1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCTargetMachine.h"
18#include "MCTargetDesc/PPCPredicates.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FMA  , MVT::f64, Expand);
129  setOperationAction(ISD::FSIN , MVT::f32, Expand);
130  setOperationAction(ISD::FCOS , MVT::f32, Expand);
131  setOperationAction(ISD::FREM , MVT::f32, Expand);
132  setOperationAction(ISD::FPOW , MVT::f32, Expand);
133  setOperationAction(ISD::FMA  , MVT::f32, Expand);
134
135  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
136
137  // If we're enabling GP optimizations, use hardware square root
138  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
139    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
140    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
141  }
142
143  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
144  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
145
146  // PowerPC does not have BSWAP, CTPOP or CTTZ
147  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
148  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
149  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
150  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
151  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
152  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
153
154  // PowerPC does not have ROTR
155  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
156  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
157
158  // PowerPC does not have Select
159  setOperationAction(ISD::SELECT, MVT::i32, Expand);
160  setOperationAction(ISD::SELECT, MVT::i64, Expand);
161  setOperationAction(ISD::SELECT, MVT::f32, Expand);
162  setOperationAction(ISD::SELECT, MVT::f64, Expand);
163
164  // PowerPC wants to turn select_cc of FP into fsel when possible.
165  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
166  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
167
168  // PowerPC wants to optimize integer setcc a bit
169  setOperationAction(ISD::SETCC, MVT::i32, Custom);
170
171  // PowerPC does not have BRCOND which requires SetCC
172  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
173
174  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
175
176  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
177  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
178
179  // PowerPC does not have [U|S]INT_TO_FP
180  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
181  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
182
183  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
184  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
185  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
186  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
187
188  // We cannot sextinreg(i1).  Expand to shifts.
189  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
193  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
194  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
195
196
197  // We want to legalize GlobalAddress and ConstantPool nodes into the
198  // appropriate instructions to materialize the address.
199  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
200  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
201  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
202  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
203  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
204  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
206  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
207  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
208  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
209
210  // TRAP is legal.
211  setOperationAction(ISD::TRAP, MVT::Other, Legal);
212
213  // TRAMPOLINE is custom lowered.
214  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
215  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
216
217  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
218  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
219
220  // VAARG is custom lowered with the 32-bit SVR4 ABI.
221  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
222      && !TM.getSubtarget<PPCSubtarget>().isPPC64()) {
223    setOperationAction(ISD::VAARG, MVT::Other, Custom);
224    setOperationAction(ISD::VAARG, MVT::i64, Custom);
225  } else
226    setOperationAction(ISD::VAARG, MVT::Other, Expand);
227
228  // Use the default implementation.
229  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
230  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
231  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
232  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
233  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
234  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
235
236  // We want to custom lower some of our intrinsics.
237  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
238
239  // Comparisons that require checking two conditions.
240  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
249  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
250  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
251  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
252
253  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
254    // They also have instructions for converting between i64 and fp.
255    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
256    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
257    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
258    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
259    // This is just the low 32 bits of a (signed) fp->i64 conversion.
260    // We cannot do this with Promote because i64 is not a legal type.
261    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
262
263    // FIXME: disable this lowered code.  This generates 64-bit register values,
264    // and we don't model the fact that the top part is clobbered by calls.  We
265    // need to flag these together so that the value isn't live across a call.
266    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
267  } else {
268    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
269    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
270  }
271
272  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
273    // 64-bit PowerPC implementations can support i64 types directly
274    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
275    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
276    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
277    // 64-bit PowerPC wants to expand i128 shifts itself.
278    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
279    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
280    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
281  } else {
282    // 32-bit PowerPC wants to expand i64 shifts itself.
283    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
284    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
285    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
286  }
287
288  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
289    // First set operation action for all vector types to expand. Then we
290    // will selectively turn on ones that can be effectively codegen'd.
291    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
292         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
293      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
294
295      // add/sub are legal for all supported vector VT's.
296      setOperationAction(ISD::ADD , VT, Legal);
297      setOperationAction(ISD::SUB , VT, Legal);
298
299      // We promote all shuffles to v16i8.
300      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
301      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
302
303      // We promote all non-typed operations to v4i32.
304      setOperationAction(ISD::AND   , VT, Promote);
305      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
306      setOperationAction(ISD::OR    , VT, Promote);
307      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
308      setOperationAction(ISD::XOR   , VT, Promote);
309      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
310      setOperationAction(ISD::LOAD  , VT, Promote);
311      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
312      setOperationAction(ISD::SELECT, VT, Promote);
313      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
314      setOperationAction(ISD::STORE, VT, Promote);
315      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
316
317      // No other operations are legal.
318      setOperationAction(ISD::MUL , VT, Expand);
319      setOperationAction(ISD::SDIV, VT, Expand);
320      setOperationAction(ISD::SREM, VT, Expand);
321      setOperationAction(ISD::UDIV, VT, Expand);
322      setOperationAction(ISD::UREM, VT, Expand);
323      setOperationAction(ISD::FDIV, VT, Expand);
324      setOperationAction(ISD::FNEG, VT, Expand);
325      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
326      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
327      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
328      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
329      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
330      setOperationAction(ISD::UDIVREM, VT, Expand);
331      setOperationAction(ISD::SDIVREM, VT, Expand);
332      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
333      setOperationAction(ISD::FPOW, VT, Expand);
334      setOperationAction(ISD::CTPOP, VT, Expand);
335      setOperationAction(ISD::CTLZ, VT, Expand);
336      setOperationAction(ISD::CTTZ, VT, Expand);
337    }
338
339    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
340    // with merges, splats, etc.
341    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
342
343    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
344    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
345    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
346    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
347    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
348    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
349
350    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
351    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
352    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
353    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
354
355    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
356    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
357    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
358    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
359
360    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
361    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
362
363    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
364    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
365    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
366    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
367  }
368
369  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
370  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
371
372  setBooleanContents(ZeroOrOneBooleanContent);
373  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
374
375  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
376    setStackPointerRegisterToSaveRestore(PPC::X1);
377    setExceptionPointerRegister(PPC::X3);
378    setExceptionSelectorRegister(PPC::X4);
379  } else {
380    setStackPointerRegisterToSaveRestore(PPC::R1);
381    setExceptionPointerRegister(PPC::R3);
382    setExceptionSelectorRegister(PPC::R4);
383  }
384
385  // We have target-specific dag combine patterns for the following nodes:
386  setTargetDAGCombine(ISD::SINT_TO_FP);
387  setTargetDAGCombine(ISD::STORE);
388  setTargetDAGCombine(ISD::BR_CC);
389  setTargetDAGCombine(ISD::BSWAP);
390
391  // Darwin long double math library functions have $LDBL128 appended.
392  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
393    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
394    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
395    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
396    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
397    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
398    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
399    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
400    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
401    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
402    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
403  }
404
405  setMinFunctionAlignment(2);
406  if (PPCSubTarget.isDarwin())
407    setPrefFunctionAlignment(4);
408
409  setInsertFencesForAtomic(true);
410
411  computeRegisterProperties();
412}
413
414/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
415/// function arguments in the caller parameter area.
416unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
417  const TargetMachine &TM = getTargetMachine();
418  // Darwin passes everything on 4 byte boundary.
419  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
420    return 4;
421  // FIXME SVR4 TBD
422  return 4;
423}
424
425const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
426  switch (Opcode) {
427  default: return 0;
428  case PPCISD::FSEL:            return "PPCISD::FSEL";
429  case PPCISD::FCFID:           return "PPCISD::FCFID";
430  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
431  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
432  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
433  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
434  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
435  case PPCISD::VPERM:           return "PPCISD::VPERM";
436  case PPCISD::Hi:              return "PPCISD::Hi";
437  case PPCISD::Lo:              return "PPCISD::Lo";
438  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
439  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
440  case PPCISD::LOAD:            return "PPCISD::LOAD";
441  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
442  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
443  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
444  case PPCISD::SRL:             return "PPCISD::SRL";
445  case PPCISD::SRA:             return "PPCISD::SRA";
446  case PPCISD::SHL:             return "PPCISD::SHL";
447  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
448  case PPCISD::STD_32:          return "PPCISD::STD_32";
449  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
450  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
451  case PPCISD::NOP:             return "PPCISD::NOP";
452  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
453  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
454  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
455  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
456  case PPCISD::MFCR:            return "PPCISD::MFCR";
457  case PPCISD::VCMP:            return "PPCISD::VCMP";
458  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
459  case PPCISD::LBRX:            return "PPCISD::LBRX";
460  case PPCISD::STBRX:           return "PPCISD::STBRX";
461  case PPCISD::LARX:            return "PPCISD::LARX";
462  case PPCISD::STCX:            return "PPCISD::STCX";
463  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
464  case PPCISD::MFFS:            return "PPCISD::MFFS";
465  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
466  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
467  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
468  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
469  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
470  }
471}
472
473EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
474  return MVT::i32;
475}
476
477//===----------------------------------------------------------------------===//
478// Node matching predicates, for use by the tblgen matching code.
479//===----------------------------------------------------------------------===//
480
481/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
482static bool isFloatingPointZero(SDValue Op) {
483  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
484    return CFP->getValueAPF().isZero();
485  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
486    // Maybe this has already been legalized into the constant pool?
487    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
488      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
489        return CFP->getValueAPF().isZero();
490  }
491  return false;
492}
493
494/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
495/// true if Op is undef or if it matches the specified value.
496static bool isConstantOrUndef(int Op, int Val) {
497  return Op < 0 || Op == Val;
498}
499
500/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
501/// VPKUHUM instruction.
502bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
503  if (!isUnary) {
504    for (unsigned i = 0; i != 16; ++i)
505      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
506        return false;
507  } else {
508    for (unsigned i = 0; i != 8; ++i)
509      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
510          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
511        return false;
512  }
513  return true;
514}
515
516/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
517/// VPKUWUM instruction.
518bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
519  if (!isUnary) {
520    for (unsigned i = 0; i != 16; i += 2)
521      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
523        return false;
524  } else {
525    for (unsigned i = 0; i != 8; i += 2)
526      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
527          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
528          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
529          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
530        return false;
531  }
532  return true;
533}
534
535/// isVMerge - Common function, used to match vmrg* shuffles.
536///
537static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
538                     unsigned LHSStart, unsigned RHSStart) {
539  assert(N->getValueType(0) == MVT::v16i8 &&
540         "PPC only supports shuffles by bytes!");
541  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
542         "Unsupported merge size!");
543
544  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
545    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
546      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
547                             LHSStart+j+i*UnitSize) ||
548          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
549                             RHSStart+j+i*UnitSize))
550        return false;
551    }
552  return true;
553}
554
555/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
556/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
557bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
558                             bool isUnary) {
559  if (!isUnary)
560    return isVMerge(N, UnitSize, 8, 24);
561  return isVMerge(N, UnitSize, 8, 8);
562}
563
564/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
565/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
566bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
567                             bool isUnary) {
568  if (!isUnary)
569    return isVMerge(N, UnitSize, 0, 16);
570  return isVMerge(N, UnitSize, 0, 0);
571}
572
573
574/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
575/// amount, otherwise return -1.
576int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
577  assert(N->getValueType(0) == MVT::v16i8 &&
578         "PPC only supports shuffles by bytes!");
579
580  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
581
582  // Find the first non-undef value in the shuffle mask.
583  unsigned i;
584  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
585    /*search*/;
586
587  if (i == 16) return -1;  // all undef.
588
589  // Otherwise, check to see if the rest of the elements are consecutively
590  // numbered from this value.
591  unsigned ShiftAmt = SVOp->getMaskElt(i);
592  if (ShiftAmt < i) return -1;
593  ShiftAmt -= i;
594
595  if (!isUnary) {
596    // Check the rest of the elements to see if they are consecutive.
597    for (++i; i != 16; ++i)
598      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
599        return -1;
600  } else {
601    // Check the rest of the elements to see if they are consecutive.
602    for (++i; i != 16; ++i)
603      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
604        return -1;
605  }
606  return ShiftAmt;
607}
608
609/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
610/// specifies a splat of a single element that is suitable for input to
611/// VSPLTB/VSPLTH/VSPLTW.
612bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
613  assert(N->getValueType(0) == MVT::v16i8 &&
614         (EltSize == 1 || EltSize == 2 || EltSize == 4));
615
616  // This is a splat operation if each element of the permute is the same, and
617  // if the value doesn't reference the second vector.
618  unsigned ElementBase = N->getMaskElt(0);
619
620  // FIXME: Handle UNDEF elements too!
621  if (ElementBase >= 16)
622    return false;
623
624  // Check that the indices are consecutive, in the case of a multi-byte element
625  // splatted with a v16i8 mask.
626  for (unsigned i = 1; i != EltSize; ++i)
627    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
628      return false;
629
630  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
631    if (N->getMaskElt(i) < 0) continue;
632    for (unsigned j = 0; j != EltSize; ++j)
633      if (N->getMaskElt(i+j) != N->getMaskElt(j))
634        return false;
635  }
636  return true;
637}
638
639/// isAllNegativeZeroVector - Returns true if all elements of build_vector
640/// are -0.0.
641bool PPC::isAllNegativeZeroVector(SDNode *N) {
642  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
643
644  APInt APVal, APUndef;
645  unsigned BitSize;
646  bool HasAnyUndefs;
647
648  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
649    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
650      return CFP->getValueAPF().isNegZero();
651
652  return false;
653}
654
655/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
656/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
657unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
658  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
659  assert(isSplatShuffleMask(SVOp, EltSize));
660  return SVOp->getMaskElt(0) / EltSize;
661}
662
663/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
664/// by using a vspltis[bhw] instruction of the specified element size, return
665/// the constant being splatted.  The ByteSize field indicates the number of
666/// bytes of each element [124] -> [bhw].
667SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
668  SDValue OpVal(0, 0);
669
670  // If ByteSize of the splat is bigger than the element size of the
671  // build_vector, then we have a case where we are checking for a splat where
672  // multiple elements of the buildvector are folded together into a single
673  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
674  unsigned EltSize = 16/N->getNumOperands();
675  if (EltSize < ByteSize) {
676    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
677    SDValue UniquedVals[4];
678    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
679
680    // See if all of the elements in the buildvector agree across.
681    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
682      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
683      // If the element isn't a constant, bail fully out.
684      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
685
686
687      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
688        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
689      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
690        return SDValue();  // no match.
691    }
692
693    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
694    // either constant or undef values that are identical for each chunk.  See
695    // if these chunks can form into a larger vspltis*.
696
697    // Check to see if all of the leading entries are either 0 or -1.  If
698    // neither, then this won't fit into the immediate field.
699    bool LeadingZero = true;
700    bool LeadingOnes = true;
701    for (unsigned i = 0; i != Multiple-1; ++i) {
702      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
703
704      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
705      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
706    }
707    // Finally, check the least significant entry.
708    if (LeadingZero) {
709      if (UniquedVals[Multiple-1].getNode() == 0)
710        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
711      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
712      if (Val < 16)
713        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
714    }
715    if (LeadingOnes) {
716      if (UniquedVals[Multiple-1].getNode() == 0)
717        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
718      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
719      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
720        return DAG.getTargetConstant(Val, MVT::i32);
721    }
722
723    return SDValue();
724  }
725
726  // Check to see if this buildvec has a single non-undef value in its elements.
727  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
728    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
729    if (OpVal.getNode() == 0)
730      OpVal = N->getOperand(i);
731    else if (OpVal != N->getOperand(i))
732      return SDValue();
733  }
734
735  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
736
737  unsigned ValSizeInBytes = EltSize;
738  uint64_t Value = 0;
739  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
740    Value = CN->getZExtValue();
741  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
742    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
743    Value = FloatToBits(CN->getValueAPF().convertToFloat());
744  }
745
746  // If the splat value is larger than the element value, then we can never do
747  // this splat.  The only case that we could fit the replicated bits into our
748  // immediate field for would be zero, and we prefer to use vxor for it.
749  if (ValSizeInBytes < ByteSize) return SDValue();
750
751  // If the element value is larger than the splat value, cut it in half and
752  // check to see if the two halves are equal.  Continue doing this until we
753  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
754  while (ValSizeInBytes > ByteSize) {
755    ValSizeInBytes >>= 1;
756
757    // If the top half equals the bottom half, we're still ok.
758    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
759         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
760      return SDValue();
761  }
762
763  // Properly sign extend the value.
764  int ShAmt = (4-ByteSize)*8;
765  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
766
767  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
768  if (MaskVal == 0) return SDValue();
769
770  // Finally, if this value fits in a 5 bit sext field, return it
771  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
772    return DAG.getTargetConstant(MaskVal, MVT::i32);
773  return SDValue();
774}
775
776//===----------------------------------------------------------------------===//
777//  Addressing Mode Selection
778//===----------------------------------------------------------------------===//
779
780/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
781/// or 64-bit immediate, and if the value can be accurately represented as a
782/// sign extension from a 16-bit value.  If so, this returns true and the
783/// immediate.
784static bool isIntS16Immediate(SDNode *N, short &Imm) {
785  if (N->getOpcode() != ISD::Constant)
786    return false;
787
788  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
789  if (N->getValueType(0) == MVT::i32)
790    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
791  else
792    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
793}
794static bool isIntS16Immediate(SDValue Op, short &Imm) {
795  return isIntS16Immediate(Op.getNode(), Imm);
796}
797
798
799/// SelectAddressRegReg - Given the specified addressed, check to see if it
800/// can be represented as an indexed [r+r] operation.  Returns false if it
801/// can be more efficiently represented with [r+imm].
802bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
803                                            SDValue &Index,
804                                            SelectionDAG &DAG) const {
805  short imm = 0;
806  if (N.getOpcode() == ISD::ADD) {
807    if (isIntS16Immediate(N.getOperand(1), imm))
808      return false;    // r+i
809    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
810      return false;    // r+i
811
812    Base = N.getOperand(0);
813    Index = N.getOperand(1);
814    return true;
815  } else if (N.getOpcode() == ISD::OR) {
816    if (isIntS16Immediate(N.getOperand(1), imm))
817      return false;    // r+i can fold it if we can.
818
819    // If this is an or of disjoint bitfields, we can codegen this as an add
820    // (for better address arithmetic) if the LHS and RHS of the OR are provably
821    // disjoint.
822    APInt LHSKnownZero, LHSKnownOne;
823    APInt RHSKnownZero, RHSKnownOne;
824    DAG.ComputeMaskedBits(N.getOperand(0),
825                          APInt::getAllOnesValue(N.getOperand(0)
826                            .getValueSizeInBits()),
827                          LHSKnownZero, LHSKnownOne);
828
829    if (LHSKnownZero.getBoolValue()) {
830      DAG.ComputeMaskedBits(N.getOperand(1),
831                            APInt::getAllOnesValue(N.getOperand(1)
832                              .getValueSizeInBits()),
833                            RHSKnownZero, RHSKnownOne);
834      // If all of the bits are known zero on the LHS or RHS, the add won't
835      // carry.
836      if (~(LHSKnownZero | RHSKnownZero) == 0) {
837        Base = N.getOperand(0);
838        Index = N.getOperand(1);
839        return true;
840      }
841    }
842  }
843
844  return false;
845}
846
847/// Returns true if the address N can be represented by a base register plus
848/// a signed 16-bit displacement [r+imm], and if it is not better
849/// represented as reg+reg.
850bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
851                                            SDValue &Base,
852                                            SelectionDAG &DAG) const {
853  // FIXME dl should come from parent load or store, not from address
854  DebugLoc dl = N.getDebugLoc();
855  // If this can be more profitably realized as r+r, fail.
856  if (SelectAddressRegReg(N, Disp, Base, DAG))
857    return false;
858
859  if (N.getOpcode() == ISD::ADD) {
860    short imm = 0;
861    if (isIntS16Immediate(N.getOperand(1), imm)) {
862      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
863      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
864        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
865      } else {
866        Base = N.getOperand(0);
867      }
868      return true; // [r+i]
869    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
870      // Match LOAD (ADD (X, Lo(G))).
871     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
872             && "Cannot handle constant offsets yet!");
873      Disp = N.getOperand(1).getOperand(0);  // The global address.
874      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
875             Disp.getOpcode() == ISD::TargetConstantPool ||
876             Disp.getOpcode() == ISD::TargetJumpTable);
877      Base = N.getOperand(0);
878      return true;  // [&g+r]
879    }
880  } else if (N.getOpcode() == ISD::OR) {
881    short imm = 0;
882    if (isIntS16Immediate(N.getOperand(1), imm)) {
883      // If this is an or of disjoint bitfields, we can codegen this as an add
884      // (for better address arithmetic) if the LHS and RHS of the OR are
885      // provably disjoint.
