1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
23using namespace llvm;
24using namespace PatternMatch;
25
26static ConstantInt *getOne(Constant *C) {
27  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
28}
29
30/// AddOne - Add one to a ConstantInt
31static Constant *AddOne(Constant *C) {
32  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
33}
34/// SubOne - Subtract one from a ConstantInt
35static Constant *SubOne(Constant *C) {
36  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
37}
38
39static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
40  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
41}
42
43static bool HasAddOverflow(ConstantInt *Result,
44                           ConstantInt *In1, ConstantInt *In2,
45                           bool IsSigned) {
46  if (!IsSigned)
47    return Result->getValue().ult(In1->getValue());
48
49  if (In2->isNegative())
50    return Result->getValue().sgt(In1->getValue());
51  return Result->getValue().slt(In1->getValue());
52}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57                            Constant *In2, bool IsSigned = false) {
58  Result = ConstantExpr::getAdd(In1, In2);
59
60  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63      if (HasAddOverflow(ExtractElement(Result, Idx),
64                         ExtractElement(In1, Idx),
65                         ExtractElement(In2, Idx),
66                         IsSigned))
67        return true;
68    }
69    return false;
70  }
71
72  return HasAddOverflow(cast<ConstantInt>(Result),
73                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                        IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78                           ConstantInt *In1, ConstantInt *In2,
79                           bool IsSigned) {
80  if (!IsSigned)
81    return Result->getValue().ugt(In1->getValue());
82
83  if (In2->isNegative())
84    return Result->getValue().slt(In1->getValue());
85
86  return Result->getValue().sgt(In1->getValue());
87}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92                            Constant *In2, bool IsSigned = false) {
93  Result = ConstantExpr::getSub(In1, In2);
94
95  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98      if (HasSubOverflow(ExtractElement(Result, Idx),
99                         ExtractElement(In1, Idx),
100                         ExtractElement(In2, Idx),
101                         IsSigned))
102        return true;
103    }
104    return false;
105  }
106
107  return HasSubOverflow(cast<ConstantInt>(Result),
108                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                        IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit.  If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117                           bool &TrueIfSigned) {
118  switch (pred) {
119  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
120    TrueIfSigned = true;
121    return RHS->isZero();
122  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
123    TrueIfSigned = true;
124    return RHS->isAllOnesValue();
125  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
126    TrueIfSigned = false;
127    return RHS->isAllOnesValue();
128  case ICmpInst::ICMP_UGT:
129    // True if LHS u> RHS and RHS == high-bit-mask - 1
130    TrueIfSigned = true;
131    return RHS->isMaxValue(true);
132  case ICmpInst::ICMP_UGE:
133    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
134    TrueIfSigned = true;
135    return RHS->getValue().isSignBit();
136  default:
137    return false;
138  }
139}
140
141// isHighOnes - Return true if the constant is of the form 1+0+.
142// This is the same as lowones(~X).
143static bool isHighOnes(const ConstantInt *CI) {
144  return (~CI->getValue() + 1).isPowerOf2();
145}
146
147/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
148/// set of known zero and one bits, compute the maximum and minimum values that
149/// could have the specified known zero and known one bits, returning them in
150/// min/max.
151static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
152                                                   const APInt& KnownOne,
153                                                   APInt& Min, APInt& Max) {
154  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
155         KnownZero.getBitWidth() == Min.getBitWidth() &&
156         KnownZero.getBitWidth() == Max.getBitWidth() &&
157         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
158  APInt UnknownBits = ~(KnownZero|KnownOne);
159
160  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
161  // bit if it is unknown.
162  Min = KnownOne;
163  Max = KnownOne|UnknownBits;
164
165  if (UnknownBits.isNegative()) { // Sign bit is unknown
166    Min.setBit(Min.getBitWidth()-1);
167    Max.clearBit(Max.getBitWidth()-1);
168  }
169}
170
171// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
172// a set of known zero and one bits, compute the maximum and minimum values that
173// could have the specified known zero and known one bits, returning them in
174// min/max.
175static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
176                                                     const APInt &KnownOne,
177                                                     APInt &Min, APInt &Max) {
178  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
179         KnownZero.getBitWidth() == Min.getBitWidth() &&
180         KnownZero.getBitWidth() == Max.getBitWidth() &&
181         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
182  APInt UnknownBits = ~(KnownZero|KnownOne);
183
184  // The minimum value is when the unknown bits are all zeros.
185  Min = KnownOne;
186  // The maximum value is when the unknown bits are all ones.
187  Max = KnownOne|UnknownBits;
188}
189
190
191
192/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
193///   cmp pred (load (gep GV, ...)), cmpcst
194/// where GV is a global variable with a constant initializer.  Try to simplify
195/// this into some simple computation that does not need the load.  For example
196/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
197///
198/// If AndCst is non-null, then the loaded value is masked with that constant
199/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
200Instruction *InstCombiner::
201FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
202                             CmpInst &ICI, ConstantInt *AndCst) {
203  // We need TD information to know the pointer size unless this is inbounds.
204  if (!GEP->isInBounds() && TD == 0) return 0;
205
206  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
207  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
208
209  // There are many forms of this optimization we can handle, for now, just do
210  // the simple index into a single-dimensional array.
211  //
212  // Require: GEP GV, 0, i {{, constant indices}}
213  if (GEP->getNumOperands() < 3 ||
214      !isa<ConstantInt>(GEP->getOperand(1)) ||
215      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
216      isa<Constant>(GEP->getOperand(2)))
217    return 0;
218
219  // Check that indices after the variable are constants and in-range for the
220  // type they index.  Collect the indices.  This is typically for arrays of
221  // structs.
222  SmallVector<unsigned, 4> LaterIndices;
223
224  Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
225  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
226    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
227    if (Idx == 0) return 0;  // Variable index.
228
229    uint64_t IdxVal = Idx->getZExtValue();
230    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
231
232    if (StructType *STy = dyn_cast<StructType>(EltTy))
233      EltTy = STy->getElementType(IdxVal);
234    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
235      if (IdxVal >= ATy->getNumElements()) return 0;
236      EltTy = ATy->getElementType();
237    } else {
238      return 0; // Unknown type.
239    }
240
241    LaterIndices.push_back(IdxVal);
242  }
243
244  enum { Overdefined = -3, Undefined = -2 };
245
246  // Variables for our state machines.
247
248  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
249  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
250  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
251  // undefined, otherwise set to the first true element.  SecondTrueElement is
252  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
253  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
254
255  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
256  // form "i != 47 & i != 87".  Same state transitions as for true elements.
257  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
258
259  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
260  /// define a state machine that triggers for ranges of values that the index
261  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
262  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
263  /// index in the range (inclusive).  We use -2 for undefined here because we
264  /// use relative comparisons and don't want 0-1 to match -1.
265  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
266
267  // MagicBitvector - This is a magic bitvector where we set a bit if the
268  // comparison is true for element 'i'.  If there are 64 elements or less in
269  // the array, this will fully represent all the comparison results.
270  uint64_t MagicBitvector = 0;
271
272
273  // Scan the array and see if one of our patterns matches.
274  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
275  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
276    Constant *Elt = Init->getOperand(i);
277
278    // If this is indexing an array of structures, get the structure element.
279    if (!LaterIndices.empty())
280      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
281
282    // If the element is masked, handle it.
283    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
284
285    // Find out if the comparison would be true or false for the i'th element.
286    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
287                                                  CompareRHS, TD);
288    // If the result is undef for this element, ignore it.
289    if (isa<UndefValue>(C)) {
290      // Extend range state machines to cover this element in case there is an
291      // undef in the middle of the range.
292      if (TrueRangeEnd == (int)i-1)
293        TrueRangeEnd = i;
294      if (FalseRangeEnd == (int)i-1)
295        FalseRangeEnd = i;
296      continue;
297    }
298
299    // If we can't compute the result for any of the elements, we have to give
300    // up evaluating the entire conditional.
301    if (!isa<ConstantInt>(C)) return 0;
302
303    // Otherwise, we know if the comparison is true or false for this element,
304    // update our state machines.
305    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
306
307    // State machine for single/double/range index comparison.
308    if (IsTrueForElt) {
309      // Update the TrueElement state machine.
310      if (FirstTrueElement == Undefined)
311        FirstTrueElement = TrueRangeEnd = i;  // First true element.
312      else {
313        // Update double-compare state machine.
314        if (SecondTrueElement == Undefined)
315          SecondTrueElement = i;
316        else
317          SecondTrueElement = Overdefined;
318
319        // Update range state machine.
320        if (TrueRangeEnd == (int)i-1)
321          TrueRangeEnd = i;
322        else
323          TrueRangeEnd = Overdefined;
324      }
325    } else {
326      // Update the FalseElement state machine.
327      if (FirstFalseElement == Undefined)
328        FirstFalseElement = FalseRangeEnd = i; // First false element.
329      else {
330        // Update double-compare state machine.
331        if (SecondFalseElement == Undefined)
332          SecondFalseElement = i;
333        else
334          SecondFalseElement = Overdefined;
335
336        // Update range state machine.
337        if (FalseRangeEnd == (int)i-1)
338          FalseRangeEnd = i;
339        else
340          FalseRangeEnd = Overdefined;
341      }
342    }
343
344
345    // If this element is in range, update our magic bitvector.
346    if (i < 64 && IsTrueForElt)
347      MagicBitvector |= 1ULL << i;
348
349    // If all of our states become overdefined, bail out early.  Since the
350    // predicate is expensive, only check it every 8 elements.  This is only
351    // really useful for really huge arrays.
352    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
353        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
354        FalseRangeEnd == Overdefined)
355      return 0;
356  }
357
358  // Now that we've scanned the entire array, emit our new comparison(s).  We
359  // order the state machines in complexity of the generated code.
360  Value *Idx = GEP->getOperand(2);
361
362  // If the index is larger than the pointer size of the target, truncate the
363  // index down like the GEP would do implicitly.  We don't have to do this for
364  // an inbounds GEP because the index can't be out of range.
365  if (!GEP->isInBounds() &&
366      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
367    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
368
369  // If the comparison is only true for one or two elements, emit direct
370  // comparisons.
371  if (SecondTrueElement != Overdefined) {
372    // None true -> false.
373    if (FirstTrueElement == Undefined)
374      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
375
376    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
377
378    // True for one element -> 'i == 47'.
379    if (SecondTrueElement == Undefined)
380      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
381
382    // True for two elements -> 'i == 47 | i == 72'.
383    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
384    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
385    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
386    return BinaryOperator::CreateOr(C1, C2);
387  }
388
389  // If the comparison is only false for one or two elements, emit direct
390  // comparisons.
