return Out << "; }"; 551 } 552 553 default: 554 llvm_unreachable("Unhandled case in getTypeProps!"); 555 } 556 557 return Out; 558} 559 560void CWriter::printConstantArray(ConstantArray *CPA, bool Static) { 561 562 // As a special case, print the array as a string if it is an array of 563 // ubytes or an array of sbytes with positive values. 564 // 565 Type *ETy = CPA->getType()->getElementType(); 566 bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) || 567 ETy == Type::getInt8Ty(CPA->getContext())); 568 569 // Make sure the last character is a null char, as automatically added by C 570 if (isString && (CPA->getNumOperands() == 0 || 571 !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) 572 isString = false; 573 574 if (isString) { 575 Out << '\"'; 576 // Keep track of whether the last number was a hexadecimal escape. 577 bool LastWasHex = false; 578 579 // Do not include the last character, which we know is null 580 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { 581 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue(); 582 583 // Print it out literally if it is a printable character. The only thing 584 // to be careful about is when the last letter output was a hex escape 585 // code, in which case we have to be careful not to print out hex digits 586 // explicitly (the C compiler thinks it is a continuation of the previous 587 // character, sheesh...) 588 // 589 if (isprint(C) && (!LastWasHex || !isxdigit(C))) { 590 LastWasHex = false; 591 if (C == '"' || C == '\\') 592 Out << "\\" << (char)C; 593 else 594 Out << (char)C; 595 } else { 596 LastWasHex = false; 597 switch (C) { 598 case '\n': Out << "\\n"; break; 599 case '\t': Out << "\\t"; break; 600 case '\r': Out << "\\r"; break; 601 case '\v': Out << "\\v"; break; 602 case '\a': Out << "\\a"; break; 603 case '\"': Out << "\\\""; break; 604 case '\'': Out << "\\\'"; break; 605 default: 606 Out << "\\x"; 607 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); 608 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); 609 LastWasHex = true; 610 break; 611 } 612 } 613 } 614 Out << '\"'; 615 } else { 616 Out << '{'; 617 if (CPA->getNumOperands()) { 618 Out << ' '; 619 printConstant(cast<Constant>(CPA->getOperand(0)), Static); 620 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { 621 Out << ", "; 622 printConstant(cast<Constant>(CPA->getOperand(i)), Static); 623 } 624 } 625 Out << " }"; 626 } 627} 628 629void CWriter::printConstantVector(ConstantVector *CP, bool Static) { 630 Out << '{'; 631 if (CP->getNumOperands()) { 632 Out << ' '; 633 printConstant(cast<Constant>(CP->getOperand(0)), Static); 634 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { 635 Out << ", "; 636 printConstant(cast<Constant>(CP->getOperand(i)), Static); 637 } 638 } 639 Out << " }"; 640} 641 642// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out 643// textually as a double (rather than as a reference to a stack-allocated 644// variable). We decide this by converting CFP to a string and back into a 645// double, and then checking whether the conversion results in a bit-equal 646// double to the original value of CFP. This depends on us and the target C 647// compiler agreeing on the conversion process (which is pretty likely since we 648// only deal in IEEE FP). 649// 650static bool isFPCSafeToPrint(const ConstantFP *CFP) { 651 bool ignored; 652 // Do long doubles in hex for now. 653 if (CFP->getType() != Type::getFloatTy(CFP->getContext()) && 654 CFP->getType() != Type::getDoubleTy(CFP->getContext())) 655 return false; 656 APFloat APF = APFloat(CFP->getValueAPF()); // copy 657 if (CFP->getType() == Type::getFloatTy(CFP->getContext())) 658 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); 659#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A 660 char Buffer[100]; 661 sprintf(Buffer, "%a", APF.convertToDouble()); 662 if (!strncmp(Buffer, "0x", 2) || 663 !strncmp(Buffer, "-0x", 3) || 664 !strncmp(Buffer, "+0x", 3)) 665 return APF.bitwiseIsEqual(APFloat(atof(Buffer))); 666 return false; 667#else 668 std::string StrVal = ftostr(APF); 669 670 while (StrVal[0] == ' ') 671 StrVal.erase(StrVal.begin()); 672 673 // Check to make sure that the stringized number is not some string like "Inf" 674 // or NaN. Check that the string matches the "[-+]?[0-9]" regex. 675 if ((StrVal[0] >= '0' && StrVal[0] <= '9') || 676 ((StrVal[0] == '-' || StrVal[0] == '+') && 677 (StrVal[1] >= '0' && StrVal[1] <= '9'))) 678 // Reparse stringized version! 679 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str()))); 680 return false; 681#endif 682} 683 684/// Print out the casting for a cast operation. This does the double casting 685/// necessary for conversion to the destination type, if necessary. 686/// @brief Print a cast 687void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) { 688 // Print the destination type cast 689 switch (opc) { 690 case Instruction::UIToFP: 691 case Instruction::SIToFP: 692 case Instruction::IntToPtr: 693 case Instruction::Trunc: 694 case Instruction::BitCast: 695 case Instruction::FPExt: 696 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter 697 Out << '('; 698 printType(Out, DstTy); 699 Out << ')'; 700 break; 701 case Instruction::ZExt: 702 case Instruction::PtrToInt: 703 case Instruction::FPToUI: // For these, make sure we get an unsigned dest 704 Out << '('; 705 printSimpleType(Out, DstTy, false); 706 Out << ')'; 707 break; 708 case Instruction::SExt: 709 case Instruction::FPToSI: // For these, make sure we get a signed dest 710 Out << '('; 711 printSimpleType(Out, DstTy, true); 712 Out << ')'; 713 break; 714 default: 715 llvm_unreachable("Invalid cast opcode"); 716 } 717 718 // Print the source type cast 719 switch (opc) { 720 case Instruction::UIToFP: 721 case Instruction::ZExt: 722 Out << '('; 723 printSimpleType(Out, SrcTy, false); 724 Out << ')'; 725 break; 726 case Instruction::SIToFP: 727 case Instruction::SExt: 728 Out << '('; 729 printSimpleType(Out, SrcTy, true); 730 Out << ')'; 731 break; 732 case Instruction::IntToPtr: 733 case Instruction::PtrToInt: 734 // Avoid "cast to pointer from integer of different size" warnings 735 Out << "(unsigned long)"; 736 break; 737 case Instruction::Trunc: 738 case Instruction::BitCast: 739 case Instruction::FPExt: 740 case Instruction::FPTrunc: 741 case Instruction::FPToSI: 742 case Instruction::FPToUI: 743 break; // These don't need a source cast. 744 default: 745 llvm_unreachable("Invalid cast opcode"); 746 break; 747 } 748} 749 750// printConstant - The LLVM Constant to C Constant converter. 751void CWriter::printConstant(Constant *CPV, bool Static) { 752 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { 753 switch (CE->getOpcode()) { 754 case Instruction::Trunc: 755 case Instruction::ZExt: 756 case Instruction::SExt: 757 case Instruction::FPTrunc: 758 case Instruction::FPExt: 759 case Instruction::UIToFP: 760 case Instruction::SIToFP: 761 case Instruction::FPToUI: 762 case Instruction::FPToSI: 763 case Instruction::PtrToInt: 764 case Instruction::IntToPtr: 765 case Instruction::BitCast: 766 Out << "("; 767 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); 768 if (CE->getOpcode() == Instruction::SExt && 769 CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) { 770 // Make sure we really sext from bool here by subtracting from 0 771 Out << "0-"; 772 } 773 printConstant(CE->getOperand(0), Static); 774 if (CE->getType() == Type::getInt1Ty(CPV->getContext()) && 775 (CE->getOpcode() == Instruction::Trunc || 776 CE->getOpcode() == Instruction::FPToUI || 777 CE->getOpcode() == Instruction::FPToSI || 778 CE->getOpcode() == Instruction::PtrToInt)) { 779 // Make sure we really truncate to bool here by anding with 1 780 Out << "&1u"; 781 } 782 Out << ')'; 783 return; 784 785 case Instruction::GetElementPtr: 786 Out << "("; 787 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV), 788 gep_type_end(CPV), Static); 789 Out << ")"; 790 return; 791 case Instruction::Select: 792 Out << '('; 793 printConstant(CE->getOperand(0), Static); 794 Out << '?'; 795 printConstant(CE->getOperand(1), Static); 796 Out << ':'; 797 printConstant(CE->getOperand(2), Static); 798 Out << ')'; 799 return; 800 case Instruction::Add: 801 case Instruction::FAdd: 802 case Instruction::Sub: 803 case Instruction::FSub: 804 case Instruction::Mul: 805 case Instruction::FMul: 806 case Instruction::SDiv: 807 case Instruction::UDiv: 808 case Instruction::FDiv: 809 case Instruction::URem: 810 case Instruction::SRem: 811 case Instruction::FRem: 812 case Instruction::And: 813 case Instruction::Or: 814 case Instruction::Xor: 815 case Instruction::ICmp: 816 case Instruction::Shl: 817 case Instruction::LShr: 818 case Instruction::AShr: 819 { 820 Out << '('; 821 bool NeedsClosingParens = printConstExprCast(CE, Static); 822 printConstantWithCast(CE->getOperand(0), CE->getOpcode()); 823 switch (CE->getOpcode()) { 824 case Instruction::Add: 825 case Instruction::FAdd: Out << " + "; break; 826 case Instruction::Sub: 827 case Instruction::FSub: Out << " - "; break; 828 case Instruction::Mul: 829 case Instruction::FMul: Out << " * "; break; 830 case Instruction::URem: 831 case Instruction::SRem: 832 case Instruction::FRem: Out << " % "; break; 833 case Instruction::UDiv: 834 case Instruction::SDiv: 835 case Instruction::FDiv: Out << " / "; break; 836 case Instruction::And: Out << " & "; break; 837 case Instruction::Or: Out << " | "; break; 838 case Instruction::Xor: Out << " ^ "; break; 839 case Instruction::Shl: Out << " << "; break; 840 case Instruction::LShr: 841 case Instruction::AShr: Out << " >> "; break; 842 case Instruction::ICmp: 843 switch (CE->getPredicate()) { 844 case ICmpInst::ICMP_EQ: Out << " == "; break; 845 case ICmpInst::ICMP_NE: Out << " != "; break; 846 case ICmpInst::ICMP_SLT: 847 case ICmpInst::ICMP_ULT: Out << " < "; break; 848 case ICmpInst::ICMP_SLE: 849 case ICmpInst::ICMP_ULE: Out << " <= "; break; 850 case ICmpInst::ICMP_SGT: 851 case ICmpInst::ICMP_UGT: Out << " > "; break; 852 case ICmpInst::ICMP_SGE: 853 case ICmpInst::ICMP_UGE: Out << " >= "; break; 854 default: llvm_unreachable("Illegal ICmp predicate"); 855 } 856 break; 857 default: llvm_unreachable("Illegal opcode here!"); 858 } 859 printConstantWithCast(CE->getOperand(1), CE->getOpcode()); 860 if (NeedsClosingParens) 861 Out << "))"; 862 Out << ')'; 863 return; 864 } 865 case Instruction::FCmp: { 866 Out << '('; 867 bool NeedsClosingParens = printConstExprCast(CE, Static); 868 if (CE->getPredicate() == FCmpInst::FCMP_FALSE) 869 Out << "0"; 870 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) 871 Out << "1"; 872 else { 873 const char* op = 0; 874 switch (CE->getPredicate()) { 875 default: llvm_unreachable("Illegal FCmp predicate"); 876 case FCmpInst::FCMP_ORD: op = "ord"; break; 877 case FCmpInst::FCMP_UNO: op = "uno"; break; 878 case FCmpInst::FCMP_UEQ: op = "ueq"; break; 879 case FCmpInst::FCMP_UNE: op = "une"; break; 880 case FCmpInst::FCMP_ULT: op = "ult"; break; 881 case FCmpInst::FCMP_ULE: op = "ule"; break; 882 case FCmpInst::FCMP_UGT: op = "ugt"; break; 883 case FCmpInst::FCMP_UGE: op = "uge"; break; 884 case FCmpInst::FCMP_OEQ: op = "oeq"; break; 885 case FCmpInst::FCMP_ONE: op = "one"; break; 886 case FCmpInst::FCMP_OLT: op = "olt"; break; 887 case FCmpInst::FCMP_OLE: op = "ole"; break; 888 case FCmpInst::FCMP_OGT: op = "ogt"; break; 889 case FCmpInst::FCMP_OGE: op = "oge"; break; 890 } 891 Out << "llvm_fcmp_" << op << "("; 892 printConstantWithCast(CE->getOperand(0), CE->getOpcode()); 893 Out << ", "; 894 printConstantWithCast(CE->getOperand(1), CE->getOpcode()); 895 Out << ")"; 896 } 897 if (NeedsClosingParens) 898 Out << "))"; 899 Out << ')'; 900 return; 901 } 902 default: 903#ifndef NDEBUG 904 errs() << "CWriter Error: Unhandled constant expression: " 905 << *CE << "\n"; 906#endif 907 llvm_unreachable(0); 908 } 909 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) { 910 Out << "(("; 911 printType(Out, CPV->getType()); // sign doesn't matter 912 Out << ")/*UNDEF*/"; 913 if (!CPV->getType()->isVectorTy()) { 914 Out << "0)"; 915 } else { 916 Out << "{})"; 917 } 918 return; 919 } 920 921 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { 922 Type* Ty = CI->getType(); 923 if (Ty == Type::getInt1Ty(CPV->getContext())) 924 Out << (CI->getZExtValue() ? '1' : '0'); 925 else if (Ty == Type::getInt32Ty(CPV->getContext())) 926 Out << CI->getZExtValue() << 'u'; 927 else if (Ty->getPrimitiveSizeInBits() > 32) 928 Out << CI->getZExtValue() << "ull"; 929 else { 930 Out << "(("; 931 printSimpleType(Out, Ty, false) << ')'; 932 if (CI->isMinValue(true)) 933 Out << CI->getZExtValue() << 'u'; 934 else 935 Out << CI->getSExtValue(); 936 Out << ')'; 937 } 938 return; 939 } 940 941 switch (CPV->getType()->getTypeID()) { 942 case Type::FloatTyID: 943 case Type::DoubleTyID: 944 case Type::X86_FP80TyID: 945 case Type::PPC_FP128TyID: 946 case Type::FP128TyID: { 947 ConstantFP *FPC = cast<ConstantFP>(CPV); 948 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); 949 if (I != FPConstantMap.end()) { 950 // Because of FP precision problems we must load from a stack allocated 951 // value that holds the value in hex. 952 Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ? 