1//===- InstCombineCompares.cpp --------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the visitICmp and visitFCmp functions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "InstCombine.h" 15#include "llvm/IntrinsicInst.h" 16#include "llvm/Analysis/ConstantFolding.h" 17#include "llvm/Analysis/InstructionSimplify.h" 18#include "llvm/Analysis/MemoryBuiltins.h" 19#include "llvm/Target/TargetData.h" 20#include "llvm/Support/ConstantRange.h" 21#include "llvm/Support/GetElementPtrTypeIterator.h" 22#include "llvm/Support/PatternMatch.h" 23using namespace llvm; 24using namespace PatternMatch; 25 26static ConstantInt *getOne(Constant *C) { 27 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 28} 29 30/// AddOne - Add one to a ConstantInt 31static Constant *AddOne(Constant *C) { 32 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 33} 34/// SubOne - Subtract one from a ConstantInt 35static Constant *SubOne(Constant *C) { 36 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); 37} 38 39static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 40 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 41} 42 43static bool HasAddOverflow(ConstantInt *Result, 44 ConstantInt *In1, ConstantInt *In2, 45 bool IsSigned) { 46 if (!IsSigned) 47 return Result->getValue().ult(In1->getValue()); 48 49 if (In2->isNegative()) 50 return Result->getValue().sgt(In1->getValue()); 51 return Result->getValue().slt(In1->getValue()); 52} 53 54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result 55/// overflowed for this type. 56static bool AddWithOverflow(Constant *&Result, Constant *In1, 57 Constant *In2, bool IsSigned = false) { 58 Result = ConstantExpr::getAdd(In1, In2); 59 60 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 61 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 63 if (HasAddOverflow(ExtractElement(Result, Idx), 64 ExtractElement(In1, Idx), 65 ExtractElement(In2, Idx), 66 IsSigned)) 67 return true; 68 } 69 return false; 70 } 71 72 return HasAddOverflow(cast<ConstantInt>(Result), 73 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 74 IsSigned); 75} 76 77static bool HasSubOverflow(ConstantInt *Result, 78 ConstantInt *In1, ConstantInt *In2, 79 bool IsSigned) { 80 if (!IsSigned) 81 return Result->getValue().ugt(In1->getValue()); 82 83 if (In2->isNegative()) 84 return Result->getValue().slt(In1->getValue()); 85 86 return Result->getValue().sgt(In1->getValue()); 87} 88 89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result 90/// overflowed for this type. 91static bool SubWithOverflow(Constant *&Result, Constant *In1, 92 Constant *In2, bool IsSigned = false) { 93 Result = ConstantExpr::getSub(In1, In2); 94 95 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 96 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 98 if (HasSubOverflow(ExtractElement(Result, Idx), 99 ExtractElement(In1, Idx), 100 ExtractElement(In2, Idx), 101 IsSigned)) 102 return true; 103 } 104 return false; 105 } 106 107 return HasSubOverflow(cast<ConstantInt>(Result), 108 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 109 IsSigned); 110} 111 112/// isSignBitCheck - Given an exploded icmp instruction, return true if the 113/// comparison only checks the sign bit. If it only checks the sign bit, set 114/// TrueIfSigned if the result of the comparison is true when the input value is 115/// signed. 116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, 117 bool &TrueIfSigned) { 118 switch (pred) { 119 case ICmpInst::ICMP_SLT: // True if LHS s< 0 120 TrueIfSigned = true; 121 return RHS->isZero(); 122 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 123 TrueIfSigned = true; 124 return RHS->isAllOnesValue(); 125 case ICmpInst::ICMP_SGT: // True if LHS s> -1 126 TrueIfSigned = false; 127 return RHS->isAllOnesValue(); 128 case ICmpInst::ICMP_UGT: 129 // True if LHS u> RHS and RHS == high-bit-mask - 1 130 TrueIfSigned = true; 131 return RHS->isMaxValue(true); 132 case ICmpInst::ICMP_UGE: 133 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 134 TrueIfSigned = true; 135 return RHS->getValue().isSignBit(); 136 default: 137 return false; 138 } 139} 140 141// isHighOnes - Return true if the constant is of the form 1+0+. 142// This is the same as lowones(~X). 143static bool isHighOnes(const ConstantInt *CI) { 144 return (~CI->getValue() + 1).isPowerOf2(); 145} 146 147/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 148/// set of known zero and one bits, compute the maximum and minimum values that 149/// could have the specified known zero and known one bits, returning them in 150/// min/max. 151static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, 152 const APInt& KnownOne, 153 APInt& Min, APInt& Max) { 154 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 155 KnownZero.getBitWidth() == Min.getBitWidth() && 156 KnownZero.getBitWidth() == Max.getBitWidth() && 157 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 158 APInt UnknownBits = ~(KnownZero|KnownOne); 159 160 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 161 // bit if it is unknown. 162 Min = KnownOne; 163 Max = KnownOne|UnknownBits; 164 165 if (UnknownBits.isNegative()) { // Sign bit is unknown 166 Min.setBit(Min.getBitWidth()-1); 167 Max.clearBit(Max.getBitWidth()-1); 168 } 169} 170 171// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and 172// a set of known zero and one bits, compute the maximum and minimum values that 173// could have the specified known zero and known one bits, returning them in 174// min/max. 175static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 176 const APInt &KnownOne, 177 APInt &Min, APInt &Max) { 178 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 179 KnownZero.getBitWidth() == Min.getBitWidth() && 180 KnownZero.getBitWidth() == Max.getBitWidth() && 181 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 182 APInt UnknownBits = ~(KnownZero|KnownOne); 183 184 // The minimum value is when the unknown bits are all zeros. 185 Min = KnownOne; 186 // The maximum value is when the unknown bits are all ones. 187 Max = KnownOne|UnknownBits; 188} 189 190 191 192/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern: 193/// cmp pred (load (gep GV, ...)), cmpcst 194/// where GV is a global variable with a constant initializer. Try to simplify 195/// this into some simple computation that does not need the load. For example 196/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 197/// 198/// If AndCst is non-null, then the loaded value is masked with that constant 199/// before doing the comparison. This handles cases like "A[i]&4 == 0". 200Instruction *InstCombiner:: 201FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 202 CmpInst &ICI, ConstantInt *AndCst) { 203 // We need TD information to know the pointer size unless this is inbounds. 204 if (!GEP->isInBounds() && TD == 0) return 0; 205 206 ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer()); 207 if (Init == 0 || Init->getNumOperands() > 1024) return 0; 208 209 // There are many forms of this optimization we can handle, for now, just do 210 // the simple index into a single-dimensional array. 211 // 212 // Require: GEP GV, 0, i {{, constant indices}} 213 if (GEP->getNumOperands() < 3 || 214 !isa<ConstantInt>(GEP->getOperand(1)) || 215 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 216 isa<Constant>(GEP->getOperand(2))) 217 return 0; 218 219 // Check that indices after the variable are constants and in-range for the 220 // type they index. Collect the indices. This is typically for arrays of 221 // structs. 222 SmallVector<unsigned, 4> LaterIndices; 223 224 Type *EltTy = cast<ArrayType>(Init->getType())->getElementType(); 225 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 226 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 227 if (Idx == 0) return 0; // Variable index. 228 229 uint64_t IdxVal = Idx->getZExtValue(); 230 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index. 231 232 if (StructType *STy = dyn_cast<StructType>(EltTy)) 233 EltTy = STy->getElementType(IdxVal); 234 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 235 if (IdxVal >= ATy->getNumElements()) return 0; 236 EltTy = ATy->getElementType(); 237 } else { 238 return 0; // Unknown type. 239 } 240 241 LaterIndices.push_back(IdxVal); 242 } 243 244 enum { Overdefined = -3, Undefined = -2 }; 245 246 // Variables for our state machines. 247 248 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 249 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 250 // and 87 is the second (and last) index. FirstTrueElement is -2 when 251 // undefined, otherwise set to the first true element. SecondTrueElement is 252 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 253 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 254 255 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 256 // form "i != 47 & i != 87". Same state transitions as for true elements. 257 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 258 259 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 260 /// define a state machine that triggers for ranges of values that the index 261 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 262 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 263 /// index in the range (inclusive). We use -2 for undefined here because we 264 /// use relative comparisons and don't want 0-1 to match -1. 265 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 266 267 // MagicBitvector - This is a magic bitvector where we set a bit if the 268 // comparison is true for element 'i'. If there are 64 elements or less in 269 // the array, this will fully represent all the comparison results. 270 uint64_t MagicBitvector = 0; 271 272 273 // Scan the array and see if one of our patterns matches. 274 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 275 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 276 Constant *Elt = Init->getOperand(i); 277 278 // If this is indexing an array of structures, get the structure element. 279 if (!LaterIndices.empty()) 280 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 281 282 // If the element is masked, handle it. 283 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 284 285 // Find out if the comparison would be true or false for the i'th element. 286 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 287 CompareRHS, TD); 288 // If the result is undef for this element, ignore it. 289 if (isa<UndefValue>(C)) { 290 // Extend range state machines to cover this element in case there is an 291 // undef in the middle of the range. 292 if (TrueRangeEnd == (int)i-1) 293 TrueRangeEnd = i; 294 if (FalseRangeEnd == (int)i-1) 295 FalseRangeEnd = i; 296 continue; 297 } 298 299 // If we can't compute the result for any of the elements, we have to give 300 // up evaluating the entire conditional. 301 if (!isa<ConstantInt>(C)) return 0; 302 303 // Otherwise, we know if the comparison is true or false for this element, 304 // update our state machines. 305 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 306 307 // State machine for single/double/range index comparison. 308 if (IsTrueForElt) { 309 // Update the TrueElement state machine. 310 if (FirstTrueElement == Undefined) 311 FirstTrueElement = TrueRangeEnd = i; // First true element. 312 else { 313 // Update double-compare state machine. 314 if (SecondTrueElement == Undefined) 315 SecondTrueElement = i; 316 else 317 SecondTrueElement = Overdefined; 318 319 // Update range state machine. 320 if (TrueRangeEnd == (int)i-1) 321 TrueRangeEnd = i; 322 else 323 TrueRangeEnd = Overdefined; 324 } 325 } else { 326 // Update the FalseElement state machine. 