391  if (SecondFalseElement != Overdefined) {
392    // None false -> true.
393    if (FirstFalseElement == Undefined)
394      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
395
396    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
397
398    // False for one element -> 'i != 47'.
399    if (SecondFalseElement == Undefined)
400      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
401
402    // False for two elements -> 'i != 47 & i != 72'.
403    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
404    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
405    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
406    return BinaryOperator::CreateAnd(C1, C2);
407  }
408
409  // If the comparison can be replaced with a range comparison for the elements
410  // where it is true, emit the range check.
411  if (TrueRangeEnd != Overdefined) {
412    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
413
414    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
415    if (FirstTrueElement) {
416      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
417      Idx = Builder->CreateAdd(Idx, Offs);
418    }
419
420    Value *End = ConstantInt::get(Idx->getType(),
421                                  TrueRangeEnd-FirstTrueElement+1);
422    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
423  }
424
425  // False range check.
426  if (FalseRangeEnd != Overdefined) {
427    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
428    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
429    if (FirstFalseElement) {
430      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
431      Idx = Builder->CreateAdd(Idx, Offs);
432    }
433
434    Value *End = ConstantInt::get(Idx->getType(),
435                                  FalseRangeEnd-FirstFalseElement);
436    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
437  }
438
439
440  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
441  // of this load, replace it with computation that does:
442  //   ((magic_cst >> i) & 1) != 0
443  if (Init->getNumOperands() <= 32 ||
444      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
445    Type *Ty;
446    if (Init->getNumOperands() <= 32)
447      Ty = Type::getInt32Ty(Init->getContext());
448    else
449      Ty = Type::getInt64Ty(Init->getContext());
450    Value *V = Builder->CreateIntCast(Idx, Ty, false);
451    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
452    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
453    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
454  }
455
456  return 0;
457}
458
459
460/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
461/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
462/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
463/// be complex, and scales are involved.  The above expression would also be
464/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
465/// This later form is less amenable to optimization though, and we are allowed
466/// to generate the first by knowing that pointer arithmetic doesn't overflow.
467///
468/// If we can't emit an optimized form for this expression, this returns null.
469///
470static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
471  TargetData &TD = *IC.getTargetData();
472  gep_type_iterator GTI = gep_type_begin(GEP);
473
474  // Check to see if this gep only has a single variable index.  If so, and if
475  // any constant indices are a multiple of its scale, then we can compute this
476  // in terms of the scale of the variable index.  For example, if the GEP
477  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
478  // because the expression will cross zero at the same point.
479  unsigned i, e = GEP->getNumOperands();
480  int64_t Offset = 0;
481  for (i = 1; i != e; ++i, ++GTI) {
482    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
483      // Compute the aggregate offset of constant indices.
484      if (CI->isZero()) continue;
485
486      // Handle a struct index, which adds its field offset to the pointer.
487      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
488        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
489      } else {
490        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
491        Offset += Size*CI->getSExtValue();
492      }
493    } else {
494      // Found our variable index.
495      break;
496    }
497  }
498
499  // If there are no variable indices, we must have a constant offset, just
500  // evaluate it the general way.
501  if (i == e) return 0;
502
503  Value *VariableIdx = GEP->getOperand(i);
504  // Determine the scale factor of the variable element.  For example, this is
505  // 4 if the variable index is into an array of i32.
506  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
507
508  // Verify that there are no other variable indices.  If so, emit the hard way.
509  for (++i, ++GTI; i != e; ++i, ++GTI) {
510    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
511    if (!CI) return 0;
512
513    // Compute the aggregate offset of constant indices.
514    if (CI->isZero()) continue;
515
516    // Handle a struct index, which adds its field offset to the pointer.
517    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
518      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
519    } else {
520      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
521      Offset += Size*CI->getSExtValue();
522    }
523  }
524
525  // Okay, we know we have a single variable index, which must be a
526  // pointer/array/vector index.  If there is no offset, life is simple, return
527  // the index.
528  unsigned IntPtrWidth = TD.getPointerSizeInBits();
529  if (Offset == 0) {
530    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
531    // we don't need to bother extending: the extension won't affect where the
532    // computation crosses zero.
533    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
534      Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
535      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
536    }
537    return VariableIdx;
538  }
539
540  // Otherwise, there is an index.  The computation we will do will be modulo
541  // the pointer size, so get it.
542  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
543
544  Offset &= PtrSizeMask;
545  VariableScale &= PtrSizeMask;
546
547  // To do this transformation, any constant index must be a multiple of the
548  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
549  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
550  // multiple of the variable scale.
551  int64_t NewOffs = Offset / (int64_t)VariableScale;
552  if (Offset != NewOffs*(int64_t)VariableScale)
553    return 0;
554
555  // Okay, we can do this evaluation.  Start by converting the index to intptr.
556  Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
557  if (VariableIdx->getType() != IntPtrTy)
558    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
559                                            true /*Signed*/);
560  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
561  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
562}
563
564/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
565/// else.  At this point we know that the GEP is on the LHS of the comparison.
566Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
567                                       ICmpInst::Predicate Cond,
568                                       Instruction &I) {
569  // Look through bitcasts.
570  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
571    RHS = BCI->getOperand(0);
572
573  Value *PtrBase = GEPLHS->getOperand(0);
574  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
575    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
576    // This transformation (ignoring the base and scales) is valid because we
577    // know pointers can't overflow since the gep is inbounds.  See if we can
578    // output an optimized form.
579    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
580
581    // If not, synthesize the offset the hard way.
582    if (Offset == 0)
583      Offset = EmitGEPOffset(GEPLHS);
584    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
585                        Constant::getNullValue(Offset->getType()));
586  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
587    // If the base pointers are different, but the indices are the same, just
588    // compare the base pointer.
589    if (PtrBase != GEPRHS->getOperand(0)) {
590      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
591      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
592                        GEPRHS->getOperand(0)->getType();
593      if (IndicesTheSame)
594        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
595          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
596            IndicesTheSame = false;
597            break;
598          }
599
600      // If all indices are the same, just compare the base pointers.
601      if (IndicesTheSame)
602        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
603                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
604
605      // Otherwise, the base pointers are different and the indices are
606      // different, bail out.
607      return 0;
608    }
609
610    // If one of the GEPs has all zero indices, recurse.
611    bool AllZeros = true;
612    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
613      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
614          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
615        AllZeros = false;
616        break;
617      }
618    if (AllZeros)
619      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
620                          ICmpInst::getSwappedPredicate(Cond), I);
621
622    // If the other GEP has all zero indices, recurse.
623    AllZeros = true;
624    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
625      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
626          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
627        AllZeros = false;
628        break;
629      }
630    if (AllZeros)
631      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
632
633    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
634    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
635      // If the GEPs only differ by one index, compare it.
636      unsigned NumDifferences = 0;  // Keep track of # differences.
637      unsigned DiffOperand = 0;     // The operand that differs.
638      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
639        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
640          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
641                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
642            // Irreconcilable differences.
643            NumDifferences = 2;
644            break;
645          } else {
646            if (NumDifferences++) break;
647            DiffOperand = i;
648          }
649        }
650
651      if (NumDifferences == 0)   // SAME GEP?
652        return ReplaceInstUsesWith(I, // No comparison is needed here.
653                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
654                                             ICmpInst::isTrueWhenEqual(Cond)));
655
656      else if (NumDifferences == 1 && GEPsInBounds) {
657        Value *LHSV = GEPLHS->getOperand(DiffOperand);
658        Value *RHSV = GEPRHS->getOperand(DiffOperand);
659        // Make sure we do a signed comparison here.
660        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
661      }
662    }
663
664    // Only lower this if the icmp is the only user of the GEP or if we expect
665    // the result to fold to a constant!
666    if (TD &&
667        GEPsInBounds &&
668        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
669        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
670      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
671      Value *L = EmitGEPOffset(GEPLHS);
672      Value *R = EmitGEPOffset(GEPRHS);
673      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
674    }
675  }
676  return 0;
677}
678
679/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
680Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
681                                            Value *X, ConstantInt *CI,
682                                            ICmpInst::Predicate Pred,
683                                            Value *TheAdd) {
684  // If we have X+0, exit early (simplifying logic below) and let it get folded
685  // elsewhere.   icmp X+0, X  -> icmp X, X
686  if (CI->isZero()) {
687    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
688    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
689  }
690
691  // (X+4) == X -> false.
692  if (Pred == ICmpInst::ICMP_EQ)
693    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
694
695  // (X+4) != X -> true.
696  if (Pred == ICmpInst::ICMP_NE)
697    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
698
699  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
700  // so the values can never be equal.  Similarly for all other "or equals"
701  // operators.
702
703  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
704  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
705  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
706  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
707    Value *R =
708      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
709    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
710  }
711
712  // (X+1) >u X        --> X <u (0-1)        --> X != 255
713  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
714  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
715  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
716    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
717
718  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
719  ConstantInt *SMax = ConstantInt::get(X->getContext(),
720                                       APInt::getSignedMaxValue(BitWidth));
721
722  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
723  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
724  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
725  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
726  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
727  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
728  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
729    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
730
731  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
732  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
733  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
734  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
735  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
736  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
737
738  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
739  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
740  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
741}
742
743/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
744/// and CmpRHS are both known to be integer constants.
745Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
746                                          ConstantInt *DivRHS) {
747  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
748  const APInt &CmpRHSV = CmpRHS->getValue();
749
750  // FIXME: If the operand types don't match the type of the divide
751  // then don't attempt this transform. The code below doesn't have the
752  // logic to deal with a signed divide and an unsigned compare (and
753  // vice versa). This is because (x /s C1) <s C2  produces different
754  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
755  // (x /u C1) <u C2.  Simply casting the operands and result won't
756  // work. :(  The if statement below tests that condition and bails
757  // if it finds it.
758  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
759  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
760    return 0;
761  if (DivRHS->isZero())
762    return 0; // The ProdOV computation fails on divide by zero.
763  if (DivIsSigned && DivRHS->isAllOnesValue())
764    return 0; // The overflow computation also screws up here
765  if (DivRHS->isOne()) {
766    // This eliminates some funny cases with INT_MIN.
767    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
768    return &ICI;
769  }
770
771  // Compute Prod = CI * DivRHS. We are essentially solving an equation
772  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
773  // C2 (CI). By solving for X we can turn this into a range check
774  // instead of computing a divide.
775  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
776
777  // Determine if the product overflows by seeing if the product is
778  // not equal to the divide. Make sure we do the same kind of divide
779  // as in the LHS instruction that we're folding.