953 "float" : 954 FPC->getType() == Type::getDoubleTy(CPV->getContext()) ? 955 "double" : 956 "long double") 957 << "*)&FPConstant" << I->second << ')'; 958 } else { 959 double V; 960 if (FPC->getType() == Type::getFloatTy(CPV->getContext())) 961 V = FPC->getValueAPF().convertToFloat(); 962 else if (FPC->getType() == Type::getDoubleTy(CPV->getContext())) 963 V = FPC->getValueAPF().convertToDouble(); 964 else { 965 // Long double. Convert the number to double, discarding precision. 966 // This is not awesome, but it at least makes the CBE output somewhat 967 // useful. 968 APFloat Tmp = FPC->getValueAPF(); 969 bool LosesInfo; 970 Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo); 971 V = Tmp.convertToDouble(); 972 } 973 974 if (IsNAN(V)) { 975 // The value is NaN 976 977 // FIXME the actual NaN bits should be emitted. 978 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, 979 // it's 0x7ff4. 980 const unsigned long QuietNaN = 0x7ff8UL; 981 //const unsigned long SignalNaN = 0x7ff4UL; 982 983 // We need to grab the first part of the FP # 984 char Buffer[100]; 985 986 uint64_t ll = DoubleToBits(V); 987 sprintf(Buffer, "0x%llx", static_cast<long long>(ll)); 988 989 std::string Num(&Buffer[0], &Buffer[6]); 990 unsigned long Val = strtoul(Num.c_str(), 0, 16); 991 992 if (FPC->getType() == Type::getFloatTy(FPC->getContext())) 993 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" 994 << Buffer << "\") /*nan*/ "; 995 else 996 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" 997 << Buffer << "\") /*nan*/ "; 998 } else if (IsInf(V)) { 999 // The value is Inf 1000 if (V < 0) Out << '-'; 1001 Out << "LLVM_INF" << 1002 (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "") 1003 << " /*inf*/ "; 1004 } else { 1005 std::string Num; 1006#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A 1007 // Print out the constant as a floating point number. 1008 char Buffer[100]; 1009 sprintf(Buffer, "%a", V); 1010 Num = Buffer; 1011#else 1012 Num = ftostr(FPC->getValueAPF()); 1013#endif 1014 Out << Num; 1015 } 1016 } 1017 break; 1018 } 1019 1020 case Type::ArrayTyID: 1021 // Use C99 compound expression literal initializer syntax. 1022 if (!Static) { 1023 Out << "("; 1024 printType(Out, CPV->getType()); 1025 Out << ")"; 1026 } 1027 Out << "{ "; // Arrays are wrapped in struct types. 1028 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) { 1029 printConstantArray(CA, Static); 1030 } else { 1031 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); 1032 ArrayType *AT = cast<ArrayType>(CPV->getType()); 1033 Out << '{'; 1034 if (AT->getNumElements()) { 1035 Out << ' '; 1036 Constant *CZ = Constant::getNullValue(AT->getElementType()); 1037 printConstant(CZ, Static); 1038 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { 1039 Out << ", "; 1040 printConstant(CZ, Static); 1041 } 1042 } 1043 Out << " }"; 1044 } 1045 Out << " }"; // Arrays are wrapped in struct types. 1046 break; 1047 1048 case Type::VectorTyID: 1049 // Use C99 compound expression literal initializer syntax. 1050 if (!Static) { 1051 Out << "("; 1052 printType(Out, CPV->getType()); 1053 Out << ")"; 1054 } 1055 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) { 1056 printConstantVector(CV, Static); 1057 } else { 1058 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); 1059 VectorType *VT = cast<VectorType>(CPV->getType()); 1060 Out << "{ "; 1061 Constant *CZ = Constant::getNullValue(VT->getElementType()); 1062 printConstant(CZ, Static); 1063 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) { 1064 Out << ", "; 1065 printConstant(CZ, Static); 1066 } 1067 Out << " }"; 1068 } 1069 break; 1070 1071 case Type::StructTyID: 1072 // Use C99 compound expression literal initializer syntax. 1073 if (!Static) { 1074 Out << "("; 1075 printType(Out, CPV->getType()); 1076 Out << ")"; 1077 } 1078 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { 1079 StructType *ST = cast<StructType>(CPV->getType()); 1080 Out << '{'; 1081 if (ST->getNumElements()) { 1082 Out << ' '; 1083 printConstant(Constant::getNullValue(ST->getElementType(0)), Static); 1084 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { 1085 Out << ", "; 1086 printConstant(Constant::getNullValue(ST->getElementType(i)), Static); 1087 } 1088 } 1089 Out << " }"; 1090 } else { 1091 Out << '{'; 1092 if (CPV->getNumOperands()) { 1093 Out << ' '; 1094 printConstant(cast<Constant>(CPV->getOperand(0)), Static); 1095 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { 1096 Out << ", "; 1097 printConstant(cast<Constant>(CPV->getOperand(i)), Static); 1098 } 1099 } 1100 Out << " }"; 1101 } 1102 break; 1103 1104 case Type::PointerTyID: 1105 if (isa<ConstantPointerNull>(CPV)) { 1106 Out << "(("; 1107 printType(Out, CPV->getType()); // sign doesn't matter 1108 Out << ")/*NULL*/0)"; 1109 break; 1110 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { 1111 writeOperand(GV, Static); 1112 break; 1113 } 1114 // FALL THROUGH 1115 default: 1116#ifndef NDEBUG 1117 errs() << "Unknown constant type: " << *CPV << "\n"; 1118#endif 1119 llvm_unreachable(0); 1120 } 1121} 1122 1123// Some constant expressions need to be casted back to the original types 1124// because their operands were casted to the expected type. This function takes 1125// care of detecting that case and printing the cast for the ConstantExpr. 1126bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) { 1127 bool NeedsExplicitCast = false; 1128 Type *Ty = CE->getOperand(0)->getType(); 1129 bool TypeIsSigned = false; 1130 switch (CE->getOpcode()) { 1131 case Instruction::Add: 1132 case Instruction::Sub: 1133 case Instruction::Mul: 1134 // We need to cast integer arithmetic so that it is always performed 1135 // as unsigned, to avoid undefined behavior on overflow. 1136 case Instruction::LShr: 1137 case Instruction::URem: 1138 case Instruction::UDiv: NeedsExplicitCast = true; break; 1139 case Instruction::AShr: 1140 case Instruction::SRem: 1141 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break; 1142 case Instruction::SExt: 1143 Ty = CE->getType(); 1144 NeedsExplicitCast = true; 1145 TypeIsSigned = true; 1146 break; 1147 case Instruction::ZExt: 1148 case Instruction::Trunc: 1149 case Instruction::FPTrunc: 1150 case Instruction::FPExt: 1151 case Instruction::UIToFP: 1152 case Instruction::SIToFP: 1153 case Instruction::FPToUI: 1154 case Instruction::FPToSI: 1155 case Instruction::PtrToInt: 1156 case Instruction::IntToPtr: 1157 case Instruction::BitCast: 1158 Ty = CE->getType(); 1159 NeedsExplicitCast = true; 1160 break; 1161 default: break; 1162 } 1163 if (NeedsExplicitCast) { 1164 Out << "(("; 1165 if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext())) 1166 printSimpleType(Out, Ty, TypeIsSigned); 1167 else 1168 printType(Out, Ty); // not integer, sign doesn't matter 1169 Out << ")("; 1170 } 1171 return NeedsExplicitCast; 1172} 1173 1174// Print a constant assuming that it is the operand for a given Opcode. The 1175// opcodes that care about sign need to cast their operands to the expected 1176// type before the operation proceeds. This function does the casting. 1177void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) { 1178 1179 // Extract the operand's type, we'll need it. 1180 Type* OpTy = CPV->getType(); 1181 1182 // Indicate whether to do the cast or not. 1183 bool shouldCast = false; 1184 bool typeIsSigned = false; 1185 1186 // Based on the Opcode for which this Constant is being written, determine 1187 // the new type to which the operand should be casted by setting the value 1188 // of OpTy. If we change OpTy, also set shouldCast to true so it gets 1189 // casted below. 1190 switch (Opcode) { 1191 default: 1192 // for most instructions, it doesn't matter 1193 break; 1194 case Instruction::Add: 1195 case Instruction::Sub: 1196 case Instruction::Mul: 1197 // We need to cast integer arithmetic so that it is always performed 1198 // as unsigned, to avoid undefined behavior on overflow. 1199 case Instruction::LShr: 1200 case Instruction::UDiv: 1201 case Instruction::URem: 1202 shouldCast = true; 1203 break; 1204 case Instruction::AShr: 1205 case Instruction::SDiv: 1206 case Instruction::SRem: 1207 shouldCast = true; 1208 typeIsSigned = true; 1209 break; 1210 } 1211 1212 // Write out the casted constant if we should, otherwise just write the 1213 // operand. 1214 if (shouldCast) { 1215 Out << "(("; 1216 printSimpleType(Out, OpTy, typeIsSigned); 1217 Out << ")"; 1218 printConstant(CPV, false); 1219 Out << ")"; 1220 } else 1221 printConstant(CPV, false); 1222} 1223 1224std::string CWriter::GetValueName(const Value *Operand) { 1225 1226 // Resolve potential alias. 1227 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) { 1228 if (const Value *V = GA->resolveAliasedGlobal(false)) 1229 Operand = V; 1230 } 1231 1232 // Mangle globals with the standard mangler interface for LLC compatibility. 1233 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) { 1234 SmallString<128> Str; 1235 Mang->getNameWithPrefix(Str, GV, false); 1236 return CBEMangle(Str.str().str()); 1237 } 1238 1239 std::string Name = Operand->getName(); 1240 1241 if (Name.empty()) { // Assign unique names to local temporaries. 1242 unsigned &No = AnonValueNumbers[Operand]; 1243 if (No == 0) 1244 No = ++NextAnonValueNumber; 1245 Name = "tmp__" + utostr(No); 1246 } 1247 1248 std::string VarName; 1249 VarName.reserve(Name.capacity()); 1250 1251 for (std::string::iterator I = Name.begin(), E = Name.end(); 1252 I != E; ++I) { 1253 char ch = *I; 1254 1255 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || 1256 (ch >= '0' && ch <= '9') || ch == '_')) { 1257 char buffer[5]; 1258 sprintf(buffer, "_%x_", ch); 1259 VarName += buffer; 1260 } else 1261 VarName += ch; 1262 } 1263 1264 return "llvm_cbe_" + VarName; 1265} 1266 1267/// writeInstComputationInline - Emit the computation for the specified 1268/// instruction inline, with no destination provided. 1269void CWriter::writeInstComputationInline(Instruction &I) { 1270 // We can't currently support integer types other than 1, 8, 16, 32, 64. 1271 // Validate this. 1272 Type *Ty = I.getType(); 1273 if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) && 1274 Ty!=Type::getInt8Ty(I.getContext()) && 1275 Ty!=Type::getInt16Ty(I.getContext()) && 1276 Ty!=Type::getInt32Ty(I.getContext()) && 1277 Ty!=Type::getInt64Ty(I.getContext()))) { 1278 report_fatal_error("The C backend does not currently support integer " 1279 "types of widths other than 1, 8, 16, 32, 64.\n" 1280 "This is being tracked as PR 4158."); 1281 } 1282 1283 // If this is a non-trivial bool computation, make sure to truncate down to 1284 // a 1 bit value. This is important because we want "add i1 x, y" to return 1285 // "0" when x and y are true, not "2" for example. 1286 bool NeedBoolTrunc = false; 1287 if (I.getType() == Type::getInt1Ty(I.getContext()) && 1288 !isa<ICmpInst>(I) && !isa<FCmpInst>(I)) 1289 NeedBoolTrunc = true; 1290 1291 if (NeedBoolTrunc) 1292 Out << "(("; 1293 1294 visit(I); 1295 1296 if (NeedBoolTrunc) 1297 Out << ")&1)"; 1298} 1299 1300 1301void CWriter::writeOperandInternal(Value *Operand, bool Static) { 1302 if (Instruction *I = dyn_cast<Instruction>(Operand)) 1303 // Should we inline this instruction to build a tree? 1304 if (isInlinableInst(*I) && !isDirectAlloca(I)) { 1305 Out << '('; 1306 writeInstComputationInline(*I); 1307 Out << ')'; 1308 return; 1309 } 1310 1311 Constant* CPV = dyn_cast<Constant>(Operand); 1312 1313 if (CPV && !isa<GlobalValue>(CPV)) 1314 printConstant(CPV, Static); 1315 else 1316 Out << GetValueName(Operand); 1317} 1318 1319void CWriter::writeOperand(Value *Operand, bool Static) { 1320 bool isAddressImplicit = isAddressExposed(Operand); 1321 if (isAddressImplicit) 1322 Out << "(&"; // Global variables are referenced as their addresses by llvm 1323 1324 writeOperandInternal(Operand, Static); 1325 1326 if (isAddressImplicit) 1327 Out << ')'; 1328} 1329 1330// Some instructions need to have their result value casted back to the 1331// original types because their operands were casted to the expected type. 1332// This function takes care of detecting that case and printing the cast 1333// for the Instruction. 1334bool CWriter::writeInstructionCast(const Instruction &I) { 1335 Type *Ty = I.getOperand(0)->getType(); 1336 switch (I.getOpcode()) { 1337 case Instruction::Add: 1338 case Instruction::Sub: 1339 case Instruction::Mul: 1340 // We need to cast integer arithmetic so that it is always performed 1341 // as unsigned, to avoid undefined behavior on overflow. 