327 if (FirstFalseElement == Undefined) 328 FirstFalseElement = FalseRangeEnd = i; // First false element. 329 else { 330 // Update double-compare state machine. 331 if (SecondFalseElement == Undefined) 332 SecondFalseElement = i; 333 else 334 SecondFalseElement = Overdefined; 335 336 // Update range state machine. 337 if (FalseRangeEnd == (int)i-1) 338 FalseRangeEnd = i; 339 else 340 FalseRangeEnd = Overdefined; 341 } 342 } 343 344 345 // If this element is in range, update our magic bitvector. 346 if (i < 64 && IsTrueForElt) 347 MagicBitvector |= 1ULL << i; 348 349 // If all of our states become overdefined, bail out early. Since the 350 // predicate is expensive, only check it every 8 elements. This is only 351 // really useful for really huge arrays. 352 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 353 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 354 FalseRangeEnd == Overdefined) 355 return 0; 356 } 357 358 // Now that we've scanned the entire array, emit our new comparison(s). We 359 // order the state machines in complexity of the generated code. 360 Value *Idx = GEP->getOperand(2); 361 362 // If the index is larger than the pointer size of the target, truncate the 363 // index down like the GEP would do implicitly. We don't have to do this for 364 // an inbounds GEP because the index can't be out of range. 365 if (!GEP->isInBounds() && 366 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits()) 367 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext())); 368 369 // If the comparison is only true for one or two elements, emit direct 370 // comparisons. 371 if (SecondTrueElement != Overdefined) { 372 // None true -> false. 373 if (FirstTrueElement == Undefined) 374 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext())); 375 376 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 377 378 // True for one element -> 'i == 47'. 379 if (SecondTrueElement == Undefined) 380 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 381 382 // True for two elements -> 'i == 47 | i == 72'. 383 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 384 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 385 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 386 return BinaryOperator::CreateOr(C1, C2); 387 } 388 389 // If the comparison is only false for one or two elements, emit direct 390 // comparisons. 391 if (SecondFalseElement != Overdefined) { 392 // None false -> true. 393 if (FirstFalseElement == Undefined) 394 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext())); 395 396 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 397 398 // False for one element -> 'i != 47'. 399 if (SecondFalseElement == Undefined) 400 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 401 402 // False for two elements -> 'i != 47 & i != 72'. 403 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 404 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 405 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 406 return BinaryOperator::CreateAnd(C1, C2); 407 } 408 409 // If the comparison can be replaced with a range comparison for the elements 410 // where it is true, emit the range check. 411 if (TrueRangeEnd != Overdefined) { 412 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 413 414 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 415 if (FirstTrueElement) { 416 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 417 Idx = Builder->CreateAdd(Idx, Offs); 418 } 419 420 Value *End = ConstantInt::get(Idx->getType(), 421 TrueRangeEnd-FirstTrueElement+1); 422 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 423 } 424 425 // False range check. 426 if (FalseRangeEnd != Overdefined) { 427 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 428 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 429 if (FirstFalseElement) { 430 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 431 Idx = Builder->CreateAdd(Idx, Offs); 432 } 433 434 Value *End = ConstantInt::get(Idx->getType(), 435 FalseRangeEnd-FirstFalseElement); 436 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 437 } 438 439 440 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state 441 // of this load, replace it with computation that does: 442 // ((magic_cst >> i) & 1) != 0 443 if (Init->getNumOperands() <= 32 || 444 (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) { 445 Type *Ty; 446 if (Init->getNumOperands() <= 32) 447 Ty = Type::getInt32Ty(Init->getContext()); 448 else 449 Ty = Type::getInt64Ty(Init->getContext()); 450 Value *V = Builder->CreateIntCast(Idx, Ty, false); 451 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 452 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 453 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 454 } 455 456 return 0; 457} 458 459 460/// EvaluateGEPOffsetExpression - Return a value that can be used to compare 461/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we 462/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can 463/// be complex, and scales are involved. The above expression would also be 464/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). 465/// This later form is less amenable to optimization though, and we are allowed 466/// to generate the first by knowing that pointer arithmetic doesn't overflow. 467/// 468/// If we can't emit an optimized form for this expression, this returns null. 469/// 470static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { 471 TargetData &TD = *IC.getTargetData(); 472 gep_type_iterator GTI = gep_type_begin(GEP); 473 474 // Check to see if this gep only has a single variable index. If so, and if 475 // any constant indices are a multiple of its scale, then we can compute this 476 // in terms of the scale of the variable index. For example, if the GEP 477 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 478 // because the expression will cross zero at the same point. 479 unsigned i, e = GEP->getNumOperands(); 480 int64_t Offset = 0; 481 for (i = 1; i != e; ++i, ++GTI) { 482 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 483 // Compute the aggregate offset of constant indices. 484 if (CI->isZero()) continue; 485 486 // Handle a struct index, which adds its field offset to the pointer. 487 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 488 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 489 } else { 490 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 491 Offset += Size*CI->getSExtValue(); 492 } 493 } else { 494 // Found our variable index. 495 break; 496 } 497 } 498 499 // If there are no variable indices, we must have a constant offset, just 500 // evaluate it the general way. 501 if (i == e) return 0; 502 503 Value *VariableIdx = GEP->getOperand(i); 504 // Determine the scale factor of the variable element. For example, this is 505 // 4 if the variable index is into an array of i32. 506 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); 507 508 // Verify that there are no other variable indices. If so, emit the hard way. 509 for (++i, ++GTI; i != e; ++i, ++GTI) { 510 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 511 if (!CI) return 0; 512 513 // Compute the aggregate offset of constant indices. 514 if (CI->isZero()) continue; 515 516 // Handle a struct index, which adds its field offset to the pointer. 517 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 518 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 519 } else { 520 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 521 Offset += Size*CI->getSExtValue(); 522 } 523 } 524 525 // Okay, we know we have a single variable index, which must be a 526 // pointer/array/vector index. If there is no offset, life is simple, return 527 // the index. 528 unsigned IntPtrWidth = TD.getPointerSizeInBits(); 529 if (Offset == 0) { 530 // Cast to intptrty in case a truncation occurs. If an extension is needed, 531 // we don't need to bother extending: the extension won't affect where the 532 // computation crosses zero. 533 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 534 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); 535 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 536 } 537 return VariableIdx; 538 } 539 540 // Otherwise, there is an index. The computation we will do will be modulo 541 // the pointer size, so get it. 542 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 543 544 Offset &= PtrSizeMask; 545 VariableScale &= PtrSizeMask; 546 547 // To do this transformation, any constant index must be a multiple of the 548 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 549 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 550 // multiple of the variable scale. 551 int64_t NewOffs = Offset / (int64_t)VariableScale; 552 if (Offset != NewOffs*(int64_t)VariableScale) 553 return 0; 554 555 // Okay, we can do this evaluation. Start by converting the index to intptr. 556 Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); 557 if (VariableIdx->getType() != IntPtrTy) 558 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 559 true /*Signed*/); 560 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 561 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 562} 563 564/// FoldGEPICmp - Fold comparisons between a GEP instruction and something 565/// else. At this point we know that the GEP is on the LHS of the comparison. 566Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 567 ICmpInst::Predicate Cond, 568 Instruction &I) { 569 // Look through bitcasts. 570 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS)) 571 RHS = BCI->getOperand(0); 572 573 Value *PtrBase = GEPLHS->getOperand(0); 574 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) { 575 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 576 // This transformation (ignoring the base and scales) is valid because we 577 // know pointers can't overflow since the gep is inbounds. See if we can 578 // output an optimized form. 579 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this); 580 581 // If not, synthesize the offset the hard way. 582 if (Offset == 0) 583 Offset = EmitGEPOffset(GEPLHS); 584 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 585 Constant::getNullValue(Offset->getType())); 586 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 587 // If the base pointers are different, but the indices are the same, just 588 // compare the base pointer. 589 if (PtrBase != GEPRHS->getOperand(0)) { 590 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 591 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 592 GEPRHS->getOperand(0)->getType(); 593 if (IndicesTheSame) 594 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 595 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 596 IndicesTheSame = false; 597 break; 598 } 599 600 // If all indices are the same, just compare the base pointers. 601 if (IndicesTheSame) 602 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), 603 GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 604 605 // Otherwise, the base pointers are different and the indices are 606 // different, bail out. 607 return 0; 608 } 609 610 // If one of the GEPs has all zero indices, recurse. 611 bool AllZeros = true; 612 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 613 if (!isa<Constant>(GEPLHS->getOperand(i)) || 614 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) { 615 AllZeros = false; 616 break; 617 } 618 if (AllZeros) 619 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 620 ICmpInst::getSwappedPredicate(Cond), I); 621 622 // If the other GEP has all zero indices, recurse. 