886      APInt LHSKnownZero, LHSKnownOne;
887      DAG.ComputeMaskedBits(N.getOperand(0),
888                            APInt::getAllOnesValue(N.getOperand(0)
889                                                   .getValueSizeInBits()),
890                            LHSKnownZero, LHSKnownOne);
891
892      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
893        // If all of the bits are known zero on the LHS or RHS, the add won't
894        // carry.
895        Base = N.getOperand(0);
896        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
897        return true;
898      }
899    }
900  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
901    // Loading from a constant address.
902
903    // If this address fits entirely in a 16-bit sext immediate field, codegen
904    // this as "d, 0"
905    short Imm;
906    if (isIntS16Immediate(CN, Imm)) {
907      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
908      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
909                             CN->getValueType(0));
910      return true;
911    }
912
913    // Handle 32-bit sext immediates with LIS + addr mode.
914    if (CN->getValueType(0) == MVT::i32 ||
915        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
916      int Addr = (int)CN->getZExtValue();
917
918      // Otherwise, break this down into an LIS + disp.
919      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
920
921      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
922      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
923      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
924      return true;
925    }
926  }
927
928  Disp = DAG.getTargetConstant(0, getPointerTy());
929  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
930    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
931  else
932    Base = N;
933  return true;      // [r+0]
934}
935
936/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
937/// represented as an indexed [r+r] operation.
938bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
939                                                SDValue &Index,
940                                                SelectionDAG &DAG) const {
941  // Check to see if we can easily represent this as an [r+r] address.  This
942  // will fail if it thinks that the address is more profitably represented as
943  // reg+imm, e.g. where imm = 0.
944  if (SelectAddressRegReg(N, Base, Index, DAG))
945    return true;
946
947  // If the operand is an addition, always emit this as [r+r], since this is
948  // better (for code size, and execution, as the memop does the add for free)
949  // than emitting an explicit add.
950  if (N.getOpcode() == ISD::ADD) {
951    Base = N.getOperand(0);
952    Index = N.getOperand(1);
953    return true;
954  }
955
956  // Otherwise, do it the hard way, using R0 as the base register.
957  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
958                         N.getValueType());
959  Index = N;
960  return true;
961}
962
963/// SelectAddressRegImmShift - Returns true if the address N can be
964/// represented by a base register plus a signed 14-bit displacement
965/// [r+imm*4].  Suitable for use by STD and friends.
966bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
967                                                 SDValue &Base,
968                                                 SelectionDAG &DAG) const {
969  // FIXME dl should come from the parent load or store, not the address
970  DebugLoc dl = N.getDebugLoc();
971  // If this can be more profitably realized as r+r, fail.
972  if (SelectAddressRegReg(N, Disp, Base, DAG))
973    return false;
974
975  if (N.getOpcode() == ISD::ADD) {
976    short imm = 0;
977    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
978      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
979      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
980        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
981      } else {
982        Base = N.getOperand(0);
983      }
984      return true; // [r+i]
985    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
986      // Match LOAD (ADD (X, Lo(G))).
987     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
988             && "Cannot handle constant offsets yet!");
989      Disp = N.getOperand(1).getOperand(0);  // The global address.
990      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
991             Disp.getOpcode() == ISD::TargetConstantPool ||
992             Disp.getOpcode() == ISD::TargetJumpTable);
993      Base = N.getOperand(0);
994      return true;  // [&g+r]
995    }
996  } else if (N.getOpcode() == ISD::OR) {
997    short imm = 0;
998    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
999      // If this is an or of disjoint bitfields, we can codegen this as an add
1000      // (for better address arithmetic) if the LHS and RHS of the OR are
1001      // provably disjoint.
1002      APInt LHSKnownZero, LHSKnownOne;
1003      DAG.ComputeMaskedBits(N.getOperand(0),
1004                            APInt::getAllOnesValue(N.getOperand(0)
1005                                                   .getValueSizeInBits()),
1006                            LHSKnownZero, LHSKnownOne);
1007      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1008        // If all of the bits are known zero on the LHS or RHS, the add won't
1009        // carry.
1010        Base = N.getOperand(0);
1011        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1012        return true;
1013      }
1014    }
1015  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1016    // Loading from a constant address.  Verify low two bits are clear.
1017    if ((CN->getZExtValue() & 3) == 0) {
1018      // If this address fits entirely in a 14-bit sext immediate field, codegen
1019      // this as "d, 0"
1020      short Imm;
1021      if (isIntS16Immediate(CN, Imm)) {
1022        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1023        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1024                               CN->getValueType(0));
1025        return true;
1026      }
1027
1028      // Fold the low-part of 32-bit absolute addresses into addr mode.
1029      if (CN->getValueType(0) == MVT::i32 ||
1030          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1031        int Addr = (int)CN->getZExtValue();
1032
1033        // Otherwise, break this down into an LIS + disp.
1034        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1035        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1036        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1037        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1038        return true;
1039      }
1040    }
1041  }
1042
1043  Disp = DAG.getTargetConstant(0, getPointerTy());
1044  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1045    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1046  else
1047    Base = N;
1048  return true;      // [r+0]
1049}
1050
1051
1052/// getPreIndexedAddressParts - returns true by value, base pointer and
1053/// offset pointer and addressing mode by reference if the node's address
1054/// can be legally represented as pre-indexed load / store address.
1055bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1056                                                  SDValue &Offset,
1057                                                  ISD::MemIndexedMode &AM,
1058                                                  SelectionDAG &DAG) const {
1059  // Disabled by default for now.
1060  if (!EnablePPCPreinc) return false;
1061
1062  SDValue Ptr;
1063  EVT VT;
1064  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1065    Ptr = LD->getBasePtr();
1066    VT = LD->getMemoryVT();
1067
1068  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1069    Ptr = ST->getBasePtr();
1070    VT  = ST->getMemoryVT();
1071  } else
1072    return false;
1073
1074  // PowerPC doesn't have preinc load/store instructions for vectors.
1075  if (VT.isVector())
1076    return false;
1077
1078  // TODO: Check reg+reg first.
1079
1080  // LDU/STU use reg+imm*4, others use reg+imm.
1081  if (VT != MVT::i64) {
1082    // reg + imm
1083    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1084      return false;
1085  } else {
1086    // reg + imm * 4.
1087    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1088      return false;
1089  }
1090
1091  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1092    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1093    // sext i32 to i64 when addr mode is r+i.
1094    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1095        LD->getExtensionType() == ISD::SEXTLOAD &&
1096        isa<ConstantSDNode>(Offset))
1097      return false;
1098  }
1099
1100  AM = ISD::PRE_INC;
1101  return true;
1102}
1103
1104//===----------------------------------------------------------------------===//
1105//  LowerOperation implementation
1106//===----------------------------------------------------------------------===//
1107
1108/// GetLabelAccessInfo - Return true if we should reference labels using a
1109/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1110static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1111                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1112  HiOpFlags = PPCII::MO_HA16;
1113  LoOpFlags = PPCII::MO_LO16;
1114
1115  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1116  // non-darwin platform.  We don't support PIC on other platforms yet.
1117  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1118               TM.getSubtarget<PPCSubtarget>().isDarwin();
1119  if (isPIC) {
1120    HiOpFlags |= PPCII::MO_PIC_FLAG;
1121    LoOpFlags |= PPCII::MO_PIC_FLAG;
1122  }
1123
1124  // If this is a reference to a global value that requires a non-lazy-ptr, make
1125  // sure that instruction lowering adds it.
1126  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1127    HiOpFlags |= PPCII::MO_NLP_FLAG;
1128    LoOpFlags |= PPCII::MO_NLP_FLAG;
1129
1130    if (GV->hasHiddenVisibility()) {
1131      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1132      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1133    }
1134  }
1135
1136  return isPIC;
1137}
1138
1139static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1140                             SelectionDAG &DAG) {
1141  EVT PtrVT = HiPart.getValueType();
1142  SDValue Zero = DAG.getConstant(0, PtrVT);
1143  DebugLoc DL = HiPart.getDebugLoc();
1144
1145  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1146  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1147
1148  // With PIC, the first instruction is actually "GR+hi(&G)".
1149  if (isPIC)
1150    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1151                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1152
1153  // Generate non-pic code that has direct accesses to the constant pool.
1154  // The address of the global is just (hi(&g)+lo(&g)).
1155  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1156}
1157
1158SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1159                                             SelectionDAG &DAG) const {
1160  EVT PtrVT = Op.getValueType();
1161  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1162  const Constant *C = CP->getConstVal();
1163
1164  unsigned MOHiFlag, MOLoFlag;
1165  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1166  SDValue CPIHi =
1167    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1168  SDValue CPILo =
1169    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1170  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1171}
1172
1173SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1174  EVT PtrVT = Op.getValueType();
1175  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1176
1177  unsigned MOHiFlag, MOLoFlag;
1178  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1179  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1180  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1181  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1182}
1183
1184SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1185                                             SelectionDAG &DAG) const {
1186  EVT PtrVT = Op.getValueType();
1187
1188  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1189
1190  unsigned MOHiFlag, MOLoFlag;
1191  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1192  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1193  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1194  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1195}
1196
1197SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1198                                              SelectionDAG &DAG) const {
1199  EVT PtrVT = Op.getValueType();
1200  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1201  DebugLoc DL = GSDN->getDebugLoc();
1202  const GlobalValue *GV = GSDN->getGlobal();
1203
1204  // 64-bit SVR4 ABI code is always position-independent.
1205  // The actual address of the GlobalValue is stored in the TOC.
1206  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1207    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1208    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1209                       DAG.getRegister(PPC::X2, MVT::i64));
1210  }
1211
1212  unsigned MOHiFlag, MOLoFlag;
1213  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1214
1215  SDValue GAHi =
1216    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1217  SDValue GALo =
1218    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1219
1220  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1221
1222  // If the global reference is actually to a non-lazy-pointer, we have to do an
1223  // extra load to get the address of the global.
1224  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1225    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1226                      false, false, 0);
1227  return Ptr;
1228}
1229
1230SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1231  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1232  DebugLoc dl = Op.getDebugLoc();
1233
1234  // If we're comparing for equality to zero, expose the fact that this is
1235  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1236  // fold the new nodes.
1237  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1238    if (C->isNullValue() && CC == ISD::SETEQ) {
1239      EVT VT = Op.getOperand(0).getValueType();
1240      SDValue Zext = Op.getOperand(0);
1241      if (VT.bitsLT(MVT::i32)) {
1242        VT = MVT::i32;
1243        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1244      }
1245      unsigned Log2b = Log2_32(VT.getSizeInBits());
1246      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1247      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1248                                DAG.getConstant(Log2b, MVT::i32));
1249      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1250    }
1251    // Leave comparisons against 0 and -1 alone for now, since they're usually
1252    // optimized.  FIXME: revisit this when we can custom lower all setcc
1253    // optimizations.
1254    if (C->isAllOnesValue() || C->isNullValue())
1255      return SDValue();
1256  }
1257
1258  // If we have an integer seteq/setne, turn it into a compare against zero
1259  // by xor'ing the rhs with the lhs, which is faster than setting a
1260  // condition register, reading it back out, and masking the correct bit.  The
1261  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1262  // the result to other bit-twiddling opportunities.
1263  EVT LHSVT = Op.getOperand(0).getValueType();
1264  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1265    EVT VT = Op.getValueType();
1266    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1267                                Op.getOperand(1));
1268    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1269  }
1270  return SDValue();
1271}
1272
1273SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1274                                      const PPCSubtarget &Subtarget) const {
1275  SDNode *Node = Op.getNode();
1276  EVT VT = Node->getValueType(0);
1277  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1278  SDValue InChain = Node->getOperand(0);
1279  SDValue VAListPtr = Node->getOperand(1);
1280  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1281  DebugLoc dl = Node->getDebugLoc();
1282
1283  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1284
1285  // gpr_index
1286  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1287                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1288                                    false, false, 0);
1289  InChain = GprIndex.getValue(1);
1290
1291  if (VT == MVT::i64) {
1292    // Check if GprIndex is even
1293    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1294                                 DAG.getConstant(1, MVT::i32));
1295    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1296                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1297    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1298                                          DAG.getConstant(1, MVT::i32));
1299    // Align GprIndex to be even if it isn't
1300    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1301                           GprIndex);
1302  }
1303
1304  // fpr index is 1 byte after gpr
1305  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1306                               DAG.getConstant(1, MVT::i32));
1307
1308  // fpr
1309  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1310                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1311                                    false, false, 0);
1312  InChain = FprIndex.getValue(1);
1313
1314  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1315                                       DAG.getConstant(8, MVT::i32));
1316
1317  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1318                                        DAG.getConstant(4, MVT::i32));
1319
1320  // areas
1321  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1322                                     MachinePointerInfo(), false, false, 0);
1323  InChain = OverflowArea.getValue(1);
1324
1325  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1326                                    MachinePointerInfo(), false, false, 0);
1327  InChain = RegSaveArea.getValue(1);
1328
1329  // select overflow_area if index > 8
1330  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1331                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1332
1333  // adjustment constant gpr_index * 4/8
1334  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1335                                    VT.isInteger() ? GprIndex : FprIndex,
1336                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1337                                                    MVT::i32));
1338
1339  // OurReg = RegSaveArea + RegConstant
1340  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1341                               RegConstant);
1342
1343  // Floating types are 32 bytes into RegSaveArea
1344  if (VT.isFloatingPoint())
1345    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1346                         DAG.getConstant(32, MVT::i32));
1347
1348  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1349  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1350                                   VT.isInteger() ? GprIndex : FprIndex,
1351                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1352                                                   MVT::i32));
1353
1354  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1355                              VT.isInteger() ? VAListPtr : FprPtr,
1356                              MachinePointerInfo(SV),
1357                              MVT::i8, false, false, 0);
1358
1359  // determine if we should load from reg_save_area or overflow_area
1360  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1361
1362  // increase overflow_area by 4/8 if gpr/fpr > 8
1363  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1364                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1365                                          MVT::i32));
1366
1367  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1368                             OverflowAreaPlusN);
1369
1370  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1371                              OverflowAreaPtr,
1372                              MachinePointerInfo(),
1373                              MVT::i32, false, false, 0);
1374
1375  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0);
1376}
1377
1378SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1379                                                  SelectionDAG &DAG) const {
1380  return Op.getOperand(0);
1381}
1382
1383SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1384                                                SelectionDAG &DAG) const {
1385  SDValue Chain = Op.getOperand(0);
1386  SDValue Trmp = Op.getOperand(1); // trampoline
1387  SDValue FPtr = Op.getOperand(2); // nested function
1388  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1389  DebugLoc dl = Op.getDebugLoc();
1390
1391  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1392  bool isPPC64 = (PtrVT == MVT::i64);
1393  Type *IntPtrTy =
1394    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1395                                                             *DAG.getContext());
1396
1397  TargetLowering::ArgListTy Args;
1398  TargetLowering::ArgListEntry Entry;
1399
1400  Entry.Ty = IntPtrTy;
1401  Entry.Node = Trmp; Args.push_back(Entry);
1402
1403  // TrampSize == (isPPC64 ? 48 : 40);
1404  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1405                               isPPC64 ? MVT::i64 : MVT::i32);
1406  Args.push_back(Entry);
1407
1408  Entry.Node = FPtr; Args.push_back(Entry);
1409  Entry.Node = Nest; Args.push_back(Entry);
1410
1411  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1412  std::pair<SDValue, SDValue> CallResult =
1413    LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
1414                false, false, false, false, 0, CallingConv::C, false,
1415                /*isReturnValueUsed=*/true,
1416                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1417                Args, DAG, dl);
1418
1419  return CallResult.second;
1420}
1421
1422SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1423                                        const PPCSubtarget &Subtarget) const {
1424  MachineFunction &MF = DAG.getMachineFunction();
1425  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1426
1427  DebugLoc dl = Op.getDebugLoc();
1428
1429  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1430    // vastart just stores the address of the VarArgsFrameIndex slot into the
1431    // memory location argument.
1432    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1433    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1434    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1435    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1436                        MachinePointerInfo(SV),
1437                        false, false, 0);
1438  }
1439
1440  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1441  // We suppose the given va_list is already allocated.
1442  //
1443  // typedef struct {
1444  //  char gpr;     /* index into the array of 8 GPRs
1445  //                 * stored in the register save area
1446  //                 * gpr=0 corresponds to r3,
1447  //                 * gpr=1 to r4, etc.
1448  //                 */
1449  //  char fpr;     /* index into the array of 8 FPRs
1450  //                 * stored in the register save area
1451  //                 * fpr=0 corresponds to f1,
1452  //                 * fpr=1 to f2, etc.
1453  //                 */
1454  //  char *overflow_arg_area;
1455  //                /* location on stack that holds
1456  //                 * the next overflow argument
1457  //                 */
1458  //  char *reg_save_area;
1459  //               /* where r3:r10 and f1:f8 (if saved)
1460  //                * are stored
1461  //                */
1462  // } va_list[1];
1463
1464
1465  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1466  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1467
1468
1469  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1470
1471  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1472                                            PtrVT);
1473  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1474                                 PtrVT);
1475
1476  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1477  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1478
1479  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1480  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1481
1482  uint64_t FPROffset = 1;
1483  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1484
1485  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1486
1487  // Store first byte : number of int regs
1488  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1489                                         Op.getOperand(1),
1490                                         MachinePointerInfo(SV),
1491                                         MVT::i8, false, false, 0);
1492  uint64_t nextOffset = FPROffset;
1493  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1494                                  ConstFPROffset);
1495
1496  // Store second byte : number of float regs
1497  SDValue secondStore =
1498    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1499                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1500                      false, false, 0);
1501  nextOffset += StackOffset;
1502  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1503
1504  // Store second word : arguments given on stack
1505  SDValue thirdStore =
1506    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1507                 MachinePointerInfo(SV, nextOffset),
1508                 false, false, 0);
1509  nextOffset += FrameOffset;
1510  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1511
1512  // Store third word : arguments given in registers
1513  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1514                      MachinePointerInfo(SV, nextOffset),
1515                      false, false, 0);
1516
1517}
1518
1519#include "PPCGenCallingConv.inc"
1520
1521static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1522                                     CCValAssign::LocInfo &LocInfo,
1523                                     ISD::ArgFlagsTy &ArgFlags,
1524                                     CCState &State) {
1525  return true;
1526}
1527
1528static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1529                                            MVT &LocVT,
1530                                            CCValAssign::LocInfo &LocInfo,
1531                                            ISD::ArgFlagsTy &ArgFlags,
1532                                            CCState &State) {
1533  static const unsigned ArgRegs[] = {
1534    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1535    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1536  };
1537  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1538
1539  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1540
1541  // Skip one register if the first unallocated register has an even register
1542  // number and there are still argument registers available which have not been
1543  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1544  // need to skip a register if RegNum is odd.
1545  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1546    State.AllocateReg(ArgRegs[RegNum]);
1547  }
1548
1549  // Always return false here, as this function only makes sure that the first
1550  // unallocated register has an odd register number and does not actually
1551  // allocate a register for the current argument.
1552  return false;
1553}
1554
1555static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1556                                              MVT &LocVT,
1557                                              CCValAssign::LocInfo &LocInfo,
1558                                              ISD::ArgFlagsTy &ArgFlags,
1559                                              CCState &State) {
1560  static const unsigned ArgRegs[] = {
1561    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1562    PPC::F8
1563  };
1564
1565  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1566
1567  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1568
1569  // If there is only one Floating-point register left we need to put both f64
1570  // values of a split ppc_fp128 value on the stack.
1571  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1572    State.AllocateReg(ArgRegs[RegNum]);
1573  }
1574
1575  // Always return false here, as this function only makes sure that the two f64
1576  // values a ppc_fp128 value is split into are both passed in registers or both
1577  // passed on the stack and does not actually allocate a register for the
1578  // current argument.
1579  return false;
1580}
1581
1582/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1583/// on Darwin.
1584static const unsigned *GetFPR() {
1585  static const unsigned FPR[] = {
1586    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1587    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1588  };
1589
1590  return FPR;
1591}
1592
1593/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1594/// the stack.