780  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
781                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
782
783  // Get the ICmp opcode
784  ICmpInst::Predicate Pred = ICI.getPredicate();
785
786  /// If the division is known to be exact, then there is no remainder from the
787  /// divide, so the covered range size is unit, otherwise it is the divisor.
788  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
789
790  // Figure out the interval that is being checked.  For example, a comparison
791  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
792  // Compute this interval based on the constants involved and the signedness of
793  // the compare/divide.  This computes a half-open interval, keeping track of
794  // whether either value in the interval overflows.  After analysis each
795  // overflow variable is set to 0 if it's corresponding bound variable is valid
796  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
797  int LoOverflow = 0, HiOverflow = 0;
798  Constant *LoBound = 0, *HiBound = 0;
799
800  if (!DivIsSigned) {  // udiv
801    // e.g. X/5 op 3  --> [15, 20)
802    LoBound = Prod;
803    HiOverflow = LoOverflow = ProdOV;
804    if (!HiOverflow) {
805      // If this is not an exact divide, then many values in the range collapse
806      // to the same result value.
807      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
808    }
809
810  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
811    if (CmpRHSV == 0) {       // (X / pos) op 0
812      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
813      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
814      HiBound = RangeSize;
815    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
816      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
817      HiOverflow = LoOverflow = ProdOV;
818      if (!HiOverflow)
819        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
820    } else {                       // (X / pos) op neg
821      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
822      HiBound = AddOne(Prod);
823      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
824      if (!LoOverflow) {
825        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
826        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
827      }
828    }
829  } else if (DivRHS->isNegative()) { // Divisor is < 0.
830    if (DivI->isExact())
831      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
832    if (CmpRHSV == 0) {       // (X / neg) op 0
833      // e.g. X/-5 op 0  --> [-4, 5)
834      LoBound = AddOne(RangeSize);
835      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
836      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
837        HiOverflow = 1;            // [INTMIN+1, overflow)
838        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
839      }
840    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
841      // e.g. X/-5 op 3  --> [-19, -14)
842      HiBound = AddOne(Prod);
843      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
844      if (!LoOverflow)
845        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
846    } else {                       // (X / neg) op neg
847      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
848      LoOverflow = HiOverflow = ProdOV;
849      if (!HiOverflow)
850        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
851    }
852
853    // Dividing by a negative swaps the condition.  LT <-> GT
854    Pred = ICmpInst::getSwappedPredicate(Pred);
855  }
856
857  Value *X = DivI->getOperand(0);
858  switch (Pred) {
859  default: llvm_unreachable("Unhandled icmp opcode!");
860  case ICmpInst::ICMP_EQ:
861    if (LoOverflow && HiOverflow)
862      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
863    if (HiOverflow)
864      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
865                          ICmpInst::ICMP_UGE, X, LoBound);
866    if (LoOverflow)
867      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
868                          ICmpInst::ICMP_ULT, X, HiBound);
869    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
870                                                    DivIsSigned, true));
871  case ICmpInst::ICMP_NE:
872    if (LoOverflow && HiOverflow)
873      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
874    if (HiOverflow)
875      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
876                          ICmpInst::ICMP_ULT, X, LoBound);
877    if (LoOverflow)
878      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
879                          ICmpInst::ICMP_UGE, X, HiBound);
880    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
881                                                    DivIsSigned, false));
882  case ICmpInst::ICMP_ULT:
883  case ICmpInst::ICMP_SLT:
884    if (LoOverflow == +1)   // Low bound is greater than input range.
885      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
886    if (LoOverflow == -1)   // Low bound is less than input range.
887      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
888    return new ICmpInst(Pred, X, LoBound);
889  case ICmpInst::ICMP_UGT:
890  case ICmpInst::ICMP_SGT:
891    if (HiOverflow == +1)       // High bound greater than input range.
892      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
893    if (HiOverflow == -1)       // High bound less than input range.
894      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
895    if (Pred == ICmpInst::ICMP_UGT)
896      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
897    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
898  }
899}
900
901/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
902Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
903                                          ConstantInt *ShAmt) {
904  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
905
906  // Check that the shift amount is in range.  If not, don't perform
907  // undefined shifts.  When the shift is visited it will be
908  // simplified.
909  uint32_t TypeBits = CmpRHSV.getBitWidth();
910  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
911  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
912    return 0;
913
914  if (!ICI.isEquality()) {
915    // If we have an unsigned comparison and an ashr, we can't simplify this.
916    // Similarly for signed comparisons with lshr.
917    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
918      return 0;
919
920    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
921    // by a power of 2.  Since we already have logic to simplify these,
922    // transform to div and then simplify the resultant comparison.
923    if (Shr->getOpcode() == Instruction::AShr &&
924        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
925      return 0;
926
927    // Revisit the shift (to delete it).
928    Worklist.Add(Shr);
929
930    Constant *DivCst =
931      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
932
933    Value *Tmp =
934      Shr->getOpcode() == Instruction::AShr ?
935      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
936      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
937
938    ICI.setOperand(0, Tmp);
939
940    // If the builder folded the binop, just return it.
941    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
942    if (TheDiv == 0)
943      return &ICI;
944
945    // Otherwise, fold this div/compare.
946    assert(TheDiv->getOpcode() == Instruction::SDiv ||
947           TheDiv->getOpcode() == Instruction::UDiv);
948
949    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
950    assert(Res && "This div/cst should have folded!");
951    return Res;
952  }
953
954
955  // If we are comparing against bits always shifted out, the
956  // comparison cannot succeed.
957  APInt Comp = CmpRHSV << ShAmtVal;
958  ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
959  if (Shr->getOpcode() == Instruction::LShr)
960    Comp = Comp.lshr(ShAmtVal);
961  else
962    Comp = Comp.ashr(ShAmtVal);
963
964  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
965    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
966    Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
967                                     IsICMP_NE);
968    return ReplaceInstUsesWith(ICI, Cst);
969  }
970
971  // Otherwise, check to see if the bits shifted out are known to be zero.
972  // If so, we can compare against the unshifted value:
973  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
974  if (Shr->hasOneUse() && Shr->isExact())
975    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
976
977  if (Shr->hasOneUse()) {
978    // Otherwise strength reduce the shift into an and.
979    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
980    Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
981
982    Value *And = Builder->CreateAnd(Shr->getOperand(0),
983                                    Mask, Shr->getName()+".mask");
984    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
985  }
986  return 0;
987}
988
989
990/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
991///
992Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
993                                                          Instruction *LHSI,
994                                                          ConstantInt *RHS) {
995  const APInt &RHSV = RHS->getValue();
996
997  switch (LHSI->getOpcode()) {
998  case Instruction::Trunc:
999    if (ICI.isEquality() && LHSI->hasOneUse()) {
1000      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1001      // of the high bits truncated out of x are known.
1002      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1003             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1004      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1005      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1006      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
1007
1008      // If all the high bits are known, we can do this xform.
1009      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1010        // Pull in the high bits from known-ones set.
1011        APInt NewRHS = RHS->getValue().zext(SrcBits);
1012        NewRHS |= KnownOne;
1013        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1014                            ConstantInt::get(ICI.getContext(), NewRHS));
1015      }
1016    }
1017    break;
1018
1019  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1020    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1021      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1022      // fold the xor.
1023      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1024          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1025        Value *CompareVal = LHSI->getOperand(0);
1026
1027        // If the sign bit of the XorCST is not set, there is no change to
1028        // the operation, just stop using the Xor.
1029        if (!XorCST->isNegative()) {
1030          ICI.setOperand(0, CompareVal);
1031          Worklist.Add(LHSI);
1032          return &ICI;
1033        }
1034
1035        // Was the old condition true if the operand is positive?
1036        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1037
1038        // If so, the new one isn't.
1039        isTrueIfPositive ^= true;
1040
1041        if (isTrueIfPositive)
1042          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1043                              SubOne(RHS));
1044        else
1045          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1046                              AddOne(RHS));
1047      }
1048
1049      if (LHSI->hasOneUse()) {
1050        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1051        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1052          const APInt &SignBit = XorCST->getValue();
1053          ICmpInst::Predicate Pred = ICI.isSigned()
1054                                         ? ICI.getUnsignedPredicate()
1055                                         : ICI.getSignedPredicate();
1056          return new ICmpInst(Pred, LHSI->getOperand(0),
1057                              ConstantInt::get(ICI.getContext(),
1058                                               RHSV ^ SignBit));
1059        }
1060
1061        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1062        if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
1063          const APInt &NotSignBit = XorCST->getValue();
1064          ICmpInst::Predicate Pred = ICI.isSigned()
1065                                         ? ICI.getUnsignedPredicate()
1066                                         : ICI.getSignedPredicate();
1067          Pred = ICI.getSwappedPredicate(Pred);
1068          return new ICmpInst(Pred, LHSI->getOperand(0),
1069                              ConstantInt::get(ICI.getContext(),
1070                                               RHSV ^ NotSignBit));
1071        }
1072      }
1073    }
1074    break;
1075  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1076    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1077        LHSI->getOperand(0)->hasOneUse()) {
1078      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1079
1080      // If the LHS is an AND of a truncating cast, we can widen the
1081      // and/compare to be the input width without changing the value
1082      // produced, eliminating a cast.
1083      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1084        // We can do this transformation if either the AND constant does not
1085        // have its sign bit set or if it is an equality comparison.
1086        // Extending a relational comparison when we're checking the sign
1087        // bit would not work.
1088        if (ICI.isEquality() ||
1089            (!AndCST->isNegative() && RHSV.isNonNegative())) {
1090          Value *NewAnd =
1091            Builder->CreateAnd(Cast->getOperand(0),
1092                               ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1093          NewAnd->takeName(LHSI);
1094          return new ICmpInst(ICI.getPredicate(), NewAnd,
1095                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1096        }
1097      }
1098
1099      // If the LHS is an AND of a zext, and we have an equality compare, we can
1100      // shrink the and/compare to the smaller type, eliminating the cast.
1101      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1102        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1103        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1104        // should fold the icmp to true/false in that case.
1105        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1106          Value *NewAnd =
1107            Builder->CreateAnd(Cast->getOperand(0),
1108                               ConstantExpr::getTrunc(AndCST, Ty));
1109          NewAnd->takeName(LHSI);
1110          return new ICmpInst(ICI.getPredicate(), NewAnd,
1111                              ConstantExpr::getTrunc(RHS, Ty));
1112        }
1113      }
1114
1115      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1116      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1117      // happens a LOT in code produced by the C front-end, for bitfield
1118      // access.
1119      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1120      if (Shift && !Shift->isShift())
1121        Shift = 0;
1122
1123      ConstantInt *ShAmt;
1124      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1125      Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1126      Type *AndTy = AndCST->getType();          // Type of the and.