623 AllZeros = true; 624 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 625 if (!isa<Constant>(GEPRHS->getOperand(i)) || 626 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) { 627 AllZeros = false; 628 break; 629 } 630 if (AllZeros) 631 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 632 633 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 634 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 635 // If the GEPs only differ by one index, compare it. 636 unsigned NumDifferences = 0; // Keep track of # differences. 637 unsigned DiffOperand = 0; // The operand that differs. 638 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 639 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 640 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 641 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 642 // Irreconcilable differences. 643 NumDifferences = 2; 644 break; 645 } else { 646 if (NumDifferences++) break; 647 DiffOperand = i; 648 } 649 } 650 651 if (NumDifferences == 0) // SAME GEP? 652 return ReplaceInstUsesWith(I, // No comparison is needed here. 653 ConstantInt::get(Type::getInt1Ty(I.getContext()), 654 ICmpInst::isTrueWhenEqual(Cond))); 655 656 else if (NumDifferences == 1 && GEPsInBounds) { 657 Value *LHSV = GEPLHS->getOperand(DiffOperand); 658 Value *RHSV = GEPRHS->getOperand(DiffOperand); 659 // Make sure we do a signed comparison here. 660 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 661 } 662 } 663 664 // Only lower this if the icmp is the only user of the GEP or if we expect 665 // the result to fold to a constant! 666 if (TD && 667 GEPsInBounds && 668 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 669 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 670 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 671 Value *L = EmitGEPOffset(GEPLHS); 672 Value *R = EmitGEPOffset(GEPRHS); 673 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 674 } 675 } 676 return 0; 677} 678 679/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X". 680Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI, 681 Value *X, ConstantInt *CI, 682 ICmpInst::Predicate Pred, 683 Value *TheAdd) { 684 // If we have X+0, exit early (simplifying logic below) and let it get folded 685 // elsewhere. icmp X+0, X -> icmp X, X 686 if (CI->isZero()) { 687 bool isTrue = ICmpInst::isTrueWhenEqual(Pred); 688 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); 689 } 690 691 // (X+4) == X -> false. 692 if (Pred == ICmpInst::ICMP_EQ) 693 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext())); 694 695 // (X+4) != X -> true. 696 if (Pred == ICmpInst::ICMP_NE) 697 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext())); 698 699 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 700 // so the values can never be equal. Similarly for all other "or equals" 701 // operators. 702 703 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 704 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 705 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 706 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 707 Value *R = 708 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 709 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 710 } 711 712 // (X+1) >u X --> X <u (0-1) --> X != 255 713 // (X+2) >u X --> X <u (0-2) --> X <u 254 714 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 715 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 716 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 717 718 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 719 ConstantInt *SMax = ConstantInt::get(X->getContext(), 720 APInt::getSignedMaxValue(BitWidth)); 721 722 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 723 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 724 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 725 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 726 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 727 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 728 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 729 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 730 731 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 732 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 733 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 734 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 735 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 736 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 737 738 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 739 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1); 740 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 741} 742 743/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS 744/// and CmpRHS are both known to be integer constants. 745Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 746 ConstantInt *DivRHS) { 747 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 748 const APInt &CmpRHSV = CmpRHS->getValue(); 749 750 // FIXME: If the operand types don't match the type of the divide 751 // then don't attempt this transform. The code below doesn't have the 752 // logic to deal with a signed divide and an unsigned compare (and 753 // vice versa). This is because (x /s C1) <s C2 produces different 754 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 755 // (x /u C1) <u C2. Simply casting the operands and result won't 756 // work. :( The if statement below tests that condition and bails 757 // if it finds it. 758 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 759 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 760 return 0; 761 if (DivRHS->isZero()) 762 return 0; // The ProdOV computation fails on divide by zero. 763 if (DivIsSigned && DivRHS->isAllOnesValue()) 764 return 0; // The overflow computation also screws up here 765 if (DivRHS->isOne()) { 766 // This eliminates some funny cases with INT_MIN. 767 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 768 return &ICI; 769 } 770 771 // Compute Prod = CI * DivRHS. We are essentially solving an equation 772 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 773 // C2 (CI). By solving for X we can turn this into a range check 774 // instead of computing a divide. 775 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 776 777 // Determine if the product overflows by seeing if the product is 778 // not equal to the divide. Make sure we do the same kind of divide 779 // as in the LHS instruction that we're folding. 780 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 781 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 782 783 // Get the ICmp opcode 784 ICmpInst::Predicate Pred = ICI.getPredicate(); 785 786 /// If the division is known to be exact, then there is no remainder from the 787 /// divide, so the covered range size is unit, otherwise it is the divisor. 788 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 789 790 // Figure out the interval that is being checked. For example, a comparison 791 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 792 // Compute this interval based on the constants involved and the signedness of 793 // the compare/divide. This computes a half-open interval, keeping track of 794 // whether either value in the interval overflows. After analysis each 795 // overflow variable is set to 0 if it's corresponding bound variable is valid 796 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 797 int LoOverflow = 0, HiOverflow = 0; 798 Constant *LoBound = 0, *HiBound = 0; 799 800 if (!DivIsSigned) { // udiv 801 // e.g. X/5 op 3 --> [15, 20) 802 LoBound = Prod; 803 HiOverflow = LoOverflow = ProdOV; 804 if (!HiOverflow) { 805 // If this is not an exact divide, then many values in the range collapse 806 // to the same result value. 807 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 808 } 809 810 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 811 if (CmpRHSV == 0) { // (X / pos) op 0 812 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 813 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 814 HiBound = RangeSize; 815 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 816 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 817 HiOverflow = LoOverflow = ProdOV; 818 if (!HiOverflow) 819 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 820 } else { // (X / pos) op neg 821 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 822 HiBound = AddOne(Prod); 823 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 824 if (!LoOverflow) { 825 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 826 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 827 } 828 } 829 } else if (DivRHS->isNegative()) { // Divisor is < 0. 830 if (DivI->isExact()) 831 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 832 if (CmpRHSV == 0) { // (X / neg) op 0 833 // e.g. X/-5 op 0 --> [-4, 5) 834 LoBound = AddOne(RangeSize); 835 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 836 if (HiBound == DivRHS) { // -INTMIN = INTMIN 837 HiOverflow = 1; // [INTMIN+1, overflow) 838 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN 839 } 840 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 841 // e.g. X/-5 op 3 --> [-19, -14) 842 HiBound = AddOne(Prod); 843 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 844 if (!LoOverflow) 845 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 846 } else { // (X / neg) op neg 847 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 848 LoOverflow = HiOverflow = ProdOV; 849 if (!HiOverflow) 850 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 851 } 852 853 // Dividing by a negative swaps the condition. LT <-> GT 854 Pred = ICmpInst::getSwappedPredicate(Pred); 855 } 856 857 Value *X = DivI->getOperand(0); 858 switch (Pred) { 859 default: llvm_unreachable("Unhandled icmp opcode!"); 860 case ICmpInst::ICMP_EQ: 861 if (LoOverflow && HiOverflow) 862 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); 863 if (HiOverflow) 864 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 865 ICmpInst::ICMP_UGE, X, LoBound); 866 if (LoOverflow) 867 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 868 ICmpInst::ICMP_ULT, X, HiBound); 869 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 870 DivIsSigned, true)); 871 case ICmpInst::ICMP_NE: 872 if (LoOverflow && HiOverflow) 873 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); 874 if (HiOverflow) 875 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 876 ICmpInst::ICMP_ULT, X, LoBound); 877 if (LoOverflow) 878 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 879 ICmpInst::ICMP_UGE, X, HiBound); 880 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 881 DivIsSigned, false)); 882 case ICmpInst::ICMP_ULT: 883 case ICmpInst::ICMP_SLT: 884 if (LoOverflow == +1) // Low bound is greater than input range. 885 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); 886 if (LoOverflow == -1) // Low bound is less than input range. 887 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); 888 return new ICmpInst(Pred, X, LoBound); 889 case ICmpInst::ICMP_UGT: 890 case ICmpInst::ICMP_SGT: 891 if (HiOverflow == +1) // High bound greater than input range. 892 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext())); 893 if (HiOverflow == -1) // High bound less than input range. 894 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext())); 895 if (Pred == ICmpInst::ICMP_UGT) 896 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 897 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 898 } 899} 900 901/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)". 902Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 903 ConstantInt *ShAmt) { 904 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 905 906 // Check that the shift amount is in range. If not, don't perform 907 // undefined shifts. When the shift is visited it will be 908 // simplified. 909 uint32_t TypeBits = CmpRHSV.getBitWidth(); 910 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 911 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 912 return 0; 913 914 if (!ICI.isEquality()) { 915 // If we have an unsigned comparison and an ashr, we can't simplify this. 916 // Similarly for signed comparisons with lshr. 917 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 918 return 0; 919 920 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 921 // by a power of 2. Since we already have logic to simplify these, 922 // transform to div and then simplify the resultant comparison. 923 if (Shr->getOpcode() == Instruction::AShr && 924 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 925 return 0; 926 927 // Revisit the shift (to delete it). 928 Worklist.Add(Shr); 929 930 Constant *DivCst = 931 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 932 933 Value *Tmp = 934 Shr->getOpcode() == Instruction::AShr ? 935 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 936 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 937 938 ICI.setOperand(0, Tmp); 939 940 // If the builder folded the binop, just return it. 941 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 942 if (TheDiv == 0) 943 return &ICI; 944 945 // Otherwise, fold this div/compare. 946 assert(TheDiv->getOpcode() == Instruction::SDiv || 947 TheDiv->getOpcode() == Instruction::UDiv); 948 949 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 950 assert(Res && "This div/cst should have folded!"); 951 return Res; 952 } 953 954 955 // If we are comparing against bits always shifted out, the 956 // comparison cannot succeed. 957 APInt Comp = CmpRHSV << ShAmtVal; 958 ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp); 959 if (Shr->getOpcode() == Instruction::LShr) 960 Comp = Comp.lshr(ShAmtVal); 961 else 962 Comp = Comp.ashr(ShAmtVal); 963 964 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 965 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 966 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()), 967 IsICMP_NE); 968 return ReplaceInstUsesWith(ICI, Cst); 969 } 970 971 // Otherwise, check to see if the bits shifted out are known to be zero. 972 // If so, we can compare against the unshifted value: 973 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 974 if (Shr->hasOneUse() && Shr->isExact()) 975 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 976 977 if (Shr->hasOneUse()) { 978 // Otherwise strength reduce the shift into an and. 979 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 980 Constant *Mask = ConstantInt::get(ICI.getContext(), Val); 981 982 Value *And = Builder->CreateAnd(Shr->getOperand(0), 983 Mask, Shr->getName()+".mask"); 984 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 985 } 986 return 0; 987} 988 989 990/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". 991/// 992Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 993 Instruction *LHSI, 994 ConstantInt *RHS) { 995 const APInt &RHSV = RHS->getValue(); 996 997 switch (LHSI->getOpcode()) { 998 case Instruction::Trunc: 999 if (ICI.isEquality() && LHSI->hasOneUse()) { 1000 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1001 // of the high bits truncated out of x are known. 1002 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1003 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1004 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits)); 1005 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1006 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); 1007 1008 // If all the high bits are known, we can do this xform. 1009 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1010 // Pull in the high bits from known-ones set. 1011 APInt NewRHS = RHS->getValue().zext(SrcBits); 1012 NewRHS |= KnownOne; 1013 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1014 ConstantInt::get(ICI.getContext(), NewRHS)); 1015 } 1016 } 1017 break; 1018 1019 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) 1020 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1021 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1022 // fold the xor. 1023 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1024 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1025 Value *CompareVal = LHSI->getOperand(0); 1026 1027 // If the sign bit of the XorCST is not set, there is no change to 1028 // the operation, just stop using the Xor. 1029 if (!XorCST->isNegative()) { 1030 ICI.setOperand(0, CompareVal); 1031 Worklist.Add(LHSI); 1032 return &ICI; 1033 } 1034 1035 // Was the old condition true if the operand is positive? 1036 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1037 1038 // If so, the new one isn't. 1039 isTrueIfPositive ^= true; 1040 1041 if (isTrueIfPositive) 1042 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1043 SubOne(RHS)); 1044 else 1045 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1046 AddOne(RHS)); 1047 } 1048 1049 if (LHSI->hasOneUse()) { 1050 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1051 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { 1052 const APInt &SignBit = XorCST->getValue(); 1053 ICmpInst::Predicate Pred = ICI.isSigned() 1054 ? ICI.getUnsignedPredicate() 1055 : ICI.getSignedPredicate(); 1056 return new ICmpInst(Pred, LHSI->getOperand(0), 1057 ConstantInt::get(ICI.getContext(), 1058 RHSV ^ SignBit)); 1059 } 1060 1061 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1062 if (!ICI.isEquality() && XorCST->isMaxValue(true)) { 1063 const APInt &NotSignBit = XorCST->getValue(); 1064 ICmpInst::Predicate Pred = ICI.isSigned() 1065 ? ICI.getUnsignedPredicate() 1066 : ICI.getSignedPredicate(); 1067 Pred = ICI.getSwappedPredicate(Pred); 1068 return new ICmpInst(Pred, LHSI->getOperand(0), 1069 ConstantInt::get(ICI.getContext(), 1070 RHSV ^ NotSignBit)); 1071 } 1072 } 1073 } 1074 break; 1075 case Instruction::And: // (icmp pred (and X, AndCST), RHS) 1076 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1077 LHSI->getOperand(0)->hasOneUse()) { 1078 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); 1079 1080 // If the LHS is an AND of a truncating cast, we can widen the 1081 // and/compare to be the input width without changing the value 1082 // produced, eliminating a cast. 1083 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1084 // We can do this transformation if either the AND constant does not 1085 // have its sign bit set or if it is an equality comparison. 1086 // Extending a relational comparison when we're checking the sign 1087 // bit would not work. 1088 if (ICI.isEquality() || 1089 (!AndCST->isNegative() && RHSV.isNonNegative())) { 1090 Value *NewAnd = 1091 Builder->CreateAnd(Cast->getOperand(0), 1092 ConstantExpr::getZExt(AndCST, Cast->getSrcTy())); 1093 NewAnd->takeName(LHSI); 1094 return new ICmpInst(ICI.getPredicate(), NewAnd, 1095 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1096 } 1097 } 1098 1099 // If the LHS is an AND of a zext, and we have an equality compare, we can 1100 // shrink the and/compare to the smaller type, eliminating the cast. 1101 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1102 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1103 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1104 // should fold the icmp to true/false in that case. 1105 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1106 Value *NewAnd = 1107 Builder->CreateAnd(Cast->getOperand(0), 1108 ConstantExpr::getTrunc(AndCST, Ty)); 1109 NewAnd->takeName(LHSI); 1110 return new ICmpInst(ICI.getPredicate(), NewAnd, 1111 ConstantExpr::getTrunc(RHS, Ty)); 1112 } 1113 } 1114 1115 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1116 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1117 // happens a LOT in code produced by the C front-end, for bitfield 1118 // access. 1119 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1120 if (Shift && !Shift->isShift()) 1121 Shift = 0; 1122 1123 ConstantInt *ShAmt; 1124 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; 1125 Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. 1126 Type *AndTy = AndCST->getType(); // Type of the and. 1127 1128 // We can fold this as long as we can't shift unknown bits 1129 // into the mask. This can only happen with signed shift 1130 // rights, as they sign-extend. 1131 if (ShAmt) { 1132 bool CanFold = Shift->isLogicalShift(); 1133 if (!CanFold) { 1134 // To test for the bad case of the signed shr, see if any 1135 // of the bits shifted in could be tested after the mask. 1136 uint32_t TyBits = Ty->getPrimitiveSizeInBits(); 1137 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); 1138 1139 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); 1140 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & 1141 AndCST->getValue()) == 0) 1142 CanFold = true; 1143 } 1144 1145 if (CanFold) { 1146 Constant *NewCst; 1147 if (Shift->getOpcode() == Instruction::Shl) 1148 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1149 else 1150 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1151 1152 // Check to see if we are shifting out any of the bits being 1153 // compared. 1154 if (ConstantExpr::get(Shift->getOpcode(), 1155 NewCst, ShAmt) != RHS) { 1156 // If we shifted bits out, the fold is not going to work out. 1157 // As a special case, check to see if this means that the 1158 // result is always true or false now. 1159 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1160 return ReplaceInstUsesWith(ICI, 1161 ConstantInt::getFalse(ICI.getContext())); 1162 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1163 return ReplaceInstUsesWith(ICI, 1164 ConstantInt::getTrue(ICI.getContext())); 1165 } else { 1166 ICI.setOperand(1, NewCst); 1167 Constant *NewAndCST; 1168 if (Shift->getOpcode() == Instruction::Shl) 1169 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); 1170 else 1171 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); 1172 LHSI->setOperand(1, NewAndCST); 1173 LHSI->setOperand(0, Shift->getOperand(0)); 1174 Worklist.Add(Shift); // Shift is dead. 1175 return &ICI; 1176 } 1177 } 1178 } 1179 1180 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1181 // preferable because it allows the C<<Y expression to be hoisted out 1182 // of a loop if Y is invariant and X is not. 1183 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1184 ICI.isEquality() && !Shift->isArithmeticShift() && 1185 !isa<Constant>(Shift->getOperand(0))) { 1186 // Compute C << Y. 1187 Value *NS; 1188 if (Shift->getOpcode() == Instruction::LShr) { 1189 NS = Builder->CreateShl(AndCST, Shift->getOperand(1)); 1190 } else { 1191 // Insert a logical shift. 1192 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1)); 1193 } 1194 1195 // Compute X & (C << Y). 1196 Value *NewAnd = 1197 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1198 1199 ICI.setOperand(0, NewAnd); 1200 return &ICI; 1201 } 1202 } 1203 1204 // Try to optimize things like "A[i]&42 == 0" to index computations. 1205 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1206 if (GetElementPtrInst *GEP = 1207 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1208 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1209 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1210 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1211 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1212 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1213 return Res; 1214 } 1215 } 1216 break; 1217 1218 case Instruction::Or: { 1219 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1220 break; 1221 Value *P, *Q; 1222 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1223 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1224 // -> and (icmp eq P, null), (icmp eq Q, null). 