1595static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1596                                       unsigned PtrByteSize) {
1597  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1598  if (Flags.isByVal())
1599    ArgSize = Flags.getByValSize();
1600  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1601
1602  return ArgSize;
1603}
1604
1605SDValue
1606PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1607                                        CallingConv::ID CallConv, bool isVarArg,
1608                                        const SmallVectorImpl<ISD::InputArg>
1609                                          &Ins,
1610                                        DebugLoc dl, SelectionDAG &DAG,
1611                                        SmallVectorImpl<SDValue> &InVals)
1612                                          const {
1613  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1614    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1615                                     dl, DAG, InVals);
1616  } else {
1617    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1618                                       dl, DAG, InVals);
1619  }
1620}
1621
1622SDValue
1623PPCTargetLowering::LowerFormalArguments_SVR4(
1624                                      SDValue Chain,
1625                                      CallingConv::ID CallConv, bool isVarArg,
1626                                      const SmallVectorImpl<ISD::InputArg>
1627                                        &Ins,
1628                                      DebugLoc dl, SelectionDAG &DAG,
1629                                      SmallVectorImpl<SDValue> &InVals) const {
1630
1631  // 32-bit SVR4 ABI Stack Frame Layout:
1632  //              +-----------------------------------+
1633  //        +-->  |            Back chain             |
1634  //        |     +-----------------------------------+
1635  //        |     | Floating-point register save area |
1636  //        |     +-----------------------------------+
1637  //        |     |    General register save area     |
1638  //        |     +-----------------------------------+
1639  //        |     |          CR save word             |
1640  //        |     +-----------------------------------+
1641  //        |     |         VRSAVE save word          |
1642  //        |     +-----------------------------------+
1643  //        |     |         Alignment padding         |
1644  //        |     +-----------------------------------+
1645  //        |     |     Vector register save area     |
1646  //        |     +-----------------------------------+
1647  //        |     |       Local variable space        |
1648  //        |     +-----------------------------------+
1649  //        |     |        Parameter list area        |
1650  //        |     +-----------------------------------+
1651  //        |     |           LR save word            |
1652  //        |     +-----------------------------------+
1653  // SP-->  +---  |            Back chain             |
1654  //              +-----------------------------------+
1655  //
1656  // Specifications:
1657  //   System V Application Binary Interface PowerPC Processor Supplement
1658  //   AltiVec Technology Programming Interface Manual
1659
1660  MachineFunction &MF = DAG.getMachineFunction();
1661  MachineFrameInfo *MFI = MF.getFrameInfo();
1662  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1663
1664  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1665  // Potential tail calls could cause overwriting of argument stack slots.
1666  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1667  unsigned PtrByteSize = 4;
1668
1669  // Assign locations to all of the incoming arguments.
1670  SmallVector<CCValAssign, 16> ArgLocs;
1671  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1672		 getTargetMachine(), ArgLocs, *DAG.getContext());
1673
1674  // Reserve space for the linkage area on the stack.
1675  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1676
1677  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1678
1679  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1680    CCValAssign &VA = ArgLocs[i];
1681
1682    // Arguments stored in registers.
1683    if (VA.isRegLoc()) {
1684      TargetRegisterClass *RC;
1685      EVT ValVT = VA.getValVT();
1686
1687      switch (ValVT.getSimpleVT().SimpleTy) {
1688        default:
1689          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1690        case MVT::i32:
1691          RC = PPC::GPRCRegisterClass;
1692          break;
1693        case MVT::f32:
1694          RC = PPC::F4RCRegisterClass;
1695          break;
1696        case MVT::f64:
1697          RC = PPC::F8RCRegisterClass;
1698          break;
1699        case MVT::v16i8:
1700        case MVT::v8i16:
1701        case MVT::v4i32:
1702        case MVT::v4f32:
1703          RC = PPC::VRRCRegisterClass;
1704          break;
1705      }
1706
1707      // Transform the arguments stored in physical registers into virtual ones.
1708      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1709      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1710
1711      InVals.push_back(ArgValue);
1712    } else {
1713      // Argument stored in memory.
1714      assert(VA.isMemLoc());
1715
1716      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1717      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1718                                      isImmutable);
1719
1720      // Create load nodes to retrieve arguments from the stack.
1721      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1722      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1723                                   MachinePointerInfo(),
1724                                   false, false, 0));
1725    }
1726  }
1727
1728  // Assign locations to all of the incoming aggregate by value arguments.
1729  // Aggregates passed by value are stored in the local variable space of the
1730  // caller's stack frame, right above the parameter list area.
1731  SmallVector<CCValAssign, 16> ByValArgLocs;
1732  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1733		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1734
1735  // Reserve stack space for the allocations in CCInfo.
1736  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1737
1738  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1739
1740  // Area that is at least reserved in the caller of this function.
1741  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1742
1743  // Set the size that is at least reserved in caller of this function.  Tail
1744  // call optimized function's reserved stack space needs to be aligned so that
1745  // taking the difference between two stack areas will result in an aligned
1746  // stack.
1747  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1748
1749  MinReservedArea =
1750    std::max(MinReservedArea,
1751             PPCFrameLowering::getMinCallFrameSize(false, false));
1752
1753  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1754    getStackAlignment();
1755  unsigned AlignMask = TargetAlign-1;
1756  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1757
1758  FI->setMinReservedArea(MinReservedArea);
1759
1760  SmallVector<SDValue, 8> MemOps;
1761
1762  // If the function takes variable number of arguments, make a frame index for
1763  // the start of the first vararg value... for expansion of llvm.va_start.
1764  if (isVarArg) {
1765    static const unsigned GPArgRegs[] = {
1766      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1767      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1768    };
1769    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1770
1771    static const unsigned FPArgRegs[] = {
1772      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1773      PPC::F8
1774    };
1775    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1776
1777    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1778                                                          NumGPArgRegs));
1779    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1780                                                          NumFPArgRegs));
1781
1782    // Make room for NumGPArgRegs and NumFPArgRegs.
1783    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1784                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1785
1786    FuncInfo->setVarArgsStackOffset(
1787      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1788                             CCInfo.getNextStackOffset(), true));
1789
1790    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1791    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1792
1793    // The fixed integer arguments of a variadic function are stored to the
1794    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1795    // the result of va_next.
1796    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1797      // Get an existing live-in vreg, or add a new one.
1798      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1799      if (!VReg)
1800        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1801
1802      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1803      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1804                                   MachinePointerInfo(), false, false, 0);
1805      MemOps.push_back(Store);
1806      // Increment the address by four for the next argument to store
1807      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1808      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1809    }
1810
1811    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1812    // is set.
1813    // The double arguments are stored to the VarArgsFrameIndex
1814    // on the stack.
1815    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1816      // Get an existing live-in vreg, or add a new one.
1817      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1818      if (!VReg)
1819        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1820
1821      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1822      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1823                                   MachinePointerInfo(), false, false, 0);
1824      MemOps.push_back(Store);
1825      // Increment the address by eight for the next argument to store
1826      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1827                                         PtrVT);
1828      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1829    }
1830  }
1831
1832  if (!MemOps.empty())
1833    Chain = DAG.getNode(ISD::TokenFactor, dl,
1834                        MVT::Other, &MemOps[0], MemOps.size());
1835
1836  return Chain;
1837}
1838
1839SDValue
1840PPCTargetLowering::LowerFormalArguments_Darwin(
1841                                      SDValue Chain,
1842                                      CallingConv::ID CallConv, bool isVarArg,
1843                                      const SmallVectorImpl<ISD::InputArg>
1844                                        &Ins,
1845                                      DebugLoc dl, SelectionDAG &DAG,
1846                                      SmallVectorImpl<SDValue> &InVals) const {
1847  // TODO: add description of PPC stack frame format, or at least some docs.
1848  //
1849  MachineFunction &MF = DAG.getMachineFunction();
1850  MachineFrameInfo *MFI = MF.getFrameInfo();
1851  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1852
1853  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1854  bool isPPC64 = PtrVT == MVT::i64;
1855  // Potential tail calls could cause overwriting of argument stack slots.
1856  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1857  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1858
1859  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1860  // Area that is at least reserved in caller of this function.
1861  unsigned MinReservedArea = ArgOffset;
1862
1863  static const unsigned GPR_32[] = {           // 32-bit registers.
1864    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1865    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1866  };
1867  static const unsigned GPR_64[] = {           // 64-bit registers.
1868    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1869    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1870  };
1871
1872  static const unsigned *FPR = GetFPR();
1873
1874  static const unsigned VR[] = {
1875    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1876    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1877  };
1878
1879  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1880  const unsigned Num_FPR_Regs = 13;
1881  const unsigned Num_VR_Regs  = array_lengthof( VR);
1882
1883  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1884
1885  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1886
1887  // In 32-bit non-varargs functions, the stack space for vectors is after the
1888  // stack space for non-vectors.  We do not use this space unless we have
1889  // too many vectors to fit in registers, something that only occurs in
1890  // constructed examples:), but we have to walk the arglist to figure
1891  // that out...for the pathological case, compute VecArgOffset as the
1892  // start of the vector parameter area.  Computing VecArgOffset is the
1893  // entire point of the following loop.
1894  unsigned VecArgOffset = ArgOffset;
1895  if (!isVarArg && !isPPC64) {
1896    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1897         ++ArgNo) {
1898      EVT ObjectVT = Ins[ArgNo].VT;
1899      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1900      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1901
1902      if (Flags.isByVal()) {
1903        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1904        ObjSize = Flags.getByValSize();
1905        unsigned ArgSize =
1906                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1907        VecArgOffset += ArgSize;
1908        continue;
1909      }
1910
1911      switch(ObjectVT.getSimpleVT().SimpleTy) {
1912      default: llvm_unreachable("Unhandled argument type!");
1913      case MVT::i32:
1914      case MVT::f32:
1915        VecArgOffset += isPPC64 ? 8 : 4;
1916        break;
1917      case MVT::i64:  // PPC64
1918      case MVT::f64:
1919        VecArgOffset += 8;
1920        break;
1921      case MVT::v4f32:
1922      case MVT::v4i32:
1923      case MVT::v8i16:
1924      case MVT::v16i8:
1925        // Nothing to do, we're only looking at Nonvector args here.
1926        break;
1927      }
1928    }
1929  }
1930  // We've found where the vector parameter area in memory is.  Skip the
1931  // first 12 parameters; these don't use that memory.
1932  VecArgOffset = ((VecArgOffset+15)/16)*16;
1933  VecArgOffset += 12*16;
1934
1935  // Add DAG nodes to load the arguments or copy them out of registers.  On
1936  // entry to a function on PPC, the arguments start after the linkage area,
1937  // although the first ones are often in registers.
1938
1939  SmallVector<SDValue, 8> MemOps;
1940  unsigned nAltivecParamsAtEnd = 0;
1941  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1942    SDValue ArgVal;
1943    bool needsLoad = false;
1944    EVT ObjectVT = Ins[ArgNo].VT;
1945    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1946    unsigned ArgSize = ObjSize;
1947    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1948
1949    unsigned CurArgOffset = ArgOffset;
1950
1951    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1952    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1953        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1954      if (isVarArg || isPPC64) {
1955        MinReservedArea = ((MinReservedArea+15)/16)*16;
1956        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1957                                                  Flags,
1958                                                  PtrByteSize);
1959      } else  nAltivecParamsAtEnd++;
1960    } else
1961      // Calculate min reserved area.
1962      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1963                                                Flags,
1964                                                PtrByteSize);
1965
1966    // FIXME the codegen can be much improved in some cases.
1967    // We do not have to keep everything in memory.
1968    if (Flags.isByVal()) {
1969      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1970      ObjSize = Flags.getByValSize();
1971      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1972      // Objects of size 1 and 2 are right justified, everything else is
1973      // left justified.  This means the memory address is adjusted forwards.
1974      if (ObjSize==1 || ObjSize==2) {
1975        CurArgOffset = CurArgOffset + (4 - ObjSize);
1976      }
1977      // The value of the object is its address.
1978      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1979      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1980      InVals.push_back(FIN);
1981      if (ObjSize==1 || ObjSize==2) {
1982        if (GPR_idx != Num_GPR_Regs) {
1983          unsigned VReg;
1984          if (isPPC64)
1985            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1986          else
1987            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1988          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1989          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1990                                            MachinePointerInfo(),
1991                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1992                                            false, false, 0);
1993          MemOps.push_back(Store);
1994          ++GPR_idx;
1995        }
1996
1997        ArgOffset += PtrByteSize;
1998
1999        continue;
2000      }
2001      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2002        // Store whatever pieces of the object are in registers
2003        // to memory.  ArgVal will be address of the beginning of
2004        // the object.
2005        if (GPR_idx != Num_GPR_Regs) {
2006          unsigned VReg;
2007          if (isPPC64)
2008            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2009          else
2010            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2011          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2012          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2013          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2014          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2015                                       MachinePointerInfo(),
2016                                       false, false, 0);
2017          MemOps.push_back(Store);
2018          ++GPR_idx;
2019          ArgOffset += PtrByteSize;
2020        } else {
2021          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2022          break;
2023        }
2024      }
2025      continue;
2026    }
2027
2028    switch (ObjectVT.getSimpleVT().SimpleTy) {
2029    default: llvm_unreachable("Unhandled argument type!");
2030    case MVT::i32:
2031      if (!isPPC64) {
2032        if (GPR_idx != Num_GPR_Regs) {
2033          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2034          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2035          ++GPR_idx;
2036        } else {
2037          needsLoad = true;
2038          ArgSize = PtrByteSize;
2039        }
2040        // All int arguments reserve stack space in the Darwin ABI.
2041        ArgOffset += PtrByteSize;
2042        break;
2043      }
2044      // FALLTHROUGH
2045    case MVT::i64:  // PPC64
2046      if (GPR_idx != Num_GPR_Regs) {
2047        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2048        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2049
2050        if (ObjectVT == MVT::i32) {
2051          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2052          // value to MVT::i64 and then truncate to the correct register size.
2053          if (Flags.isSExt())
2054            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2055                                 DAG.getValueType(ObjectVT));
2056          else if (Flags.isZExt())
2057            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2058                                 DAG.getValueType(ObjectVT));
2059
2060          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2061        }
2062
2063        ++GPR_idx;
2064      } else {
2065        needsLoad = true;
2066        ArgSize = PtrByteSize;
2067      }
2068      // All int arguments reserve stack space in the Darwin ABI.
2069      ArgOffset += 8;
2070      break;
2071
2072    case MVT::f32:
2073    case MVT::f64:
2074      // Every 4 bytes of argument space consumes one of the GPRs available for
2075      // argument passing.
2076      if (GPR_idx != Num_GPR_Regs) {
2077        ++GPR_idx;
2078        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2079          ++GPR_idx;
2080      }
2081      if (FPR_idx != Num_FPR_Regs) {
2082        unsigned VReg;
2083
2084        if (ObjectVT == MVT::f32)
2085          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2086        else
2087          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2088
2089        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2090        ++FPR_idx;
2091      } else {
2092        needsLoad = true;
2093      }
2094
2095      // All FP arguments reserve stack space in the Darwin ABI.
2096      ArgOffset += isPPC64 ? 8 : ObjSize;
2097      break;
2098    case MVT::v4f32:
2099    case MVT::v4i32:
2100    case MVT::v8i16:
2101    case MVT::v16i8:
2102      // Note that vector arguments in registers don't reserve stack space,
2103      // except in varargs functions.
2104      if (VR_idx != Num_VR_Regs) {
2105        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2106        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2107        if (isVarArg) {
2108          while ((ArgOffset % 16) != 0) {
2109            ArgOffset += PtrByteSize;
2110            if (GPR_idx != Num_GPR_Regs)
2111              GPR_idx++;
2112          }
2113          ArgOffset += 16;
2114          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2115        }
2116        ++VR_idx;
2117      } else {
2118        if (!isVarArg && !isPPC64) {
2119          // Vectors go after all the nonvectors.
2120          CurArgOffset = VecArgOffset;
2121          VecArgOffset += 16;
2122        } else {
2123          // Vectors are aligned.
2124          ArgOffset = ((ArgOffset+15)/16)*16;
2125          CurArgOffset = ArgOffset;
2126          ArgOffset += 16;
2127        }
2128        needsLoad = true;
2129      }
2130      break;
2131    }
2132
2133    // We need to load the argument to a virtual register if we determined above
2134    // that we ran out of physical registers of the appropriate type.
2135    if (needsLoad) {
2136      int FI = MFI->CreateFixedObject(ObjSize,
2137                                      CurArgOffset + (ArgSize - ObjSize),
2138                                      isImmutable);
2139      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2140      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2141                           false, false, 0);
2142    }
2143
2144    InVals.push_back(ArgVal);
2145  }
2146
2147  // Set the size that is at least reserved in caller of this function.  Tail
2148  // call optimized function's reserved stack space needs to be aligned so that
2149  // taking the difference between two stack areas will result in an aligned
2150  // stack.
2151  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2152  // Add the Altivec parameters at the end, if needed.
2153  if (nAltivecParamsAtEnd) {
2154    MinReservedArea = ((MinReservedArea+15)/16)*16;
2155    MinReservedArea += 16*nAltivecParamsAtEnd;
2156  }
2157  MinReservedArea =
2158    std::max(MinReservedArea,
2159             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2160  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2161    getStackAlignment();
2162  unsigned AlignMask = TargetAlign-1;
2163  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2164  FI->setMinReservedArea(MinReservedArea);
2165
2166  // If the function takes variable number of arguments, make a frame index for
2167  // the start of the first vararg value... for expansion of llvm.va_start.
2168  if (isVarArg) {
2169    int Depth = ArgOffset;
2170
2171    FuncInfo->setVarArgsFrameIndex(
2172      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2173                             Depth, true));
2174    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2175
2176    // If this function is vararg, store any remaining integer argument regs
2177    // to their spots on the stack so that they may be loaded by deferencing the
2178    // result of va_next.
2179    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2180      unsigned VReg;
2181
2182      if (isPPC64)
2183        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2184      else
2185        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2186
2187      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2188      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2189                                   MachinePointerInfo(), false, false, 0);
2190      MemOps.push_back(Store);
2191      // Increment the address by four for the next argument to store
2192      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2193      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2194    }
2195  }
2196
2197  if (!MemOps.empty())
2198    Chain = DAG.getNode(ISD::TokenFactor, dl,
2199                        MVT::Other, &MemOps[0], MemOps.size());
2200
2201  return Chain;
2202}
2203
2204/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2205/// linkage area for the Darwin ABI.
2206static unsigned
2207CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2208                                     bool isPPC64,
2209                                     bool isVarArg,
2210                                     unsigned CC,
2211                                     const SmallVectorImpl<ISD::OutputArg>
2212                                       &Outs,
2213                                     const SmallVectorImpl<SDValue> &OutVals,
2214                                     unsigned &nAltivecParamsAtEnd) {
2215  // Count how many bytes are to be pushed on the stack, including the linkage
2216  // area, and parameter passing area.  We start with 24/48 bytes, which is
2217  // prereserved space for [SP][CR][LR][3 x unused].
2218  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2219  unsigned NumOps = Outs.size();
2220  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2221
2222  // Add up all the space actually used.
2223  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2224  // they all go in registers, but we must reserve stack space for them for
2225  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2226  // assigned stack space in order, with padding so Altivec parameters are
2227  // 16-byte aligned.
2228  nAltivecParamsAtEnd = 0;
2229  for (unsigned i = 0; i != NumOps; ++i) {
2230    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2231    EVT ArgVT = Outs[i].VT;
2232    // Varargs Altivec parameters are padded to a 16 byte boundary.
2233    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2234        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2235      if (!isVarArg && !isPPC64) {
2236        // Non-varargs Altivec parameters go after all the non-Altivec
2237        // parameters; handle those later so we know how much padding we need.
2238        nAltivecParamsAtEnd++;
2239        continue;
2240      }
2241      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2242      NumBytes = ((NumBytes+15)/16)*16;
2243    }
2244    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2245  }
2246
2247   // Allow for Altivec parameters at the end, if needed.
2248  if (nAltivecParamsAtEnd) {
2249    NumBytes = ((NumBytes+15)/16)*16;
2250    NumBytes += 16*nAltivecParamsAtEnd;
2251  }
2252
2253  // The prolog code of the callee may store up to 8 GPR argument registers to
2254  // the stack, allowing va_start to index over them in memory if its varargs.
2255  // Because we cannot tell if this is needed on the caller side, we have to
2256  // conservatively assume that it is needed.  As such, make sure we have at
2257  // least enough stack space for the caller to store the 8 GPRs.
2258  NumBytes = std::max(NumBytes,
2259                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2260
2261  // Tail call needs the stack to be aligned.
2262  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2263    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2264      getStackAlignment();
2265    unsigned AlignMask = TargetAlign-1;
2266    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2267  }
2268
2269  return NumBytes;
2270}
2271
2272/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2273/// adjusted to accommodate the arguments for the tailcall.
2274static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2275                                   unsigned ParamSize) {
2276
2277  if (!isTailCall) return 0;
2278
2279  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2280  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2281  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2282  // Remember only if the new adjustement is bigger.
2283  if (SPDiff < FI->getTailCallSPDelta())
2284    FI->setTailCallSPDelta(SPDiff);
2285
2286  return SPDiff;
2287}
2288
2289/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2290/// for tail call optimization. Targets which want to do tail call
2291/// optimization should implement this function.