1342 case Instruction::LShr: 1343 case Instruction::URem: 1344 case Instruction::UDiv: 1345 Out << "(("; 1346 printSimpleType(Out, Ty, false); 1347 Out << ")("; 1348 return true; 1349 case Instruction::AShr: 1350 case Instruction::SRem: 1351 case Instruction::SDiv: 1352 Out << "(("; 1353 printSimpleType(Out, Ty, true); 1354 Out << ")("; 1355 return true; 1356 default: break; 1357 } 1358 return false; 1359} 1360 1361// Write the operand with a cast to another type based on the Opcode being used. 1362// This will be used in cases where an instruction has specific type 1363// requirements (usually signedness) for its operands. 1364void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) { 1365 1366 // Extract the operand's type, we'll need it. 1367 Type* OpTy = Operand->getType(); 1368 1369 // Indicate whether to do the cast or not. 1370 bool shouldCast = false; 1371 1372 // Indicate whether the cast should be to a signed type or not. 1373 bool castIsSigned = false; 1374 1375 // Based on the Opcode for which this Operand is being written, determine 1376 // the new type to which the operand should be casted by setting the value 1377 // of OpTy. If we change OpTy, also set shouldCast to true. 1378 switch (Opcode) { 1379 default: 1380 // for most instructions, it doesn't matter 1381 break; 1382 case Instruction::Add: 1383 case Instruction::Sub: 1384 case Instruction::Mul: 1385 // We need to cast integer arithmetic so that it is always performed 1386 // as unsigned, to avoid undefined behavior on overflow. 1387 case Instruction::LShr: 1388 case Instruction::UDiv: 1389 case Instruction::URem: // Cast to unsigned first 1390 shouldCast = true; 1391 castIsSigned = false; 1392 break; 1393 case Instruction::GetElementPtr: 1394 case Instruction::AShr: 1395 case Instruction::SDiv: 1396 case Instruction::SRem: // Cast to signed first 1397 shouldCast = true; 1398 castIsSigned = true; 1399 break; 1400 } 1401 1402 // Write out the casted operand if we should, otherwise just write the 1403 // operand. 1404 if (shouldCast) { 1405 Out << "(("; 1406 printSimpleType(Out, OpTy, castIsSigned); 1407 Out << ")"; 1408 writeOperand(Operand); 1409 Out << ")"; 1410 } else 1411 writeOperand(Operand); 1412} 1413 1414// Write the operand with a cast to another type based on the icmp predicate 1415// being used. 1416void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) { 1417 // This has to do a cast to ensure the operand has the right signedness. 1418 // Also, if the operand is a pointer, we make sure to cast to an integer when 1419 // doing the comparison both for signedness and so that the C compiler doesn't 1420 // optimize things like "p < NULL" to false (p may contain an integer value 1421 // f.e.). 1422 bool shouldCast = Cmp.isRelational(); 1423 1424 // Write out the casted operand if we should, otherwise just write the 1425 // operand. 1426 if (!shouldCast) { 1427 writeOperand(Operand); 1428 return; 1429 } 1430 1431 // Should this be a signed comparison? If so, convert to signed. 1432 bool castIsSigned = Cmp.isSigned(); 1433 1434 // If the operand was a pointer, convert to a large integer type. 1435 Type* OpTy = Operand->getType(); 1436 if (OpTy->isPointerTy()) 1437 OpTy = TD->getIntPtrType(Operand->getContext()); 1438 1439 Out << "(("; 1440 printSimpleType(Out, OpTy, castIsSigned); 1441 Out << ")"; 1442 writeOperand(Operand); 1443 Out << ")"; 1444} 1445 1446// generateCompilerSpecificCode - This is where we add conditional compilation 1447// directives to cater to specific compilers as need be. 1448// 1449static void generateCompilerSpecificCode(formatted_raw_ostream& Out, 1450 const TargetData *TD) { 1451 // Alloca is hard to get, and we don't want to include stdlib.h here. 1452 Out << "/* get a declaration for alloca */\n" 1453 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" 1454 << "#define alloca(x) __builtin_alloca((x))\n" 1455 << "#define _alloca(x) __builtin_alloca((x))\n" 1456 << "#elif defined(__APPLE__)\n" 1457 << "extern void *__builtin_alloca(unsigned long);\n" 1458 << "#define alloca(x) __builtin_alloca(x)\n" 1459 << "#define longjmp _longjmp\n" 1460 << "#define setjmp _setjmp\n" 1461 << "#elif defined(__sun__)\n" 1462 << "#if defined(__sparcv9)\n" 1463 << "extern void *__builtin_alloca(unsigned long);\n" 1464 << "#else\n" 1465 << "extern void *__builtin_alloca(unsigned int);\n" 1466 << "#endif\n" 1467 << "#define alloca(x) __builtin_alloca(x)\n" 1468 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n" 1469 << "#define alloca(x) __builtin_alloca(x)\n" 1470 << "#elif defined(_MSC_VER)\n" 1471 << "#define inline _inline\n" 1472 << "#define alloca(x) _alloca(x)\n" 1473 << "#else\n" 1474 << "#include <alloca.h>\n" 1475 << "#endif\n\n"; 1476 1477 // We output GCC specific attributes to preserve 'linkonce'ness on globals. 1478 // If we aren't being compiled with GCC, just drop these attributes. 1479 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" 1480 << "#define __attribute__(X)\n" 1481 << "#endif\n\n"; 1482 1483 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". 1484 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" 1485 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" 1486 << "#elif defined(__GNUC__)\n" 1487 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" 1488 << "#else\n" 1489 << "#define __EXTERNAL_WEAK__\n" 1490 << "#endif\n\n"; 1491 1492 // For now, turn off the weak linkage attribute on Mac OS X. (See above.) 1493 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" 1494 << "#define __ATTRIBUTE_WEAK__\n" 1495 << "#elif defined(__GNUC__)\n" 1496 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" 1497 << "#else\n" 1498 << "#define __ATTRIBUTE_WEAK__\n" 1499 << "#endif\n\n"; 1500 1501 // Add hidden visibility support. FIXME: APPLE_CC? 1502 Out << "#if defined(__GNUC__)\n" 1503 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n" 1504 << "#endif\n\n"; 1505 1506 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise 1507 // From the GCC documentation: 1508 // 1509 // double __builtin_nan (const char *str) 1510 // 1511 // This is an implementation of the ISO C99 function nan. 1512 // 1513 // Since ISO C99 defines this function in terms of strtod, which we do 1514 // not implement, a description of the parsing is in order. The string is 1515 // parsed as by strtol; that is, the base is recognized by leading 0 or 1516 // 0x prefixes. The number parsed is placed in the significand such that 1517 // the least significant bit of the number is at the least significant 1518 // bit of the significand. The number is truncated to fit the significand 1519 // field provided. The significand is forced to be a quiet NaN. 1520 // 1521 // This function, if given a string literal, is evaluated early enough 1522 // that it is considered a compile-time constant. 1523 // 1524 // float __builtin_nanf (const char *str) 1525 // 1526 // Similar to __builtin_nan, except the return type is float. 1527 // 1528 // double __builtin_inf (void) 1529 // 1530 // Similar to __builtin_huge_val, except a warning is generated if the 1531 // target floating-point format does not support infinities. This 1532 // function is suitable for implementing the ISO C99 macro INFINITY. 1533 // 1534 // float __builtin_inff (void) 1535 // 1536 // Similar to __builtin_inf, except the return type is float. 1537 Out << "#ifdef __GNUC__\n" 1538 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" 1539 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" 1540 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" 1541 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" 1542 << "#define LLVM_INF __builtin_inf() /* Double */\n" 1543 << "#define LLVM_INFF __builtin_inff() /* Float */\n" 1544 << "#define LLVM_PREFETCH(addr,rw,locality) " 1545 "__builtin_prefetch(addr,rw,locality)\n" 1546 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" 1547 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" 1548 << "#define LLVM_ASM __asm__\n" 1549 << "#else\n" 1550 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" 1551 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" 1552 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" 1553 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" 1554 << "#define LLVM_INF ((double)0.0) /* Double */\n" 1555 << "#define LLVM_INFF 0.0F /* Float */\n" 1556 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" 1557 << "#define __ATTRIBUTE_CTOR__\n" 1558 << "#define __ATTRIBUTE_DTOR__\n" 1559 << "#define LLVM_ASM(X)\n" 1560 << "#endif\n\n"; 1561 1562 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n" 1563 << "#define __builtin_stack_save() 0 /* not implemented */\n" 1564 << "#define __builtin_stack_restore(X) /* noop */\n" 1565 << "#endif\n\n"; 1566 1567 // Output typedefs for 128-bit integers. If these are needed with a 1568 // 32-bit target or with a C compiler that doesn't support mode(TI), 1569 // more drastic measures will be needed. 1570 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n" 1571 << "typedef int __attribute__((mode(TI))) llvmInt128;\n" 1572 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n" 1573 << "#endif\n\n"; 1574 1575 // Output target-specific code that should be inserted into main. 1576 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; 1577} 1578 1579/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into 1580/// the StaticTors set. 1581static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){ 1582 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 1583 if (!InitList) return; 1584 1585 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 1586 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 1587 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 1588 1589 if (CS->getOperand(1)->isNullValue()) 1590 return; // Found a null terminator, exit printing. 1591 Constant *FP = CS->getOperand(1); 1592 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 1593 if (CE->isCast()) 1594 FP = CE->getOperand(0); 1595 if (Function *F = dyn_cast<Function>(FP)) 1596 StaticTors.insert(F); 1597 } 1598} 1599 1600enum SpecialGlobalClass { 1601 NotSpecial = 0, 1602 GlobalCtors, GlobalDtors, 1603 NotPrinted 1604}; 1605 1606/// getGlobalVariableClass - If this is a global that is specially recognized 1607/// by LLVM, return a code that indicates how we should handle it. 1608static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { 1609 // If this is a global ctors/dtors list, handle it now. 1610 if (GV->hasAppendingLinkage() && GV->use_empty()) { 1611 if (GV->getName() == "llvm.global_ctors") 1612 return GlobalCtors; 1613 else if (GV->getName() == "llvm.global_dtors") 1614 return GlobalDtors; 1615 } 1616 1617 // Otherwise, if it is other metadata, don't print it. This catches things 1618 // like debug information. 1619 if (GV->getSection() == "llvm.metadata") 1620 return NotPrinted; 1621 1622 return NotSpecial; 1623} 1624 1625// PrintEscapedString - Print each character of the specified string, escaping 1626// it if it is not printable or if it is an escape char. 1627static void PrintEscapedString(const char *Str, unsigned Length, 1628 raw_ostream &Out) { 1629 for (unsigned i = 0; i != Length; ++i) { 1630 unsigned char C = Str[i]; 1631 if (isprint(C) && C != '\\' && C != '"') 1632 Out << C; 1633 else if (C == '\\') 1634 Out << "\\\\"; 1635 else if (C == '\"') 1636 Out << "\\\""; 1637 else if (C == '\t') 1638 Out << "\\t"; 1639 else 1640 Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F); 1641 } 1642} 1643 1644// PrintEscapedString - Print each character of the specified string, escaping 1645// it if it is not printable or if it is an escape char. 1646static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { 1647 PrintEscapedString(Str.c_str(), Str.size(), Out); 1648} 1649 1650bool CWriter::doInitialization(Module &M) { 1651 FunctionPass::doInitialization(M); 1652 1653 // Initialize 1654 TheModule = &M; 1655 1656 TD = new TargetData(&M); 1657 IL = new IntrinsicLowering(*TD); 1658 IL->AddPrototypes(M); 1659 1660#if 0 1661 std::string Triple = TheModule->getTargetTriple(); 1662 if (Triple.empty()) 1663 Triple = llvm::sys::getHostTriple(); 1664 1665 std::string E; 1666 if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) 1667 TAsm = Match->createMCAsmInfo(Triple); 1668#endif 1669 TAsm = new CBEMCAsmInfo(); 1670 MRI = new MCRegisterInfo(); 1671 TCtx = new MCContext(*TAsm, *MRI, NULL); 1672 Mang = new Mangler(*TCtx, *TD); 1673 1674 // Keep track of which functions are static ctors/dtors so they can have 1675 // an attribute added to their prototypes. 