1225 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1226 Constant::getNullValue(P->getType())); 1227 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1228 Constant::getNullValue(Q->getType())); 1229 Instruction *Op; 1230 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1231 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1232 else 1233 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1234 return Op; 1235 } 1236 break; 1237 } 1238 1239 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1240 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1241 if (!ShAmt) break; 1242 1243 uint32_t TypeBits = RHSV.getBitWidth(); 1244 1245 // Check that the shift amount is in range. If not, don't perform 1246 // undefined shifts. When the shift is visited it will be 1247 // simplified. 1248 if (ShAmt->uge(TypeBits)) 1249 break; 1250 1251 if (ICI.isEquality()) { 1252 // If we are comparing against bits always shifted out, the 1253 // comparison cannot succeed. 1254 Constant *Comp = 1255 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1256 ShAmt); 1257 if (Comp != RHS) {// Comparing against a bit that we know is zero. 1258 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1259 Constant *Cst = 1260 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE); 1261 return ReplaceInstUsesWith(ICI, Cst); 1262 } 1263 1264 // If the shift is NUW, then it is just shifting out zeros, no need for an 1265 // AND. 1266 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 1267 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1268 ConstantExpr::getLShr(RHS, ShAmt)); 1269 1270 if (LHSI->hasOneUse()) { 1271 // Otherwise strength reduce the shift into an and. 1272 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1273 Constant *Mask = 1274 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits, 1275 TypeBits-ShAmtVal)); 1276 1277 Value *And = 1278 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 1279 return new ICmpInst(ICI.getPredicate(), And, 1280 ConstantExpr::getLShr(RHS, ShAmt)); 1281 } 1282 } 1283 1284 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1285 bool TrueIfSigned = false; 1286 if (LHSI->hasOneUse() && 1287 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 1288 // (X << 31) <s 0 --> (X&1) != 0 1289 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 1290 APInt::getOneBitSet(TypeBits, 1291 TypeBits-ShAmt->getZExtValue()-1)); 1292 Value *And = 1293 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 1294 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1295 And, Constant::getNullValue(And->getType())); 1296 } 1297 break; 1298 } 1299 1300 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 1301 case Instruction::AShr: { 1302 // Handle equality comparisons of shift-by-constant. 1303 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 1304 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1305 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 1306 return Res; 1307 } 1308 1309 // Handle exact shr's. 1310 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 1311 if (RHSV.isMinValue()) 1312 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 1313 } 1314 break; 1315 } 1316 1317 case Instruction::SDiv: 1318 case Instruction::UDiv: 1319 // Fold: icmp pred ([us]div X, C1), C2 -> range test 1320 // Fold this div into the comparison, producing a range check. 1321 // Determine, based on the divide type, what the range is being 1322 // checked. If there is an overflow on the low or high side, remember 1323 // it, otherwise compute the range [low, hi) bounding the new value. 1324 // See: InsertRangeTest above for the kinds of replacements possible. 1325 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 1326 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 1327 DivRHS)) 1328 return R; 1329 break; 1330 1331 case Instruction::Add: 1332 // Fold: icmp pred (add X, C1), C2 1333 if (!ICI.isEquality()) { 1334 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1335 if (!LHSC) break; 1336 const APInt &LHSV = LHSC->getValue(); 1337 1338 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 1339 .subtract(LHSV); 1340 1341 if (ICI.isSigned()) { 1342 if (CR.getLower().isSignBit()) { 1343 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 1344 ConstantInt::get(ICI.getContext(),CR.getUpper())); 1345 } else if (CR.getUpper().isSignBit()) { 1346 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 1347 ConstantInt::get(ICI.getContext(),CR.getLower())); 1348 } 1349 } else { 1350 if (CR.getLower().isMinValue()) { 1351 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 1352 ConstantInt::get(ICI.getContext(),CR.getUpper())); 1353 } else if (CR.getUpper().isMinValue()) { 1354 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 1355 ConstantInt::get(ICI.getContext(),CR.getLower())); 1356 } 1357 } 1358 } 1359 break; 1360 } 1361 1362 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 1363 if (ICI.isEquality()) { 1364 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1365 1366 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 1367 // the second operand is a constant, simplify a bit. 1368 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 1369 switch (BO->getOpcode()) { 1370 case Instruction::SRem: 1371 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 1372 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 1373 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 1374 if (V.sgt(1) && V.isPowerOf2()) { 1375 Value *NewRem = 1376 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 1377 BO->getName()); 1378 return new ICmpInst(ICI.getPredicate(), NewRem, 1379 Constant::getNullValue(BO->getType())); 1380 } 1381 } 1382 break; 1383 case Instruction::Add: 1384 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 1385 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1386 if (BO->hasOneUse()) 1387 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1388 ConstantExpr::getSub(RHS, BOp1C)); 1389 } else if (RHSV == 0) { 1390 // Replace ((add A, B) != 0) with (A != -B) if A or B is 1391 // efficiently invertible, or if the add has just this one use. 1392 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 1393 1394 if (Value *NegVal = dyn_castNegVal(BOp1)) 1395 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 1396 if (Value *NegVal = dyn_castNegVal(BOp0)) 1397 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 1398 if (BO->hasOneUse()) { 1399 Value *Neg = Builder->CreateNeg(BOp1); 1400 Neg->takeName(BO); 1401 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 1402 } 1403 } 1404 break; 1405 case Instruction::Xor: 1406 // For the xor case, we can xor two constants together, eliminating 1407 // the explicit xor. 1408 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 1409 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1410 ConstantExpr::getXor(RHS, BOC)); 1411 } else if (RHSV == 0) { 1412 // Replace ((xor A, B) != 0) with (A != B) 1413 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1414 BO->getOperand(1)); 1415 } 1416 break; 1417 case Instruction::Sub: 1418 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 1419 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 1420 if (BO->hasOneUse()) 1421 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 1422 ConstantExpr::getSub(BOp0C, RHS)); 1423 } else if (RHSV == 0) { 1424 // Replace ((sub A, B) != 0) with (A != B) 1425 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 1426 BO->getOperand(1)); 1427 } 1428 break; 1429 case Instruction::Or: 1430 // If bits are being or'd in that are not present in the constant we 1431 // are comparing against, then the comparison could never succeed! 1432 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1433 Constant *NotCI = ConstantExpr::getNot(RHS); 1434 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 1435 return ReplaceInstUsesWith(ICI, 1436 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), 1437 isICMP_NE)); 1438 } 1439 break; 1440 1441 case Instruction::And: 1442 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 1443 // If bits are being compared against that are and'd out, then the 1444 // comparison can never succeed! 1445 if ((RHSV & ~BOC->getValue()) != 0) 1446 return ReplaceInstUsesWith(ICI, 1447 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), 1448 isICMP_NE)); 1449 1450 // If we have ((X & C) == C), turn it into ((X & C) != 0). 1451 if (RHS == BOC && RHSV.isPowerOf2()) 1452 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 1453 ICmpInst::ICMP_NE, LHSI, 1454 Constant::getNullValue(RHS->getType())); 1455 1456 // Don't perform the following transforms if the AND has multiple uses 1457 if (!BO->hasOneUse()) 1458 break; 1459 1460 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 1461 if (BOC->getValue().isSignBit()) { 1462 Value *X = BO->getOperand(0); 1463 Constant *Zero = Constant::getNullValue(X->getType()); 1464 ICmpInst::Predicate pred = isICMP_NE ? 1465 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1466 return new ICmpInst(pred, X, Zero); 1467 } 1468 1469 // ((X & ~7) == 0) --> X < 8 1470 if (RHSV == 0 && isHighOnes(BOC)) { 1471 Value *X = BO->getOperand(0); 1472 Constant *NegX = ConstantExpr::getNeg(BOC); 1473 ICmpInst::Predicate pred = isICMP_NE ? 1474 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1475 return new ICmpInst(pred, X, NegX); 1476 } 1477 } 1478 default: break; 1479 } 1480 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 1481 // Handle icmp {eq|ne} <intrinsic>, intcst. 1482 switch (II->getIntrinsicID()) { 1483 case Intrinsic::bswap: 1484 Worklist.Add(II); 1485 ICI.setOperand(0, II->getArgOperand(0)); 1486 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap())); 1487 return &ICI; 1488 case Intrinsic::ctlz: 1489 case Intrinsic::cttz: 1490 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 1491 if (RHSV == RHS->getType()->getBitWidth()) { 1492 Worklist.Add(II); 1493 ICI.setOperand(0, II->getArgOperand(0)); 1494 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 1495 return &ICI; 1496 } 1497 break; 1498 case Intrinsic::ctpop: 1499 // popcount(A) == 0 -> A == 0 and likewise for != 1500 if (RHS->isZero()) { 1501 Worklist.Add(II); 1502 ICI.setOperand(0, II->getArgOperand(0)); 1503 ICI.setOperand(1, RHS); 1504 return &ICI; 1505 } 1506 break; 1507 default: 1508 break; 1509 } 1510 } 1511 } 1512 return 0; 1513} 1514 1515/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). 1516/// We only handle extending casts so far. 1517/// 1518Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { 1519 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); 1520 Value *LHSCIOp = LHSCI->getOperand(0); 1521 Type *SrcTy = LHSCIOp->getType(); 1522 Type *DestTy = LHSCI->getType(); 1523 Value *RHSCIOp; 1524 1525 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 1526 // integer type is the same size as the pointer type. 1527 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && 1528 TD->getPointerSizeInBits() == 1529 cast<IntegerType>(DestTy)->getBitWidth()) { 1530 Value *RHSOp = 0; 1531 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { 1532 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 1533 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) { 1534 RHSOp = RHSC->getOperand(0); 1535 // If the pointer types don't match, insert a bitcast. 