2292bool
2293PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2294                                                     CallingConv::ID CalleeCC,
2295                                                     bool isVarArg,
2296                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2297                                                     SelectionDAG& DAG) const {
2298  if (!GuaranteedTailCallOpt)
2299    return false;
2300
2301  // Variable argument functions are not supported.
2302  if (isVarArg)
2303    return false;
2304
2305  MachineFunction &MF = DAG.getMachineFunction();
2306  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2307  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2308    // Functions containing by val parameters are not supported.
2309    for (unsigned i = 0; i != Ins.size(); i++) {
2310       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2311       if (Flags.isByVal()) return false;
2312    }
2313
2314    // Non PIC/GOT  tail calls are supported.
2315    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2316      return true;
2317
2318    // At the moment we can only do local tail calls (in same module, hidden
2319    // or protected) if we are generating PIC.
2320    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2321      return G->getGlobal()->hasHiddenVisibility()
2322          || G->getGlobal()->hasProtectedVisibility();
2323  }
2324
2325  return false;
2326}
2327
2328/// isCallCompatibleAddress - Return the immediate to use if the specified
2329/// 32-bit value is representable in the immediate field of a BxA instruction.
2330static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2331  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2332  if (!C) return 0;
2333
2334  int Addr = C->getZExtValue();
2335  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2336      (Addr << 6 >> 6) != Addr)
2337    return 0;  // Top 6 bits have to be sext of immediate.
2338
2339  return DAG.getConstant((int)C->getZExtValue() >> 2,
2340                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2341}
2342
2343namespace {
2344
2345struct TailCallArgumentInfo {
2346  SDValue Arg;
2347  SDValue FrameIdxOp;
2348  int       FrameIdx;
2349
2350  TailCallArgumentInfo() : FrameIdx(0) {}
2351};
2352
2353}
2354
2355/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2356static void
2357StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2358                                           SDValue Chain,
2359                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2360                   SmallVector<SDValue, 8> &MemOpChains,
2361                   DebugLoc dl) {
2362  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2363    SDValue Arg = TailCallArgs[i].Arg;
2364    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2365    int FI = TailCallArgs[i].FrameIdx;
2366    // Store relative to framepointer.
2367    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2368                                       MachinePointerInfo::getFixedStack(FI),
2369                                       false, false, 0));
2370  }
2371}
2372
2373/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2374/// the appropriate stack slot for the tail call optimized function call.
2375static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2376                                               MachineFunction &MF,
2377                                               SDValue Chain,
2378                                               SDValue OldRetAddr,
2379                                               SDValue OldFP,
2380                                               int SPDiff,
2381                                               bool isPPC64,
2382                                               bool isDarwinABI,
2383                                               DebugLoc dl) {
2384  if (SPDiff) {
2385    // Calculate the new stack slot for the return address.
2386    int SlotSize = isPPC64 ? 8 : 4;
2387    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2388                                                                   isDarwinABI);
2389    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2390                                                          NewRetAddrLoc, true);
2391    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2392    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2393    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2394                         MachinePointerInfo::getFixedStack(NewRetAddr),
2395                         false, false, 0);
2396
2397    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2398    // slot as the FP is never overwritten.
2399    if (isDarwinABI) {
2400      int NewFPLoc =
2401        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2402      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2403                                                          true);
2404      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2405      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2406                           MachinePointerInfo::getFixedStack(NewFPIdx),
2407                           false, false, 0);
2408    }
2409  }
2410  return Chain;
2411}
2412
2413/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2414/// the position of the argument.
2415static void
2416CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2417                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2418                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2419  int Offset = ArgOffset + SPDiff;
2420  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2421  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2422  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2423  SDValue FIN = DAG.getFrameIndex(FI, VT);
2424  TailCallArgumentInfo Info;
2425  Info.Arg = Arg;
2426  Info.FrameIdxOp = FIN;
2427  Info.FrameIdx = FI;
2428  TailCallArguments.push_back(Info);
2429}
2430
2431/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2432/// stack slot. Returns the chain as result and the loaded frame pointers in
2433/// LROpOut/FPOpout. Used when tail calling.
2434SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2435                                                        int SPDiff,
2436                                                        SDValue Chain,
2437                                                        SDValue &LROpOut,
2438                                                        SDValue &FPOpOut,
2439                                                        bool isDarwinABI,
2440                                                        DebugLoc dl) const {
2441  if (SPDiff) {
2442    // Load the LR and FP stack slot for later adjusting.
2443    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2444    LROpOut = getReturnAddrFrameIndex(DAG);
2445    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2446                          false, false, 0);
2447    Chain = SDValue(LROpOut.getNode(), 1);
2448
2449    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2450    // slot as the FP is never overwritten.
2451    if (isDarwinABI) {
2452      FPOpOut = getFramePointerFrameIndex(DAG);
2453      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2454                            false, false, 0);
2455      Chain = SDValue(FPOpOut.getNode(), 1);
2456    }
2457  }
2458  return Chain;
2459}
2460
2461/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2462/// by "Src" to address "Dst" of size "Size".  Alignment information is
2463/// specified by the specific parameter attribute. The copy will be passed as
2464/// a byval function parameter.
2465/// Sometimes what we are copying is the end of a larger object, the part that
2466/// does not fit in registers.
2467static SDValue
2468CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2469                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2470                          DebugLoc dl) {
2471  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2472  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2473                       false, false, MachinePointerInfo(0),
2474                       MachinePointerInfo(0));
2475}
2476
2477/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2478/// tail calls.
2479static void
2480LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2481                 SDValue Arg, SDValue PtrOff, int SPDiff,
2482                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2483                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2484                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2485                 DebugLoc dl) {
2486  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2487  if (!isTailCall) {
2488    if (isVector) {
2489      SDValue StackPtr;
2490      if (isPPC64)
2491        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2492      else
2493        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2494      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2495                           DAG.getConstant(ArgOffset, PtrVT));
2496    }
2497    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2498                                       MachinePointerInfo(), false, false, 0));
2499  // Calculate and remember argument location.
2500  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2501                                  TailCallArguments);
2502}
2503
2504static
2505void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2506                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2507                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2508                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2509  MachineFunction &MF = DAG.getMachineFunction();
2510
2511  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2512  // might overwrite each other in case of tail call optimization.
2513  SmallVector<SDValue, 8> MemOpChains2;
2514  // Do not flag preceding copytoreg stuff together with the following stuff.
2515  InFlag = SDValue();
2516  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2517                                    MemOpChains2, dl);
2518  if (!MemOpChains2.empty())
2519    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2520                        &MemOpChains2[0], MemOpChains2.size());
2521
2522  // Store the return address to the appropriate stack slot.
2523  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2524                                        isPPC64, isDarwinABI, dl);
2525
2526  // Emit callseq_end just before tailcall node.
2527  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2528                             DAG.getIntPtrConstant(0, true), InFlag);
2529  InFlag = Chain.getValue(1);
2530}
2531
2532static
2533unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2534                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2535                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2536                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2537                     const PPCSubtarget &PPCSubTarget) {
2538
2539  bool isPPC64 = PPCSubTarget.isPPC64();
2540  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2541
2542  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2543  NodeTys.push_back(MVT::Other);   // Returns a chain
2544  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2545
2546  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2547
2548  bool needIndirectCall = true;
2549  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2550    // If this is an absolute destination address, use the munged value.
2551    Callee = SDValue(Dest, 0);
2552    needIndirectCall = false;
2553  }
2554
2555  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2556    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2557    // Use indirect calls for ALL functions calls in JIT mode, since the
2558    // far-call stubs may be outside relocation limits for a BL instruction.
2559    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2560      unsigned OpFlags = 0;
2561      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2562          (PPCSubTarget.getTargetTriple().isMacOSX() &&
2563           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2564          (G->getGlobal()->isDeclaration() ||
2565           G->getGlobal()->isWeakForLinker())) {
2566        // PC-relative references to external symbols should go through $stub,
2567        // unless we're building with the leopard linker or later, which
2568        // automatically synthesizes these stubs.
2569        OpFlags = PPCII::MO_DARWIN_STUB;
2570      }
2571
2572      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2573      // every direct call is) turn it into a TargetGlobalAddress /
2574      // TargetExternalSymbol node so that legalize doesn't hack it.
2575      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2576                                          Callee.getValueType(),
2577                                          0, OpFlags);
2578      needIndirectCall = false;
2579    }
2580  }
2581
2582  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2583    unsigned char OpFlags = 0;
2584
2585    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2586        (PPCSubTarget.getTargetTriple().isMacOSX() &&
2587         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2588      // PC-relative references to external symbols should go through $stub,
2589      // unless we're building with the leopard linker or later, which
2590      // automatically synthesizes these stubs.
2591      OpFlags = PPCII::MO_DARWIN_STUB;
2592    }
2593
2594    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2595                                         OpFlags);
2596    needIndirectCall = false;
2597  }
2598
2599  if (needIndirectCall) {
2600    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2601    // to do the call, we can't use PPCISD::CALL.
2602    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2603
2604    if (isSVR4ABI && isPPC64) {
2605      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2606      // entry point, but to the function descriptor (the function entry point
2607      // address is part of the function descriptor though).
2608      // The function descriptor is a three doubleword structure with the
2609      // following fields: function entry point, TOC base address and
2610      // environment pointer.
2611      // Thus for a call through a function pointer, the following actions need
2612      // to be performed:
2613      //   1. Save the TOC of the caller in the TOC save area of its stack
2614      //      frame (this is done in LowerCall_Darwin()).
2615      //   2. Load the address of the function entry point from the function
2616      //      descriptor.
2617      //   3. Load the TOC of the callee from the function descriptor into r2.
2618      //   4. Load the environment pointer from the function descriptor into
2619      //      r11.
2620      //   5. Branch to the function entry point address.
2621      //   6. On return of the callee, the TOC of the caller needs to be
2622      //      restored (this is done in FinishCall()).
2623      //
2624      // All those operations are flagged together to ensure that no other
2625      // operations can be scheduled in between. E.g. without flagging the
2626      // operations together, a TOC access in the caller could be scheduled
2627      // between the load of the callee TOC and the branch to the callee, which
2628      // results in the TOC access going through the TOC of the callee instead
2629      // of going through the TOC of the caller, which leads to incorrect code.
2630
2631      // Load the address of the function entry point from the function
2632      // descriptor.
2633      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2634      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2635                                        InFlag.getNode() ? 3 : 2);
2636      Chain = LoadFuncPtr.getValue(1);
2637      InFlag = LoadFuncPtr.getValue(2);
2638
2639      // Load environment pointer into r11.
2640      // Offset of the environment pointer within the function descriptor.
2641      SDValue PtrOff = DAG.getIntPtrConstant(16);
2642
2643      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2644      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2645                                       InFlag);
2646      Chain = LoadEnvPtr.getValue(1);
2647      InFlag = LoadEnvPtr.getValue(2);
2648
2649      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2650                                        InFlag);
2651      Chain = EnvVal.getValue(0);
2652      InFlag = EnvVal.getValue(1);
2653
2654      // Load TOC of the callee into r2. We are using a target-specific load
2655      // with r2 hard coded, because the result of a target-independent load
2656      // would never go directly into r2, since r2 is a reserved register (which
2657      // prevents the register allocator from allocating it), resulting in an
2658      // additional register being allocated and an unnecessary move instruction
2659      // being generated.
2660      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2661      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2662                                       Callee, InFlag);
2663      Chain = LoadTOCPtr.getValue(0);
2664      InFlag = LoadTOCPtr.getValue(1);
2665
2666      MTCTROps[0] = Chain;
2667      MTCTROps[1] = LoadFuncPtr;
2668      MTCTROps[2] = InFlag;
2669    }
2670
2671    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2672                        2 + (InFlag.getNode() != 0));
2673    InFlag = Chain.getValue(1);
2674
2675    NodeTys.clear();
2676    NodeTys.push_back(MVT::Other);
2677    NodeTys.push_back(MVT::Glue);
2678    Ops.push_back(Chain);
2679    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2680    Callee.setNode(0);
2681    // Add CTR register as callee so a bctr can be emitted later.
2682    if (isTailCall)
2683      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2684  }
2685
2686  // If this is a direct call, pass the chain and the callee.
2687  if (Callee.getNode()) {
2688    Ops.push_back(Chain);
2689    Ops.push_back(Callee);
2690  }
2691  // If this is a tail call add stack pointer delta.
2692  if (isTailCall)
2693    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2694
2695  // Add argument registers to the end of the list so that they are known live
2696  // into the call.
2697  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2698    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2699                                  RegsToPass[i].second.getValueType()));
2700
2701  return CallOpc;
2702}
2703
2704SDValue
2705PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2706                                   CallingConv::ID CallConv, bool isVarArg,
2707                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2708                                   DebugLoc dl, SelectionDAG &DAG,
2709                                   SmallVectorImpl<SDValue> &InVals) const {
2710
2711  SmallVector<CCValAssign, 16> RVLocs;
2712  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2713		    getTargetMachine(), RVLocs, *DAG.getContext());
2714  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2715
2716  // Copy all of the result registers out of their specified physreg.
2717  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2718    CCValAssign &VA = RVLocs[i];
2719    EVT VT = VA.getValVT();
2720    assert(VA.isRegLoc() && "Can only return in registers!");
2721    Chain = DAG.getCopyFromReg(Chain, dl,
2722                               VA.getLocReg(), VT, InFlag).getValue(1);
2723    InVals.push_back(Chain.getValue(0));
2724    InFlag = Chain.getValue(2);
2725  }
2726
2727  return Chain;
2728}
2729
2730SDValue
2731PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2732                              bool isTailCall, bool isVarArg,
2733                              SelectionDAG &DAG,
2734                              SmallVector<std::pair<unsigned, SDValue>, 8>
2735                                &RegsToPass,
2736                              SDValue InFlag, SDValue Chain,
2737                              SDValue &Callee,
2738                              int SPDiff, unsigned NumBytes,
2739                              const SmallVectorImpl<ISD::InputArg> &Ins,
2740                              SmallVectorImpl<SDValue> &InVals) const {
2741  std::vector<EVT> NodeTys;
2742  SmallVector<SDValue, 8> Ops;
2743  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2744                                 isTailCall, RegsToPass, Ops, NodeTys,
2745                                 PPCSubTarget);
2746
2747  // When performing tail call optimization the callee pops its arguments off
2748  // the stack. Account for this here so these bytes can be pushed back on in
2749  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2750  int BytesCalleePops =
2751    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2752
2753  if (InFlag.getNode())
2754    Ops.push_back(InFlag);
2755
2756  // Emit tail call.
2757  if (isTailCall) {
2758    // If this is the first return lowered for this function, add the regs
2759    // to the liveout set for the function.
2760    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2761      SmallVector<CCValAssign, 16> RVLocs;
2762      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2763		     getTargetMachine(), RVLocs, *DAG.getContext());
2764      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2765      for (unsigned i = 0; i != RVLocs.size(); ++i)
2766        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2767    }
2768
2769    assert(((Callee.getOpcode() == ISD::Register &&
2770             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2771            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2772            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2773            isa<ConstantSDNode>(Callee)) &&
2774    "Expecting an global address, external symbol, absolute value or register");
2775
2776    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2777  }
2778
2779  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2780  InFlag = Chain.getValue(1);
2781
2782  // Add a NOP immediately after the branch instruction when using the 64-bit
2783  // SVR4 ABI. At link time, if caller and callee are in a different module and
2784  // thus have a different TOC, the call will be replaced with a call to a stub
2785  // function which saves the current TOC, loads the TOC of the callee and
2786  // branches to the callee. The NOP will be replaced with a load instruction
2787  // which restores the TOC of the caller from the TOC save slot of the current
2788  // stack frame. If caller and callee belong to the same module (and have the
2789  // same TOC), the NOP will remain unchanged.
2790  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2791    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2792    if (CallOpc == PPCISD::BCTRL_SVR4) {
2793      // This is a call through a function pointer.
2794      // Restore the caller TOC from the save area into R2.
2795      // See PrepareCall() for more information about calls through function
2796      // pointers in the 64-bit SVR4 ABI.
2797      // We are using a target-specific load with r2 hard coded, because the
2798      // result of a target-independent load would never go directly into r2,
2799      // since r2 is a reserved register (which prevents the register allocator
2800      // from allocating it), resulting in an additional register being
2801      // allocated and an unnecessary move instruction being generated.
2802      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2803      InFlag = Chain.getValue(1);
2804    } else {
2805      // Otherwise insert NOP.
2806      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2807    }
2808  }
2809
2810  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2811                             DAG.getIntPtrConstant(BytesCalleePops, true),
2812                             InFlag);
2813  if (!Ins.empty())
2814    InFlag = Chain.getValue(1);
2815
2816  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2817                         Ins, dl, DAG, InVals);
2818}
2819
2820SDValue
2821PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2822                             CallingConv::ID CallConv, bool isVarArg,
2823                             bool &isTailCall,
2824                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2825                             const SmallVectorImpl<SDValue> &OutVals,
2826                             const SmallVectorImpl<ISD::InputArg> &Ins,
2827                             DebugLoc dl, SelectionDAG &DAG,
2828                             SmallVectorImpl<SDValue> &InVals) const {
2829  if (isTailCall)
2830    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2831                                                   Ins, DAG);
2832
2833  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2834    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2835                          isTailCall, Outs, OutVals, Ins,
2836                          dl, DAG, InVals);
2837
2838  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2839                          isTailCall, Outs, OutVals, Ins,
2840                          dl, DAG, InVals);
2841}
2842
2843SDValue
2844PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2845                                  CallingConv::ID CallConv, bool isVarArg,
2846                                  bool isTailCall,
2847                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2848                                  const SmallVectorImpl<SDValue> &OutVals,
2849                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2850                                  DebugLoc dl, SelectionDAG &DAG,
2851                                  SmallVectorImpl<SDValue> &InVals) const {
2852  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2853  // of the 32-bit SVR4 ABI stack frame layout.
2854
2855  assert((CallConv == CallingConv::C ||
2856          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2857
2858  unsigned PtrByteSize = 4;
2859
2860  MachineFunction &MF = DAG.getMachineFunction();
2861
2862  // Mark this function as potentially containing a function that contains a
2863  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2864  // and restoring the callers stack pointer in this functions epilog. This is
2865  // done because by tail calling the called function might overwrite the value
2866  // in this function's (MF) stack pointer stack slot 0(SP).
2867  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2868    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2869
2870  // Count how many bytes are to be pushed on the stack, including the linkage
2871  // area, parameter list area and the part of the local variable space which
2872  // contains copies of aggregates which are passed by value.
2873
2874  // Assign locations to all of the outgoing arguments.
2875  SmallVector<CCValAssign, 16> ArgLocs;
2876  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2877		 getTargetMachine(), ArgLocs, *DAG.getContext());
2878
2879  // Reserve space for the linkage area on the stack.
2880  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2881
2882  if (isVarArg) {
2883    // Handle fixed and variable vector arguments differently.
2884    // Fixed vector arguments go into registers as long as registers are
2885    // available. Variable vector arguments always go into memory.
2886    unsigned NumArgs = Outs.size();
2887
2888    for (unsigned i = 0; i != NumArgs; ++i) {
2889      MVT ArgVT = Outs[i].VT;
2890      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2891      bool Result;
2892
2893      if (Outs[i].IsFixed) {
2894        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2895                             CCInfo);
2896      } else {
2897        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2898                                    ArgFlags, CCInfo);
2899      }
2900
2901      if (Result) {
2902#ifndef NDEBUG
2903        errs() << "Call operand #" << i << " has unhandled type "
2904             << EVT(ArgVT).getEVTString() << "\n";
2905#endif
2906        llvm_unreachable(0);
2907      }
2908    }
2909  } else {
2910    // All arguments are treated the same.
2911    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2912  }
2913
2914  // Assign locations to all of the outgoing aggregate by value arguments.
2915  SmallVector<CCValAssign, 16> ByValArgLocs;
2916  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2917		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2918
2919  // Reserve stack space for the allocations in CCInfo.
2920  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2921
2922  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2923
2924  // Size of the linkage area, parameter list area and the part of the local
2925  // space variable where copies of aggregates which are passed by value are
2926  // stored.
2927  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2928
2929  // Calculate by how many bytes the stack has to be adjusted in case of tail
2930  // call optimization.
2931  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2932
2933  // Adjust the stack pointer for the new arguments...
2934  // These operations are automatically eliminated by the prolog/epilog pass
2935  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2936  SDValue CallSeqStart = Chain;
2937
2938  // Load the return address and frame pointer so it can be moved somewhere else
2939  // later.
2940  SDValue LROp, FPOp;
2941  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2942                                       dl);
2943
2944  // Set up a copy of the stack pointer for use loading and storing any
2945  // arguments that may not fit in the registers available for argument
2946  // passing.