1676 std::set<Function*> StaticCtors, StaticDtors; 1677 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1678 I != E; ++I) { 1679 switch (getGlobalVariableClass(I)) { 1680 default: break; 1681 case GlobalCtors: 1682 FindStaticTors(I, StaticCtors); 1683 break; 1684 case GlobalDtors: 1685 FindStaticTors(I, StaticDtors); 1686 break; 1687 } 1688 } 1689 1690 // get declaration for alloca 1691 Out << "/* Provide Declarations */\n"; 1692 Out << "#include <stdarg.h>\n"; // Varargs support 1693 Out << "#include <setjmp.h>\n"; // Unwind support 1694 Out << "#include <limits.h>\n"; // With overflow intrinsics support. 1695 generateCompilerSpecificCode(Out, TD); 1696 1697 // Provide a definition for `bool' if not compiling with a C++ compiler. 1698 Out << "\n" 1699 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" 1700 1701 << "\n\n/* Support for floating point constants */\n" 1702 << "typedef unsigned long long ConstantDoubleTy;\n" 1703 << "typedef unsigned int ConstantFloatTy;\n" 1704 << "typedef struct { unsigned long long f1; unsigned short f2; " 1705 "unsigned short pad[3]; } ConstantFP80Ty;\n" 1706 // This is used for both kinds of 128-bit long double; meaning differs. 1707 << "typedef struct { unsigned long long f1; unsigned long long f2; }" 1708 " ConstantFP128Ty;\n" 1709 << "\n\n/* Global Declarations */\n"; 1710 1711 // First output all the declarations for the program, because C requires 1712 // Functions & globals to be declared before they are used. 1713 // 1714 if (!M.getModuleInlineAsm().empty()) { 1715 Out << "/* Module asm statements */\n" 1716 << "asm("; 1717 1718 // Split the string into lines, to make it easier to read the .ll file. 1719 std::string Asm = M.getModuleInlineAsm(); 1720 size_t CurPos = 0; 1721 size_t NewLine = Asm.find_first_of('\n', CurPos); 1722 while (NewLine != std::string::npos) { 1723 // We found a newline, print the portion of the asm string from the 1724 // last newline up to this newline. 1725 Out << "\""; 1726 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), 1727 Out); 1728 Out << "\\n\"\n"; 1729 CurPos = NewLine+1; 1730 NewLine = Asm.find_first_of('\n', CurPos); 1731 } 1732 Out << "\""; 1733 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); 1734 Out << "\");\n" 1735 << "/* End Module asm statements */\n"; 1736 } 1737 1738 // Loop over the symbol table, emitting all named constants. 1739 printModuleTypes(); 1740 1741 // Global variable declarations... 1742 if (!M.global_empty()) { 1743 Out << "\n/* External Global Variable Declarations */\n"; 1744 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1745 I != E; ++I) { 1746 1747 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() || 1748 I->hasCommonLinkage()) 1749 Out << "extern "; 1750 else if (I->hasDLLImportLinkage()) 1751 Out << "__declspec(dllimport) "; 1752 else 1753 continue; // Internal Global 1754 1755 // Thread Local Storage 1756 if (I->isThreadLocal()) 1757 Out << "__thread "; 1758 1759 printType(Out, I->getType()->getElementType(), false, GetValueName(I)); 1760 1761 if (I->hasExternalWeakLinkage()) 1762 Out << " __EXTERNAL_WEAK__"; 1763 Out << ";\n"; 1764 } 1765 } 1766 1767 // Function declarations 1768 Out << "\n/* Function Declarations */\n"; 1769 Out << "double fmod(double, double);\n"; // Support for FP rem 1770 Out << "float fmodf(float, float);\n"; 1771 Out << "long double fmodl(long double, long double);\n"; 1772 1773 // Store the intrinsics which will be declared/defined below. 1774 SmallVector<const Function*, 8> intrinsicsToDefine; 1775 1776 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 1777 // Don't print declarations for intrinsic functions. 1778 // Store the used intrinsics, which need to be explicitly defined. 1779 if (I->isIntrinsic()) { 1780 switch (I->getIntrinsicID()) { 1781 default: 1782 break; 1783 case Intrinsic::uadd_with_overflow: 1784 case Intrinsic::sadd_with_overflow: 1785 intrinsicsToDefine.push_back(I); 1786 break; 1787 } 1788 continue; 1789 } 1790 1791 if (I->getName() == "setjmp" || 1792 I->getName() == "longjmp" || I->getName() == "_setjmp") 1793 continue; 1794 1795 if (I->hasExternalWeakLinkage()) 1796 Out << "extern "; 1797 printFunctionSignature(I, true); 1798 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 1799 Out << " __ATTRIBUTE_WEAK__"; 1800 if (I->hasExternalWeakLinkage()) 1801 Out << " __EXTERNAL_WEAK__"; 1802 if (StaticCtors.count(I)) 1803 Out << " __ATTRIBUTE_CTOR__"; 1804 if (StaticDtors.count(I)) 1805 Out << " __ATTRIBUTE_DTOR__"; 1806 if (I->hasHiddenVisibility()) 1807 Out << " __HIDDEN__"; 1808 1809 if (I->hasName() && I->getName()[0] == 1) 1810 Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")"; 1811 1812 Out << ";\n"; 1813 } 1814 1815 // Output the global variable declarations 1816 if (!M.global_empty()) { 1817 Out << "\n\n/* Global Variable Declarations */\n"; 1818 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1819 I != E; ++I) 1820 if (!I->isDeclaration()) { 1821 // Ignore special globals, such as debug info. 1822 if (getGlobalVariableClass(I)) 1823 continue; 1824 1825 if (I->hasLocalLinkage()) 1826 Out << "static "; 1827 else 1828 Out << "extern "; 1829 1830 // Thread Local Storage 1831 if (I->isThreadLocal()) 1832 Out << "__thread "; 1833 1834 printType(Out, I->getType()->getElementType(), false, 1835 GetValueName(I)); 1836 1837 if (I->hasLinkOnceLinkage()) 1838 Out << " __attribute__((common))"; 1839 else if (I->hasCommonLinkage()) // FIXME is this right? 1840 Out << " __ATTRIBUTE_WEAK__"; 1841 else if (I->hasWeakLinkage()) 1842 Out << " __ATTRIBUTE_WEAK__"; 1843 else if (I->hasExternalWeakLinkage()) 1844 Out << " __EXTERNAL_WEAK__"; 1845 if (I->hasHiddenVisibility()) 1846 Out << " __HIDDEN__"; 1847 Out << ";\n"; 1848 } 1849 } 1850 1851 // Output the global variable definitions and contents... 1852 if (!M.global_empty()) { 1853 Out << "\n\n/* Global Variable Definitions and Initialization */\n"; 1854 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1855 I != E; ++I) 1856 if (!I->isDeclaration()) { 1857 // Ignore special globals, such as debug info. 1858 if (getGlobalVariableClass(I)) 1859 continue; 1860 1861 if (I->hasLocalLinkage()) 1862 Out << "static "; 1863 else if (I->hasDLLImportLinkage()) 1864 Out << "__declspec(dllimport) "; 1865 else if (I->hasDLLExportLinkage()) 1866 Out << "__declspec(dllexport) "; 1867 1868 // Thread Local Storage 1869 if (I->isThreadLocal()) 1870 Out << "__thread "; 1871 1872 printType(Out, I->getType()->getElementType(), false, 1873 GetValueName(I)); 1874 if (I->hasLinkOnceLinkage()) 1875 Out << " __attribute__((common))"; 1876 else if (I->hasWeakLinkage()) 1877 Out << " __ATTRIBUTE_WEAK__"; 1878 else if (I->hasCommonLinkage()) 1879 Out << " __ATTRIBUTE_WEAK__"; 1880 1881 if (I->hasHiddenVisibility()) 1882 Out << " __HIDDEN__"; 1883 1884 // If the initializer is not null, emit the initializer. If it is null, 1885 // we try to avoid emitting large amounts of zeros. The problem with 1886 // this, however, occurs when the variable has weak linkage. In this 1887 // case, the assembler will complain about the variable being both weak 1888 // and common, so we disable this optimization. 1889 // FIXME common linkage should avoid this problem. 1890 if (!I->getInitializer()->isNullValue()) { 1891 Out << " = " ; 1892 writeOperand(I->getInitializer(), true); 1893 } else if (I->hasWeakLinkage()) { 1894 // We have to specify an initializer, but it doesn't have to be 1895 // complete. If the value is an aggregate, print out { 0 }, and let 1896 // the compiler figure out the rest of the zeros. 1897 Out << " = " ; 1898 if (I->getInitializer()->getType()->isStructTy() || 1899 I->getInitializer()->getType()->isVectorTy()) { 1900 Out << "{ 0 }"; 1901 } else if (I->getInitializer()->getType()->isArrayTy()) { 1902 // As with structs and vectors, but with an extra set of braces 1903 // because arrays are wrapped in structs. 1904 Out << "{ { 0 } }"; 1905 } else { 1906 // Just print it out normally. 1907 writeOperand(I->getInitializer(), true); 1908 } 1909 } 1910 Out << ";\n"; 1911 } 1912 } 1913 1914 if (!M.empty()) 1915 Out << "\n\n/* Function Bodies */\n"; 1916 1917 // Emit some helper functions for dealing with FCMP instruction's 1918 // predicates 1919 Out << "static inline int llvm_fcmp_ord(double X, double Y) { "; 1920 Out << "return X == X && Y == Y; }\n"; 1921 Out << "static inline int llvm_fcmp_uno(double X, double Y) { "; 1922 Out << "return X != X || Y != Y; }\n"; 1923 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { "; 1924 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n"; 1925 Out << "static inline int llvm_fcmp_une(double X, double Y) { "; 1926 Out << "return X != Y; }\n"; 1927 Out << "static inline int llvm_fcmp_ult(double X, double Y) { "; 1928 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n"; 1929 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { "; 1930 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n"; 1931 Out << "static inline int llvm_fcmp_ule(double X, double Y) { "; 1932 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n"; 1933 Out << "static inline int llvm_fcmp_uge(double X, double Y) { "; 1934 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n"; 1935 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { "; 1936 Out << "return X == Y ; }\n"; 1937 Out << "static inline int llvm_fcmp_one(double X, double Y) { "; 1938 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n"; 1939 Out << "static inline int llvm_fcmp_olt(double X, double Y) { "; 1940 Out << "return X < Y ; }\n"; 1941 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { "; 1942 Out << "return X > Y ; }\n"; 1943 Out << "static inline int llvm_fcmp_ole(double X, double Y) { "; 1944 Out << "return X <= Y ; }\n"; 1945 Out << "static inline int llvm_fcmp_oge(double X, double Y) { "; 1946 Out << "return X >= Y ; }\n"; 1947 1948 // Emit definitions of the intrinsics. 1949 for (SmallVector<const Function*, 8>::const_iterator 1950 I = intrinsicsToDefine.begin(), 1951 E = intrinsicsToDefine.end(); I != E; ++I) { 1952 printIntrinsicDefinition(**I, Out); 1953 } 1954 1955 return false; 1956} 1957 1958 1959/// Output all floating point constants that cannot be printed accurately... 1960void CWriter::printFloatingPointConstants(Function &F) { 1961 // Scan the module for floating point constants. If any FP constant is used 1962 // in the function, we want to redirect it here so that we do not depend on 1963 // the precision of the printed form, unless the printed form preserves 1964 // precision. 1965 // 1966 for (constant_iterator I = constant_begin(&F), E = constant_end(&F); 1967 I != E; ++I) 1968 printFloatingPointConstants(*I); 1969 1970 Out << '\n'; 1971} 1972 1973void CWriter::printFloatingPointConstants(const Constant *C) { 1974 // If this is a constant expression, recursively check for constant fp values. 1975 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1976 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) 1977 printFloatingPointConstants(CE->getOperand(i)); 1978 return; 1979 } 1980 1981 // Otherwise, check for a FP constant that we need to print. 1982 const ConstantFP *FPC = dyn_cast<ConstantFP>(C); 1983 if (FPC == 0 || 1984 // Do not put in FPConstantMap if safe. 1985 isFPCSafeToPrint(FPC) || 1986 // Already printed this constant? 1987 FPConstantMap.count(FPC)) 1988 return; 1989 1990 FPConstantMap[FPC] = FPCounter; // Number the FP constants 1991 1992 if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) { 1993 double Val = FPC->getValueAPF().convertToDouble(); 1994 uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); 1995 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ 1996 << " = 0x" << utohexstr(i) 1997 << "ULL; /* " << Val << " */\n"; 1998 } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) { 1999 float Val = FPC->getValueAPF().convertToFloat(); 2000 uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt(). 2001 getZExtValue(); 2002 Out << "static const ConstantFloatTy FPConstant" << FPCounter++ 2003 << " = 0x" << utohexstr(i) 2004 << "U; /* " << Val << " */\n"; 2005 } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) { 2006 // api needed to prevent premature destruction 2007 APInt api = FPC->getValueAPF().bitcastToAPInt(); 2008 const uint64_t *p = api.getRawData(); 2009 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++ 2010 << " = { 0x" << utohexstr(p[0]) 2011 << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}" 2012 << "}; /* Long double constant */\n"; 2013 } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) || 2014 FPC->getType() == Type::getFP128Ty(FPC->getContext())) { 2015 APInt api = FPC->getValueAPF().bitcastToAPInt(); 2016 const uint64_t *p = api.getRawData(); 2017 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++ 2018 << " = { 0x" 2019 << utohexstr(p[0]) << ", 0x" << utohexstr(p[1]) 2020 << "}; /* Long double constant */\n"; 2021 2022 } else { 2023 llvm_unreachable("Unknown float type!"); 2024 } 2025} 2026 2027 2028/// printSymbolTable - Run through symbol table looking for type names. If a 2029/// type name is found, emit its declaration... 