1536 if (LHSCIOp->getType() != RHSOp->getType()) 1537 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 1538 } 1539 1540 if (RHSOp) 1541 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); 1542 } 1543 1544 // The code below only handles extension cast instructions, so far. 1545 // Enforce this. 1546 if (LHSCI->getOpcode() != Instruction::ZExt && 1547 LHSCI->getOpcode() != Instruction::SExt) 1548 return 0; 1549 1550 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 1551 bool isSignedCmp = ICI.isSigned(); 1552 1553 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { 1554 // Not an extension from the same type? 1555 RHSCIOp = CI->getOperand(0); 1556 if (RHSCIOp->getType() != LHSCIOp->getType()) 1557 return 0; 1558 1559 // If the signedness of the two casts doesn't agree (i.e. one is a sext 1560 // and the other is a zext), then we can't handle this. 1561 if (CI->getOpcode() != LHSCI->getOpcode()) 1562 return 0; 1563 1564 // Deal with equality cases early. 1565 if (ICI.isEquality()) 1566 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1567 1568 // A signed comparison of sign extended values simplifies into a 1569 // signed comparison. 1570 if (isSignedCmp && isSignedExt) 1571 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); 1572 1573 // The other three cases all fold into an unsigned comparison. 1574 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 1575 } 1576 1577 // If we aren't dealing with a constant on the RHS, exit early 1578 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1)); 1579 if (!CI) 1580 return 0; 1581 1582 // Compute the constant that would happen if we truncated to SrcTy then 1583 // reextended to DestTy. 1584 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); 1585 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), 1586 Res1, DestTy); 1587 1588 // If the re-extended constant didn't change... 1589 if (Res2 == CI) { 1590 // Deal with equality cases early. 1591 if (ICI.isEquality()) 1592 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1593 1594 // A signed comparison of sign extended values simplifies into a 1595 // signed comparison. 1596 if (isSignedExt && isSignedCmp) 1597 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); 1598 1599 // The other three cases all fold into an unsigned comparison. 1600 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); 1601 } 1602 1603 // The re-extended constant changed so the constant cannot be represented 1604 // in the shorter type. Consequently, we cannot emit a simple comparison. 1605 // All the cases that fold to true or false will have already been handled 1606 // by SimplifyICmpInst, so only deal with the tricky case. 1607 1608 if (isSignedCmp || !isSignedExt) 1609 return 0; 1610 1611 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 1612 // should have been folded away previously and not enter in here. 1613 1614 // We're performing an unsigned comp with a sign extended value. 1615 // This is true if the input is >= 0. [aka >s -1] 1616 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 1617 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName()); 1618 1619 // Finally, return the value computed. 1620 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) 1621 return ReplaceInstUsesWith(ICI, Result); 1622 1623 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 1624 return BinaryOperator::CreateNot(Result); 1625} 1626 1627/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form: 1628/// I = icmp ugt (add (add A, B), CI2), CI1 1629/// If this is of the form: 1630/// sum = a + b 1631/// if (sum+128 >u 255) 1632/// Then replace it with llvm.sadd.with.overflow.i8. 1633/// 1634static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1635 ConstantInt *CI2, ConstantInt *CI1, 1636 InstCombiner &IC) { 1637 // The transformation we're trying to do here is to transform this into an 1638 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1639 // with a narrower add, and discard the add-with-constant that is part of the 1640 // range check (if we can't eliminate it, this isn't profitable). 1641 1642 // In order to eliminate the add-with-constant, the compare can be its only 1643 // use. 1644 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1645 if (!AddWithCst->hasOneUse()) return 0; 1646 1647 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1648 if (!CI2->getValue().isPowerOf2()) return 0; 1649 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1650 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0; 1651 1652 // The width of the new add formed is 1 more than the bias. 1653 ++NewWidth; 1654 1655 // Check to see that CI1 is an all-ones value with NewWidth bits. 1656 if (CI1->getBitWidth() == NewWidth || 1657 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1658 return 0; 1659 1660 // In order to replace the original add with a narrower 1661 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1662 // and truncates that discard the high bits of the add. Verify that this is 1663 // the case. 1664 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1665 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end(); 1666 UI != E; ++UI) { 1667 if (*UI == AddWithCst) continue; 1668 1669 // Only accept truncates for now. We would really like a nice recursive 1670 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1671 // chain to see which bits of a value are actually demanded. If the 1672 // original add had another add which was then immediately truncated, we 1673 // could still do the transformation. 1674 TruncInst *TI = dyn_cast<TruncInst>(*UI); 1675 if (TI == 0 || 1676 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0; 1677 } 1678 1679 // If the pattern matches, truncate the inputs to the narrower type and 1680 // use the sadd_with_overflow intrinsic to efficiently compute both the 1681 // result and the overflow bit. 1682 Module *M = I.getParent()->getParent()->getParent(); 1683 1684 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1685 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, 1686 NewType); 1687 1688 InstCombiner::BuilderTy *Builder = IC.Builder; 1689 1690 // Put the new code above the original add, in case there are any uses of the 1691 // add between the add and the compare. 1692 Builder->SetInsertPoint(OrigAdd); 1693 1694 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 1695 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 1696 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd"); 1697 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 1698 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 1699 1700 // The inner add was the result of the narrow add, zero extended to the 1701 // wider type. Replace it with the result computed by the intrinsic. 1702 IC.ReplaceInstUsesWith(*OrigAdd, ZExt); 1703 1704 // The original icmp gets replaced with the overflow value. 1705 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1706} 1707 1708static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV, 1709 InstCombiner &IC) { 1710 // Don't bother doing this transformation for pointers, don't do it for 1711 // vectors. 1712 if (!isa<IntegerType>(OrigAddV->getType())) return 0; 1713 1714 // If the add is a constant expr, then we don't bother transforming it. 1715 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV); 1716 if (OrigAdd == 0) return 0; 1717 1718 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1); 1719 1720 // Put the new code above the original add, in case there are any uses of the 1721 // add between the add and the compare. 1722 InstCombiner::BuilderTy *Builder = IC.Builder; 1723 Builder->SetInsertPoint(OrigAdd); 1724 1725 Module *M = I.getParent()->getParent()->getParent(); 1726 Type *Ty = LHS->getType(); 1727 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1728 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd"); 1729 Value *Add = Builder->CreateExtractValue(Call, 0); 1730 1731 IC.ReplaceInstUsesWith(*OrigAdd, Add); 1732 1733 // The original icmp gets replaced with the overflow value. 1734 return ExtractValueInst::Create(Call, 1, "uadd.overflow"); 1735} 1736 1737// DemandedBitsLHSMask - When performing a comparison against a constant, 1738// it is possible that not all the bits in the LHS are demanded. This helper 1739// method computes the mask that IS demanded. 1740static APInt DemandedBitsLHSMask(ICmpInst &I, 1741 unsigned BitWidth, bool isSignCheck) { 1742 if (isSignCheck) 1743 return APInt::getSignBit(BitWidth); 1744 1745 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 1746 if (!CI) return APInt::getAllOnesValue(BitWidth); 1747 const APInt &RHS = CI->getValue(); 1748 1749 switch (I.getPredicate()) { 1750 // For a UGT comparison, we don't care about any bits that 1751 // correspond to the trailing ones of the comparand. The value of these 1752 // bits doesn't impact the outcome of the comparison, because any value 1753 // greater than the RHS must differ in a bit higher than these due to carry. 1754 case ICmpInst::ICMP_UGT: { 1755 unsigned trailingOnes = RHS.countTrailingOnes(); 1756 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 1757 return ~lowBitsSet; 1758 } 1759 1760 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 1761 // Any value less than the RHS must differ in a higher bit because of carries. 1762 case ICmpInst::ICMP_ULT: { 1763 unsigned trailingZeros = RHS.countTrailingZeros(); 1764 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 1765 return ~lowBitsSet; 1766 } 1767 1768 default: 1769 return APInt::getAllOnesValue(BitWidth); 1770 } 1771 1772} 1773 1774Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 1775 bool Changed = false; 1776 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1777 1778 /// Orders the operands of the compare so that they are listed from most 1779 /// complex to least complex. This puts constants before unary operators, 1780 /// before binary operators. 1781 if (getComplexity(Op0) < getComplexity(Op1)) { 1782 I.swapOperands(); 1783 std::swap(Op0, Op1); 1784 Changed = true; 1785 } 1786 1787 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD)) 1788 return ReplaceInstUsesWith(I, V); 1789 1790 Type *Ty = Op0->getType(); 1791 1792 // icmp's with boolean values can always be turned into bitwise operations 1793 if (Ty->isIntegerTy(1)) { 1794 switch (I.getPredicate()) { 1795 default: llvm_unreachable("Invalid icmp instruction!"); 1796 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 1797 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp"); 1798 return BinaryOperator::CreateNot(Xor); 1799 } 1800 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B 1801 return BinaryOperator::CreateXor(Op0, Op1); 1802 1803 case ICmpInst::ICMP_UGT: 1804 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 1805 // FALL THROUGH 1806 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 1807 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 1808 return BinaryOperator::CreateAnd(Not, Op1); 1809 } 1810 case ICmpInst::ICMP_SGT: 1811 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 1812 // FALL THROUGH 1813 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 1814 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 1815 return BinaryOperator::CreateAnd(Not, Op0); 1816 } 1817 case ICmpInst::ICMP_UGE: 1818 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 1819 // FALL THROUGH 1820 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 1821 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp"); 1822 return BinaryOperator::CreateOr(Not, Op1); 1823 } 1824 case ICmpInst::ICMP_SGE: 1825 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 1826 // FALL THROUGH 1827 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 1828 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp"); 1829 return BinaryOperator::CreateOr(Not, Op0); 1830 } 1831 } 1832 } 1833 1834 unsigned BitWidth = 0; 1835 if (Ty->isIntOrIntVectorTy()) 1836 BitWidth = Ty->getScalarSizeInBits(); 1837 else if (TD) // Pointers require TD info to get their size. 1838 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); 1839 1840 bool isSignBit = false; 1841 1842 // See if we are doing a comparison with a constant. 