2947  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2948
2949  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2950  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2951  SmallVector<SDValue, 8> MemOpChains;
2952
2953  bool seenFloatArg = false;
2954  // Walk the register/memloc assignments, inserting copies/loads.
2955  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2956       i != e;
2957       ++i) {
2958    CCValAssign &VA = ArgLocs[i];
2959    SDValue Arg = OutVals[i];
2960    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2961
2962    if (Flags.isByVal()) {
2963      // Argument is an aggregate which is passed by value, thus we need to
2964      // create a copy of it in the local variable space of the current stack
2965      // frame (which is the stack frame of the caller) and pass the address of
2966      // this copy to the callee.
2967      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2968      CCValAssign &ByValVA = ByValArgLocs[j++];
2969      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2970
2971      // Memory reserved in the local variable space of the callers stack frame.
2972      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2973
2974      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2975      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2976
2977      // Create a copy of the argument in the local area of the current
2978      // stack frame.
2979      SDValue MemcpyCall =
2980        CreateCopyOfByValArgument(Arg, PtrOff,
2981                                  CallSeqStart.getNode()->getOperand(0),
2982                                  Flags, DAG, dl);
2983
2984      // This must go outside the CALLSEQ_START..END.
2985      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2986                           CallSeqStart.getNode()->getOperand(1));
2987      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2988                             NewCallSeqStart.getNode());
2989      Chain = CallSeqStart = NewCallSeqStart;
2990
2991      // Pass the address of the aggregate copy on the stack either in a
2992      // physical register or in the parameter list area of the current stack
2993      // frame to the callee.
2994      Arg = PtrOff;
2995    }
2996
2997    if (VA.isRegLoc()) {
2998      seenFloatArg |= VA.getLocVT().isFloatingPoint();
2999      // Put argument in a physical register.
3000      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3001    } else {
3002      // Put argument in the parameter list area of the current stack frame.
3003      assert(VA.isMemLoc());
3004      unsigned LocMemOffset = VA.getLocMemOffset();
3005
3006      if (!isTailCall) {
3007        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3008        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3009
3010        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3011                                           MachinePointerInfo(),
3012                                           false, false, 0));
3013      } else {
3014        // Calculate and remember argument location.
3015        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3016                                 TailCallArguments);
3017      }
3018    }
3019  }
3020
3021  if (!MemOpChains.empty())
3022    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3023                        &MemOpChains[0], MemOpChains.size());
3024
3025  // Set CR6 to true if this is a vararg call with floating args passed in
3026  // registers.
3027  if (isVarArg) {
3028    SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET,
3029                                     dl, MVT::i32), 0);
3030    RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3031  }
3032
3033  // Build a sequence of copy-to-reg nodes chained together with token chain
3034  // and flag operands which copy the outgoing args into the appropriate regs.
3035  SDValue InFlag;
3036  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3037    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3038                             RegsToPass[i].second, InFlag);
3039    InFlag = Chain.getValue(1);
3040  }
3041
3042  if (isTailCall)
3043    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3044                    false, TailCallArguments);
3045
3046  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3047                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3048                    Ins, InVals);
3049}
3050
3051SDValue
3052PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3053                                    CallingConv::ID CallConv, bool isVarArg,
3054                                    bool isTailCall,
3055                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3056                                    const SmallVectorImpl<SDValue> &OutVals,
3057                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3058                                    DebugLoc dl, SelectionDAG &DAG,
3059                                    SmallVectorImpl<SDValue> &InVals) const {
3060
3061  unsigned NumOps  = Outs.size();
3062
3063  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3064  bool isPPC64 = PtrVT == MVT::i64;
3065  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3066
3067  MachineFunction &MF = DAG.getMachineFunction();
3068
3069  // Mark this function as potentially containing a function that contains a
3070  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3071  // and restoring the callers stack pointer in this functions epilog. This is
3072  // done because by tail calling the called function might overwrite the value
3073  // in this function's (MF) stack pointer stack slot 0(SP).
3074  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
3075    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3076
3077  unsigned nAltivecParamsAtEnd = 0;
3078
3079  // Count how many bytes are to be pushed on the stack, including the linkage
3080  // area, and parameter passing area.  We start with 24/48 bytes, which is
3081  // prereserved space for [SP][CR][LR][3 x unused].
3082  unsigned NumBytes =
3083    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3084                                         Outs, OutVals,
3085                                         nAltivecParamsAtEnd);
3086
3087  // Calculate by how many bytes the stack has to be adjusted in case of tail
3088  // call optimization.
3089  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3090
3091  // To protect arguments on the stack from being clobbered in a tail call,
3092  // force all the loads to happen before doing any other lowering.
3093  if (isTailCall)
3094    Chain = DAG.getStackArgumentTokenFactor(Chain);
3095
3096  // Adjust the stack pointer for the new arguments...
3097  // These operations are automatically eliminated by the prolog/epilog pass
3098  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3099  SDValue CallSeqStart = Chain;
3100
3101  // Load the return address and frame pointer so it can be move somewhere else
3102  // later.
3103  SDValue LROp, FPOp;
3104  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3105                                       dl);
3106
3107  // Set up a copy of the stack pointer for use loading and storing any
3108  // arguments that may not fit in the registers available for argument
3109  // passing.
3110  SDValue StackPtr;
3111  if (isPPC64)
3112    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3113  else
3114    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3115
3116  // Figure out which arguments are going to go in registers, and which in
3117  // memory.  Also, if this is a vararg function, floating point operations
3118  // must be stored to our stack, and loaded into integer regs as well, if
3119  // any integer regs are available for argument passing.
3120  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3121  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3122
3123  static const unsigned GPR_32[] = {           // 32-bit registers.
3124    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3125    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3126  };
3127  static const unsigned GPR_64[] = {           // 64-bit registers.
3128    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3129    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3130  };
3131  static const unsigned *FPR = GetFPR();
3132
3133  static const unsigned VR[] = {
3134    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3135    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3136  };
3137  const unsigned NumGPRs = array_lengthof(GPR_32);
3138  const unsigned NumFPRs = 13;
3139  const unsigned NumVRs  = array_lengthof(VR);
3140
3141  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3142
3143  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3144  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3145
3146  SmallVector<SDValue, 8> MemOpChains;
3147  for (unsigned i = 0; i != NumOps; ++i) {
3148    SDValue Arg = OutVals[i];
3149    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3150
3151    // PtrOff will be used to store the current argument to the stack if a
3152    // register cannot be found for it.
3153    SDValue PtrOff;
3154
3155    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3156
3157    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3158
3159    // On PPC64, promote integers to 64-bit values.
3160    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3161      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3162      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3163      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3164    }
3165
3166    // FIXME memcpy is used way more than necessary.  Correctness first.
3167    if (Flags.isByVal()) {
3168      unsigned Size = Flags.getByValSize();
3169      if (Size==1 || Size==2) {
3170        // Very small objects are passed right-justified.
3171        // Everything else is passed left-justified.
3172        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3173        if (GPR_idx != NumGPRs) {
3174          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3175                                        MachinePointerInfo(), VT,
3176                                        false, false, 0);
3177          MemOpChains.push_back(Load.getValue(1));
3178          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3179
3180          ArgOffset += PtrByteSize;
3181        } else {
3182          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3183          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3184          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3185                                CallSeqStart.getNode()->getOperand(0),
3186                                Flags, DAG, dl);
3187          // This must go outside the CALLSEQ_START..END.
3188          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3189                               CallSeqStart.getNode()->getOperand(1));
3190          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3191                                 NewCallSeqStart.getNode());
3192          Chain = CallSeqStart = NewCallSeqStart;
3193          ArgOffset += PtrByteSize;
3194        }
3195        continue;
3196      }
3197      // Copy entire object into memory.  There are cases where gcc-generated
3198      // code assumes it is there, even if it could be put entirely into
3199      // registers.  (This is not what the doc says.)
3200      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3201                            CallSeqStart.getNode()->getOperand(0),
3202                            Flags, DAG, dl);
3203      // This must go outside the CALLSEQ_START..END.
3204      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3205                           CallSeqStart.getNode()->getOperand(1));
3206      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3207      Chain = CallSeqStart = NewCallSeqStart;
3208      // And copy the pieces of it that fit into registers.
3209      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3210        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3211        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3212        if (GPR_idx != NumGPRs) {
3213          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3214                                     MachinePointerInfo(),
3215                                     false, false, 0);
3216          MemOpChains.push_back(Load.getValue(1));
3217          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3218          ArgOffset += PtrByteSize;
3219        } else {
3220          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3221          break;
3222        }
3223      }
3224      continue;
3225    }
3226
3227    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3228    default: llvm_unreachable("Unexpected ValueType for argument!");
3229    case MVT::i32:
3230    case MVT::i64:
3231      if (GPR_idx != NumGPRs) {
3232        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3233      } else {
3234        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3235                         isPPC64, isTailCall, false, MemOpChains,
3236                         TailCallArguments, dl);
3237      }
3238      ArgOffset += PtrByteSize;
3239      break;
3240    case MVT::f32:
3241    case MVT::f64:
3242      if (FPR_idx != NumFPRs) {
3243        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3244
3245        if (isVarArg) {
3246          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3247                                       MachinePointerInfo(), false, false, 0);
3248          MemOpChains.push_back(Store);
3249
3250          // Float varargs are always shadowed in available integer registers
3251          if (GPR_idx != NumGPRs) {
3252            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3253                                       MachinePointerInfo(), false, false, 0);
3254            MemOpChains.push_back(Load.getValue(1));
3255            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3256          }
3257          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3258            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3259            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3260            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3261                                       MachinePointerInfo(),
3262                                       false, false, 0);
3263            MemOpChains.push_back(Load.getValue(1));
3264            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3265          }
3266        } else {
3267          // If we have any FPRs remaining, we may also have GPRs remaining.
3268          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3269          // GPRs.
3270          if (GPR_idx != NumGPRs)
3271            ++GPR_idx;
3272          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3273              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3274            ++GPR_idx;
3275        }
3276      } else {
3277        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3278                         isPPC64, isTailCall, false, MemOpChains,
3279                         TailCallArguments, dl);
3280      }
3281      if (isPPC64)
3282        ArgOffset += 8;
3283      else
3284        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3285      break;
3286    case MVT::v4f32:
3287    case MVT::v4i32:
3288    case MVT::v8i16:
3289    case MVT::v16i8:
3290      if (isVarArg) {
3291        // These go aligned on the stack, or in the corresponding R registers
3292        // when within range.  The Darwin PPC ABI doc claims they also go in
3293        // V registers; in fact gcc does this only for arguments that are
3294        // prototyped, not for those that match the ...  We do it for all
3295        // arguments, seems to work.
3296        while (ArgOffset % 16 !=0) {
3297          ArgOffset += PtrByteSize;
3298          if (GPR_idx != NumGPRs)
3299            GPR_idx++;
3300        }
3301        // We could elide this store in the case where the object fits
3302        // entirely in R registers.  Maybe later.
3303        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3304                            DAG.getConstant(ArgOffset, PtrVT));
3305        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3306                                     MachinePointerInfo(), false, false, 0);
3307        MemOpChains.push_back(Store);
3308        if (VR_idx != NumVRs) {
3309          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3310                                     MachinePointerInfo(),
3311                                     false, false, 0);
3312          MemOpChains.push_back(Load.getValue(1));
3313          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3314        }
3315        ArgOffset += 16;
3316        for (unsigned i=0; i<16; i+=PtrByteSize) {
3317          if (GPR_idx == NumGPRs)
3318            break;
3319          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3320                                  DAG.getConstant(i, PtrVT));
3321          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3322                                     false, false, 0);
3323          MemOpChains.push_back(Load.getValue(1));
3324          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3325        }
3326        break;
3327      }
3328
3329      // Non-varargs Altivec params generally go in registers, but have
3330      // stack space allocated at the end.
3331      if (VR_idx != NumVRs) {
3332        // Doesn't have GPR space allocated.
3333        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3334      } else if (nAltivecParamsAtEnd==0) {
3335        // We are emitting Altivec params in order.
3336        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3337                         isPPC64, isTailCall, true, MemOpChains,
3338                         TailCallArguments, dl);
3339        ArgOffset += 16;
3340      }
3341      break;
3342    }
3343  }
3344  // If all Altivec parameters fit in registers, as they usually do,
3345  // they get stack space following the non-Altivec parameters.  We
3346  // don't track this here because nobody below needs it.
3347  // If there are more Altivec parameters than fit in registers emit
3348  // the stores here.
3349  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3350    unsigned j = 0;
3351    // Offset is aligned; skip 1st 12 params which go in V registers.
3352    ArgOffset = ((ArgOffset+15)/16)*16;
3353    ArgOffset += 12*16;
3354    for (unsigned i = 0; i != NumOps; ++i) {
3355      SDValue Arg = OutVals[i];
3356      EVT ArgType = Outs[i].VT;
3357      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3358          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3359        if (++j > NumVRs) {
3360          SDValue PtrOff;
3361          // We are emitting Altivec params in order.
3362          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3363                           isPPC64, isTailCall, true, MemOpChains,
3364                           TailCallArguments, dl);
3365          ArgOffset += 16;
3366        }
3367      }
3368    }
3369  }
3370
3371  if (!MemOpChains.empty())
3372    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3373                        &MemOpChains[0], MemOpChains.size());
3374
3375  // Check if this is an indirect call (MTCTR/BCTRL).
3376  // See PrepareCall() for more information about calls through function
3377  // pointers in the 64-bit SVR4 ABI.
3378  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3379      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3380      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3381      !isBLACompatibleAddress(Callee, DAG)) {
3382    // Load r2 into a virtual register and store it to the TOC save area.
3383    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3384    // TOC save area offset.
3385    SDValue PtrOff = DAG.getIntPtrConstant(40);
3386    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3387    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3388                         false, false, 0);
3389  }
3390
3391  // On Darwin, R12 must contain the address of an indirect callee.  This does
3392  // not mean the MTCTR instruction must use R12; it's easier to model this as
3393  // an extra parameter, so do that.
3394  if (!isTailCall &&
3395      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3396      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3397      !isBLACompatibleAddress(Callee, DAG))
3398    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3399                                                   PPC::R12), Callee));
3400
3401  // Build a sequence of copy-to-reg nodes chained together with token chain
3402  // and flag operands which copy the outgoing args into the appropriate regs.
3403  SDValue InFlag;
3404  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3405    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3406                             RegsToPass[i].second, InFlag);
3407    InFlag = Chain.getValue(1);
3408  }
3409
3410  if (isTailCall)
3411    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3412                    FPOp, true, TailCallArguments);
3413
3414  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3415                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3416                    Ins, InVals);
3417}
3418
3419bool
3420PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3421                                  MachineFunction &MF, bool isVarArg,
3422                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3423                                  LLVMContext &Context) const {
3424  SmallVector<CCValAssign, 16> RVLocs;
3425  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3426                 RVLocs, Context);
3427  return CCInfo.CheckReturn(Outs, RetCC_PPC);
3428}
3429
3430SDValue
3431PPCTargetLowering::LowerReturn(SDValue Chain,
3432                               CallingConv::ID CallConv, bool isVarArg,
3433                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3434                               const SmallVectorImpl<SDValue> &OutVals,
3435                               DebugLoc dl, SelectionDAG &DAG) const {
3436
3437  SmallVector<CCValAssign, 16> RVLocs;
3438  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3439		 getTargetMachine(), RVLocs, *DAG.getContext());
3440  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3441
3442  // If this is the first return lowered for this function, add the regs to the
3443  // liveout set for the function.
3444  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3445    for (unsigned i = 0; i != RVLocs.size(); ++i)
3446      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3447  }
3448
3449  SDValue Flag;
3450
3451  // Copy the result values into the output registers.
3452  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3453    CCValAssign &VA = RVLocs[i];
3454    assert(VA.isRegLoc() && "Can only return in registers!");
3455    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3456                             OutVals[i], Flag);
3457    Flag = Chain.getValue(1);
3458  }
3459
3460  if (Flag.getNode())
3461    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3462  else
3463    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3464}
3465
3466SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3467                                   const PPCSubtarget &Subtarget) const {
3468  // When we pop the dynamic allocation we need to restore the SP link.
3469  DebugLoc dl = Op.getDebugLoc();
3470
3471  // Get the corect type for pointers.
3472  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3473
3474  // Construct the stack pointer operand.
3475  bool isPPC64 = Subtarget.isPPC64();
3476  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3477  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3478
3479  // Get the operands for the STACKRESTORE.
3480  SDValue Chain = Op.getOperand(0);
3481  SDValue SaveSP = Op.getOperand(1);
3482
3483  // Load the old link SP.
3484  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3485                                   MachinePointerInfo(),
3486                                   false, false, 0);
3487
3488  // Restore the stack pointer.
3489  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3490
3491  // Store the old link SP.
3492  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3493                      false, false, 0);
3494}
3495
3496
3497
3498SDValue
3499PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3500  MachineFunction &MF = DAG.getMachineFunction();
3501  bool isPPC64 = PPCSubTarget.isPPC64();
3502  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3503  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3504
3505  // Get current frame pointer save index.  The users of this index will be
3506  // primarily DYNALLOC instructions.
3507  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3508  int RASI = FI->getReturnAddrSaveIndex();
3509
3510  // If the frame pointer save index hasn't been defined yet.
3511  if (!RASI) {
3512    // Find out what the fix offset of the frame pointer save area.
3513    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3514    // Allocate the frame index for frame pointer save area.
3515    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3516    // Save the result.
3517    FI->setReturnAddrSaveIndex(RASI);
3518  }
3519  return DAG.getFrameIndex(RASI, PtrVT);
3520}
3521
3522SDValue
3523PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3524  MachineFunction &MF = DAG.getMachineFunction();
3525  bool isPPC64 = PPCSubTarget.isPPC64();
3526  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3527  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3528
3529  // Get current frame pointer save index.  The users of this index will be
3530  // primarily DYNALLOC instructions.
3531  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3532  int FPSI = FI->getFramePointerSaveIndex();
3533
3534  // If the frame pointer save index hasn't been defined yet.
3535  if (!FPSI) {
3536    // Find out what the fix offset of the frame pointer save area.
3537    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3538                                                           isDarwinABI);
3539
3540    // Allocate the frame index for frame pointer save area.
3541    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3542    // Save the result.
3543    FI->setFramePointerSaveIndex(FPSI);
3544  }
3545  return DAG.getFrameIndex(FPSI, PtrVT);
3546}
3547
3548SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3549                                         SelectionDAG &DAG,
3550                                         const PPCSubtarget &Subtarget) const {
3551  // Get the inputs.
3552  SDValue Chain = Op.getOperand(0);
3553  SDValue Size  = Op.getOperand(1);
3554  DebugLoc dl = Op.getDebugLoc();
3555
3556  // Get the corect type for pointers.
3557  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3558  // Negate the size.
3559  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3560                                  DAG.getConstant(0, PtrVT), Size);
3561  // Construct a node for the frame pointer save index.
3562  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3563  // Build a DYNALLOC node.
3564  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3565  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3566  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3567}
3568
3569/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3570/// possible.
3571SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3572  // Not FP? Not a fsel.
3573  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3574      !Op.getOperand(2).getValueType().isFloatingPoint())
3575    return Op;
3576
3577  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3578
3579  // Cannot handle SETEQ/SETNE.
3580  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3581
3582  EVT ResVT = Op.getValueType();
3583  EVT CmpVT = Op.getOperand(0).getValueType();
3584  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3585  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3586  DebugLoc dl = Op.getDebugLoc();
3587
3588  // If the RHS of the comparison is a 0.0, we don't need to do the
3589  // subtraction at all.
3590  if (isFloatingPointZero(RHS))
3591    switch (CC) {
3592    default: break;       // SETUO etc aren't handled by fsel.
3593    case ISD::SETULT:
3594    case ISD::SETLT:
3595      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3596    case ISD::SETOGE:
3597    case ISD::SETGE:
3598      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3599        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3600      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3601    case ISD::SETUGT:
3602    case ISD::SETGT:
3603      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3604    case ISD::SETOLE:
3605    case ISD::SETLE:
3606      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3607        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3608      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3609                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3610    }
3611
3612  SDValue Cmp;
3613  switch (CC) {
3614  default: break;       // SETUO etc aren't handled by fsel.
3615  case ISD::SETULT:
3616  case ISD::SETLT:
3617    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3618    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3619      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3620      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3621  case ISD::SETOGE:
3622  case ISD::SETGE:
3623    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3624    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3625      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3626      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3627  case ISD::SETUGT:
3628  case ISD::SETGT:
3629    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3630    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3631      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3632      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3633  case ISD::SETOLE:
3634  case ISD::SETLE:
3635    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3636    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3637      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3638      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3639  }
3640  return Op;
3641}
3642
3643// FIXME: Split this code up when LegalizeDAGTypes lands.