2030/// 2031void CWriter::printModuleTypes() { 2032 Out << "/* Helper union for bitcasts */\n"; 2033 Out << "typedef union {\n"; 2034 Out << " unsigned int Int32;\n"; 2035 Out << " unsigned long long Int64;\n"; 2036 Out << " float Float;\n"; 2037 Out << " double Double;\n"; 2038 Out << "} llvmBitCastUnion;\n"; 2039 2040 // Get all of the struct types used in the module. 2041 std::vector<StructType*> StructTypes; 2042 TheModule->findUsedStructTypes(StructTypes); 2043 2044 if (StructTypes.empty()) return; 2045 2046 Out << "/* Structure forward decls */\n"; 2047 2048 unsigned NextTypeID = 0; 2049 2050 // If any of them are missing names, add a unique ID to UnnamedStructIDs. 2051 // Print out forward declarations for structure types. 2052 for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) { 2053 StructType *ST = StructTypes[i]; 2054 2055 if (ST->isLiteral() || ST->getName().empty()) 2056 UnnamedStructIDs[ST] = NextTypeID++; 2057 2058 std::string Name = getStructName(ST); 2059 2060 Out << "typedef struct " << Name << ' ' << Name << ";\n"; 2061 } 2062 2063 Out << '\n'; 2064 2065 // Keep track of which structures have been printed so far. 2066 SmallPtrSet<Type *, 16> StructPrinted; 2067 2068 // Loop over all structures then push them into the stack so they are 2069 // printed in the correct order. 2070 // 2071 Out << "/* Structure contents */\n"; 2072 for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) 2073 if (StructTypes[i]->isStructTy()) 2074 // Only print out used types! 2075 printContainedStructs(StructTypes[i], StructPrinted); 2076} 2077 2078// Push the struct onto the stack and recursively push all structs 2079// this one depends on. 2080// 2081// TODO: Make this work properly with vector types 2082// 2083void CWriter::printContainedStructs(Type *Ty, 2084 SmallPtrSet<Type *, 16> &StructPrinted) { 2085 // Don't walk through pointers. 2086 if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy()) 2087 return; 2088 2089 // Print all contained types first. 2090 for (Type::subtype_iterator I = Ty->subtype_begin(), 2091 E = Ty->subtype_end(); I != E; ++I) 2092 printContainedStructs(*I, StructPrinted); 2093 2094 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2095 // Check to see if we have already printed this struct. 2096 if (!StructPrinted.insert(Ty)) return; 2097 2098 // Print structure type out. 2099 printType(Out, ST, false, getStructName(ST), true); 2100 Out << ";\n\n"; 2101 } 2102} 2103 2104void CWriter::printFunctionSignature(const Function *F, bool Prototype) { 2105 /// isStructReturn - Should this function actually return a struct by-value? 2106 bool isStructReturn = F->hasStructRetAttr(); 2107 2108 if (F->hasLocalLinkage()) Out << "static "; 2109 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; 2110 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; 2111 switch (F->getCallingConv()) { 2112 case CallingConv::X86_StdCall: 2113 Out << "__attribute__((stdcall)) "; 2114 break; 2115 case CallingConv::X86_FastCall: 2116 Out << "__attribute__((fastcall)) "; 2117 break; 2118 case CallingConv::X86_ThisCall: 2119 Out << "__attribute__((thiscall)) "; 2120 break; 2121 default: 2122 break; 2123 } 2124 2125 // Loop over the arguments, printing them... 2126 FunctionType *FT = cast<FunctionType>(F->getFunctionType()); 2127 const AttrListPtr &PAL = F->getAttributes(); 2128 2129 std::string tstr; 2130 raw_string_ostream FunctionInnards(tstr); 2131 2132 // Print out the name... 2133 FunctionInnards << GetValueName(F) << '('; 2134 2135 bool PrintedArg = false; 2136 if (!F->isDeclaration()) { 2137 if (!F->arg_empty()) { 2138 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 2139 unsigned Idx = 1; 2140 2141 // If this is a struct-return function, don't print the hidden 2142 // struct-return argument. 2143 if (isStructReturn) { 2144 assert(I != E && "Invalid struct return function!"); 2145 ++I; 2146 ++Idx; 2147 } 2148 2149 std::string ArgName; 2150 for (; I != E; ++I) { 2151 if (PrintedArg) FunctionInnards << ", "; 2152 if (I->hasName() || !Prototype) 2153 ArgName = GetValueName(I); 2154 else 2155 ArgName = ""; 2156 Type *ArgTy = I->getType(); 2157 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 2158 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 2159 ByValParams.insert(I); 2160 } 2161 printType(FunctionInnards, ArgTy, 2162 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), 2163 ArgName); 2164 PrintedArg = true; 2165 ++Idx; 2166 } 2167 } 2168 } else { 2169 // Loop over the arguments, printing them. 2170 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); 2171 unsigned Idx = 1; 2172 2173 // If this is a struct-return function, don't print the hidden 2174 // struct-return argument. 2175 if (isStructReturn) { 2176 assert(I != E && "Invalid struct return function!"); 2177 ++I; 2178 ++Idx; 2179 } 2180 2181 for (; I != E; ++I) { 2182 if (PrintedArg) FunctionInnards << ", "; 2183 Type *ArgTy = *I; 2184 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 2185 assert(ArgTy->isPointerTy()); 2186 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 2187 } 2188 printType(FunctionInnards, ArgTy, 2189 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt)); 2190 PrintedArg = true; 2191 ++Idx; 2192 } 2193 } 2194 2195 if (!PrintedArg && FT->isVarArg()) { 2196 FunctionInnards << "int vararg_dummy_arg"; 2197 PrintedArg = true; 2198 } 2199 2200 // Finish printing arguments... if this is a vararg function, print the ..., 2201 // unless there are no known types, in which case, we just emit (). 2202 // 2203 if (FT->isVarArg() && PrintedArg) { 2204 FunctionInnards << ",..."; // Output varargs portion of signature! 2205 } else if (!FT->isVarArg() && !PrintedArg) { 2206 FunctionInnards << "void"; // ret() -> ret(void) in C. 2207 } 2208 FunctionInnards << ')'; 2209 2210 // Get the return tpe for the function. 2211 Type *RetTy; 2212 if (!isStructReturn) 2213 RetTy = F->getReturnType(); 2214 else { 2215 // If this is a struct-return function, print the struct-return type. 2216 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType(); 2217 } 2218 2219 // Print out the return type and the signature built above. 2220 printType(Out, RetTy, 2221 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), 2222 FunctionInnards.str()); 2223} 2224 2225static inline bool isFPIntBitCast(const Instruction &I) { 2226 if (!isa<BitCastInst>(I)) 2227 return false; 2228 Type *SrcTy = I.getOperand(0)->getType(); 2229 Type *DstTy = I.getType(); 2230 return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) || 2231 (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy()); 2232} 2233 2234void CWriter::printFunction(Function &F) { 2235 /// isStructReturn - Should this function actually return a struct by-value? 2236 bool isStructReturn = F.hasStructRetAttr(); 2237 2238 printFunctionSignature(&F, false); 2239 Out << " {\n"; 2240 2241 // If this is a struct return function, handle the result with magic. 2242 if (isStructReturn) { 2243 Type *StructTy = 2244 cast<PointerType>(F.arg_begin()->getType())->getElementType(); 2245 Out << " "; 2246 printType(Out, StructTy, false, "StructReturn"); 2247 Out << "; /* Struct return temporary */\n"; 2248 2249 Out << " "; 2250 printType(Out, F.arg_begin()->getType(), false, 2251 GetValueName(F.arg_begin())); 2252 Out << " = &StructReturn;\n"; 2253 } 2254 2255 bool PrintedVar = false; 2256 2257 // print local variable information for the function 2258 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { 2259 if (const AllocaInst *AI = isDirectAlloca(&*I)) { 2260 Out << " "; 2261 printType(Out, AI->getAllocatedType(), false, GetValueName(AI)); 2262 Out << "; /* Address-exposed local */\n"; 2263 PrintedVar = true; 2264 } else if (I->getType() != Type::getVoidTy(F.getContext()) && 2265 !isInlinableInst(*I)) { 2266 Out << " "; 2267 printType(Out, I->getType(), false, GetValueName(&*I)); 2268 Out << ";\n"; 2269 2270 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... 2271 Out << " "; 2272 printType(Out, I->getType(), false, 2273 GetValueName(&*I)+"__PHI_TEMPORARY"); 2274 Out << ";\n"; 2275 } 2276 PrintedVar = true; 2277 } 2278 // We need a temporary for the BitCast to use so it can pluck a value out 2279 // of a union to do the BitCast. This is separate from the need for a 2280 // variable to hold the result of the BitCast. 2281 if (isFPIntBitCast(*I)) { 2282 Out << " llvmBitCastUnion " << GetValueName(&*I) 2283 << "__BITCAST_TEMPORARY;\n"; 2284 PrintedVar = true; 2285 } 2286 } 2287 2288 if (PrintedVar) 2289 Out << '\n'; 2290 2291 if (F.hasExternalLinkage() && F.getName() == "main") 2292 Out << " CODE_FOR_MAIN();\n"; 2293 2294 // print the basic blocks 2295 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2296 if (Loop *L = LI->getLoopFor(BB)) { 2297 if (L->getHeader() == BB && L->getParentLoop() == 0) 2298 printLoop(L); 2299 } else { 2300 printBasicBlock(BB); 2301 } 2302 } 2303 2304 Out << "}\n\n"; 2305} 2306 2307void CWriter::printLoop(Loop *L) { 2308 Out << " do { /* Syntactic loop '" << L->getHeader()->getName() 2309 << "' to make GCC happy */\n"; 2310 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { 2311 BasicBlock *BB = L->getBlocks()[i]; 2312 Loop *BBLoop = LI->getLoopFor(BB); 2313 if (BBLoop == L) 2314 printBasicBlock(BB); 2315 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) 2316 printLoop(BBLoop); 2317 } 2318 Out << " } while (1); /* end of syntactic loop '" 2319 << L->getHeader()->getName() << "' */\n"; 2320} 2321 2322void CWriter::printBasicBlock(BasicBlock *BB) { 2323 2324 // Don't print the label for the basic block if there are no uses, or if 2325 // the only terminator use is the predecessor basic block's terminator. 2326 // We have to scan the use list because PHI nodes use basic blocks too but 2327 // do not require a label to be generated. 2328 // 2329 bool NeedsLabel = false; 2330 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 2331 if (isGotoCodeNecessary(*PI, BB)) { 2332 NeedsLabel = true; 2333 break; 2334 } 2335 2336 if (NeedsLabel) Out << GetValueName(BB) << ":\n"; 2337 2338 // Output all of the instructions in the basic block... 2339 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; 2340 ++II) { 2341 if (!isInlinableInst(*II) && !isDirectAlloca(II)) { 2342 if (II->getType() != Type::getVoidTy(BB->getContext()) && 2343 !isInlineAsm(*II)) 2344 outputLValue(II); 2345 else 2346 Out << " "; 2347 writeInstComputationInline(*II); 2348 Out << ";\n"; 2349 } 2350 } 2351 2352 // Don't emit prefix or suffix for the terminator. 2353 visit(*BB->getTerminator()); 2354} 2355 2356 2357// Specific Instruction type classes... note that all of the casts are 2358// necessary because we use the instruction classes as opaque types... 2359// 2360void CWriter::visitReturnInst(ReturnInst &I) { 2361 // If this is a struct return function, return the temporary struct. 2362 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr(); 2363 2364 if (isStructReturn) { 2365 Out << " return StructReturn;\n"; 2366 return; 2367 } 2368 2369 // Don't output a void return if this is the last basic block in the function 2370 if (I.getNumOperands() == 0 && 2371 &*--I.getParent()->getParent()->end() == I.getParent() && 2372 !I.getParent()->size() == 1) { 2373 return; 2374 } 2375 2376 Out << " return"; 2377 if (I.getNumOperands()) { 2378 Out << ' '; 2379 writeOperand(I.getOperand(0)); 2380 } 2381 Out << ";\n"; 2382} 2383 2384void CWriter::visitSwitchInst(SwitchInst &SI) { 2385 2386 Value* Cond = SI.getCondition(); 2387 2388 Out << " switch ("; 2389 writeOperand(Cond); 2390 Out << ") {\n default:\n"; 2391 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); 2392 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); 2393 Out << ";\n"; 2394 2395 unsigned NumCases = SI.getNumCases(); 2396 // Skip the first item since that's the default case. 2397 for (unsigned i = 1; i < NumCases; ++i) { 2398 ConstantInt* CaseVal = SI.getCaseValue(i); 2399 BasicBlock* Succ = SI.getSuccessor(i); 2400 Out << " case "; 2401 writeOperand(CaseVal); 2402 Out << ":\n"; 2403 printPHICopiesForSuccessor (SI.getParent(), Succ, 2); 2404 printBranchToBlock(SI.getParent(), Succ, 2); 2405 if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent()))) 2406 Out << " break;\n"; 2407 } 2408 2409 Out << " }\n"; 2410} 2411 2412void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) { 2413 Out << " goto *(void*)("; 2414 writeOperand(IBI.getOperand(0)); 2415 Out << ");\n"; 2416} 2417 2418void CWriter::visitUnreachableInst(UnreachableInst &I) { 2419 Out << " /*UNREACHABLE*/;\n"; 2420} 2421 2422bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { 2423 /// FIXME: This should be reenabled, but loop reordering safe!! 2424 return true; 2425 2426 if (llvm::next(Function::iterator(From)) != Function::iterator(To)) 2427 return true; // Not the direct successor, we need a goto. 2428 2429 //isa<SwitchInst>(From->getTerminator()) 2430 2431 if (LI->getLoopFor(From) != LI->getLoopFor(To)) 2432 return true; 2433 return false; 2434} 2435 2436void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, 2437 BasicBlock *Successor, 2438 unsigned Indent) { 2439 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { 2440 PHINode *PN = cast<PHINode>(I); 2441 // Now we have to do the printing. 