1843 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 1844 Value *A = 0, *B = 0; 1845 1846 // Match the following pattern, which is a common idiom when writing 1847 // overflow-safe integer arithmetic function. The source performs an 1848 // addition in wider type, and explicitly checks for overflow using 1849 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 1850 // sadd_with_overflow intrinsic. 1851 // 1852 // TODO: This could probably be generalized to handle other overflow-safe 1853 // operations if we worked out the formulas to compute the appropriate 1854 // magic constants. 1855 // 1856 // sum = a + b 1857 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1858 { 1859 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1860 if (I.getPredicate() == ICmpInst::ICMP_UGT && 1861 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1862 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 1863 return Res; 1864 } 1865 1866 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 1867 if (I.isEquality() && CI->isZero() && 1868 match(Op0, m_Sub(m_Value(A), m_Value(B)))) { 1869 // (icmp cond A B) if cond is equality 1870 return new ICmpInst(I.getPredicate(), A, B); 1871 } 1872 1873 // If we have an icmp le or icmp ge instruction, turn it into the 1874 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 1875 // them being folded in the code below. The SimplifyICmpInst code has 1876 // already handled the edge cases for us, so we just assert on them. 1877 switch (I.getPredicate()) { 1878 default: break; 1879 case ICmpInst::ICMP_ULE: 1880 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE 1881 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, 1882 ConstantInt::get(CI->getContext(), CI->getValue()+1)); 1883 case ICmpInst::ICMP_SLE: 1884 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE 1885 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 1886 ConstantInt::get(CI->getContext(), CI->getValue()+1)); 1887 case ICmpInst::ICMP_UGE: 1888 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE 1889 return new ICmpInst(ICmpInst::ICMP_UGT, Op0, 1890 ConstantInt::get(CI->getContext(), CI->getValue()-1)); 1891 case ICmpInst::ICMP_SGE: 1892 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE 1893 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 1894 ConstantInt::get(CI->getContext(), CI->getValue()-1)); 1895 } 1896 1897 // If this comparison is a normal comparison, it demands all 1898 // bits, if it is a sign bit comparison, it only demands the sign bit. 1899 bool UnusedBit; 1900 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 1901 } 1902 1903 // See if we can fold the comparison based on range information we can get 1904 // by checking whether bits are known to be zero or one in the input. 1905 if (BitWidth != 0) { 1906 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 1907 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 1908 1909 if (SimplifyDemandedBits(I.getOperandUse(0), 1910 DemandedBitsLHSMask(I, BitWidth, isSignBit), 1911 Op0KnownZero, Op0KnownOne, 0)) 1912 return &I; 1913 if (SimplifyDemandedBits(I.getOperandUse(1), 1914 APInt::getAllOnesValue(BitWidth), 1915 Op1KnownZero, Op1KnownOne, 0)) 1916 return &I; 1917 1918 // Given the known and unknown bits, compute a range that the LHS could be 1919 // in. Compute the Min, Max and RHS values based on the known bits. For the 1920 // EQ and NE we use unsigned values. 1921 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 1922 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 1923 if (I.isSigned()) { 1924 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 1925 Op0Min, Op0Max); 1926 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 1927 Op1Min, Op1Max); 1928 } else { 1929 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 1930 Op0Min, Op0Max); 1931 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 1932 Op1Min, Op1Max); 1933 } 1934 1935 // If Min and Max are known to be the same, then SimplifyDemandedBits 1936 // figured out that the LHS is a constant. Just constant fold this now so 1937 // that code below can assume that Min != Max. 1938 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 1939 return new ICmpInst(I.getPredicate(), 1940 ConstantInt::get(Op0->getType(), Op0Min), Op1); 1941 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 1942 return new ICmpInst(I.getPredicate(), Op0, 1943 ConstantInt::get(Op1->getType(), Op1Min)); 1944 1945 // Based on the range information we know about the LHS, see if we can 1946 // simplify this comparison. For example, (x&4) < 8 is always true. 1947 switch (I.getPredicate()) { 1948 default: llvm_unreachable("Unknown icmp opcode!"); 1949 case ICmpInst::ICMP_EQ: { 1950 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 1951 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 1952 1953 // If all bits are known zero except for one, then we know at most one 1954 // bit is set. If the comparison is against zero, then this is a check 1955 // to see if *that* bit is set. 1956 APInt Op0KnownZeroInverted = ~Op0KnownZero; 1957 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) { 1958 // If the LHS is an AND with the same constant, look through it. 1959 Value *LHS = 0; 1960 ConstantInt *LHSC = 0; 1961 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 1962 LHSC->getValue() != Op0KnownZeroInverted) 1963 LHS = Op0; 1964 1965 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 1966 // then turn "((1 << x)&8) == 0" into "x != 3". 1967 Value *X = 0; 1968 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 1969 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros(); 1970 return new ICmpInst(ICmpInst::ICMP_NE, X, 1971 ConstantInt::get(X->getType(), CmpVal)); 1972 } 1973 1974 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 1975 // then turn "((8 >>u x)&1) == 0" into "x != 3". 1976 const APInt *CI; 1977 if (Op0KnownZeroInverted == 1 && 1978 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 1979 return new ICmpInst(ICmpInst::ICMP_NE, X, 1980 ConstantInt::get(X->getType(), 1981 CI->countTrailingZeros())); 1982 } 1983 1984 break; 1985 } 1986 case ICmpInst::ICMP_NE: { 1987 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 1988 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 1989 1990 // If all bits are known zero except for one, then we know at most one 1991 // bit is set. If the comparison is against zero, then this is a check 1992 // to see if *that* bit is set. 1993 APInt Op0KnownZeroInverted = ~Op0KnownZero; 1994 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) { 1995 // If the LHS is an AND with the same constant, look through it. 1996 Value *LHS = 0; 1997 ConstantInt *LHSC = 0; 1998 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 1999 LHSC->getValue() != Op0KnownZeroInverted) 2000 LHS = Op0; 2001 2002 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 2003 // then turn "((1 << x)&8) != 0" into "x == 3". 2004 Value *X = 0; 2005 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 2006 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros(); 2007 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2008 ConstantInt::get(X->getType(), CmpVal)); 2009 } 2010 2011 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 2012 // then turn "((8 >>u x)&1) != 0" into "x == 3". 2013 const APInt *CI; 2014 if (Op0KnownZeroInverted == 1 && 2015 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 2016 return new ICmpInst(ICmpInst::ICMP_EQ, X, 2017 ConstantInt::get(X->getType(), 2018 CI->countTrailingZeros())); 2019 } 2020 2021 break; 2022 } 2023 case ICmpInst::ICMP_ULT: 2024 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 2025 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2026 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 2027 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2028 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 2029 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2030 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2031 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 2032 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2033 ConstantInt::get(CI->getContext(), CI->getValue()-1)); 2034 2035 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 2036 if (CI->isMinValue(true)) 2037 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 2038 Constant::getAllOnesValue(Op0->getType())); 2039 } 2040 break; 2041 case ICmpInst::ICMP_UGT: 2042 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 2043 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2044 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 2045 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2046 2047 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 2048 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2049 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2050 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 2051 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2052 ConstantInt::get(CI->getContext(), CI->getValue()+1)); 2053 2054 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 2055 if (CI->isMaxValue(true)) 2056 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 2057 Constant::getNullValue(Op0->getType())); 2058 } 2059 break; 2060 case ICmpInst::ICMP_SLT: 2061 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 2062 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2063 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 2064 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2065 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 2066 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2067 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2068 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 2069 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2070 ConstantInt::get(CI->getContext(), CI->getValue()-1)); 2071 } 2072 break; 2073 case ICmpInst::ICMP_SGT: 2074 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 2075 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2076 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 2077 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2078 2079 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 2080 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 2081 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2082 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 2083 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 2084 ConstantInt::get(CI->getContext(), CI->getValue()+1)); 2085 } 2086 break; 2087 case ICmpInst::ICMP_SGE: 2088 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 2089 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 2090 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2091 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 2092 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2093 break; 2094 case ICmpInst::ICMP_SLE: 2095 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 2096 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 2097 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2098 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 2099 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2100 break; 2101 case ICmpInst::ICMP_UGE: 2102 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 2103 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 2104 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2105 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 2106 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2107 break; 2108 case ICmpInst::ICMP_ULE: 2109 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 2110 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 2111 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2112 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 2113 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2114 break; 2115 } 2116 2117 // Turn a signed comparison into an unsigned one if both operands 2118 // are known to have the same sign. 2119 if (I.isSigned() && 2120 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 2121 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 2122 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 2123 } 2124 2125 // Test if the ICmpInst instruction is used exclusively by a select as 2126 // part of a minimum or maximum operation. If so, refrain from doing 2127 // any other folding. This helps out other analyses which understand 2128 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 2129 // and CodeGen. And in this case, at least one of the comparison 2130 // operands has at least one user besides the compare (the select), 2131 // which would often largely negate the benefit of folding anyway. 