1127
1128      // We can fold this as long as we can't shift unknown bits
1129      // into the mask.  This can only happen with signed shift
1130      // rights, as they sign-extend.
1131      if (ShAmt) {
1132        bool CanFold = Shift->isLogicalShift();
1133        if (!CanFold) {
1134          // To test for the bad case of the signed shr, see if any
1135          // of the bits shifted in could be tested after the mask.
1136          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1137          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1138
1139          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1140          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1141               AndCST->getValue()) == 0)
1142            CanFold = true;
1143        }
1144
1145        if (CanFold) {
1146          Constant *NewCst;
1147          if (Shift->getOpcode() == Instruction::Shl)
1148            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1149          else
1150            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1151
1152          // Check to see if we are shifting out any of the bits being
1153          // compared.
1154          if (ConstantExpr::get(Shift->getOpcode(),
1155                                       NewCst, ShAmt) != RHS) {
1156            // If we shifted bits out, the fold is not going to work out.
1157            // As a special case, check to see if this means that the
1158            // result is always true or false now.
1159            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1160              return ReplaceInstUsesWith(ICI,
1161                                       ConstantInt::getFalse(ICI.getContext()));
1162            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1163              return ReplaceInstUsesWith(ICI,
1164                                       ConstantInt::getTrue(ICI.getContext()));
1165          } else {
1166            ICI.setOperand(1, NewCst);
1167            Constant *NewAndCST;
1168            if (Shift->getOpcode() == Instruction::Shl)
1169              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1170            else
1171              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1172            LHSI->setOperand(1, NewAndCST);
1173            LHSI->setOperand(0, Shift->getOperand(0));
1174            Worklist.Add(Shift); // Shift is dead.
1175            return &ICI;
1176          }
1177        }
1178      }
1179
1180      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1181      // preferable because it allows the C<<Y expression to be hoisted out
1182      // of a loop if Y is invariant and X is not.
1183      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1184          ICI.isEquality() && !Shift->isArithmeticShift() &&
1185          !isa<Constant>(Shift->getOperand(0))) {
1186        // Compute C << Y.
1187        Value *NS;
1188        if (Shift->getOpcode() == Instruction::LShr) {
1189          NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
1190        } else {
1191          // Insert a logical shift.
1192          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
1193        }
1194
1195        // Compute X & (C << Y).
1196        Value *NewAnd =
1197          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1198
1199        ICI.setOperand(0, NewAnd);
1200        return &ICI;
1201      }
1202    }
1203
1204    // Try to optimize things like "A[i]&42 == 0" to index computations.
1205    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1206      if (GetElementPtrInst *GEP =
1207          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1208        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1209          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1210              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1211            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1212            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1213              return Res;
1214          }
1215    }
1216    break;
1217
1218  case Instruction::Or: {
1219    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1220      break;
1221    Value *P, *Q;
1222    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1223      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1224      // -> and (icmp eq P, null), (icmp eq Q, null).
1225      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1226                                        Constant::getNullValue(P->getType()));
1227      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1228                                        Constant::getNullValue(Q->getType()));
1229      Instruction *Op;
1230      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1231        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1232      else
1233        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1234      return Op;
1235    }
1236    break;
1237  }
1238
1239  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1240    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1241    if (!ShAmt) break;
1242
1243    uint32_t TypeBits = RHSV.getBitWidth();
1244
1245    // Check that the shift amount is in range.  If not, don't perform
1246    // undefined shifts.  When the shift is visited it will be
1247    // simplified.
1248    if (ShAmt->uge(TypeBits))
1249      break;
1250
1251    if (ICI.isEquality()) {
1252      // If we are comparing against bits always shifted out, the
1253      // comparison cannot succeed.
1254      Constant *Comp =
1255        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1256                                                                 ShAmt);
1257      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1258        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1259        Constant *Cst =
1260          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1261        return ReplaceInstUsesWith(ICI, Cst);
1262      }
1263
1264      // If the shift is NUW, then it is just shifting out zeros, no need for an
1265      // AND.
1266      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1267        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1268                            ConstantExpr::getLShr(RHS, ShAmt));
1269
1270      if (LHSI->hasOneUse()) {
1271        // Otherwise strength reduce the shift into an and.
1272        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1273        Constant *Mask =
1274          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1275                                                       TypeBits-ShAmtVal));
1276
1277        Value *And =
1278          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1279        return new ICmpInst(ICI.getPredicate(), And,
1280                            ConstantExpr::getLShr(RHS, ShAmt));
1281      }
1282    }
1283
1284    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1285    bool TrueIfSigned = false;
1286    if (LHSI->hasOneUse() &&
1287        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1288      // (X << 31) <s 0  --> (X&1) != 0
1289      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1290                                        APInt::getOneBitSet(TypeBits,
1291                                            TypeBits-ShAmt->getZExtValue()-1));
1292      Value *And =
1293        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1294      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1295                          And, Constant::getNullValue(And->getType()));
1296    }
1297    break;
1298  }
1299
1300  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1301  case Instruction::AShr: {
1302    // Handle equality comparisons of shift-by-constant.
1303    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1304    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1305      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1306        return Res;
1307    }
1308
1309    // Handle exact shr's.
1310    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1311      if (RHSV.isMinValue())
1312        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1313    }
1314    break;
1315  }
1316
1317  case Instruction::SDiv:
1318  case Instruction::UDiv:
1319    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1320    // Fold this div into the comparison, producing a range check.
1321    // Determine, based on the divide type, what the range is being
1322    // checked.  If there is an overflow on the low or high side, remember
1323    // it, otherwise compute the range [low, hi) bounding the new value.
1324    // See: InsertRangeTest above for the kinds of replacements possible.
1325    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1326      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1327                                          DivRHS))
1328        return R;
1329    break;
1330
1331  case Instruction::Add:
1332    // Fold: icmp pred (add X, C1), C2
1333    if (!ICI.isEquality()) {
1334      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1335      if (!LHSC) break;
1336      const APInt &LHSV = LHSC->getValue();
1337
1338      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1339                            .subtract(LHSV);
1340
1341      if (ICI.isSigned()) {
1342        if (CR.getLower().isSignBit()) {
1343          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1344                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1345        } else if (CR.getUpper().isSignBit()) {
1346          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1347                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1348        }
1349      } else {
1350        if (CR.getLower().isMinValue()) {
1351          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1352                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1353        } else if (CR.getUpper().isMinValue()) {
1354          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1355                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1356        }
1357      }
1358    }
1359    break;
1360  }
1361
1362  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1363  if (ICI.isEquality()) {
1364    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1365
1366    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1367    // the second operand is a constant, simplify a bit.
1368    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1369      switch (BO->getOpcode()) {
1370      case Instruction::SRem:
1371        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1372        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1373          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1374          if (V.sgt(1) && V.isPowerOf2()) {
1375            Value *NewRem =
1376              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1377                                  BO->getName());
1378            return new ICmpInst(ICI.getPredicate(), NewRem,
1379                                Constant::getNullValue(BO->getType()));
1380          }
1381        }
1382        break;
1383      case Instruction::Add:
1384        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1385        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1386          if (BO->hasOneUse())
1387            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1388                                ConstantExpr::getSub(RHS, BOp1C));
1389        } else if (RHSV == 0) {
1390          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1391          // efficiently invertible, or if the add has just this one use.
1392          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1393
1394          if (Value *NegVal = dyn_castNegVal(BOp1))
1395            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1396          if (Value *NegVal = dyn_castNegVal(BOp0))
1397            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1398          if (BO->hasOneUse()) {
1399            Value *Neg = Builder->CreateNeg(BOp1);
1400            Neg->takeName(BO);
1401            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1402          }
1403        }
1404        break;
1405      case Instruction::Xor:
1406        // For the xor case, we can xor two constants together, eliminating
1407        // the explicit xor.
1408        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1409          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1410                              ConstantExpr::getXor(RHS, BOC));
1411        } else if (RHSV == 0) {
1412          // Replace ((xor A, B) != 0) with (A != B)
1413          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1414                              BO->getOperand(1));
1415        }
1416        break;
1417      case Instruction::Sub:
1418        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1419        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1420          if (BO->hasOneUse())
1421            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1422                                ConstantExpr::getSub(BOp0C, RHS));
1423        } else if (RHSV == 0) {
1424          // Replace ((sub A, B) != 0) with (A != B)
1425          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1426                              BO->getOperand(1));
1427        }
1428        break;
1429      case Instruction::Or:
1430        // If bits are being or'd in that are not present in the constant we
1431        // are comparing against, then the comparison could never succeed!
1432        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1433          Constant *NotCI = ConstantExpr::getNot(RHS);
1434          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1435            return ReplaceInstUsesWith(ICI,
1436                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1437                                       isICMP_NE));
1438        }
1439        break;
1440
1441      case Instruction::And:
1442        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1443          // If bits are being compared against that are and'd out, then the
1444          // comparison can never succeed!
1445          if ((RHSV & ~BOC->getValue()) != 0)
1446            return ReplaceInstUsesWith(ICI,
1447                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1448                                       isICMP_NE));
1449
1450          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1451          if (RHS == BOC && RHSV.isPowerOf2())
1452            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1453                                ICmpInst::ICMP_NE, LHSI,
1454                                Constant::getNullValue(RHS->getType()));
1455
1456          // Don't perform the following transforms if the AND has multiple uses
1457          if (!BO->hasOneUse())
1458            break;
1459
1460          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1461          if (BOC->getValue().isSignBit()) {
1462            Value *X = BO->getOperand(0);
1463            Constant *Zero = Constant::getNullValue(X->getType());
1464            ICmpInst::Predicate pred = isICMP_NE ?
1465              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1466            return new ICmpInst(pred, X, Zero);
1467          }
1468
1469          // ((X & ~7) == 0) --> X < 8
1470          if (RHSV == 0 && isHighOnes(BOC)) {
1471            Value *X = BO->getOperand(0);
1472            Constant *NegX = ConstantExpr::getNeg(BOC);
1473            ICmpInst::Predicate pred = isICMP_NE ?
1474              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1475            return new ICmpInst(pred, X, NegX);
1476          }
1477        }
1478      default: break;
1479      }
1480    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1481      // Handle icmp {eq|ne} <intrinsic>, intcst.