3644SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3645                                           DebugLoc dl) const {
3646  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3647  SDValue Src = Op.getOperand(0);
3648  if (Src.getValueType() == MVT::f32)
3649    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3650
3651  SDValue Tmp;
3652  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3653  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3654  case MVT::i32:
3655    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3656                                                         PPCISD::FCTIDZ,
3657                      dl, MVT::f64, Src);
3658    break;
3659  case MVT::i64:
3660    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3661    break;
3662  }
3663
3664  // Convert the FP value to an int value through memory.
3665  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3666
3667  // Emit a store to the stack slot.
3668  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3669                               MachinePointerInfo(), false, false, 0);
3670
3671  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3672  // add in a bias.
3673  if (Op.getValueType() == MVT::i32)
3674    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3675                        DAG.getConstant(4, FIPtr.getValueType()));
3676  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3677                     false, false, 0);
3678}
3679
3680SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3681                                           SelectionDAG &DAG) const {
3682  DebugLoc dl = Op.getDebugLoc();
3683  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3684  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3685    return SDValue();
3686
3687  if (Op.getOperand(0).getValueType() == MVT::i64) {
3688    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3689    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3690    if (Op.getValueType() == MVT::f32)
3691      FP = DAG.getNode(ISD::FP_ROUND, dl,
3692                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3693    return FP;
3694  }
3695
3696  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3697         "Unhandled SINT_TO_FP type in custom expander!");
3698  // Since we only generate this in 64-bit mode, we can take advantage of
3699  // 64-bit registers.  In particular, sign extend the input value into the
3700  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3701  // then lfd it and fcfid it.
3702  MachineFunction &MF = DAG.getMachineFunction();
3703  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3704  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3705  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3706  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3707
3708  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3709                                Op.getOperand(0));
3710
3711  // STD the extended value into the stack slot.
3712  MachineMemOperand *MMO =
3713    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3714                            MachineMemOperand::MOStore, 8, 8);
3715  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3716  SDValue Store =
3717    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3718                            Ops, 4, MVT::i64, MMO);
3719  // Load the value as a double.
3720  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3721                           false, false, 0);
3722
3723  // FCFID it and return it.
3724  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3725  if (Op.getValueType() == MVT::f32)
3726    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3727  return FP;
3728}
3729
3730SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3731                                            SelectionDAG &DAG) const {
3732  DebugLoc dl = Op.getDebugLoc();
3733  /*
3734   The rounding mode is in bits 30:31 of FPSR, and has the following
3735   settings:
3736     00 Round to nearest
3737     01 Round to 0
3738     10 Round to +inf
3739     11 Round to -inf
3740
3741  FLT_ROUNDS, on the other hand, expects the following:
3742    -1 Undefined
3743     0 Round to 0
3744     1 Round to nearest
3745     2 Round to +inf
3746     3 Round to -inf
3747
3748  To perform the conversion, we do:
3749    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3750  */
3751
3752  MachineFunction &MF = DAG.getMachineFunction();
3753  EVT VT = Op.getValueType();
3754  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3755  std::vector<EVT> NodeTys;
3756  SDValue MFFSreg, InFlag;
3757
3758  // Save FP Control Word to register
3759  NodeTys.push_back(MVT::f64);    // return register
3760  NodeTys.push_back(MVT::Glue);   // unused in this context
3761  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3762
3763  // Save FP register to stack slot
3764  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3765  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3766  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3767                               StackSlot, MachinePointerInfo(), false, false,0);
3768
3769  // Load FP Control Word from low 32 bits of stack slot.
3770  SDValue Four = DAG.getConstant(4, PtrVT);
3771  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3772  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3773                            false, false, 0);
3774
3775  // Transform as necessary
3776  SDValue CWD1 =
3777    DAG.getNode(ISD::AND, dl, MVT::i32,
3778                CWD, DAG.getConstant(3, MVT::i32));
3779  SDValue CWD2 =
3780    DAG.getNode(ISD::SRL, dl, MVT::i32,
3781                DAG.getNode(ISD::AND, dl, MVT::i32,
3782                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3783                                        CWD, DAG.getConstant(3, MVT::i32)),
3784                            DAG.getConstant(3, MVT::i32)),
3785                DAG.getConstant(1, MVT::i32));
3786
3787  SDValue RetVal =
3788    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3789
3790  return DAG.getNode((VT.getSizeInBits() < 16 ?
3791                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3792}
3793
3794SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3795  EVT VT = Op.getValueType();
3796  unsigned BitWidth = VT.getSizeInBits();
3797  DebugLoc dl = Op.getDebugLoc();
3798  assert(Op.getNumOperands() == 3 &&
3799         VT == Op.getOperand(1).getValueType() &&
3800         "Unexpected SHL!");
3801
3802  // Expand into a bunch of logical ops.  Note that these ops
3803  // depend on the PPC behavior for oversized shift amounts.
3804  SDValue Lo = Op.getOperand(0);
3805  SDValue Hi = Op.getOperand(1);
3806  SDValue Amt = Op.getOperand(2);
3807  EVT AmtVT = Amt.getValueType();
3808
3809  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3810                             DAG.getConstant(BitWidth, AmtVT), Amt);
3811  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3812  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3813  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3814  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3815                             DAG.getConstant(-BitWidth, AmtVT));
3816  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3817  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3818  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3819  SDValue OutOps[] = { OutLo, OutHi };
3820  return DAG.getMergeValues(OutOps, 2, dl);
3821}
3822
3823SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3824  EVT VT = Op.getValueType();
3825  DebugLoc dl = Op.getDebugLoc();
3826  unsigned BitWidth = VT.getSizeInBits();
3827  assert(Op.getNumOperands() == 3 &&
3828         VT == Op.getOperand(1).getValueType() &&
3829         "Unexpected SRL!");
3830
3831  // Expand into a bunch of logical ops.  Note that these ops
3832  // depend on the PPC behavior for oversized shift amounts.
3833  SDValue Lo = Op.getOperand(0);
3834  SDValue Hi = Op.getOperand(1);
3835  SDValue Amt = Op.getOperand(2);
3836  EVT AmtVT = Amt.getValueType();
3837
3838  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3839                             DAG.getConstant(BitWidth, AmtVT), Amt);
3840  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3841  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3842  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3843  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3844                             DAG.getConstant(-BitWidth, AmtVT));
3845  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3846  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3847  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3848  SDValue OutOps[] = { OutLo, OutHi };
3849  return DAG.getMergeValues(OutOps, 2, dl);
3850}
3851
3852SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3853  DebugLoc dl = Op.getDebugLoc();
3854  EVT VT = Op.getValueType();
3855  unsigned BitWidth = VT.getSizeInBits();
3856  assert(Op.getNumOperands() == 3 &&
3857         VT == Op.getOperand(1).getValueType() &&
3858         "Unexpected SRA!");
3859
3860  // Expand into a bunch of logical ops, followed by a select_cc.
3861  SDValue Lo = Op.getOperand(0);
3862  SDValue Hi = Op.getOperand(1);
3863  SDValue Amt = Op.getOperand(2);
3864  EVT AmtVT = Amt.getValueType();
3865
3866  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3867                             DAG.getConstant(BitWidth, AmtVT), Amt);
3868  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3869  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3870  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3871  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3872                             DAG.getConstant(-BitWidth, AmtVT));
3873  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3874  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3875  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3876                                  Tmp4, Tmp6, ISD::SETLE);
3877  SDValue OutOps[] = { OutLo, OutHi };
3878  return DAG.getMergeValues(OutOps, 2, dl);
3879}
3880
3881//===----------------------------------------------------------------------===//
3882// Vector related lowering.
3883//
3884
3885/// BuildSplatI - Build a canonical splati of Val with an element size of
3886/// SplatSize.  Cast the result to VT.
3887static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3888                             SelectionDAG &DAG, DebugLoc dl) {
3889  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3890
3891  static const EVT VTys[] = { // canonical VT to use for each size.
3892    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3893  };
3894
3895  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3896
3897  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3898  if (Val == -1)
3899    SplatSize = 1;
3900
3901  EVT CanonicalVT = VTys[SplatSize-1];
3902
3903  // Build a canonical splat for this value.
3904  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3905  SmallVector<SDValue, 8> Ops;
3906  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3907  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3908                              &Ops[0], Ops.size());
3909  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3910}
3911
3912/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3913/// specified intrinsic ID.
3914static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3915                                SelectionDAG &DAG, DebugLoc dl,
3916                                EVT DestVT = MVT::Other) {
3917  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3918  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3919                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3920}
3921
3922/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3923/// specified intrinsic ID.
3924static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3925                                SDValue Op2, SelectionDAG &DAG,
3926                                DebugLoc dl, EVT DestVT = MVT::Other) {
3927  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3928  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3929                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3930}
3931
3932
3933/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3934/// amount.  The result has the specified value type.
3935static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3936                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3937  // Force LHS/RHS to be the right type.
3938  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3939  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3940
3941  int Ops[16];
3942  for (unsigned i = 0; i != 16; ++i)
3943    Ops[i] = i + Amt;
3944  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3945  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3946}
3947
3948// If this is a case we can't handle, return null and let the default
3949// expansion code take care of it.  If we CAN select this case, and if it
3950// selects to a single instruction, return Op.  Otherwise, if we can codegen
3951// this case more efficiently than a constant pool load, lower it to the
3952// sequence of ops that should be used.
3953SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3954                                             SelectionDAG &DAG) const {
3955  DebugLoc dl = Op.getDebugLoc();
3956  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3957  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3958
3959  // Check if this is a splat of a constant value.
3960  APInt APSplatBits, APSplatUndef;
3961  unsigned SplatBitSize;
3962  bool HasAnyUndefs;
3963  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3964                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3965    return SDValue();
3966
3967  unsigned SplatBits = APSplatBits.getZExtValue();
3968  unsigned SplatUndef = APSplatUndef.getZExtValue();
3969  unsigned SplatSize = SplatBitSize / 8;
3970
3971  // First, handle single instruction cases.
3972
3973  // All zeros?
3974  if (SplatBits == 0) {
3975    // Canonicalize all zero vectors to be v4i32.
3976    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3977      SDValue Z = DAG.getConstant(0, MVT::i32);
3978      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3979      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3980    }
3981    return Op;
3982  }
3983
3984  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3985  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3986                    (32-SplatBitSize));
3987  if (SextVal >= -16 && SextVal <= 15)
3988    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3989
3990
3991  // Two instruction sequences.
3992
3993  // If this value is in the range [-32,30] and is even, use:
3994  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3995  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3996    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3997    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3998    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3999  }
4000
4001  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
4002  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
4003  // for fneg/fabs.
4004  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
4005    // Make -1 and vspltisw -1:
4006    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
4007
4008    // Make the VSLW intrinsic, computing 0x8000_0000.
4009    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
4010                                   OnesV, DAG, dl);
4011
4012    // xor by OnesV to invert it.
4013    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
4014    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4015  }
4016
4017  // Check to see if this is a wide variety of vsplti*, binop self cases.
4018  static const signed char SplatCsts[] = {
4019    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4020    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4021  };
4022
4023  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4024    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4025    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4026    int i = SplatCsts[idx];
4027
4028    // Figure out what shift amount will be used by altivec if shifted by i in
4029    // this splat size.
4030    unsigned TypeShiftAmt = i & (SplatBitSize-1);
4031
4032    // vsplti + shl self.
4033    if (SextVal == (i << (int)TypeShiftAmt)) {
4034      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4035      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4036        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4037        Intrinsic::ppc_altivec_vslw
4038      };
4039      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4040      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4041    }
4042
4043    // vsplti + srl self.
4044    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4045      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4046      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4047        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4048        Intrinsic::ppc_altivec_vsrw
4049      };
4050      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4051      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4052    }
4053
4054    // vsplti + sra self.
4055    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4056      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4057      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4058        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4059        Intrinsic::ppc_altivec_vsraw
4060      };
4061      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4062      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4063    }
4064
4065    // vsplti + rol self.
4066    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4067                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4068      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4069      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4070        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4071        Intrinsic::ppc_altivec_vrlw
4072      };
4073      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4074      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4075    }
4076
4077    // t = vsplti c, result = vsldoi t, t, 1
4078    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4079      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4080      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4081    }
4082    // t = vsplti c, result = vsldoi t, t, 2
4083    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4084      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4085      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4086    }
4087    // t = vsplti c, result = vsldoi t, t, 3
4088    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4089      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4090      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4091    }
4092  }
4093
4094  // Three instruction sequences.
4095
4096  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4097  if (SextVal >= 0 && SextVal <= 31) {
4098    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4099    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4100    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4101    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4102  }
4103  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4104  if (SextVal >= -31 && SextVal <= 0) {
4105    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4106    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4107    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4108    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4109  }
4110
4111  return SDValue();
4112}
4113
4114/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4115/// the specified operations to build the shuffle.
4116static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4117                                      SDValue RHS, SelectionDAG &DAG,
4118                                      DebugLoc dl) {
4119  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4120  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4121  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4122
4123  enum {
4124    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4125    OP_VMRGHW,
4126    OP_VMRGLW,
4127    OP_VSPLTISW0,
4128    OP_VSPLTISW1,
4129    OP_VSPLTISW2,
4130    OP_VSPLTISW3,
4131    OP_VSLDOI4,
4132    OP_VSLDOI8,
4133    OP_VSLDOI12
4134  };
4135
4136  if (OpNum == OP_COPY) {
4137    if (LHSID == (1*9+2)*9+3) return LHS;
4138    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4139    return RHS;
4140  }
4141
4142  SDValue OpLHS, OpRHS;
4143  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4144  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4145
4146  int ShufIdxs[16];
4147  switch (OpNum) {
4148  default: llvm_unreachable("Unknown i32 permute!");
4149  case OP_VMRGHW:
4150    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4151    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4152    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4153    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4154    break;
4155  case OP_VMRGLW:
4156    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4157    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4158    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4159    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4160    break;
4161  case OP_VSPLTISW0:
4162    for (unsigned i = 0; i != 16; ++i)
4163      ShufIdxs[i] = (i&3)+0;
4164    break;
4165  case OP_VSPLTISW1:
4166    for (unsigned i = 0; i != 16; ++i)
4167      ShufIdxs[i] = (i&3)+4;
4168    break;
4169  case OP_VSPLTISW2:
4170    for (unsigned i = 0; i != 16; ++i)
4171      ShufIdxs[i] = (i&3)+8;
4172    break;
4173  case OP_VSPLTISW3:
4174    for (unsigned i = 0; i != 16; ++i)
4175      ShufIdxs[i] = (i&3)+12;
4176    break;
4177  case OP_VSLDOI4:
4178    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4179  case OP_VSLDOI8:
4180    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4181  case OP_VSLDOI12:
4182    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4183  }
4184  EVT VT = OpLHS.getValueType();
4185  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4186  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4187  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4188  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4189}
4190
4191/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4192/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4193/// return the code it can be lowered into.  Worst case, it can always be
4194/// lowered into a vperm.
4195SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4196                                               SelectionDAG &DAG) const {
4197  DebugLoc dl = Op.getDebugLoc();
4198  SDValue V1 = Op.getOperand(0);
4199  SDValue V2 = Op.getOperand(1);
4200  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4201  EVT VT = Op.getValueType();
4202
4203  // Cases that are handled by instructions that take permute immediates
4204  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4205  // selected by the instruction selector.
4206  if (V2.getOpcode() == ISD::UNDEF) {
4207    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4208        PPC::isSplatShuffleMask(SVOp, 2) ||
4209        PPC::isSplatShuffleMask(SVOp, 4) ||
4210        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4211        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4212        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4213        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4214        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4215        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4216        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4217        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4218        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4219      return Op;
4220    }
4221  }
4222
4223  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4224  // and produce a fixed permutation.  If any of these match, do not lower to
4225  // VPERM.
4226  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4227      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4228      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4229      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4230      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4231      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4232      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4233      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4234      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4235    return Op;
4236
4237  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4238  // perfect shuffle table to emit an optimal matching sequence.
4239  SmallVector<int, 16> PermMask;
4240  SVOp->getMask(PermMask);
4241
4242  unsigned PFIndexes[4];
4243  bool isFourElementShuffle = true;
4244  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4245    unsigned EltNo = 8;   // Start out undef.
4246    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4247      if (PermMask[i*4+j] < 0)
4248        continue;   // Undef, ignore it.
4249
4250      unsigned ByteSource = PermMask[i*4+j];
4251      if ((ByteSource & 3) != j) {
4252        isFourElementShuffle = false;
4253        break;
4254      }
4255
4256      if (EltNo == 8) {
4257        EltNo = ByteSource/4;
4258      } else if (EltNo != ByteSource/4) {
4259        isFourElementShuffle = false;
4260        break;
4261      }
4262    }
4263    PFIndexes[i] = EltNo;
4264  }
4265
4266  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4267  // perfect shuffle vector to determine if it is cost effective to do this as
4268  // discrete instructions, or whether we should use a vperm.
4269  if (isFourElementShuffle) {
4270    // Compute the index in the perfect shuffle table.
4271    unsigned PFTableIndex =
4272      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4273
4274    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4275    unsigned Cost  = (PFEntry >> 30);
4276
4277    // Determining when to avoid vperm is tricky.  Many things affect the cost
4278    // of vperm, particularly how many times the perm mask needs to be computed.
4279    // For example, if the perm mask can be hoisted out of a loop or is already
4280    // used (perhaps because there are multiple permutes with the same shuffle
4281    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4282    // the loop requires an extra register.
4283    //
4284    // As a compromise, we only emit discrete instructions if the shuffle can be
4285    // generated in 3 or fewer operations.  When we have loop information
4286    // available, if this block is within a loop, we should avoid using vperm
4287    // for 3-operation perms and use a constant pool load instead.
4288    if (Cost < 3)
4289      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4290  }
4291
4292  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4293  // vector that will get spilled to the constant pool.
4294  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4295
4296  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4297  // that it is in input element units, not in bytes.  Convert now.
4298  EVT EltVT = V1.getValueType().getVectorElementType();
4299  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4300
4301  SmallVector<SDValue, 16> ResultMask;
4302  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4303    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4304
4305    for (unsigned j = 0; j != BytesPerElement; ++j)
4306      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4307                                           MVT::i32));
4308  }
4309
4310  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4311                                    &ResultMask[0], ResultMask.size());
4312  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4313}
4314
4315/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4316/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4317/// information about the intrinsic.
4318static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4319                                  bool &isDot) {
4320  unsigned IntrinsicID =
4321    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4322  CompareOpc = -1;
4323  isDot = false;
4324  switch (IntrinsicID) {
4325  default: return false;
4326    // Comparison predicates.
4327  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4328  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4329  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4330  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4331  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4332  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4333  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4334  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4335  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4336  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4337  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4338  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4339  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4340
4341    // Normal Comparisons.
4342  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4343  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4344  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4345  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4346  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4347  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4348  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4349  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4350  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4351  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4352  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4353  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4354  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4355  }
4356  return true;
4357}
4358
4359/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4360/// lower, do it, otherwise return null.
4361SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4362                                                   SelectionDAG &DAG) const {
4363  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4364  // opcode number of the comparison.
4365  DebugLoc dl = Op.getDebugLoc();
4366  int CompareOpc;
4367  bool isDot;
4368  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4369    return SDValue();    // Don't custom lower most intrinsics.
4370
4371  // If this is a non-dot comparison, make the VCMP node and we are done.
4372  if (!isDot) {
4373    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4374                              Op.getOperand(1), Op.getOperand(2),
4375                              DAG.getConstant(CompareOpc, MVT::i32));
4376    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4377  }
4378
4379  // Create the PPCISD altivec 'dot' comparison node.
4380  SDValue Ops[] = {
4381    Op.getOperand(2),  // LHS
4382    Op.getOperand(3),  // RHS
4383    DAG.getConstant(CompareOpc, MVT::i32)
4384  };
4385  std::vector<EVT> VTs;
4386  VTs.push_back(Op.getOperand(2).getValueType());
4387  VTs.push_back(MVT::Glue);
4388  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4389
4390  // Now that we have the comparison, emit a copy from the CR to a GPR.
4391  // This is flagged to the above dot comparison.
4392  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4393                                DAG.getRegister(PPC::CR6, MVT::i32),
4394                                CompNode.getValue(1));
4395
4396  // Unpack the result based on how the target uses it.
4397  unsigned BitNo;   // Bit # of CR6.
4398  bool InvertBit;   // Invert result?
4399  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4400  default:  // Can't happen, don't crash on invalid number though.
4401  case 0:   // Return the value of the EQ bit of CR6.