2442 Value *IV = PN->getIncomingValueForBlock(CurBlock); 2443 if (!isa<UndefValue>(IV)) { 2444 Out << std::string(Indent, ' '); 2445 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = "; 2446 writeOperand(IV); 2447 Out << "; /* for PHI node */\n"; 2448 } 2449 } 2450} 2451 2452void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, 2453 unsigned Indent) { 2454 if (isGotoCodeNecessary(CurBB, Succ)) { 2455 Out << std::string(Indent, ' ') << " goto "; 2456 writeOperand(Succ); 2457 Out << ";\n"; 2458 } 2459} 2460 2461// Branch instruction printing - Avoid printing out a branch to a basic block 2462// that immediately succeeds the current one. 2463// 2464void CWriter::visitBranchInst(BranchInst &I) { 2465 2466 if (I.isConditional()) { 2467 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { 2468 Out << " if ("; 2469 writeOperand(I.getCondition()); 2470 Out << ") {\n"; 2471 2472 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); 2473 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); 2474 2475 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { 2476 Out << " } else {\n"; 2477 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); 2478 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); 2479 } 2480 } else { 2481 // First goto not necessary, assume second one is... 2482 Out << " if (!"; 2483 writeOperand(I.getCondition()); 2484 Out << ") {\n"; 2485 2486 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); 2487 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); 2488 } 2489 2490 Out << " }\n"; 2491 } else { 2492 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); 2493 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); 2494 } 2495 Out << "\n"; 2496} 2497 2498// PHI nodes get copied into temporary values at the end of predecessor basic 2499// blocks. We now need to copy these temporary values into the REAL value for 2500// the PHI. 2501void CWriter::visitPHINode(PHINode &I) { 2502 writeOperand(&I); 2503 Out << "__PHI_TEMPORARY"; 2504} 2505 2506 2507void CWriter::visitBinaryOperator(Instruction &I) { 2508 // binary instructions, shift instructions, setCond instructions. 2509 assert(!I.getType()->isPointerTy()); 2510 2511 // We must cast the results of binary operations which might be promoted. 2512 bool needsCast = false; 2513 if ((I.getType() == Type::getInt8Ty(I.getContext())) || 2514 (I.getType() == Type::getInt16Ty(I.getContext())) 2515 || (I.getType() == Type::getFloatTy(I.getContext()))) { 2516 needsCast = true; 2517 Out << "(("; 2518 printType(Out, I.getType(), false); 2519 Out << ")("; 2520 } 2521 2522 // If this is a negation operation, print it out as such. For FP, we don't 2523 // want to print "-0.0 - X". 2524 if (BinaryOperator::isNeg(&I)) { 2525 Out << "-("; 2526 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); 2527 Out << ")"; 2528 } else if (BinaryOperator::isFNeg(&I)) { 2529 Out << "-("; 2530 writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I))); 2531 Out << ")"; 2532 } else if (I.getOpcode() == Instruction::FRem) { 2533 // Output a call to fmod/fmodf instead of emitting a%b 2534 if (I.getType() == Type::getFloatTy(I.getContext())) 2535 Out << "fmodf("; 2536 else if (I.getType() == Type::getDoubleTy(I.getContext())) 2537 Out << "fmod("; 2538 else // all 3 flavors of long double 2539 Out << "fmodl("; 2540 writeOperand(I.getOperand(0)); 2541 Out << ", "; 2542 writeOperand(I.getOperand(1)); 2543 Out << ")"; 2544 } else { 2545 2546 // Write out the cast of the instruction's value back to the proper type 2547 // if necessary. 2548 bool NeedsClosingParens = writeInstructionCast(I); 2549 2550 // Certain instructions require the operand to be forced to a specific type 2551 // so we use writeOperandWithCast here instead of writeOperand. Similarly 2552 // below for operand 1 2553 writeOperandWithCast(I.getOperand(0), I.getOpcode()); 2554 2555 switch (I.getOpcode()) { 2556 case Instruction::Add: 2557 case Instruction::FAdd: Out << " + "; break; 2558 case Instruction::Sub: 2559 case Instruction::FSub: Out << " - "; break; 2560 case Instruction::Mul: 2561 case Instruction::FMul: Out << " * "; break; 2562 case Instruction::URem: 2563 case Instruction::SRem: 2564 case Instruction::FRem: Out << " % "; break; 2565 case Instruction::UDiv: 2566 case Instruction::SDiv: 2567 case Instruction::FDiv: Out << " / "; break; 2568 case Instruction::And: Out << " & "; break; 2569 case Instruction::Or: Out << " | "; break; 2570 case Instruction::Xor: Out << " ^ "; break; 2571 case Instruction::Shl : Out << " << "; break; 2572 case Instruction::LShr: 2573 case Instruction::AShr: Out << " >> "; break; 2574 default: 2575#ifndef NDEBUG 2576 errs() << "Invalid operator type!" << I; 2577#endif 2578 llvm_unreachable(0); 2579 } 2580 2581 writeOperandWithCast(I.getOperand(1), I.getOpcode()); 2582 if (NeedsClosingParens) 2583 Out << "))"; 2584 } 2585 2586 if (needsCast) { 2587 Out << "))"; 2588 } 2589} 2590 2591void CWriter::visitICmpInst(ICmpInst &I) { 2592 // We must cast the results of icmp which might be promoted. 2593 bool needsCast = false; 2594 2595 // Write out the cast of the instruction's value back to the proper type 2596 // if necessary. 2597 bool NeedsClosingParens = writeInstructionCast(I); 2598 2599 // Certain icmp predicate require the operand to be forced to a specific type 2600 // so we use writeOperandWithCast here instead of writeOperand. Similarly 2601 // below for operand 1 2602 writeOperandWithCast(I.getOperand(0), I); 2603 2604 switch (I.getPredicate()) { 2605 case ICmpInst::ICMP_EQ: Out << " == "; break; 2606 case ICmpInst::ICMP_NE: Out << " != "; break; 2607 case ICmpInst::ICMP_ULE: 2608 case ICmpInst::ICMP_SLE: Out << " <= "; break; 2609 case ICmpInst::ICMP_UGE: 2610 case ICmpInst::ICMP_SGE: Out << " >= "; break; 2611 case ICmpInst::ICMP_ULT: 2612 case ICmpInst::ICMP_SLT: Out << " < "; break; 2613 case ICmpInst::ICMP_UGT: 2614 case ICmpInst::ICMP_SGT: Out << " > "; break; 2615 default: 2616#ifndef NDEBUG 2617 errs() << "Invalid icmp predicate!" << I; 2618#endif 2619 llvm_unreachable(0); 2620 } 2621 2622 writeOperandWithCast(I.getOperand(1), I); 2623 if (NeedsClosingParens) 2624 Out << "))"; 2625 2626 if (needsCast) { 2627 Out << "))"; 2628 } 2629} 2630 2631void CWriter::visitFCmpInst(FCmpInst &I) { 2632 if (I.getPredicate() == FCmpInst::FCMP_FALSE) { 2633 Out << "0"; 2634 return; 2635 } 2636 if (I.getPredicate() == FCmpInst::FCMP_TRUE) { 2637 Out << "1"; 2638 return; 2639 } 2640 2641 const char* op = 0; 2642 switch (I.getPredicate()) { 2643 default: llvm_unreachable("Illegal FCmp predicate"); 2644 case FCmpInst::FCMP_ORD: op = "ord"; break; 2645 case FCmpInst::FCMP_UNO: op = "uno"; break; 2646 case FCmpInst::FCMP_UEQ: op = "ueq"; break; 2647 case FCmpInst::FCMP_UNE: op = "une"; break; 2648 case FCmpInst::FCMP_ULT: op = "ult"; break; 2649 case FCmpInst::FCMP_ULE: op = "ule"; break; 2650 case FCmpInst::FCMP_UGT: op = "ugt"; break; 2651 case FCmpInst::FCMP_UGE: op = "uge"; break; 2652 case FCmpInst::FCMP_OEQ: op = "oeq"; break; 2653 case FCmpInst::FCMP_ONE: op = "one"; break; 2654 case FCmpInst::FCMP_OLT: op = "olt"; break; 2655 case FCmpInst::FCMP_OLE: op = "ole"; break; 2656 case FCmpInst::FCMP_OGT: op = "ogt"; break; 2657 case FCmpInst::FCMP_OGE: op = "oge"; break; 2658 } 2659 2660 Out << "llvm_fcmp_" << op << "("; 2661 // Write the first operand 2662 writeOperand(I.getOperand(0)); 2663 Out << ", "; 2664 // Write the second operand 2665 writeOperand(I.getOperand(1)); 2666 Out << ")"; 2667} 2668 2669static const char * getFloatBitCastField(Type *Ty) { 2670 switch (Ty->getTypeID()) { 2671 default: llvm_unreachable("Invalid Type"); 2672 case Type::FloatTyID: return "Float"; 2673 case Type::DoubleTyID: return "Double"; 2674 case Type::IntegerTyID: { 2675 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); 2676 if (NumBits <= 32) 2677 return "Int32"; 2678 else 2679 return "Int64"; 2680 } 2681 } 2682} 2683 2684void CWriter::visitCastInst(CastInst &I) { 2685 Type *DstTy = I.getType(); 2686 Type *SrcTy = I.getOperand(0)->getType(); 2687 if (isFPIntBitCast(I)) { 2688 Out << '('; 2689 // These int<->float and long<->double casts need to be handled specially 2690 Out << GetValueName(&I) << "__BITCAST_TEMPORARY." 2691 << getFloatBitCastField(I.getOperand(0)->getType()) << " = "; 2692 writeOperand(I.getOperand(0)); 2693 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY." 2694 << getFloatBitCastField(I.getType()); 2695 Out << ')'; 2696 return; 2697 } 2698 2699 Out << '('; 2700 printCast(I.getOpcode(), SrcTy, DstTy); 2701 2702 // Make a sext from i1 work by subtracting the i1 from 0 (an int). 2703 if (SrcTy == Type::getInt1Ty(I.getContext()) && 2704 I.getOpcode() == Instruction::SExt) 2705 Out << "0-"; 2706 2707 writeOperand(I.getOperand(0)); 2708 2709 if (DstTy == Type::getInt1Ty(I.getContext()) && 2710 (I.getOpcode() == Instruction::Trunc || 2711 I.getOpcode() == Instruction::FPToUI || 2712 I.getOpcode() == Instruction::FPToSI || 2713 I.getOpcode() == Instruction::PtrToInt)) { 2714 // Make sure we really get a trunc to bool by anding the operand with 1 2715 Out << "&1u"; 2716 } 2717 Out << ')'; 2718} 2719 2720void CWriter::visitSelectInst(SelectInst &I) { 2721 Out << "(("; 2722 writeOperand(I.getCondition()); 2723 Out << ") ? ("; 2724 writeOperand(I.getTrueValue()); 2725 Out << ") : ("; 2726 writeOperand(I.getFalseValue()); 2727 Out << "))"; 2728} 2729 2730// Returns the macro name or value of the max or min of an integer type 2731// (as defined in limits.h). 2732static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax, 2733 raw_ostream &Out) { 2734 const char* type; 2735 const char* sprefix = ""; 2736 2737 unsigned NumBits = Ty.getBitWidth(); 2738 if (NumBits <= 8) { 2739 type = "CHAR"; 2740 sprefix = "S"; 2741 } else if (NumBits <= 16) { 2742 type = "SHRT"; 2743 } else if (NumBits <= 32) { 2744 type = "INT"; 2745 } else if (NumBits <= 64) { 2746 type = "LLONG"; 2747 } else { 2748 llvm_unreachable("Bit widths > 64 not implemented yet"); 2749 } 2750 2751 if (isSigned) 2752 Out << sprefix << type << (isMax ? "_MAX" : "_MIN"); 2753 else 2754 Out << "U" << type << (isMax ? "_MAX" : "0"); 2755} 2756 2757#ifndef NDEBUG 2758static bool isSupportedIntegerSize(IntegerType &T) { 2759 return T.getBitWidth() == 8 || T.getBitWidth() == 16 || 2760 T.getBitWidth() == 32 || T.getBitWidth() == 64; 2761} 2762#endif 2763 2764void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) { 2765 FunctionType *funT = F.getFunctionType(); 2766 Type *retT = F.getReturnType(); 2767 IntegerType *elemT = cast<IntegerType>(funT->getParamType(1)); 2768 2769 assert(isSupportedIntegerSize(*elemT) && 2770 "CBackend does not support arbitrary size integers."); 2771 assert(cast<StructType>(retT)->getElementType(0) == elemT && 2772 elemT == funT->getParamType(0) && funT->getNumParams() == 2); 2773 2774 switch (F.getIntrinsicID()) { 2775 default: 2776 llvm_unreachable("Unsupported Intrinsic."); 2777 case Intrinsic::uadd_with_overflow: 2778 // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) { 2779 // Rty r; 2780 // r.field0 = a + b; 2781 // r.field1 = (r.field0 < a); 2782 // return r; 2783 // } 2784 Out << "static inline "; 2785 printType(Out, retT); 2786 Out << GetValueName(&F); 2787 Out << "("; 2788 printSimpleType(Out, elemT, false); 2789 Out << "a,"; 2790 printSimpleType(Out, elemT, false); 2791 Out << "b) {\n "; 2792 printType(Out, retT); 2793 Out << "r;\n"; 2794 Out << " r.field0 = a + b;\n"; 2795 Out << " r.field1 = (r.field0 < a);\n"; 2796 Out << " return r;\n}\n"; 2797 break; 2798 2799 case Intrinsic::sadd_with_overflow: 2800 // static inline Rty sadd_ixx(ixx a, ixx b) { 2801 // Rty r; 2802 // r.field1 = (b > 0 && a > XX_MAX - b) || 2803 // (b < 0 && a < XX_MIN - b); 2804 // r.field0 = r.field1 ? 0 : a + b; 2805 // return r; 2806 // } 2807 Out << "static "; 2808 printType(Out, retT); 2809 Out << GetValueName(&F); 2810 Out << "("; 2811 printSimpleType(Out, elemT, true); 2812 Out << "a,"; 2813 printSimpleType(Out, elemT, true); 2814 Out << "b) {\n "; 2815 printType(Out, retT); 2816 Out << "r;\n"; 2817 Out << " r.field1 = (b > 0 && a > "; 2818 printLimitValue(*elemT, true, true, Out); 2819 Out << " - b) || (b < 0 && a < "; 2820 printLimitValue(*elemT, true, false, Out); 2821 Out << " - b);\n"; 2822 Out << " r.field0 = r.field1 ? 