1482      switch (II->getIntrinsicID()) {
1483      case Intrinsic::bswap:
1484        Worklist.Add(II);
1485        ICI.setOperand(0, II->getArgOperand(0));
1486        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1487        return &ICI;
1488      case Intrinsic::ctlz:
1489      case Intrinsic::cttz:
1490        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1491        if (RHSV == RHS->getType()->getBitWidth()) {
1492          Worklist.Add(II);
1493          ICI.setOperand(0, II->getArgOperand(0));
1494          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1495          return &ICI;
1496        }
1497        break;
1498      case Intrinsic::ctpop:
1499        // popcount(A) == 0  ->  A == 0 and likewise for !=
1500        if (RHS->isZero()) {
1501          Worklist.Add(II);
1502          ICI.setOperand(0, II->getArgOperand(0));
1503          ICI.setOperand(1, RHS);
1504          return &ICI;
1505        }
1506        break;
1507      default:
1508        break;
1509      }
1510    }
1511  }
1512  return 0;
1513}
1514
1515/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1516/// We only handle extending casts so far.
1517///
1518Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1519  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1520  Value *LHSCIOp        = LHSCI->getOperand(0);
1521  Type *SrcTy     = LHSCIOp->getType();
1522  Type *DestTy    = LHSCI->getType();
1523  Value *RHSCIOp;
1524
1525  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1526  // integer type is the same size as the pointer type.
1527  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1528      TD->getPointerSizeInBits() ==
1529         cast<IntegerType>(DestTy)->getBitWidth()) {
1530    Value *RHSOp = 0;
1531    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1532      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1533    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1534      RHSOp = RHSC->getOperand(0);
1535      // If the pointer types don't match, insert a bitcast.
1536      if (LHSCIOp->getType() != RHSOp->getType())
1537        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1538    }
1539
1540    if (RHSOp)
1541      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1542  }
1543
1544  // The code below only handles extension cast instructions, so far.
1545  // Enforce this.
1546  if (LHSCI->getOpcode() != Instruction::ZExt &&
1547      LHSCI->getOpcode() != Instruction::SExt)
1548    return 0;
1549
1550  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1551  bool isSignedCmp = ICI.isSigned();
1552
1553  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1554    // Not an extension from the same type?
1555    RHSCIOp = CI->getOperand(0);
1556    if (RHSCIOp->getType() != LHSCIOp->getType())
1557      return 0;
1558
1559    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1560    // and the other is a zext), then we can't handle this.
1561    if (CI->getOpcode() != LHSCI->getOpcode())
1562      return 0;
1563
1564    // Deal with equality cases early.
1565    if (ICI.isEquality())
1566      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1567
1568    // A signed comparison of sign extended values simplifies into a
1569    // signed comparison.
1570    if (isSignedCmp && isSignedExt)
1571      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1572
1573    // The other three cases all fold into an unsigned comparison.
1574    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1575  }
1576
1577  // If we aren't dealing with a constant on the RHS, exit early
1578  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1579  if (!CI)
1580    return 0;
1581
1582  // Compute the constant that would happen if we truncated to SrcTy then
1583  // reextended to DestTy.
1584  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1585  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1586                                                Res1, DestTy);
1587
1588  // If the re-extended constant didn't change...
1589  if (Res2 == CI) {
1590    // Deal with equality cases early.
1591    if (ICI.isEquality())
1592      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1593
1594    // A signed comparison of sign extended values simplifies into a
1595    // signed comparison.
1596    if (isSignedExt && isSignedCmp)
1597      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1598
1599    // The other three cases all fold into an unsigned comparison.
1600    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1601  }
1602
1603  // The re-extended constant changed so the constant cannot be represented
1604  // in the shorter type. Consequently, we cannot emit a simple comparison.
1605  // All the cases that fold to true or false will have already been handled
1606  // by SimplifyICmpInst, so only deal with the tricky case.
1607
1608  if (isSignedCmp || !isSignedExt)
1609    return 0;
1610
1611  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1612  // should have been folded away previously and not enter in here.
1613
1614  // We're performing an unsigned comp with a sign extended value.
1615  // This is true if the input is >= 0. [aka >s -1]
1616  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1617  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1618
1619  // Finally, return the value computed.
1620  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1621    return ReplaceInstUsesWith(ICI, Result);
1622
1623  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1624  return BinaryOperator::CreateNot(Result);
1625}
1626
1627/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1628///   I = icmp ugt (add (add A, B), CI2), CI1
1629/// If this is of the form:
1630///   sum = a + b
1631///   if (sum+128 >u 255)
1632/// Then replace it with llvm.sadd.with.overflow.i8.
1633///
1634static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1635                                          ConstantInt *CI2, ConstantInt *CI1,
1636                                          InstCombiner &IC) {
1637  // The transformation we're trying to do here is to transform this into an
1638  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1639  // with a narrower add, and discard the add-with-constant that is part of the
1640  // range check (if we can't eliminate it, this isn't profitable).
1641
1642  // In order to eliminate the add-with-constant, the compare can be its only
1643  // use.
1644  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1645  if (!AddWithCst->hasOneUse()) return 0;
1646
1647  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1648  if (!CI2->getValue().isPowerOf2()) return 0;
1649  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1650  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1651
1652  // The width of the new add formed is 1 more than the bias.
1653  ++NewWidth;
1654
1655  // Check to see that CI1 is an all-ones value with NewWidth bits.
1656  if (CI1->getBitWidth() == NewWidth ||
1657      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1658    return 0;
1659
1660  // In order to replace the original add with a narrower
1661  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1662  // and truncates that discard the high bits of the add.  Verify that this is
1663  // the case.
1664  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1665  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1666       UI != E; ++UI) {
1667    if (*UI == AddWithCst) continue;
1668
1669    // Only accept truncates for now.  We would really like a nice recursive
1670    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1671    // chain to see which bits of a value are actually demanded.  If the
1672    // original add had another add which was then immediately truncated, we
1673    // could still do the transformation.
1674    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1675    if (TI == 0 ||
1676        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1677  }
1678
1679  // If the pattern matches, truncate the inputs to the narrower type and
1680  // use the sadd_with_overflow intrinsic to efficiently compute both the
1681  // result and the overflow bit.
1682  Module *M = I.getParent()->getParent()->getParent();
1683
1684  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1685  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1686                                       NewType);
1687
1688  InstCombiner::BuilderTy *Builder = IC.Builder;
1689
1690  // Put the new code above the original add, in case there are any uses of the
1691  // add between the add and the compare.
1692  Builder->SetInsertPoint(OrigAdd);
1693
1694  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1695  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1696  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1697  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1698  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1699
1700  // The inner add was the result of the narrow add, zero extended to the
1701  // wider type.  Replace it with the result computed by the intrinsic.
1702  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1703
1704  // The original icmp gets replaced with the overflow value.
1705  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1706}
1707
1708static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1709                                     InstCombiner &IC) {
1710  // Don't bother doing this transformation for pointers, don't do it for
1711  // vectors.
1712  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1713
1714  // If the add is a constant expr, then we don't bother transforming it.
1715  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1716  if (OrigAdd == 0) return 0;
1717
1718  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1719
1720  // Put the new code above the original add, in case there are any uses of the
1721  // add between the add and the compare.
1722  InstCombiner::BuilderTy *Builder = IC.Builder;
1723  Builder->SetInsertPoint(OrigAdd);
1724
1725  Module *M = I.getParent()->getParent()->getParent();
1726  Type *Ty = LHS->getType();
1727  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1728  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1729  Value *Add = Builder->CreateExtractValue(Call, 0);
1730
1731  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1732
1733  // The original icmp gets replaced with the overflow value.
1734  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1735}
1736
1737// DemandedBitsLHSMask - When performing a comparison against a constant,
1738// it is possible that not all the bits in the LHS are demanded.  This helper
1739// method computes the mask that IS demanded.
1740static APInt DemandedBitsLHSMask(ICmpInst &I,
1741                                 unsigned BitWidth, bool isSignCheck) {
1742  if (isSignCheck)
1743    return APInt::getSignBit(BitWidth);
1744
1745  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1746  if (!CI) return APInt::getAllOnesValue(BitWidth);
1747  const APInt &RHS = CI->getValue();
1748
1749  switch (I.getPredicate()) {
1750  // For a UGT comparison, we don't care about any bits that
1751  // correspond to the trailing ones of the comparand.  The value of these
1752  // bits doesn't impact the outcome of the comparison, because any value
1753  // greater than the RHS must differ in a bit higher than these due to carry.
1754  case ICmpInst::ICMP_UGT: {
1755    unsigned trailingOnes = RHS.countTrailingOnes();
1756    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1757    return ~lowBitsSet;
1758  }
1759
1760  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1761  // Any value less than the RHS must differ in a higher bit because of carries.
1762  case ICmpInst::ICMP_ULT: {
1763    unsigned trailingZeros = RHS.countTrailingZeros();
1764    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1765    return ~lowBitsSet;
1766  }
1767
1768  default:
1769    return APInt::getAllOnesValue(BitWidth);
1770  }
1771
1772}
1773
1774Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1775  bool Changed = false;
1776  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1777
1778  /// Orders the operands of the compare so that they are listed from most
1779  /// complex to least complex.  This puts constants before unary operators,
1780  /// before binary operators.
1781  if (getComplexity(Op0) < getComplexity(Op1)) {
1782    I.swapOperands();
1783    std::swap(Op0, Op1);
1784    Changed = true;
1785  }
1786
1787  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1788    return ReplaceInstUsesWith(I, V);
1789
1790  Type *Ty = Op0->getType();
1791
1792  // icmp's with boolean values can always be turned into bitwise operations
1793  if (Ty->isIntegerTy(1)) {
1794    switch (I.getPredicate()) {
1795    default: llvm_unreachable("Invalid icmp instruction!");
1796    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1797      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1798      return BinaryOperator::CreateNot(Xor);
1799    }
1800    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1801      return BinaryOperator::CreateXor(Op0, Op1);
1802
1803    case ICmpInst::ICMP_UGT:
1804      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1805      // FALL THROUGH
1806    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1807      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1808      return BinaryOperator::CreateAnd(Not, Op1);
1809    }
1810    case ICmpInst::ICMP_SGT:
1811      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1812      // FALL THROUGH
1813    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1814      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1815      return BinaryOperator::CreateAnd(Not, Op0);
1816    }
1817    case ICmpInst::ICMP_UGE:
1818      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1819      // FALL THROUGH
1820    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1821      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1822      return BinaryOperator::CreateOr(Not, Op1);
1823    }
1824    case ICmpInst::ICMP_SGE:
1825      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1826      // FALL THROUGH
1827    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1828      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1829      return BinaryOperator::CreateOr(Not, Op0);
1830    }
1831    }
1832  }
1833
1834  unsigned BitWidth = 0;
1835  if (Ty->isIntOrIntVectorTy())
1836    BitWidth = Ty->getScalarSizeInBits();
1837  else if (TD)  // Pointers require TD info to get their size.