4402    BitNo = 0; InvertBit = false;
4403    break;
4404  case 1:   // Return the inverted value of the EQ bit of CR6.
4405    BitNo = 0; InvertBit = true;
4406    break;
4407  case 2:   // Return the value of the LT bit of CR6.
4408    BitNo = 2; InvertBit = false;
4409    break;
4410  case 3:   // Return the inverted value of the LT bit of CR6.
4411    BitNo = 2; InvertBit = true;
4412    break;
4413  }
4414
4415  // Shift the bit into the low position.
4416  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4417                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4418  // Isolate the bit.
4419  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4420                      DAG.getConstant(1, MVT::i32));
4421
4422  // If we are supposed to, toggle the bit.
4423  if (InvertBit)
4424    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4425                        DAG.getConstant(1, MVT::i32));
4426  return Flags;
4427}
4428
4429SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4430                                                   SelectionDAG &DAG) const {
4431  DebugLoc dl = Op.getDebugLoc();
4432  // Create a stack slot that is 16-byte aligned.
4433  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4434  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4435  EVT PtrVT = getPointerTy();
4436  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4437
4438  // Store the input value into Value#0 of the stack slot.
4439  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4440                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4441                               false, false, 0);
4442  // Load it out.
4443  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4444                     false, false, 0);
4445}
4446
4447SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4448  DebugLoc dl = Op.getDebugLoc();
4449  if (Op.getValueType() == MVT::v4i32) {
4450    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4451
4452    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4453    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4454
4455    SDValue RHSSwap =   // = vrlw RHS, 16
4456      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4457
4458    // Shrinkify inputs to v8i16.
4459    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4460    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4461    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4462
4463    // Low parts multiplied together, generating 32-bit results (we ignore the
4464    // top parts).
4465    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4466                                        LHS, RHS, DAG, dl, MVT::v4i32);
4467
4468    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4469                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4470    // Shift the high parts up 16 bits.
4471    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4472                              Neg16, DAG, dl);
4473    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4474  } else if (Op.getValueType() == MVT::v8i16) {
4475    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4476
4477    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4478
4479    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4480                            LHS, RHS, Zero, DAG, dl);
4481  } else if (Op.getValueType() == MVT::v16i8) {
4482    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4483
4484    // Multiply the even 8-bit parts, producing 16-bit sums.
4485    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4486                                           LHS, RHS, DAG, dl, MVT::v8i16);
4487    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4488
4489    // Multiply the odd 8-bit parts, producing 16-bit sums.
4490    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4491                                          LHS, RHS, DAG, dl, MVT::v8i16);
4492    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4493
4494    // Merge the results together.
4495    int Ops[16];
4496    for (unsigned i = 0; i != 8; ++i) {
4497      Ops[i*2  ] = 2*i+1;
4498      Ops[i*2+1] = 2*i+1+16;
4499    }
4500    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4501  } else {
4502    llvm_unreachable("Unknown mul to lower!");
4503  }
4504}
4505
4506/// LowerOperation - Provide custom lowering hooks for some operations.
4507///
4508SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4509  switch (Op.getOpcode()) {
4510  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4511  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4512  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4513  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4514  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4515  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4516  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4517  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
4518  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
4519  case ISD::VASTART:
4520    return LowerVASTART(Op, DAG, PPCSubTarget);
4521
4522  case ISD::VAARG:
4523    return LowerVAARG(Op, DAG, PPCSubTarget);
4524
4525  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4526  case ISD::DYNAMIC_STACKALLOC:
4527    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4528
4529  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4530  case ISD::FP_TO_UINT:
4531  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4532                                                       Op.getDebugLoc());
4533  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4534  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4535
4536  // Lower 64-bit shifts.
4537  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4538  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4539  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4540
4541  // Vector-related lowering.
4542  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4543  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4544  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4545  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4546  case ISD::MUL:                return LowerMUL(Op, DAG);
4547
4548  // Frame & Return address.
4549  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4550  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4551  }
4552  return SDValue();
4553}
4554
4555void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4556                                           SmallVectorImpl<SDValue>&Results,
4557                                           SelectionDAG &DAG) const {
4558  const TargetMachine &TM = getTargetMachine();
4559  DebugLoc dl = N->getDebugLoc();
4560  switch (N->getOpcode()) {
4561  default:
4562    assert(false && "Do not know how to custom type legalize this operation!");
4563    return;
4564  case ISD::VAARG: {
4565    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4566        || TM.getSubtarget<PPCSubtarget>().isPPC64())
4567      return;
4568
4569    EVT VT = N->getValueType(0);
4570
4571    if (VT == MVT::i64) {
4572      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4573
4574      Results.push_back(NewNode);
4575      Results.push_back(NewNode.getValue(1));
4576    }
4577    return;
4578  }
4579  case ISD::FP_ROUND_INREG: {
4580    assert(N->getValueType(0) == MVT::ppcf128);
4581    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4582    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4583                             MVT::f64, N->getOperand(0),
4584                             DAG.getIntPtrConstant(0));
4585    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4586                             MVT::f64, N->getOperand(0),
4587                             DAG.getIntPtrConstant(1));
4588
4589    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4590    // of the long double, and puts FPSCR back the way it was.  We do not
4591    // actually model FPSCR.
4592    std::vector<EVT> NodeTys;
4593    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4594
4595    NodeTys.push_back(MVT::f64);   // Return register
4596    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4597    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4598    MFFSreg = Result.getValue(0);
4599    InFlag = Result.getValue(1);
4600
4601    NodeTys.clear();
4602    NodeTys.push_back(MVT::Glue);   // Returns a flag
4603    Ops[0] = DAG.getConstant(31, MVT::i32);
4604    Ops[1] = InFlag;
4605    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4606    InFlag = Result.getValue(0);
4607
4608    NodeTys.clear();
4609    NodeTys.push_back(MVT::Glue);   // Returns a flag
4610    Ops[0] = DAG.getConstant(30, MVT::i32);
4611    Ops[1] = InFlag;
4612    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4613    InFlag = Result.getValue(0);
4614
4615    NodeTys.clear();
4616    NodeTys.push_back(MVT::f64);    // result of add
4617    NodeTys.push_back(MVT::Glue);   // Returns a flag
4618    Ops[0] = Lo;
4619    Ops[1] = Hi;
4620    Ops[2] = InFlag;
4621    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4622    FPreg = Result.getValue(0);
4623    InFlag = Result.getValue(1);
4624
4625    NodeTys.clear();
4626    NodeTys.push_back(MVT::f64);
4627    Ops[0] = DAG.getConstant(1, MVT::i32);
4628    Ops[1] = MFFSreg;
4629    Ops[2] = FPreg;
4630    Ops[3] = InFlag;
4631    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4632    FPreg = Result.getValue(0);
4633
4634    // We know the low half is about to be thrown away, so just use something
4635    // convenient.
4636    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4637                                FPreg, FPreg));
4638    return;
4639  }
4640  case ISD::FP_TO_SINT:
4641    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4642    return;
4643  }
4644}
4645
4646
4647//===----------------------------------------------------------------------===//
4648//  Other Lowering Code
4649//===----------------------------------------------------------------------===//
4650
4651MachineBasicBlock *
4652PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4653                                    bool is64bit, unsigned BinOpcode) const {
4654  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4655  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4656
4657  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4658  MachineFunction *F = BB->getParent();
4659  MachineFunction::iterator It = BB;
4660  ++It;
4661
4662  unsigned dest = MI->getOperand(0).getReg();
4663  unsigned ptrA = MI->getOperand(1).getReg();
4664  unsigned ptrB = MI->getOperand(2).getReg();
4665  unsigned incr = MI->getOperand(3).getReg();
4666  DebugLoc dl = MI->getDebugLoc();
4667
4668  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4669  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4670  F->insert(It, loopMBB);
4671  F->insert(It, exitMBB);
4672  exitMBB->splice(exitMBB->begin(), BB,
4673                  llvm::next(MachineBasicBlock::iterator(MI)),
4674                  BB->end());
4675  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4676
4677  MachineRegisterInfo &RegInfo = F->getRegInfo();
4678  unsigned TmpReg = (!BinOpcode) ? incr :
4679    RegInfo.createVirtualRegister(
4680       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4681                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4682
4683  //  thisMBB:
4684  //   ...
4685  //   fallthrough --> loopMBB
4686  BB->addSuccessor(loopMBB);
4687
4688  //  loopMBB:
4689  //   l[wd]arx dest, ptr
4690  //   add r0, dest, incr
4691  //   st[wd]cx. r0, ptr
4692  //   bne- loopMBB
4693  //   fallthrough --> exitMBB
4694  BB = loopMBB;
4695  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4696    .addReg(ptrA).addReg(ptrB);
4697  if (BinOpcode)
4698    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4699  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4700    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4701  BuildMI(BB, dl, TII->get(PPC::BCC))
4702    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4703  BB->addSuccessor(loopMBB);
4704  BB->addSuccessor(exitMBB);
4705
4706  //  exitMBB:
4707  //   ...
4708  BB = exitMBB;
4709  return BB;
4710}
4711
4712MachineBasicBlock *
4713PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4714                                            MachineBasicBlock *BB,
4715                                            bool is8bit,    // operation
4716                                            unsigned BinOpcode) const {
4717  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4718  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4719  // In 64 bit mode we have to use 64 bits for addresses, even though the
4720  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4721  // registers without caring whether they're 32 or 64, but here we're
4722  // doing actual arithmetic on the addresses.
4723  bool is64bit = PPCSubTarget.isPPC64();
4724  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4725
4726  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4727  MachineFunction *F = BB->getParent();
4728  MachineFunction::iterator It = BB;
4729  ++It;
4730
4731  unsigned dest = MI->getOperand(0).getReg();
4732  unsigned ptrA = MI->getOperand(1).getReg();
4733  unsigned ptrB = MI->getOperand(2).getReg();
4734  unsigned incr = MI->getOperand(3).getReg();
4735  DebugLoc dl = MI->getDebugLoc();
4736
4737  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4738  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4739  F->insert(It, loopMBB);
4740  F->insert(It, exitMBB);
4741  exitMBB->splice(exitMBB->begin(), BB,
4742                  llvm::next(MachineBasicBlock::iterator(MI)),
4743                  BB->end());
4744  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4745
4746  MachineRegisterInfo &RegInfo = F->getRegInfo();
4747  const TargetRegisterClass *RC =
4748    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4749              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4750  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4751  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4752  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4753  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4754  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4755  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4756  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4757  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4758  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4759  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4760  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4761  unsigned Ptr1Reg;
4762  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4763
4764  //  thisMBB:
4765  //   ...
4766  //   fallthrough --> loopMBB
4767  BB->addSuccessor(loopMBB);
4768
4769  // The 4-byte load must be aligned, while a char or short may be
4770  // anywhere in the word.  Hence all this nasty bookkeeping code.
4771  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4772  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4773  //   xori shift, shift1, 24 [16]
4774  //   rlwinm ptr, ptr1, 0, 0, 29
4775  //   slw incr2, incr, shift
4776  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4777  //   slw mask, mask2, shift
4778  //  loopMBB:
4779  //   lwarx tmpDest, ptr
4780  //   add tmp, tmpDest, incr2
4781  //   andc tmp2, tmpDest, mask
4782  //   and tmp3, tmp, mask
4783  //   or tmp4, tmp3, tmp2
4784  //   stwcx. tmp4, ptr
4785  //   bne- loopMBB
4786  //   fallthrough --> exitMBB
4787  //   srw dest, tmpDest, shift
4788  if (ptrA != ZeroReg) {
4789    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4790    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4791      .addReg(ptrA).addReg(ptrB);
4792  } else {
4793    Ptr1Reg = ptrB;
4794  }
4795  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4796      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4797  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4798      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4799  if (is64bit)
4800    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4801      .addReg(Ptr1Reg).addImm(0).addImm(61);
4802  else
4803    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4804      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4805  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4806      .addReg(incr).addReg(ShiftReg);
4807  if (is8bit)
4808    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4809  else {
4810    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4811    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4812  }
4813  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4814      .addReg(Mask2Reg).addReg(ShiftReg);
4815
4816  BB = loopMBB;
4817  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4818    .addReg(ZeroReg).addReg(PtrReg);
4819  if (BinOpcode)
4820    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4821      .addReg(Incr2Reg).addReg(TmpDestReg);
4822  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4823    .addReg(TmpDestReg).addReg(MaskReg);
4824  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4825    .addReg(TmpReg).addReg(MaskReg);
4826  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4827    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4828  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4829    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4830  BuildMI(BB, dl, TII->get(PPC::BCC))
4831    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4832  BB->addSuccessor(loopMBB);
4833  BB->addSuccessor(exitMBB);
4834
4835  //  exitMBB:
4836  //   ...
4837  BB = exitMBB;
4838  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4839    .addReg(ShiftReg);
4840  return BB;
4841}
4842
4843MachineBasicBlock *
4844PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4845                                               MachineBasicBlock *BB) const {
4846  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4847
4848  // To "insert" these instructions we actually have to insert their
4849  // control-flow patterns.
4850  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4851  MachineFunction::iterator It = BB;
4852  ++It;
4853
4854  MachineFunction *F = BB->getParent();
4855
4856  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4857      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4858      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4859      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4860      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4861
4862    // The incoming instruction knows the destination vreg to set, the
4863    // condition code register to branch on, the true/false values to
4864    // select between, and a branch opcode to use.
4865
4866    //  thisMBB:
4867    //  ...
4868    //   TrueVal = ...
4869    //   cmpTY ccX, r1, r2
4870    //   bCC copy1MBB
4871    //   fallthrough --> copy0MBB
4872    MachineBasicBlock *thisMBB = BB;
4873    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4874    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4875    unsigned SelectPred = MI->getOperand(4).getImm();
4876    DebugLoc dl = MI->getDebugLoc();
4877    F->insert(It, copy0MBB);
4878    F->insert(It, sinkMBB);
4879
4880    // Transfer the remainder of BB and its successor edges to sinkMBB.
4881    sinkMBB->splice(sinkMBB->begin(), BB,
4882                    llvm::next(MachineBasicBlock::iterator(MI)),
4883                    BB->end());
4884    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4885
4886    // Next, add the true and fallthrough blocks as its successors.
4887    BB->addSuccessor(copy0MBB);
4888    BB->addSuccessor(sinkMBB);
4889
4890    BuildMI(BB, dl, TII->get(PPC::BCC))
4891      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4892
4893    //  copy0MBB:
4894    //   %FalseValue = ...
4895    //   # fallthrough to sinkMBB
4896    BB = copy0MBB;
4897
4898    // Update machine-CFG edges
4899    BB->addSuccessor(sinkMBB);
4900
4901    //  sinkMBB:
4902    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4903    //  ...
4904    BB = sinkMBB;
4905    BuildMI(*BB, BB->begin(), dl,
4906            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4907      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4908      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4909  }
4910  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4911    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4912  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4913    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4914  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4915    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4916  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4917    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4918
4919  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4920    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4921  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4922    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4923  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4924    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4925  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4926    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4927
4928  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4929    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4930  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4931    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4932  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4933    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4934  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4935    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4936
4937  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4938    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4939  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4940    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4941  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4942    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4943  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4944    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4945
4946  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4947    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4948  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4949    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4950  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4951    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4952  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4953    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4954
4955  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4956    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4957  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4958    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4959  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4960    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4961  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4962    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4963
4964  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4965    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4966  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4967    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4968  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4969    BB = EmitAtomicBinary(MI, BB, false, 0);
4970  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4971    BB = EmitAtomicBinary(MI, BB, true, 0);
4972
4973  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4974           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4975    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4976
4977    unsigned dest   = MI->getOperand(0).getReg();
4978    unsigned ptrA   = MI->getOperand(1).getReg();
4979    unsigned ptrB   = MI->getOperand(2).getReg();
4980    unsigned oldval = MI->getOperand(3).getReg();
4981    unsigned newval = MI->getOperand(4).getReg();
4982    DebugLoc dl     = MI->getDebugLoc();
4983
4984    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4985    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4986    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4987    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4988    F->insert(It, loop1MBB);
4989    F->insert(It, loop2MBB);
4990    F->insert(It, midMBB);
4991    F->insert(It, exitMBB);
4992    exitMBB->splice(exitMBB->begin(), BB,
4993                    llvm::next(MachineBasicBlock::iterator(MI)),
4994                    BB->end());
4995    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4996
4997    //  thisMBB:
4998    //   ...
4999    //   fallthrough --> loopMBB
5000    BB->addSuccessor(loop1MBB);
5001
5002    // loop1MBB:
5003    //   l[wd]arx dest, ptr
5004    //   cmp[wd] dest, oldval
5005    //   bne- midMBB
5006    // loop2MBB:
5007    //   st[wd]cx. newval, ptr
5008    //   bne- loopMBB
5009    //   b exitBB
5010    // midMBB:
5011    //   st[wd]cx. dest, ptr
5012    // exitBB:
5013    BB = loop1MBB;
5014    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5015      .addReg(ptrA).addReg(ptrB);
5016    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
5017      .addReg(oldval).addReg(dest);
5018    BuildMI(BB, dl, TII->get(PPC::BCC))
5019      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5020    BB->addSuccessor(loop2MBB);
5021    BB->addSuccessor(midMBB);
5022
5023    BB = loop2MBB;
5024    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5025      .addReg(newval).addReg(ptrA).addReg(ptrB);
5026    BuildMI(BB, dl, TII->get(PPC::BCC))
5027      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5028    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5029    BB->addSuccessor(loop1MBB);
5030    BB->addSuccessor(exitMBB);
5031
5032    BB = midMBB;
5033    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5034      .addReg(dest).addReg(ptrA).addReg(ptrB);
5035    BB->addSuccessor(exitMBB);
5036
5037    //  exitMBB:
5038    //   ...
5039    BB = exitMBB;
5040  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5041             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5042    // We must use 64-bit registers for addresses when targeting 64-bit,
5043    // since we're actually doing arithmetic on them.  Other registers
5044    // can be 32-bit.
5045    bool is64bit = PPCSubTarget.isPPC64();
5046    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5047
5048    unsigned dest   = MI->getOperand(0).getReg();
5049    unsigned ptrA   = MI->getOperand(1).getReg();
5050    unsigned ptrB   = MI->getOperand(2).getReg();
5051    unsigned oldval = MI->getOperand(3).getReg();
5052    unsigned newval = MI->getOperand(4).getReg();
5053    DebugLoc dl     = MI->getDebugLoc();
5054
5055    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5056    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5057    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5058    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5059    F->insert(It, loop1MBB);
5060    F->insert(It, loop2MBB);
5061    F->insert(It, midMBB);
5062    F->insert(It, exitMBB);
5063    exitMBB->splice(exitMBB->begin(), BB,
5064                    llvm::next(MachineBasicBlock::iterator(MI)),
5065                    BB->end());
5066    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5067
5068    MachineRegisterInfo &RegInfo = F->getRegInfo();
5069    const TargetRegisterClass *RC =
5070      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5071                (const TargetRegisterClass *) &PPC::GPRCRegClass;
5072    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5073    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5074    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5075    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5076    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5077    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5078    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5079    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5080    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5081    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5082    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5083    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5084    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5085    unsigned Ptr1Reg;
5086    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5087    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5088    //  thisMBB:
5089    //   ...
5090    //   fallthrough --> loopMBB
5091    BB->addSuccessor(loop1MBB);
5092
5093    // The 4-byte load must be aligned, while a char or short may be
5094    // anywhere in the word.  Hence all this nasty bookkeeping code.