0 : a + b;\n"; 2823 Out << " return r;\n}\n"; 2824 break; 2825 } 2826} 2827 2828void CWriter::lowerIntrinsics(Function &F) { 2829 // This is used to keep track of intrinsics that get generated to a lowered 2830 // function. We must generate the prototypes before the function body which 2831 // will only be expanded on first use (by the loop below). 2832 std::vector<Function*> prototypesToGen; 2833 2834 // Examine all the instructions in this function to find the intrinsics that 2835 // need to be lowered. 2836 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) 2837 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) 2838 if (CallInst *CI = dyn_cast<CallInst>(I++)) 2839 if (Function *F = CI->getCalledFunction()) 2840 switch (F->getIntrinsicID()) { 2841 case Intrinsic::not_intrinsic: 2842 case Intrinsic::vastart: 2843 case Intrinsic::vacopy: 2844 case Intrinsic::vaend: 2845 case Intrinsic::returnaddress: 2846 case Intrinsic::frameaddress: 2847 case Intrinsic::setjmp: 2848 case Intrinsic::longjmp: 2849 case Intrinsic::prefetch: 2850 case Intrinsic::powi: 2851 case Intrinsic::x86_sse_cmp_ss: 2852 case Intrinsic::x86_sse_cmp_ps: 2853 case Intrinsic::x86_sse2_cmp_sd: 2854 case Intrinsic::x86_sse2_cmp_pd: 2855 case Intrinsic::ppc_altivec_lvsl: 2856 case Intrinsic::uadd_with_overflow: 2857 case Intrinsic::sadd_with_overflow: 2858 // We directly implement these intrinsics 2859 break; 2860 default: 2861 // If this is an intrinsic that directly corresponds to a GCC 2862 // builtin, we handle it. 2863 const char *BuiltinName = ""; 2864#define GET_GCC_BUILTIN_NAME 2865#include "llvm/Intrinsics.gen" 2866#undef GET_GCC_BUILTIN_NAME 2867 // If we handle it, don't lower it. 2868 if (BuiltinName[0]) break; 2869 2870 // All other intrinsic calls we must lower. 2871 Instruction *Before = 0; 2872 if (CI != &BB->front()) 2873 Before = prior(BasicBlock::iterator(CI)); 2874 2875 IL->LowerIntrinsicCall(CI); 2876 if (Before) { // Move iterator to instruction after call 2877 I = Before; ++I; 2878 } else { 2879 I = BB->begin(); 2880 } 2881 // If the intrinsic got lowered to another call, and that call has 2882 // a definition then we need to make sure its prototype is emitted 2883 // before any calls to it. 2884 if (CallInst *Call = dyn_cast<CallInst>(I)) 2885 if (Function *NewF = Call->getCalledFunction()) 2886 if (!NewF->isDeclaration()) 2887 prototypesToGen.push_back(NewF); 2888 2889 break; 2890 } 2891 2892 // We may have collected some prototypes to emit in the loop above. 2893 // Emit them now, before the function that uses them is emitted. But, 2894 // be careful not to emit them twice. 2895 std::vector<Function*>::iterator I = prototypesToGen.begin(); 2896 std::vector<Function*>::iterator E = prototypesToGen.end(); 2897 for ( ; I != E; ++I) { 2898 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) { 2899 Out << '\n'; 2900 printFunctionSignature(*I, true); 2901 Out << ";\n"; 2902 } 2903 } 2904} 2905 2906void CWriter::visitCallInst(CallInst &I) { 2907 if (isa<InlineAsm>(I.getCalledValue())) 2908 return visitInlineAsm(I); 2909 2910 bool WroteCallee = false; 2911 2912 // Handle intrinsic function calls first... 2913 if (Function *F = I.getCalledFunction()) 2914 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2915 if (visitBuiltinCall(I, ID, WroteCallee)) 2916 return; 2917 2918 Value *Callee = I.getCalledValue(); 2919 2920 PointerType *PTy = cast<PointerType>(Callee->getType()); 2921 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 2922 2923 // If this is a call to a struct-return function, assign to the first 2924 // parameter instead of passing it to the call. 2925 const AttrListPtr &PAL = I.getAttributes(); 2926 bool hasByVal = I.hasByValArgument(); 2927 bool isStructRet = I.hasStructRetAttr(); 2928 if (isStructRet) { 2929 writeOperandDeref(I.getArgOperand(0)); 2930 Out << " = "; 2931 } 2932 2933 if (I.isTailCall()) Out << " /*tail*/ "; 2934 2935 if (!WroteCallee) { 2936 // If this is an indirect call to a struct return function, we need to cast 2937 // the pointer. Ditto for indirect calls with byval arguments. 2938 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee); 2939 2940 // GCC is a real PITA. It does not permit codegening casts of functions to 2941 // function pointers if they are in a call (it generates a trap instruction 2942 // instead!). We work around this by inserting a cast to void* in between 2943 // the function and the function pointer cast. Unfortunately, we can't just 2944 // form the constant expression here, because the folder will immediately 2945 // nuke it. 2946 // 2947 // Note finally, that this is completely unsafe. ANSI C does not guarantee 2948 // that void* and function pointers have the same size. :( To deal with this 2949 // in the common case, we handle casts where the number of arguments passed 2950 // match exactly. 2951 // 2952 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) 2953 if (CE->isCast()) 2954 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { 2955 NeedsCast = true; 2956 Callee = RF; 2957 } 2958 2959 if (NeedsCast) { 2960 // Ok, just cast the pointer type. 2961 Out << "(("; 2962 if (isStructRet) 2963 printStructReturnPointerFunctionType(Out, PAL, 2964 cast<PointerType>(I.getCalledValue()->getType())); 2965 else if (hasByVal) 2966 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL); 2967 else 2968 printType(Out, I.getCalledValue()->getType()); 2969 Out << ")(void*)"; 2970 } 2971 writeOperand(Callee); 2972 if (NeedsCast) Out << ')'; 2973 } 2974 2975 Out << '('; 2976 2977 bool PrintedArg = false; 2978 if(FTy->isVarArg() && !FTy->getNumParams()) { 2979 Out << "0 /*dummy arg*/"; 2980 PrintedArg = true; 2981 } 2982 2983 unsigned NumDeclaredParams = FTy->getNumParams(); 2984 CallSite CS(&I); 2985 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); 2986 unsigned ArgNo = 0; 2987 if (isStructRet) { // Skip struct return argument. 2988 ++AI; 2989 ++ArgNo; 2990 } 2991 2992 2993 for (; AI != AE; ++AI, ++ArgNo) { 2994 if (PrintedArg) Out << ", "; 2995 if (ArgNo < NumDeclaredParams && 2996 (*AI)->getType() != FTy->getParamType(ArgNo)) { 2997 Out << '('; 2998 printType(Out, FTy->getParamType(ArgNo), 2999 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt)); 3000 Out << ')'; 3001 } 3002 // Check if the argument is expected to be passed by value. 3003 if (I.paramHasAttr(ArgNo+1, Attribute::ByVal)) 3004 writeOperandDeref(*AI); 3005 else 3006 writeOperand(*AI); 3007 PrintedArg = true; 3008 } 3009 Out << ')'; 3010} 3011 3012/// visitBuiltinCall - Handle the call to the specified builtin. Returns true 3013/// if the entire call is handled, return false if it wasn't handled, and 3014/// optionally set 'WroteCallee' if the callee has already been printed out. 3015bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, 3016 bool &WroteCallee) { 3017 switch (ID) { 3018 default: { 3019 // If this is an intrinsic that directly corresponds to a GCC 3020 // builtin, we emit it here. 3021 const char *BuiltinName = ""; 3022 Function *F = I.getCalledFunction(); 3023#define GET_GCC_BUILTIN_NAME 3024#include "llvm/Intrinsics.gen" 3025#undef GET_GCC_BUILTIN_NAME 3026 assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); 3027 3028 Out << BuiltinName; 3029 WroteCallee = true; 3030 return false; 3031 } 3032 case Intrinsic::vastart: 3033 Out << "0; "; 3034 3035 Out << "va_start(*(va_list*)"; 3036 writeOperand(I.getArgOperand(0)); 3037 Out << ", "; 3038 // Output the last argument to the enclosing function. 3039 if (I.getParent()->getParent()->arg_empty()) 3040 Out << "vararg_dummy_arg"; 3041 else 3042 writeOperand(--I.getParent()->getParent()->arg_end()); 3043 Out << ')'; 3044 return true; 3045 case Intrinsic::vaend: 3046 if (!isa<ConstantPointerNull>(I.getArgOperand(0))) { 3047 Out << "0; va_end(*(va_list*)"; 3048 writeOperand(I.getArgOperand(0)); 3049 Out << ')'; 3050 } else { 3051 Out << "va_end(*(va_list*)0)"; 3052 } 3053 return true; 3054 case Intrinsic::vacopy: 3055 Out << "0; "; 3056 Out << "va_copy(*(va_list*)"; 3057 writeOperand(I.getArgOperand(0)); 3058 Out << ", *(va_list*)"; 3059 writeOperand(I.getArgOperand(1)); 3060 Out << ')'; 3061 return true; 3062 case Intrinsic::returnaddress: 3063 Out << "__builtin_return_address("; 3064 writeOperand(I.getArgOperand(0)); 3065 Out << ')'; 3066 return true; 3067 case Intrinsic::frameaddress: 3068 Out << "__builtin_frame_address("; 3069 writeOperand(I.getArgOperand(0)); 3070 Out << ')'; 3071 return true; 3072 case Intrinsic::powi: 3073 Out << "__builtin_powi("; 3074 writeOperand(I.getArgOperand(0)); 3075 Out << ", "; 3076 writeOperand(I.getArgOperand(1)); 3077 Out << ')'; 3078 return true; 3079 case Intrinsic::setjmp: 3080 Out << "setjmp(*(jmp_buf*)"; 3081 writeOperand(I.getArgOperand(0)); 3082 Out << ')'; 3083 return true; 3084 case Intrinsic::longjmp: 3085 Out << "longjmp(*(jmp_buf*)"; 3086 writeOperand(I.getArgOperand(0)); 3087 Out << ", "; 3088 writeOperand(I.getArgOperand(1)); 3089 Out << ')'; 3090 return true; 3091 case Intrinsic::prefetch: 3092 Out << "LLVM_PREFETCH((const void *)"; 3093 writeOperand(I.getArgOperand(0)); 3094 Out << ", "; 3095 writeOperand(I.getArgOperand(1)); 3096 Out << ", "; 3097 writeOperand(I.getArgOperand(2)); 3098 Out << ")"; 3099 return true; 3100 case Intrinsic::stacksave: 3101 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save() 3102 // to work around GCC bugs (see PR1809). 3103 Out << "0; *((void**)&" << GetValueName(&I) 3104 << ") = __builtin_stack_save()"; 3105 return true; 3106 case Intrinsic::x86_sse_cmp_ss: 3107 case Intrinsic::x86_sse_cmp_ps: 3108 case Intrinsic::x86_sse2_cmp_sd: 3109 case Intrinsic::x86_sse2_cmp_pd: 3110 Out << '('; 3111 printType(Out, I.getType()); 3112 Out << ')'; 3113 // Multiple GCC builtins multiplex onto this intrinsic. 3114 switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) { 3115 default: llvm_unreachable("Invalid llvm.x86.sse.cmp!"); 3116 case 0: Out << "__builtin_ia32_cmpeq"; break; 3117 case 1: Out << "__builtin_ia32_cmplt"; break; 3118 case 2: Out << "__builtin_ia32_cmple"; break; 3119 case 3: Out << "__builtin_ia32_cmpunord"; break; 3120 case 4: Out << "__builtin_ia32_cmpneq"; break; 3121 case 5: Out << "__builtin_ia32_cmpnlt"; break; 3122 case 6: Out << "__builtin_ia32_cmpnle"; break; 3123 case 7: Out << "__builtin_ia32_cmpord"; break; 3124 } 3125 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd) 3126 Out << 'p'; 3127 else 3128 Out << 's'; 3129 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps) 3130 Out << 's'; 3131 else 3132 Out << 'd'; 3133 3134 Out << "("; 3135 writeOperand(I.getArgOperand(0)); 3136 Out << ", "; 3137 writeOperand(I.getArgOperand(1)); 3138 Out << ")"; 3139 return true; 3140 case Intrinsic::ppc_altivec_lvsl: 3141 Out << '('; 3142 printType(Out, I.getType()); 3143 Out << ')'; 3144 Out << "__builtin_altivec_lvsl(0, (void*)"; 3145 writeOperand(I.getArgOperand(0)); 3146 Out << ")"; 3147 return true; 3148 case Intrinsic::uadd_with_overflow: 3149 case Intrinsic::sadd_with_overflow: 3150 Out << GetValueName(I.getCalledFunction()) << "("; 3151 writeOperand(I.getArgOperand(0)); 3152 Out << ", "; 3153 writeOperand(I.getArgOperand(1)); 3154 Out << ")"; 3155 return true; 3156 } 3157} 3158 3159//This converts the llvm constraint string to something gcc is expecting. 3160//TODO: work out platform independent constraints and factor those out 3161// of the per target tables 3162// handle multiple constraint codes 3163std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) { 3164 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle"); 3165 3166 // Grab the translation table from MCAsmInfo if it exists. 3167 const MCAsmInfo *TargetAsm; 3168 std::string Triple = TheModule->getTargetTriple(); 3169 if (Triple.empty()) 3170 Triple = llvm::sys::getHostTriple(); 3171 3172 std::string E; 3173 if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) 3174 TargetAsm = Match->createMCAsmInfo(Triple); 3175 else 3176 return c.Codes[0]; 3177 3178 const char *const *table = TargetAsm->getAsmCBE(); 3179 3180 // Search the translation table if it exists. 3181 for (int i = 0; table && table[i]; i += 2) 3182 if (c.Codes[0] == table[i]) { 3183 delete TargetAsm; 3184 return table[i+1]; 3185 } 3186 3187 // Default is identity. 