1838    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1839
1840  bool isSignBit = false;
1841
1842  // See if we are doing a comparison with a constant.
1843  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1844    Value *A = 0, *B = 0;
1845
1846    // Match the following pattern, which is a common idiom when writing
1847    // overflow-safe integer arithmetic function.  The source performs an
1848    // addition in wider type, and explicitly checks for overflow using
1849    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
1850    // sadd_with_overflow intrinsic.
1851    //
1852    // TODO: This could probably be generalized to handle other overflow-safe
1853    // operations if we worked out the formulas to compute the appropriate
1854    // magic constants.
1855    //
1856    // sum = a + b
1857    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1858    {
1859    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
1860    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1861        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1862      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
1863        return Res;
1864    }
1865
1866    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1867    if (I.isEquality() && CI->isZero() &&
1868        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1869      // (icmp cond A B) if cond is equality
1870      return new ICmpInst(I.getPredicate(), A, B);
1871    }
1872
1873    // If we have an icmp le or icmp ge instruction, turn it into the
1874    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1875    // them being folded in the code below.  The SimplifyICmpInst code has
1876    // already handled the edge cases for us, so we just assert on them.
1877    switch (I.getPredicate()) {
1878    default: break;
1879    case ICmpInst::ICMP_ULE:
1880      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1881      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1882                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1883    case ICmpInst::ICMP_SLE:
1884      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1885      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1886                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1887    case ICmpInst::ICMP_UGE:
1888      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
1889      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1890                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1891    case ICmpInst::ICMP_SGE:
1892      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
1893      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1894                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1895    }
1896
1897    // If this comparison is a normal comparison, it demands all
1898    // bits, if it is a sign bit comparison, it only demands the sign bit.
1899    bool UnusedBit;
1900    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1901  }
1902
1903  // See if we can fold the comparison based on range information we can get
1904  // by checking whether bits are known to be zero or one in the input.
1905  if (BitWidth != 0) {
1906    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1907    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1908
1909    if (SimplifyDemandedBits(I.getOperandUse(0),
1910                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
1911                             Op0KnownZero, Op0KnownOne, 0))
1912      return &I;
1913    if (SimplifyDemandedBits(I.getOperandUse(1),
1914                             APInt::getAllOnesValue(BitWidth),
1915                             Op1KnownZero, Op1KnownOne, 0))
1916      return &I;
1917
1918    // Given the known and unknown bits, compute a range that the LHS could be
1919    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1920    // EQ and NE we use unsigned values.
1921    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1922    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1923    if (I.isSigned()) {
1924      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1925                                             Op0Min, Op0Max);
1926      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1927                                             Op1Min, Op1Max);
1928    } else {
1929      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1930                                               Op0Min, Op0Max);
1931      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1932                                               Op1Min, Op1Max);
1933    }
1934
1935    // If Min and Max are known to be the same, then SimplifyDemandedBits
1936    // figured out that the LHS is a constant.  Just constant fold this now so
1937    // that code below can assume that Min != Max.
1938    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1939      return new ICmpInst(I.getPredicate(),
1940                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
1941    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1942      return new ICmpInst(I.getPredicate(), Op0,
1943                          ConstantInt::get(Op1->getType(), Op1Min));
1944
1945    // Based on the range information we know about the LHS, see if we can
1946    // simplify this comparison.  For example, (x&4) < 8 is always true.
1947    switch (I.getPredicate()) {
1948    default: llvm_unreachable("Unknown icmp opcode!");
1949    case ICmpInst::ICMP_EQ: {
1950      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1951        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
1952
1953      // If all bits are known zero except for one, then we know at most one
1954      // bit is set.   If the comparison is against zero, then this is a check
1955      // to see if *that* bit is set.
1956      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1957      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1958        // If the LHS is an AND with the same constant, look through it.
1959        Value *LHS = 0;
1960        ConstantInt *LHSC = 0;
1961        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1962            LHSC->getValue() != Op0KnownZeroInverted)
1963          LHS = Op0;
1964
1965        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1966        // then turn "((1 << x)&8) == 0" into "x != 3".
1967        Value *X = 0;
1968        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1969          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1970          return new ICmpInst(ICmpInst::ICMP_NE, X,
1971                              ConstantInt::get(X->getType(), CmpVal));
1972        }
1973
1974        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1975        // then turn "((8 >>u x)&1) == 0" into "x != 3".
1976        const APInt *CI;
1977        if (Op0KnownZeroInverted == 1 &&
1978            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1979          return new ICmpInst(ICmpInst::ICMP_NE, X,
1980                              ConstantInt::get(X->getType(),
1981                                               CI->countTrailingZeros()));
1982      }
1983
1984      break;
1985    }
1986    case ICmpInst::ICMP_NE: {
1987      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1988        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
1989
1990      // If all bits are known zero except for one, then we know at most one
1991      // bit is set.   If the comparison is against zero, then this is a check
1992      // to see if *that* bit is set.
1993      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1994      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1995        // If the LHS is an AND with the same constant, look through it.
1996        Value *LHS = 0;
1997        ConstantInt *LHSC = 0;
1998        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1999            LHSC->getValue() != Op0KnownZeroInverted)
2000          LHS = Op0;
2001
2002        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2003        // then turn "((1 << x)&8) != 0" into "x == 3".
2004        Value *X = 0;
2005        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2006          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2007          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2008                              ConstantInt::get(X->getType(), CmpVal));
2009        }
2010
2011        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2012        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2013        const APInt *CI;
2014        if (Op0KnownZeroInverted == 1 &&
2015            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2016          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2017                              ConstantInt::get(X->getType(),
2018                                               CI->countTrailingZeros()));
2019      }
2020
2021      break;
2022    }
2023    case ICmpInst::ICMP_ULT:
2024      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2025        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2026      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2027        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2028      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2029        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2030      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2031        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2032          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2033                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2034
2035        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2036        if (CI->isMinValue(true))
2037          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2038                           Constant::getAllOnesValue(Op0->getType()));
2039      }
2040      break;
2041    case ICmpInst::ICMP_UGT:
2042      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2043        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2044      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2045        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2046
2047      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2048        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2049      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2050        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2051          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2052                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2053
2054        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2055        if (CI->isMaxValue(true))
2056          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2057                              Constant::getNullValue(Op0->getType()));
2058      }
2059      break;
2060    case ICmpInst::ICMP_SLT:
2061      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2062        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2063      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2064        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2065      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2066        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2067      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2068        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2069          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2070                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2071      }
2072      break;
2073    case ICmpInst::ICMP_SGT:
2074      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2075        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2076      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2077        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2078
2079      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2080        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2081      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2082        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2083          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2084                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2085      }
2086      break;
2087    case ICmpInst::ICMP_SGE:
2088      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2089      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2090        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2091      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2092        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2093      break;
2094    case ICmpInst::ICMP_SLE:
2095      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2096      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2097        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2098      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2099        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2100      break;
2101    case ICmpInst::ICMP_UGE:
2102      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2103      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2104        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2105      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2106        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2107      break;
2108    case ICmpInst::ICMP_ULE:
2109      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2110      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2111        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2112      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2113        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2114      break;
2115    }
2116
2117    // Turn a signed comparison into an unsigned one if both operands
2118    // are known to have the same sign.
2119    if (I.isSigned() &&
2120        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2121         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2122      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2123  }
2124
2125  // Test if the ICmpInst instruction is used exclusively by a select as
2126  // part of a minimum or maximum operation. If so, refrain from doing
2127  // any other folding. This helps out other analyses which understand
2128  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2129  // and CodeGen. And in this case, at least one of the comparison
2130  // operands has at least one user besides the compare (the select),
2131  // which would often largely negate the benefit of folding anyway.
2132  if (I.hasOneUse())
2133    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2134      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2135          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2136        return 0;
2137
2138  // See if we are doing a comparison between a constant and an instruction that
2139  // can be folded into the comparison.
2140  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2141    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2142    // instruction, see if that instruction also has constants so that the
2143    // instruction can be folded into the icmp
2144    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2145      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2146        return Res;
2147  }
2148
2149  // Handle icmp with constant (but not simple integer constant) RHS
2150  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2151    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2152      switch (LHSI->getOpcode()) {
2153      case Instruction::GetElementPtr:
2154          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2155        if (RHSC->isNullValue() &&
2156            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2157          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2158                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2159        break;
2160      case Instruction::PHI:
2161        // Only fold icmp into the PHI if the phi and icmp are in the same
2162        // block.  If in the same block, we're encouraging jump threading.  If
2163        // not, we are just pessimizing the code by making an i1 phi.
2164        if (LHSI->getParent() == I.getParent())
2165          if (Instruction *NV = FoldOpIntoPhi(I))
2166            return NV;
2167        break;
2168      case Instruction::Select: {
2169        // If either operand of the select is a constant, we can fold the
2170        // comparison into the select arms, which will cause one to be
2171        // constant folded and the select turned into a bitwise or.
2172        Value *Op1 = 0, *Op2 = 0;
2173        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2174          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2175        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2176          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2177
2178        // We only want to perform this transformation if it will not lead to
2179        // additional code. This is true if either both sides of the select
2180        // fold to a constant (in which case the icmp is replaced with a select
2181        // which will usually simplify) or this is the only user of the
2182        // select (in which case we are trading a select+icmp for a simpler
2183        // select+icmp).
2184        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2185          if (!Op1)
2186            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2187                                      RHSC, I.getName());
2188          if (!Op2)
2189            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2190                                      RHSC, I.getName());
2191          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2192        }
2193        break;
2194      }
2195      case Instruction::IntToPtr:
2196        // icmp pred inttoptr(X), null -> icmp pred X, 0
2197        if (RHSC->isNullValue() && TD &&
2198            TD->getIntPtrType(RHSC->getContext()) ==
2199               LHSI->getOperand(0)->getType())
2200          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2201                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2202        break;
2203
2204      case Instruction::Load:
2205        // Try to optimize things like "A[i] > 4" to index computations.
2206        if (GetElementPtrInst *GEP =
2207              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2208          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2209            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2210                !cast<LoadInst>(LHSI)->isVolatile())
2211              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2212                return Res;
2213        }
2214        break;
2215      }
2216  }
2217
2218  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2219  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2220    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2221      return NI;
2222  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2223    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2224                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2225      return NI;
2226
2227  // Test to see if the operands of the icmp are casted versions of other
2228  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2229  // now.
2230  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2231    if (Op0->getType()->isPointerTy() &&
2232        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2233      // We keep moving the cast from the left operand over to the right
2234      // operand, where it can often be eliminated completely.