5095    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5096    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5097    //   xori shift, shift1, 24 [16]
5098    //   rlwinm ptr, ptr1, 0, 0, 29
5099    //   slw newval2, newval, shift
5100    //   slw oldval2, oldval,shift
5101    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5102    //   slw mask, mask2, shift
5103    //   and newval3, newval2, mask
5104    //   and oldval3, oldval2, mask
5105    // loop1MBB:
5106    //   lwarx tmpDest, ptr
5107    //   and tmp, tmpDest, mask
5108    //   cmpw tmp, oldval3
5109    //   bne- midMBB
5110    // loop2MBB:
5111    //   andc tmp2, tmpDest, mask
5112    //   or tmp4, tmp2, newval3
5113    //   stwcx. tmp4, ptr
5114    //   bne- loop1MBB
5115    //   b exitBB
5116    // midMBB:
5117    //   stwcx. tmpDest, ptr
5118    // exitBB:
5119    //   srw dest, tmpDest, shift
5120    if (ptrA != ZeroReg) {
5121      Ptr1Reg = RegInfo.createVirtualRegister(RC);
5122      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5123        .addReg(ptrA).addReg(ptrB);
5124    } else {
5125      Ptr1Reg = ptrB;
5126    }
5127    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5128        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5129    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5130        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5131    if (is64bit)
5132      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5133        .addReg(Ptr1Reg).addImm(0).addImm(61);
5134    else
5135      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5136        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5137    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5138        .addReg(newval).addReg(ShiftReg);
5139    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5140        .addReg(oldval).addReg(ShiftReg);
5141    if (is8bit)
5142      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5143    else {
5144      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5145      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5146        .addReg(Mask3Reg).addImm(65535);
5147    }
5148    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5149        .addReg(Mask2Reg).addReg(ShiftReg);
5150    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5151        .addReg(NewVal2Reg).addReg(MaskReg);
5152    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5153        .addReg(OldVal2Reg).addReg(MaskReg);
5154
5155    BB = loop1MBB;
5156    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5157        .addReg(ZeroReg).addReg(PtrReg);
5158    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5159        .addReg(TmpDestReg).addReg(MaskReg);
5160    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5161        .addReg(TmpReg).addReg(OldVal3Reg);
5162    BuildMI(BB, dl, TII->get(PPC::BCC))
5163        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5164    BB->addSuccessor(loop2MBB);
5165    BB->addSuccessor(midMBB);
5166
5167    BB = loop2MBB;
5168    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5169        .addReg(TmpDestReg).addReg(MaskReg);
5170    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5171        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5172    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5173        .addReg(ZeroReg).addReg(PtrReg);
5174    BuildMI(BB, dl, TII->get(PPC::BCC))
5175      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5176    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5177    BB->addSuccessor(loop1MBB);
5178    BB->addSuccessor(exitMBB);
5179
5180    BB = midMBB;
5181    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5182      .addReg(ZeroReg).addReg(PtrReg);
5183    BB->addSuccessor(exitMBB);
5184
5185    //  exitMBB:
5186    //   ...
5187    BB = exitMBB;
5188    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5189      .addReg(ShiftReg);
5190  } else {
5191    llvm_unreachable("Unexpected instr type to insert");
5192  }
5193
5194  MI->eraseFromParent();   // The pseudo instruction is gone now.
5195  return BB;
5196}
5197
5198//===----------------------------------------------------------------------===//
5199// Target Optimization Hooks
5200//===----------------------------------------------------------------------===//
5201
5202SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5203                                             DAGCombinerInfo &DCI) const {
5204  const TargetMachine &TM = getTargetMachine();
5205  SelectionDAG &DAG = DCI.DAG;
5206  DebugLoc dl = N->getDebugLoc();
5207  switch (N->getOpcode()) {
5208  default: break;
5209  case PPCISD::SHL:
5210    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5211      if (C->isNullValue())   // 0 << V -> 0.
5212        return N->getOperand(0);
5213    }
5214    break;
5215  case PPCISD::SRL:
5216    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5217      if (C->isNullValue())   // 0 >>u V -> 0.
5218        return N->getOperand(0);
5219    }
5220    break;
5221  case PPCISD::SRA:
5222    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5223      if (C->isNullValue() ||   //  0 >>s V -> 0.
5224          C->isAllOnesValue())    // -1 >>s V -> -1.
5225        return N->getOperand(0);
5226    }
5227    break;
5228
5229  case ISD::SINT_TO_FP:
5230    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5231      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5232        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5233        // We allow the src/dst to be either f32/f64, but the intermediate
5234        // type must be i64.
5235        if (N->getOperand(0).getValueType() == MVT::i64 &&
5236            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5237          SDValue Val = N->getOperand(0).getOperand(0);
5238          if (Val.getValueType() == MVT::f32) {
5239            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5240            DCI.AddToWorklist(Val.getNode());
5241          }
5242
5243          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5244          DCI.AddToWorklist(Val.getNode());
5245          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5246          DCI.AddToWorklist(Val.getNode());
5247          if (N->getValueType(0) == MVT::f32) {
5248            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5249                              DAG.getIntPtrConstant(0));
5250            DCI.AddToWorklist(Val.getNode());
5251          }
5252          return Val;
5253        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5254          // If the intermediate type is i32, we can avoid the load/store here
5255          // too.
5256        }
5257      }
5258    }
5259    break;
5260  case ISD::STORE:
5261    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5262    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5263        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5264        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5265        N->getOperand(1).getValueType() == MVT::i32 &&
5266        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5267      SDValue Val = N->getOperand(1).getOperand(0);
5268      if (Val.getValueType() == MVT::f32) {
5269        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5270        DCI.AddToWorklist(Val.getNode());
5271      }
5272      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5273      DCI.AddToWorklist(Val.getNode());
5274
5275      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5276                        N->getOperand(2), N->getOperand(3));
5277      DCI.AddToWorklist(Val.getNode());
5278      return Val;
5279    }
5280
5281    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5282    if (cast<StoreSDNode>(N)->isUnindexed() &&
5283        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5284        N->getOperand(1).getNode()->hasOneUse() &&
5285        (N->getOperand(1).getValueType() == MVT::i32 ||
5286         N->getOperand(1).getValueType() == MVT::i16)) {
5287      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5288      // Do an any-extend to 32-bits if this is a half-word input.
5289      if (BSwapOp.getValueType() == MVT::i16)
5290        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5291
5292      SDValue Ops[] = {
5293        N->getOperand(0), BSwapOp, N->getOperand(2),
5294        DAG.getValueType(N->getOperand(1).getValueType())
5295      };
5296      return
5297        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5298                                Ops, array_lengthof(Ops),
5299                                cast<StoreSDNode>(N)->getMemoryVT(),
5300                                cast<StoreSDNode>(N)->getMemOperand());
5301    }
5302    break;
5303  case ISD::BSWAP:
5304    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5305    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5306        N->getOperand(0).hasOneUse() &&
5307        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5308      SDValue Load = N->getOperand(0);
5309      LoadSDNode *LD = cast<LoadSDNode>(Load);
5310      // Create the byte-swapping load.
5311      SDValue Ops[] = {
5312        LD->getChain(),    // Chain
5313        LD->getBasePtr(),  // Ptr
5314        DAG.getValueType(N->getValueType(0)) // VT
5315      };
5316      SDValue BSLoad =
5317        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5318                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5319                                LD->getMemoryVT(), LD->getMemOperand());
5320
5321      // If this is an i16 load, insert the truncate.
5322      SDValue ResVal = BSLoad;
5323      if (N->getValueType(0) == MVT::i16)
5324        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5325
5326      // First, combine the bswap away.  This makes the value produced by the
5327      // load dead.
5328      DCI.CombineTo(N, ResVal);
5329
5330      // Next, combine the load away, we give it a bogus result value but a real
5331      // chain result.  The result value is dead because the bswap is dead.
5332      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5333
5334      // Return N so it doesn't get rechecked!
5335      return SDValue(N, 0);
5336    }
5337
5338    break;
5339  case PPCISD::VCMP: {
5340    // If a VCMPo node already exists with exactly the same operands as this
5341    // node, use its result instead of this node (VCMPo computes both a CR6 and
5342    // a normal output).
5343    //
5344    if (!N->getOperand(0).hasOneUse() &&
5345        !N->getOperand(1).hasOneUse() &&
5346        !N->getOperand(2).hasOneUse()) {
5347
5348      // Scan all of the users of the LHS, looking for VCMPo's that match.
5349      SDNode *VCMPoNode = 0;
5350
5351      SDNode *LHSN = N->getOperand(0).getNode();
5352      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5353           UI != E; ++UI)
5354        if (UI->getOpcode() == PPCISD::VCMPo &&
5355            UI->getOperand(1) == N->getOperand(1) &&
5356            UI->getOperand(2) == N->getOperand(2) &&
5357            UI->getOperand(0) == N->getOperand(0)) {
5358          VCMPoNode = *UI;
5359          break;
5360        }
5361
5362      // If there is no VCMPo node, or if the flag value has a single use, don't
5363      // transform this.
5364      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5365        break;
5366
5367      // Look at the (necessarily single) use of the flag value.  If it has a
5368      // chain, this transformation is more complex.  Note that multiple things
5369      // could use the value result, which we should ignore.
5370      SDNode *FlagUser = 0;
5371      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5372           FlagUser == 0; ++UI) {
5373        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5374        SDNode *User = *UI;
5375        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5376          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5377            FlagUser = User;
5378            break;
5379          }
5380        }
5381      }
5382
5383      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5384      // give up for right now.
5385      if (FlagUser->getOpcode() == PPCISD::MFCR)
5386        return SDValue(VCMPoNode, 0);
5387    }
5388    break;
5389  }
5390  case ISD::BR_CC: {
5391    // If this is a branch on an altivec predicate comparison, lower this so
5392    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5393    // lowering is done pre-legalize, because the legalizer lowers the predicate
5394    // compare down to code that is difficult to reassemble.
5395    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5396    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5397    int CompareOpc;
5398    bool isDot;
5399
5400    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5401        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5402        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5403      assert(isDot && "Can't compare against a vector result!");
5404
5405      // If this is a comparison against something other than 0/1, then we know
5406      // that the condition is never/always true.
5407      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5408      if (Val != 0 && Val != 1) {
5409        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5410          return N->getOperand(0);
5411        // Always !=, turn it into an unconditional branch.
5412        return DAG.getNode(ISD::BR, dl, MVT::Other,
5413                           N->getOperand(0), N->getOperand(4));
5414      }
5415
5416      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5417
5418      // Create the PPCISD altivec 'dot' comparison node.
5419      std::vector<EVT> VTs;
5420      SDValue Ops[] = {
5421        LHS.getOperand(2),  // LHS of compare
5422        LHS.getOperand(3),  // RHS of compare
5423        DAG.getConstant(CompareOpc, MVT::i32)
5424      };
5425      VTs.push_back(LHS.getOperand(2).getValueType());
5426      VTs.push_back(MVT::Glue);
5427      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5428
5429      // Unpack the result based on how the target uses it.
5430      PPC::Predicate CompOpc;
5431      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5432      default:  // Can't happen, don't crash on invalid number though.
5433      case 0:   // Branch on the value of the EQ bit of CR6.
5434        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5435        break;
5436      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5437        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5438        break;
5439      case 2:   // Branch on the value of the LT bit of CR6.
5440        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5441        break;
5442      case 3:   // Branch on the inverted value of the LT bit of CR6.
5443        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5444        break;
5445      }
5446
5447      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5448                         DAG.getConstant(CompOpc, MVT::i32),
5449                         DAG.getRegister(PPC::CR6, MVT::i32),
5450                         N->getOperand(4), CompNode.getValue(1));
5451    }
5452    break;
5453  }
5454  }
5455
5456  return SDValue();
5457}
5458
5459//===----------------------------------------------------------------------===//
5460// Inline Assembly Support
5461//===----------------------------------------------------------------------===//
5462
5463void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5464                                                       const APInt &Mask,
5465                                                       APInt &KnownZero,
5466                                                       APInt &KnownOne,
5467                                                       const SelectionDAG &DAG,
5468                                                       unsigned Depth) const {
5469  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5470  switch (Op.getOpcode()) {
5471  default: break;
5472  case PPCISD::LBRX: {
5473    // lhbrx is known to have the top bits cleared out.
5474    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5475      KnownZero = 0xFFFF0000;
5476    break;
5477  }
5478  case ISD::INTRINSIC_WO_CHAIN: {
5479    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5480    default: break;
5481    case Intrinsic::ppc_altivec_vcmpbfp_p:
5482    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5483    case Intrinsic::ppc_altivec_vcmpequb_p:
5484    case Intrinsic::ppc_altivec_vcmpequh_p:
5485    case Intrinsic::ppc_altivec_vcmpequw_p:
5486    case Intrinsic::ppc_altivec_vcmpgefp_p:
5487    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5488    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5489    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5490    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5491    case Intrinsic::ppc_altivec_vcmpgtub_p:
5492    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5493    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5494      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5495      break;
5496    }
5497  }
5498  }
5499}
5500
5501
5502/// getConstraintType - Given a constraint, return the type of
5503/// constraint it is for this target.
5504PPCTargetLowering::ConstraintType
5505PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5506  if (Constraint.size() == 1) {
5507    switch (Constraint[0]) {
5508    default: break;
5509    case 'b':
5510    case 'r':
5511    case 'f':
5512    case 'v':
5513    case 'y':
5514      return C_RegisterClass;
5515    }
5516  }
5517  return TargetLowering::getConstraintType(Constraint);
5518}
5519
5520/// Examine constraint type and operand type and determine a weight value.
5521/// This object must already have been set up with the operand type
5522/// and the current alternative constraint selected.
5523TargetLowering::ConstraintWeight
5524PPCTargetLowering::getSingleConstraintMatchWeight(
5525    AsmOperandInfo &info, const char *constraint) const {
5526  ConstraintWeight weight = CW_Invalid;
5527  Value *CallOperandVal = info.CallOperandVal;
5528    // If we don't have a value, we can't do a match,
5529    // but allow it at the lowest weight.
5530  if (CallOperandVal == NULL)
5531    return CW_Default;
5532  Type *type = CallOperandVal->getType();
5533  // Look at the constraint type.
5534  switch (*constraint) {
5535  default:
5536    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5537    break;
5538  case 'b':
5539    if (type->isIntegerTy())
5540      weight = CW_Register;
5541    break;
5542  case 'f':
5543    if (type->isFloatTy())
5544      weight = CW_Register;
5545    break;
5546  case 'd':
5547    if (type->isDoubleTy())
5548      weight = CW_Register;
5549    break;
5550  case 'v':
5551    if (type->isVectorTy())
5552      weight = CW_Register;
5553    break;
5554  case 'y':
5555    weight = CW_Register;
5556    break;
5557  }
5558  return weight;
5559}
5560
5561std::pair<unsigned, const TargetRegisterClass*>
5562PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5563                                                EVT VT) const {
5564  if (Constraint.size() == 1) {
5565    // GCC RS6000 Constraint Letters
5566    switch (Constraint[0]) {
5567    case 'b':   // R1-R31
5568    case 'r':   // R0-R31
5569      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5570        return std::make_pair(0U, PPC::G8RCRegisterClass);
5571      return std::make_pair(0U, PPC::GPRCRegisterClass);
5572    case 'f':
5573      if (VT == MVT::f32)
5574        return std::make_pair(0U, PPC::F4RCRegisterClass);
5575      else if (VT == MVT::f64)
5576        return std::make_pair(0U, PPC::F8RCRegisterClass);
5577      break;
5578    case 'v':
5579      return std::make_pair(0U, PPC::VRRCRegisterClass);
5580    case 'y':   // crrc
5581      return std::make_pair(0U, PPC::CRRCRegisterClass);
5582    }
5583  }
5584
5585  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5586}
5587
5588
5589/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5590/// vector.  If it is invalid, don't add anything to Ops.
5591void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5592                                                     std::string &Constraint,
5593                                                     std::vector<SDValue>&Ops,
5594                                                     SelectionDAG &DAG) const {
5595  SDValue Result(0,0);
5596
5597  // Only support length 1 constraints.
5598  if (Constraint.length() > 1) return;
5599
5600  char Letter = Constraint[0];
5601  switch (Letter) {
5602  default: break;
5603  case 'I':
5604  case 'J':
5605  case 'K':
5606  case 'L':
5607  case 'M':
5608  case 'N':
5609  case 'O':
5610  case 'P': {
5611    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5612    if (!CST) return; // Must be an immediate to match.
5613    unsigned Value = CST->getZExtValue();
5614    switch (Letter) {
5615    default: llvm_unreachable("Unknown constraint letter!");
5616    case 'I':  // "I" is a signed 16-bit constant.
5617      if ((short)Value == (int)Value)
5618        Result = DAG.getTargetConstant(Value, Op.getValueType());
5619      break;
5620    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5621    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5622      if ((short)Value == 0)
5623        Result = DAG.getTargetConstant(Value, Op.getValueType());
5624      break;
5625    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5626      if ((Value >> 16) == 0)
5627        Result = DAG.getTargetConstant(Value, Op.getValueType());
5628      break;
5629    case 'M':  // "M" is a constant that is greater than 31.
5630      if (Value > 31)
5631        Result = DAG.getTargetConstant(Value, Op.getValueType());
5632      break;
5633    case 'N':  // "N" is a positive constant that is an exact power of two.
5634      if ((int)Value > 0 && isPowerOf2_32(Value))
5635        Result = DAG.getTargetConstant(Value, Op.getValueType());
5636      break;
5637    case 'O':  // "O" is the constant zero.
5638      if (Value == 0)
5639        Result = DAG.getTargetConstant(Value, Op.getValueType());
5640      break;
5641    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5642      if ((short)-Value == (int)-Value)
5643        Result = DAG.getTargetConstant(Value, Op.getValueType());
5644      break;
5645    }
5646    break;
5647  }
5648  }
5649
5650  if (Result.getNode()) {
5651    Ops.push_back(Result);
5652    return;
5653  }
5654
5655  // Handle standard constraint letters.
5656  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5657}
5658
5659// isLegalAddressingMode - Return true if the addressing mode represented
5660// by AM is legal for this target, for a load/store of the specified type.
5661bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5662                                              Type *Ty) const {
5663  // FIXME: PPC does not allow r+i addressing modes for vectors!
5664
5665  // PPC allows a sign-extended 16-bit immediate field.
5666  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5667    return false;
5668
5669  // No global is ever allowed as a base.
5670  if (AM.BaseGV)
5671    return false;
5672
5673  // PPC only support r+r,
5674  switch (AM.Scale) {
5675  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5676    break;
5677  case 1:
5678    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5679      return false;
5680    // Otherwise we have r+r or r+i.
5681    break;
5682  case 2:
5683    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5684      return false;
5685    // Allow 2*r as r+r.
5686    break;
5687  default:
5688    // No other scales are supported.
5689    return false;
5690  }
5691
5692  return true;
5693}
5694
5695/// isLegalAddressImmediate - Return true if the integer value can be used
5696/// as the offset of the target addressing mode for load / store of the
5697/// given type.
5698bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5699  // PPC allows a sign-extended 16-bit immediate field.
5700  return (V > -(1 << 16) && V < (1 << 16)-1);
5701}
5702
5703bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5704  return false;
5705}
5706
5707SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5708                                           SelectionDAG &DAG) const {
5709  MachineFunction &MF = DAG.getMachineFunction();
5710  MachineFrameInfo *MFI = MF.getFrameInfo();
5711  MFI->setReturnAddressIsTaken(true);
5712
5713  DebugLoc dl = Op.getDebugLoc();
5714  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5715
5716  // Make sure the function does not optimize away the store of the RA to
5717  // the stack.
5718  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5719  FuncInfo->setLRStoreRequired();
5720  bool isPPC64 = PPCSubTarget.isPPC64();
5721  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5722
5723  if (Depth > 0) {
5724    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5725    SDValue Offset =
5726
5727      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5728                      isPPC64? MVT::i64 : MVT::i32);
5729    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5730                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5731                                   FrameAddr, Offset),
5732                       MachinePointerInfo(), false, false, 0);
5733  }
5734
5735  // Just load the return address off the stack.
5736  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5737  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5738                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5739}
5740
5741SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5742                                          SelectionDAG &DAG) const {
5743  DebugLoc dl = Op.getDebugLoc();
5744  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5745
5746  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5747  bool isPPC64 = PtrVT == MVT::i64;
5748
5749  MachineFunction &MF = DAG.getMachineFunction();
5750  MachineFrameInfo *MFI = MF.getFrameInfo();
5751  MFI->setFrameAddressIsTaken(true);
5752  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5753                  MFI->getStackSize() &&
5754                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5755  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5756                                (is31 ? PPC::R31 : PPC::R1);
5757  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5758                                         PtrVT);
5759  while (Depth--)
5760    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5761                            FrameAddr, MachinePointerInfo(), false, false, 0);
5762  return FrameAddr;
5763}
5764
5765bool
5766PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5767  // The PowerPC target isn't yet aware of offsets.
5768  return false;
5769}
5770
5771/// getOptimalMemOpType - Returns the target specific optimal type for load
5772/// and store operations as a result of memset, memcpy, and memmove
5773/// lowering. If DstAlign is zero that means it's safe to destination
5774/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5775/// means there isn't a need to check it against alignment requirement,
5776/// probably because the source does not need to be loaded. If
5777/// 'NonScalarIntSafe' is true, that means it's safe to return a
5778/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5779/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5780/// constant so it does not need to be loaded.
5781/// It returns EVT::Other if the type should be determined using generic
5782/// target-independent logic.
5783EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5784                                           unsigned DstAlign, unsigned SrcAlign,
5785                                           bool NonScalarIntSafe,
5786                                           bool MemcpyStrSrc,
5787                                           MachineFunction &MF) const {
5788  if (this->PPCSubTarget.isPPC64()) {
5789    return MVT::i64;
5790  } else {
5791    return MVT::i32;
5792  }
5793}
5794