3188 delete TargetAsm; 3189 return c.Codes[0]; 3190} 3191 3192//TODO: import logic from AsmPrinter.cpp 3193static std::string gccifyAsm(std::string asmstr) { 3194 for (std::string::size_type i = 0; i != asmstr.size(); ++i) 3195 if (asmstr[i] == '\n') 3196 asmstr.replace(i, 1, "\\n"); 3197 else if (asmstr[i] == '\t') 3198 asmstr.replace(i, 1, "\\t"); 3199 else if (asmstr[i] == '$') { 3200 if (asmstr[i + 1] == '{') { 3201 std::string::size_type a = asmstr.find_first_of(':', i + 1); 3202 std::string::size_type b = asmstr.find_first_of('}', i + 1); 3203 std::string n = "%" + 3204 asmstr.substr(a + 1, b - a - 1) + 3205 asmstr.substr(i + 2, a - i - 2); 3206 asmstr.replace(i, b - i + 1, n); 3207 i += n.size() - 1; 3208 } else 3209 asmstr.replace(i, 1, "%"); 3210 } 3211 else if (asmstr[i] == '%')//grr 3212 { asmstr.replace(i, 1, "%%"); ++i;} 3213 3214 return asmstr; 3215} 3216 3217//TODO: assumptions about what consume arguments from the call are likely wrong 3218// handle communitivity 3219void CWriter::visitInlineAsm(CallInst &CI) { 3220 InlineAsm* as = cast<InlineAsm>(CI.getCalledValue()); 3221 InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints(); 3222 3223 std::vector<std::pair<Value*, int> > ResultVals; 3224 if (CI.getType() == Type::getVoidTy(CI.getContext())) 3225 ; 3226 else if (StructType *ST = dyn_cast<StructType>(CI.getType())) { 3227 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) 3228 ResultVals.push_back(std::make_pair(&CI, (int)i)); 3229 } else { 3230 ResultVals.push_back(std::make_pair(&CI, -1)); 3231 } 3232 3233 // Fix up the asm string for gcc and emit it. 3234 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n"; 3235 Out << " :"; 3236 3237 unsigned ValueCount = 0; 3238 bool IsFirst = true; 3239 3240 // Convert over all the output constraints. 3241 for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), 3242 E = Constraints.end(); I != E; ++I) { 3243 3244 if (I->Type != InlineAsm::isOutput) { 3245 ++ValueCount; 3246 continue; // Ignore non-output constraints. 3247 } 3248 3249 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); 3250 std::string C = InterpretASMConstraint(*I); 3251 if (C.empty()) continue; 3252 3253 if (!IsFirst) { 3254 Out << ", "; 3255 IsFirst = false; 3256 } 3257 3258 // Unpack the dest. 3259 Value *DestVal; 3260 int DestValNo = -1; 3261 3262 if (ValueCount < ResultVals.size()) { 3263 DestVal = ResultVals[ValueCount].first; 3264 DestValNo = ResultVals[ValueCount].second; 3265 } else 3266 DestVal = CI.getArgOperand(ValueCount-ResultVals.size()); 3267 3268 if (I->isEarlyClobber) 3269 C = "&"+C; 3270 3271 Out << "\"=" << C << "\"(" << GetValueName(DestVal); 3272 if (DestValNo != -1) 3273 Out << ".field" << DestValNo; // Multiple retvals. 3274 Out << ")"; 3275 ++ValueCount; 3276 } 3277 3278 3279 // Convert over all the input constraints. 3280 Out << "\n :"; 3281 IsFirst = true; 3282 ValueCount = 0; 3283 for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), 3284 E = Constraints.end(); I != E; ++I) { 3285 if (I->Type != InlineAsm::isInput) { 3286 ++ValueCount; 3287 continue; // Ignore non-input constraints. 3288 } 3289 3290 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); 3291 std::string C = InterpretASMConstraint(*I); 3292 if (C.empty()) continue; 3293 3294 if (!IsFirst) { 3295 Out << ", "; 3296 IsFirst = false; 3297 } 3298 3299 assert(ValueCount >= ResultVals.size() && "Input can't refer to result"); 3300 Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size()); 3301 3302 Out << "\"" << C << "\"("; 3303 if (!I->isIndirect) 3304 writeOperand(SrcVal); 3305 else 3306 writeOperandDeref(SrcVal); 3307 Out << ")"; 3308 } 3309 3310 // Convert over the clobber constraints. 3311 IsFirst = true; 3312 for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), 3313 E = Constraints.end(); I != E; ++I) { 3314 if (I->Type != InlineAsm::isClobber) 3315 continue; // Ignore non-input constraints. 3316 3317 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); 3318 std::string C = InterpretASMConstraint(*I); 3319 if (C.empty()) continue; 3320 3321 if (!IsFirst) { 3322 Out << ", "; 3323 IsFirst = false; 3324 } 3325 3326 Out << '\"' << C << '"'; 3327 } 3328 3329 Out << ")"; 3330} 3331 3332void CWriter::visitAllocaInst(AllocaInst &I) { 3333 Out << '('; 3334 printType(Out, I.getType()); 3335 Out << ") alloca(sizeof("; 3336 printType(Out, I.getType()->getElementType()); 3337 Out << ')'; 3338 if (I.isArrayAllocation()) { 3339 Out << " * " ; 3340 writeOperand(I.getOperand(0)); 3341 } 3342 Out << ')'; 3343} 3344 3345void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I, 3346 gep_type_iterator E, bool Static) { 3347 3348 // If there are no indices, just print out the pointer. 3349 if (I == E) { 3350 writeOperand(Ptr); 3351 return; 3352 } 3353 3354 // Find out if the last index is into a vector. If so, we have to print this 3355 // specially. Since vectors can't have elements of indexable type, only the 3356 // last index could possibly be of a vector element. 3357 VectorType *LastIndexIsVector = 0; 3358 { 3359 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI) 3360 LastIndexIsVector = dyn_cast<VectorType>(*TmpI); 3361 } 3362 3363 Out << "("; 3364 3365 // If the last index is into a vector, we can't print it as &a[i][j] because 3366 // we can't index into a vector with j in GCC. Instead, emit this as 3367 // (((float*)&a[i])+j) 3368 if (LastIndexIsVector) { 3369 Out << "(("; 3370 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType())); 3371 Out << ")("; 3372 } 3373 3374 Out << '&'; 3375 3376 // If the first index is 0 (very typical) we can do a number of 3377 // simplifications to clean up the code. 3378 Value *FirstOp = I.getOperand(); 3379 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) { 3380 // First index isn't simple, print it the hard way. 3381 writeOperand(Ptr); 3382 } else { 3383 ++I; // Skip the zero index. 3384 3385 // Okay, emit the first operand. If Ptr is something that is already address 3386 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead. 3387 if (isAddressExposed(Ptr)) { 3388 writeOperandInternal(Ptr, Static); 3389 } else if (I != E && (*I)->isStructTy()) { 3390 // If we didn't already emit the first operand, see if we can print it as 3391 // P->f instead of "P[0].f" 3392 writeOperand(Ptr); 3393 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); 3394 ++I; // eat the struct index as well. 3395 } else { 3396 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic. 3397 Out << "(*"; 3398 writeOperand(Ptr); 3399 Out << ")"; 3400 } 3401 } 3402 3403 for (; I != E; ++I) { 3404 if ((*I)->isStructTy()) { 3405 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); 3406 } else if ((*I)->isArrayTy()) { 3407 Out << ".array["; 3408 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); 3409 Out << ']'; 3410 } else if (!(*I)->isVectorTy()) { 3411 Out << '['; 3412 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); 3413 Out << ']'; 3414 } else { 3415 // If the last index is into a vector, then print it out as "+j)". This 3416 // works with the 'LastIndexIsVector' code above. 3417 if (isa<Constant>(I.getOperand()) && 3418 cast<Constant>(I.getOperand())->isNullValue()) { 3419 Out << "))"; // avoid "+0". 3420 } else { 3421 Out << ")+("; 3422 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); 3423 Out << "))"; 3424 } 3425 } 3426 } 3427 Out << ")"; 3428} 3429 3430void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType, 3431 bool IsVolatile, unsigned Alignment) { 3432 3433 bool IsUnaligned = Alignment && 3434 Alignment < TD->getABITypeAlignment(OperandType); 3435 3436 if (!IsUnaligned) 3437 Out << '*'; 3438 if (IsVolatile || IsUnaligned) { 3439 Out << "(("; 3440 if (IsUnaligned) 3441 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {"; 3442 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*"); 3443 if (IsUnaligned) { 3444 Out << "; } "; 3445 if (IsVolatile) Out << "volatile "; 3446 Out << "*"; 3447 } 3448 Out << ")"; 3449 } 3450 3451 writeOperand(Operand); 3452 3453 if (IsVolatile || IsUnaligned) { 3454 Out << ')'; 3455 if (IsUnaligned) 3456 Out << "->data"; 3457 } 3458} 3459 3460void CWriter::visitLoadInst(LoadInst &I) { 3461 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(), 3462 I.getAlignment()); 3463 3464} 3465 3466void CWriter::visitStoreInst(StoreInst &I) { 3467 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(), 3468 I.isVolatile(), I.getAlignment()); 3469 Out << " = "; 3470 Value *Operand = I.getOperand(0); 3471 Constant *BitMask = 0; 3472 if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType())) 3473 if (!ITy->isPowerOf2ByteWidth()) 3474 // We have a bit width that doesn't match an even power-of-2 byte 3475 // size. Consequently we must & the value with the type's bit mask 3476 BitMask = ConstantInt::get(ITy, ITy->getBitMask()); 3477 if (BitMask) 3478 Out << "(("; 3479 writeOperand(Operand); 3480 if (BitMask) { 3481 Out << ") & "; 3482 printConstant(BitMask, false); 3483 Out << ")"; 3484 } 3485} 3486 3487void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { 3488 printGEPExpression(I.getPointerOperand(), gep_type_begin(I), 3489 gep_type_end(I), false); 3490} 3491 3492void CWriter::visitVAArgInst(VAArgInst &I) { 3493 Out << "va_arg(*(va_list*)"; 3494 writeOperand(I.getOperand(0)); 3495 Out << ", "; 3496 printType(Out, I.getType()); 3497 Out << ");\n "; 3498} 3499 3500void CWriter::visitInsertElementInst(InsertElementInst &I) { 3501 Type *EltTy = I.getType()->getElementType(); 3502 writeOperand(I.getOperand(0)); 3503 Out << ";\n "; 3504 Out << "(("; 3505 printType(Out, PointerType::getUnqual(EltTy)); 3506 Out << ")(&" << GetValueName(&I) << "))["; 3507 writeOperand(I.getOperand(2)); 3508 Out << "] = ("; 3509 writeOperand(I.getOperand(1)); 3510 Out << ")"; 3511} 3512 3513void CWriter::visitExtractElementInst(ExtractElementInst &I) { 3514 // We know that our operand is not inlined. 3515 Out << "(("; 3516 Type *EltTy = 3517 cast<VectorType>(I.getOperand(0)->getType())->getElementType(); 3518 printType(Out, PointerType::getUnqual(EltTy)); 3519 Out << ")(&" << GetValueName(I.getOperand(0)) << "))["; 3520 writeOperand(I.getOperand(1)); 3521 Out << "]"; 3522} 3523 3524void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 3525 Out << "("; 3526 printType(Out, SVI.getType()); 3527 Out << "){ "; 3528 VectorType *VT = SVI.getType(); 3529 unsigned NumElts = VT->getNumElements(); 3530 Type *EltTy = VT->getElementType(); 3531 3532 for (unsigned i = 0; i != NumElts; ++i) { 3533 if (i) Out << ", "; 3534 int SrcVal = SVI.getMaskValue(i); 3535 if ((unsigned)SrcVal >= NumElts*2) { 3536 Out << " 0/*undef*/ "; 3537 } else { 3538 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts); 3539 if (isa<Instruction>(Op)) { 3540 // Do an extractelement of this value from the appropriate input. 3541 Out << "(("; 3542 printType(Out, PointerType::getUnqual(EltTy)); 3543 Out << ")(&" << GetValueName(Op) 3544 << "))[" << (SrcVal & (NumElts-1)) << "]"; 3545 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) { 3546 Out << "0"; 3547 } else { 3548 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & 3549 (NumElts-1)), 3550 false); 3551 } 3552 } 3553 } 3554 Out << "}"; 3555} 3556 3557void CWriter::visitInsertValueInst(InsertValueInst &IVI) { 3558 // Start by copying the entire aggregate value into the result variable. 3559 writeOperand(IVI.getOperand(0)); 3560 Out << ";\n "; 3561 3562 // Then do the insert to update the field. 3563 Out << GetValueName(&IVI); 3564 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end(); 3565 i != e; ++i) { 3566 Type *IndexedTy = 3567 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), 3568 makeArrayRef(b, i+1)); 3569 if (IndexedTy->isArrayTy()) 3570 Out << ".array[" << *i << "]"; 3571 else 3572 Out << ".field" << *i; 3573 } 3574 Out << " = "; 3575 writeOperand(IVI.getOperand(1)); 3576} 3577 3578void CWriter::visitExtractValueInst(ExtractValueInst &EVI) { 3579 Out << "("; 3580 if (isa<UndefValue>(EVI.getOperand(0))) { 3581 Out << "("; 3582 printType(Out, EVI.getType()); 3583 Out << ") 0/*UNDEF*/"; 3584 } else { 3585 Out << GetValueName(EVI.getOperand(0)); 3586 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end(); 3587 i != e; ++i) { 3588 Type *IndexedTy = 3589 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), 3590 makeArrayRef(b, i+1)); 3591 if (IndexedTy->isArrayTy()) 3592 Out << ".array[" << *i << "]"; 3593 else 3594 Out << ".field" << *i; 3595 } 3596 } 3597 Out << ")"; 3598} 3599 3600//===----------------------------------------------------------------------===// 3601// External Interface declaration 3602//===----------------------------------------------------------------------===// 3603 3604bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM, 3605 formatted_raw_ostream &o, 3606 CodeGenFileType FileType, 3607 CodeGenOpt::Level OptLevel, 3608 bool DisableVerify) { 3609 if (FileType != TargetMachine::CGFT_AssemblyFile) return true; 3610 3611 PM.add(createGCLoweringPass()); 3612 PM.add(createLowerInvokePass()); 3613 PM.add(createCFGSimplificationPass()); // clean up after lower invoke. 3614 PM.add(new CWriter(o)); 3615 PM.add(createGCInfoDeleter()); 3616 return false; 3617} 3618