2235      Op0 = CI->getOperand(0);
2236
2237      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2238      // so eliminate it as well.
2239      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2240        Op1 = CI2->getOperand(0);
2241
2242      // If Op1 is a constant, we can fold the cast into the constant.
2243      if (Op0->getType() != Op1->getType()) {
2244        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2245          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2246        } else {
2247          // Otherwise, cast the RHS right before the icmp
2248          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2249        }
2250      }
2251      return new ICmpInst(I.getPredicate(), Op0, Op1);
2252    }
2253  }
2254
2255  if (isa<CastInst>(Op0)) {
2256    // Handle the special case of: icmp (cast bool to X), <cst>
2257    // This comes up when you have code like
2258    //   int X = A < B;
2259    //   if (X) ...
2260    // For generality, we handle any zero-extension of any operand comparison
2261    // with a constant or another cast from the same type.
2262    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2263      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2264        return R;
2265  }
2266
2267  // Special logic for binary operators.
2268  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2269  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2270  if (BO0 || BO1) {
2271    CmpInst::Predicate Pred = I.getPredicate();
2272    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2273    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2274      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2275        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2276        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2277    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2278      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2279        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2280        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2281
2282    // Analyze the case when either Op0 or Op1 is an add instruction.
2283    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2284    Value *A = 0, *B = 0, *C = 0, *D = 0;
2285    if (BO0 && BO0->getOpcode() == Instruction::Add)
2286      A = BO0->getOperand(0), B = BO0->getOperand(1);
2287    if (BO1 && BO1->getOpcode() == Instruction::Add)
2288      C = BO1->getOperand(0), D = BO1->getOperand(1);
2289
2290    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2291    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2292      return new ICmpInst(Pred, A == Op1 ? B : A,
2293                          Constant::getNullValue(Op1->getType()));
2294
2295    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2296    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2297      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2298                          C == Op0 ? D : C);
2299
2300    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2301    if (A && C && (A == C || A == D || B == C || B == D) &&
2302        NoOp0WrapProblem && NoOp1WrapProblem &&
2303        // Try not to increase register pressure.
2304        BO0->hasOneUse() && BO1->hasOneUse()) {
2305      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2306      Value *Y = (A == C || A == D) ? B : A;
2307      Value *Z = (C == A || C == B) ? D : C;
2308      return new ICmpInst(Pred, Y, Z);
2309    }
2310
2311    // Analyze the case when either Op0 or Op1 is a sub instruction.
2312    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2313    A = 0; B = 0; C = 0; D = 0;
2314    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2315      A = BO0->getOperand(0), B = BO0->getOperand(1);
2316    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2317      C = BO1->getOperand(0), D = BO1->getOperand(1);
2318
2319    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2320    if (A == Op1 && NoOp0WrapProblem)
2321      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2322
2323    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2324    if (C == Op0 && NoOp1WrapProblem)
2325      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2326
2327    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2328    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2329        // Try not to increase register pressure.
2330        BO0->hasOneUse() && BO1->hasOneUse())
2331      return new ICmpInst(Pred, A, C);
2332
2333    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2334    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2335        // Try not to increase register pressure.
2336        BO0->hasOneUse() && BO1->hasOneUse())
2337      return new ICmpInst(Pred, D, B);
2338
2339    BinaryOperator *SRem = NULL;
2340    // icmp (srem X, Y), Y
2341    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2342        Op1 == BO0->getOperand(1))
2343      SRem = BO0;
2344    // icmp Y, (srem X, Y)
2345    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2346             Op0 == BO1->getOperand(1))
2347      SRem = BO1;
2348    if (SRem) {
2349      // We don't check hasOneUse to avoid increasing register pressure because
2350      // the value we use is the same value this instruction was already using.
2351      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2352        default: break;
2353        case ICmpInst::ICMP_EQ:
2354          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2355        case ICmpInst::ICMP_NE:
2356          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2357        case ICmpInst::ICMP_SGT:
2358        case ICmpInst::ICMP_SGE:
2359          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2360                              Constant::getAllOnesValue(SRem->getType()));
2361        case ICmpInst::ICMP_SLT:
2362        case ICmpInst::ICMP_SLE:
2363          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2364                              Constant::getNullValue(SRem->getType()));
2365      }
2366    }
2367
2368    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2369        BO0->hasOneUse() && BO1->hasOneUse() &&
2370        BO0->getOperand(1) == BO1->getOperand(1)) {
2371      switch (BO0->getOpcode()) {
2372      default: break;
2373      case Instruction::Add:
2374      case Instruction::Sub:
2375      case Instruction::Xor:
2376        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2377          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2378                              BO1->getOperand(0));
2379        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2380        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2381          if (CI->getValue().isSignBit()) {
2382            ICmpInst::Predicate Pred = I.isSigned()
2383                                           ? I.getUnsignedPredicate()
2384                                           : I.getSignedPredicate();
2385            return new ICmpInst(Pred, BO0->getOperand(0),
2386                                BO1->getOperand(0));
2387          }
2388
2389          if (CI->isMaxValue(true)) {
2390            ICmpInst::Predicate Pred = I.isSigned()
2391                                           ? I.getUnsignedPredicate()
2392                                           : I.getSignedPredicate();
2393            Pred = I.getSwappedPredicate(Pred);
2394            return new ICmpInst(Pred, BO0->getOperand(0),
2395                                BO1->getOperand(0));
2396          }
2397        }
2398        break;
2399      case Instruction::Mul:
2400        if (!I.isEquality())
2401          break;
2402
2403        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2404          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2405          // Mask = -1 >> count-trailing-zeros(Cst).
2406          if (!CI->isZero() && !CI->isOne()) {
2407            const APInt &AP = CI->getValue();
2408            ConstantInt *Mask = ConstantInt::get(I.getContext(),
2409                                    APInt::getLowBitsSet(AP.getBitWidth(),
2410                                                         AP.getBitWidth() -
2411                                                    AP.countTrailingZeros()));
2412            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2413            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2414            return new ICmpInst(I.getPredicate(), And1, And2);
2415          }
2416        }
2417        break;
2418      case Instruction::UDiv:
2419      case Instruction::LShr:
2420        if (I.isSigned())
2421          break;
2422        // fall-through
2423      case Instruction::SDiv:
2424      case Instruction::AShr:
2425        if (!BO0->isExact() || !BO1->isExact())
2426          break;
2427        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2428                            BO1->getOperand(0));
2429      case Instruction::Shl: {
2430        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2431        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2432        if (!NUW && !NSW)
2433          break;
2434        if (!NSW && I.isSigned())
2435          break;
2436        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2437                            BO1->getOperand(0));
2438      }
2439      }
2440    }
2441  }
2442
2443  { Value *A, *B;
2444    // ~x < ~y --> y < x
2445    // ~x < cst --> ~cst < x
2446    if (match(Op0, m_Not(m_Value(A)))) {
2447      if (match(Op1, m_Not(m_Value(B))))
2448        return new ICmpInst(I.getPredicate(), B, A);
2449      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2450        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2451    }
2452
2453    // (a+b) <u a  --> llvm.uadd.with.overflow.
2454    // (a+b) <u b  --> llvm.uadd.with.overflow.
2455    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2456        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2457        (Op1 == A || Op1 == B))
2458      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2459        return R;
2460
2461    // a >u (a+b)  --> llvm.uadd.with.overflow.
2462    // b >u (a+b)  --> llvm.uadd.with.overflow.
2463    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2464        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2465        (Op0 == A || Op0 == B))
2466      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2467        return R;
2468  }
2469
2470  if (I.isEquality()) {
2471    Value *A, *B, *C, *D;
2472
2473    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2474      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2475        Value *OtherVal = A == Op1 ? B : A;
2476        return new ICmpInst(I.getPredicate(), OtherVal,
2477                            Constant::getNullValue(A->getType()));
2478      }
2479
2480      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2481        // A^c1 == C^c2 --> A == C^(c1^c2)
2482        ConstantInt *C1, *C2;
2483        if (match(B, m_ConstantInt(C1)) &&
2484            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2485          Constant *NC = ConstantInt::get(I.getContext(),
2486                                          C1->getValue() ^ C2->getValue());
2487          Value *Xor = Builder->CreateXor(C, NC);
2488          return new ICmpInst(I.getPredicate(), A, Xor);
2489        }
2490
2491        // A^B == A^D -> B == D
2492        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2493        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2494        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2495        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2496      }
2497    }
2498
2499    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2500        (A == Op0 || B == Op0)) {
2501      // A == (A^B)  ->  B == 0
2502      Value *OtherVal = A == Op0 ? B : A;
2503      return new ICmpInst(I.getPredicate(), OtherVal,
2504                          Constant::getNullValue(A->getType()));
2505    }
2506
2507    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2508    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
2509        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
2510      Value *X = 0, *Y = 0, *Z = 0;
2511
2512      if (A == C) {
2513        X = B; Y = D; Z = A;
2514      } else if (A == D) {
2515        X = B; Y = C; Z = A;
2516      } else if (B == C) {
2517        X = A; Y = D; Z = B;
2518      } else if (B == D) {
2519        X = A; Y = C; Z = B;
2520      }
2521
2522      if (X) {   // Build (X^Y) & Z
2523        Op1 = Builder->CreateXor(X, Y);
2524        Op1 = Builder->CreateAnd(Op1, Z);
2525        I.setOperand(0, Op1);
2526        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2527        return &I;
2528      }
2529    }
2530
2531    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2532    // "icmp (and X, mask), cst"
2533    uint64_t ShAmt = 0;
2534    ConstantInt *Cst1;
2535    if (Op0->hasOneUse() &&
2536        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2537                                           m_ConstantInt(ShAmt))))) &&
2538        match(Op1, m_ConstantInt(Cst1)) &&
2539        // Only do this when A has multiple uses.  This is most important to do
2540        // when it exposes other optimizations.
2541        !A->hasOneUse()) {
2542      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
2543
2544      if (ShAmt < ASize) {
2545        APInt MaskV =
2546          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2547        MaskV <<= ShAmt;
2548
2549        APInt CmpV = Cst1->getValue().zext(ASize);
2550        CmpV <<= ShAmt;
2551
2552        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2553        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2554      }
2555    }
2556  }
2557
2558  {
2559    Value *X; ConstantInt *Cst;
2560    // icmp X+Cst, X
2561    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2562      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2563
2564    // icmp X, X+Cst
2565    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2566      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2567  }
2568  return Changed ? &I : 0;
2569}
2570
2571
2572
2573
2574
2575
2576/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2577///
2578Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2579                                                Instruction *LHSI,
2580                                                Constant *RHSC) {
2581  if (!isa<ConstantFP>(RHSC)) return 0;
2582  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2583
2584  // Get the width of the mantissa.  We don't want to hack on conversions that
2585  // might lose information from the integer, e.g. "i64 -> float"
2586  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2587  if (MantissaWidth == -1) return 0;  // Unknown.
2588
2589  // Check to see that the input is converted from an integer type that is small
2590  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2591  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2592  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2593
2594  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2595  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2596  if (LHSUnsigned)
2597    ++InputSize;
2598
2599  // If the conversion would lose info, don't hack on this.
2600  if ((int)InputSize > MantissaWidth)
2601    return 0;
2602
2603  // Otherwise, we can potentially simplify the comparison.  We know that it
2604  // will always come through as an integer value and we know the constant is
2605  // not a NAN (it would have been previously simplified).
2606  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2607
2608  ICmpInst::Predicate Pred;
2609  switch (I.getPredicate()) {
2610  default: llvm_unreachable("Unexpected predicate!");
2611  case FCmpInst::FCMP_UEQ:
2612  case FCmpInst::FCMP_OEQ:
2613    Pred = ICmpInst::ICMP_EQ;
2614    break;
2615  case FCmpInst::FCMP_UGT:
2616  case FCmpInst::FCMP_OGT:
2617    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2618    break;
2619  case FCmpInst::FCMP_UGE:
2620  case FCmpInst::FCMP_OGE:
2621    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2622    break;
2623  case FCmpInst::FCMP_ULT:
2624  case FCmpInst::FCMP_OLT:
2625    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2626    break;
2627  case FCmpInst::FCMP_ULE:
2628  case FCmpInst::FCMP_OLE:
2629    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2630    break;
2631  case FCmpInst::FCMP_UNE:
2632  case FCmpInst::FCMP_ONE:
2633    Pred = ICmpInst::ICMP_NE;
2634    break;
2635  case FCmpInst::FCMP_ORD:
2636    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2637  case FCmpInst::FCMP_UNO:
2638    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2639  }
2640
2641  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2642
2643  // Now we know that the APFloat is a normal number, zero or inf.
2644
2645  // See if the FP constant is too large for the integer.  For example,
2646  // comparing an i8 to 300.0.
2647  unsigned IntWidth = IntTy->getScalarSizeInBits();
2648
2649  if (!LHSUnsigned) {
2650    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2651    // and large values.
2652    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2653    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2654                          APFloat::rmNearestTiesToEven);
2655    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2656      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2657          Pred == ICmpInst::ICMP_SLE)
2658        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2659      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2660    }
2661  } else {
2662    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2663    // +INF and large values.
2664    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2665    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2666                          APFloat::rmNearestTiesToEven);
2667    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2668      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2669          Pred == ICmpInst::ICMP_ULE)
2670        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2671      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2672    }
2673  }
2674
2675  if (!LHSUnsigned) {
2676    // See if the RHS value is < SignedMin.
2677    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2678    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2679                          APFloat::rmNearestTiesToEven);
2680    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2681      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2682          Pred == ICmpInst::ICMP_SGE)
2683        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2684      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2685    }
2686  }
2687
2688  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2689  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2690  // casting the FP value to the integer value and back, checking for equality.
2691  // Don't do this for zero, because -0.0 is not fractional.
2692  Constant *RHSInt = LHSUnsigned
2693    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2694    : ConstantExpr::getFPToSI(RHSC, IntTy);
2695  if (!RHS.isZero()) {
2696    bool Equal = LHSUnsigned
2697      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2698      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2699    if (!Equal) {
2700      // If we had a comparison against a fractional value, we have to adjust
2701      // the compare predicate and sometimes the value.  RHSC is rounded towards
2702      // zero at this point.
2703      switch (Pred) {
2704      default: llvm_unreachable("Unexpected integer comparison!");
2705      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2706        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2707      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2708        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2709      case ICmpInst::ICMP_ULE:
2710        // (float)int <= 4.4   --> int <= 4
2711        // (float)int <= -4.4  --> false
2712        if (RHS.isNegative())
2713          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2714        break;
2715      case ICmpInst::ICMP_SLE:
2716        // (float)int <= 4.4   --> int <= 4
2717        // (float)int <= -4.4  --> int < -4
2718        if (RHS.isNegative())
2719          Pred = ICmpInst::ICMP_SLT;
2720        break;
2721      case ICmpInst::ICMP_ULT:
2722        // (float)int < -4.4   --> false
2723        // (float)int < 4.4    --> int <= 4
2724        if (RHS.isNegative())
2725          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2726        Pred = ICmpInst::ICMP_ULE;
2727        break;
2728      case ICmpInst::ICMP_SLT:
2729        // (float)int < -4.4   --> int < -4
2730        // (float)int < 4.4    --> int <= 4
2731        if (!RHS.isNegative())
2732          Pred = ICmpInst::ICMP_SLE;
2733        break;
2734      case ICmpInst::ICMP_UGT:
2735        // (float)int > 4.4    --> int > 4
2736        // (float)int > -4.4   --> true
2737        if (RHS.isNegative())
2738          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2739        break;
2740      case ICmpInst::ICMP_SGT:
2741        // (float)int > 4.4    --> int > 4
2742        // (float)int > -4.4   --> int >= -4
2743        if (RHS.isNegative())
2744          Pred = ICmpInst::ICMP_SGE;
2745        break;
2746      case ICmpInst::ICMP_UGE:
2747        // (float)int >= -4.4   --> true
2748        // (float)int >= 4.4    --> int > 4
2749        if (!RHS.isNegative())
2750          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2751        Pred = ICmpInst::ICMP_UGT;
2752        break;
2753      case ICmpInst::ICMP_SGE:
2754        // (float)int >= -4.4   --> int >= -4
2755        // (float)int >= 4.4    --> int > 4
2756        if (!RHS.isNegative())
2757          Pred = ICmpInst::ICMP_SGT;
2758        break;
2759      }
2760    }
2761  }
2762
2763  // Lower this FP comparison into an appropriate integer version of the
2764  // comparison.
2765  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2766}
2767
2768Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2769  bool Changed = false;
2770
2771  /// Orders the operands of the compare so that they are listed from most
2772  /// complex to least complex.  This puts constants before unary operators,
2773  /// before binary operators.
2774  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2775    I.swapOperands();
2776    Changed = true;
2777  }
2778
2779  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2780
2781  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2782    return ReplaceInstUsesWith(I, V);
2783
2784  // Simplify 'fcmp pred X, X'
2785  if (Op0 == Op1) {
2786    switch (I.getPredicate()) {
2787    default: llvm_unreachable("Unknown predicate!");
2788    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2789    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2790    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2791    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2792      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2793      I.setPredicate(FCmpInst::FCMP_UNO);
2794      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2795      return &I;
2796
2797    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2798    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2799    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2800    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2801      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2802      I.setPredicate(FCmpInst::FCMP_ORD);
2803      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2804      return &I;
2805    }
2806  }
2807
2808  // Handle fcmp with constant RHS
2809  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2810    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2811      switch (LHSI->getOpcode()) {
2812      case Instruction::FPExt: {
2813        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
2814        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
2815        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
2816        if (!RHSF)
2817          break;
2818
2819        // We can't convert a PPC double double.
2820        if (RHSF->getType()->isPPC_FP128Ty())
2821          break;
2822
2823        const fltSemantics *Sem;
2824        // FIXME: This shouldn't be here.
2825        if (LHSExt->getSrcTy()->isFloatTy())
2826          Sem = &APFloat::IEEEsingle;
2827        else if (LHSExt->getSrcTy()->isDoubleTy())
2828          Sem = &APFloat::IEEEdouble;
2829        else if (LHSExt->getSrcTy()->isFP128Ty())
2830          Sem = &APFloat::IEEEquad;
2831        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
2832          Sem = &APFloat::x87DoubleExtended;
2833        else
2834          break;
2835
2836        bool Lossy;
2837        APFloat F = RHSF->getValueAPF();
2838        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
2839
2840        // Avoid lossy conversions and denormals. Zero is a special case
2841        // that's OK to convert.
2842        APFloat Fabs = F;
2843        Fabs.clearSign();
2844        if (!Lossy &&
2845            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
2846                 APFloat::cmpLessThan) || Fabs.isZero()))
2847
2848          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2849                              ConstantFP::get(RHSC->getContext(), F));
2850        break;
2851      }
2852      case Instruction::PHI:
2853        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2854        // block.  If in the same block, we're encouraging jump threading.  If
2855        // not, we are just pessimizing the code by making an i1 phi.
2856        if (LHSI->getParent() == I.getParent())
2857          if (Instruction *NV = FoldOpIntoPhi(I))
2858            return NV;
2859        break;
2860      case Instruction::SIToFP:
2861      case Instruction::UIToFP:
2862        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2863          return NV;
2864        break;
2865      case Instruction::Select: {
2866        // If either operand of the select is a constant, we can fold the
2867        // comparison into the select arms, which will cause one to be
2868        // constant folded and the select turned into a bitwise or.
2869        Value *Op1 = 0, *Op2 = 0;
2870        if (LHSI->hasOneUse()) {
2871          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2872            // Fold the known value into the constant operand.
2873            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2874            // Insert a new FCmp of the other select operand.
2875            Op2 = Builder->CreateFCmp(I.getPredicate(),
2876                                      LHSI->getOperand(2), RHSC, I.getName());
2877          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2878            // Fold the known value into the constant operand.
2879            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2880            // Insert a new FCmp of the other select operand.
2881            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2882                                      RHSC, I.getName());
2883          }
2884        }
2885
2886        if (Op1)
2887          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2888        break;
2889      }
2890      case Instruction::FSub: {
2891        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
2892        Value *Op;
2893        if (match(LHSI, m_FNeg(m_Value(Op))))
2894          return new FCmpInst(I.getSwappedPredicate(), Op,
2895                              ConstantExpr::getFNeg(RHSC));
2896        break;
2897      }
2898      case Instruction::Load:
2899        if (GetElementPtrInst *GEP =
2900            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2901          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2902            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2903                !cast<LoadInst>(LHSI)->isVolatile())
2904              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2905                return Res;
2906        }
2907        break;
2908      }
2909  }
2910
2911  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
2912  Value *X, *Y;
2913  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
2914    return new FCmpInst(I.getSwappedPredicate(), X, Y);
2915
2916  // fcmp (fpext x), (fpext y) -> fcmp x, y
2917  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
2918    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
2919      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
2920        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2921                            RHSExt->getOperand(0));
2922
2923  return Changed ? &I : 0;
2924}
2925