2132 if (I.hasOneUse()) 2133 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin())) 2134 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 2135 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 2136 return 0; 2137 2138 // See if we are doing a comparison between a constant and an instruction that 2139 // can be folded into the comparison. 2140 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 2141 // Since the RHS is a ConstantInt (CI), if the left hand side is an 2142 // instruction, see if that instruction also has constants so that the 2143 // instruction can be folded into the icmp 2144 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2145 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 2146 return Res; 2147 } 2148 2149 // Handle icmp with constant (but not simple integer constant) RHS 2150 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 2151 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2152 switch (LHSI->getOpcode()) { 2153 case Instruction::GetElementPtr: 2154 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2155 if (RHSC->isNullValue() && 2156 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2157 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2158 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2159 break; 2160 case Instruction::PHI: 2161 // Only fold icmp into the PHI if the phi and icmp are in the same 2162 // block. If in the same block, we're encouraging jump threading. If 2163 // not, we are just pessimizing the code by making an i1 phi. 2164 if (LHSI->getParent() == I.getParent()) 2165 if (Instruction *NV = FoldOpIntoPhi(I)) 2166 return NV; 2167 break; 2168 case Instruction::Select: { 2169 // If either operand of the select is a constant, we can fold the 2170 // comparison into the select arms, which will cause one to be 2171 // constant folded and the select turned into a bitwise or. 2172 Value *Op1 = 0, *Op2 = 0; 2173 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) 2174 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2175 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) 2176 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2177 2178 // We only want to perform this transformation if it will not lead to 2179 // additional code. This is true if either both sides of the select 2180 // fold to a constant (in which case the icmp is replaced with a select 2181 // which will usually simplify) or this is the only user of the 2182 // select (in which case we are trading a select+icmp for a simpler 2183 // select+icmp). 2184 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) { 2185 if (!Op1) 2186 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 2187 RHSC, I.getName()); 2188 if (!Op2) 2189 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 2190 RHSC, I.getName()); 2191 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2192 } 2193 break; 2194 } 2195 case Instruction::IntToPtr: 2196 // icmp pred inttoptr(X), null -> icmp pred X, 0 2197 if (RHSC->isNullValue() && TD && 2198 TD->getIntPtrType(RHSC->getContext()) == 2199 LHSI->getOperand(0)->getType()) 2200 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 2201 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2202 break; 2203 2204 case Instruction::Load: 2205 // Try to optimize things like "A[i] > 4" to index computations. 2206 if (GetElementPtrInst *GEP = 2207 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2208 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2209 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2210 !cast<LoadInst>(LHSI)->isVolatile()) 2211 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2212 return Res; 2213 } 2214 break; 2215 } 2216 } 2217 2218 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 2219 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 2220 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 2221 return NI; 2222 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 2223 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 2224 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 2225 return NI; 2226 2227 // Test to see if the operands of the icmp are casted versions of other 2228 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 2229 // now. 2230 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 2231 if (Op0->getType()->isPointerTy() && 2232 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2233 // We keep moving the cast from the left operand over to the right 2234 // operand, where it can often be eliminated completely. 2235 Op0 = CI->getOperand(0); 2236 2237 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2238 // so eliminate it as well. 2239 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 2240 Op1 = CI2->getOperand(0); 2241 2242 // If Op1 is a constant, we can fold the cast into the constant. 2243 if (Op0->getType() != Op1->getType()) { 2244 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 2245 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 2246 } else { 2247 // Otherwise, cast the RHS right before the icmp 2248 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 2249 } 2250 } 2251 return new ICmpInst(I.getPredicate(), Op0, Op1); 2252 } 2253 } 2254 2255 if (isa<CastInst>(Op0)) { 2256 // Handle the special case of: icmp (cast bool to X), <cst> 2257 // This comes up when you have code like 2258 // int X = A < B; 2259 // if (X) ... 2260 // For generality, we handle any zero-extension of any operand comparison 2261 // with a constant or another cast from the same type. 2262 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 2263 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 2264 return R; 2265 } 2266 2267 // Special logic for binary operators. 2268 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 2269 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 2270 if (BO0 || BO1) { 2271 CmpInst::Predicate Pred = I.getPredicate(); 2272 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 2273 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 2274 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 2275 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 2276 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 2277 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 2278 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 2279 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 2280 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 2281 2282 // Analyze the case when either Op0 or Op1 is an add instruction. 2283 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 2284 Value *A = 0, *B = 0, *C = 0, *D = 0; 2285 if (BO0 && BO0->getOpcode() == Instruction::Add) 2286 A = BO0->getOperand(0), B = BO0->getOperand(1); 2287 if (BO1 && BO1->getOpcode() == Instruction::Add) 2288 C = BO1->getOperand(0), D = BO1->getOperand(1); 2289 2290 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2291 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 2292 return new ICmpInst(Pred, A == Op1 ? B : A, 2293 Constant::getNullValue(Op1->getType())); 2294 2295 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2296 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 2297 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 2298 C == Op0 ? D : C); 2299 2300 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 2301 if (A && C && (A == C || A == D || B == C || B == D) && 2302 NoOp0WrapProblem && NoOp1WrapProblem && 2303 // Try not to increase register pressure. 2304 BO0->hasOneUse() && BO1->hasOneUse()) { 2305 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2306 Value *Y = (A == C || A == D) ? B : A; 2307 Value *Z = (C == A || C == B) ? D : C; 2308 return new ICmpInst(Pred, Y, Z); 2309 } 2310 2311 // Analyze the case when either Op0 or Op1 is a sub instruction. 2312 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 2313 A = 0; B = 0; C = 0; D = 0; 2314 if (BO0 && BO0->getOpcode() == Instruction::Sub) 2315 A = BO0->getOperand(0), B = BO0->getOperand(1); 2316 if (BO1 && BO1->getOpcode() == Instruction::Sub) 2317 C = BO1->getOperand(0), D = BO1->getOperand(1); 2318 2319 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 2320 if (A == Op1 && NoOp0WrapProblem) 2321 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 2322 2323 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 2324 if (C == Op0 && NoOp1WrapProblem) 2325 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 2326 2327 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 2328 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 2329 // Try not to increase register pressure. 2330 BO0->hasOneUse() && BO1->hasOneUse()) 2331 return new ICmpInst(Pred, A, C); 2332 2333 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 2334 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 2335 // Try not to increase register pressure. 2336 BO0->hasOneUse() && BO1->hasOneUse()) 2337 return new ICmpInst(Pred, D, B); 2338 2339 BinaryOperator *SRem = NULL; 2340 // icmp (srem X, Y), Y 2341 if (BO0 && BO0->getOpcode() == Instruction::SRem && 2342 Op1 == BO0->getOperand(1)) 2343 SRem = BO0; 2344 // icmp Y, (srem X, Y) 2345 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 2346 Op0 == BO1->getOperand(1)) 2347 SRem = BO1; 2348 if (SRem) { 2349 // We don't check hasOneUse to avoid increasing register pressure because 2350 // the value we use is the same value this instruction was already using. 2351 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 2352 default: break; 2353 case ICmpInst::ICMP_EQ: 2354 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 2355 case ICmpInst::ICMP_NE: 2356 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 2357 case ICmpInst::ICMP_SGT: 2358 case ICmpInst::ICMP_SGE: 2359 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 2360 Constant::getAllOnesValue(SRem->getType())); 2361 case ICmpInst::ICMP_SLT: 2362 case ICmpInst::ICMP_SLE: 2363 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 2364 Constant::getNullValue(SRem->getType())); 2365 } 2366 } 2367 2368 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 2369 BO0->hasOneUse() && BO1->hasOneUse() && 2370 BO0->getOperand(1) == BO1->getOperand(1)) { 2371 switch (BO0->getOpcode()) { 2372 default: break; 2373 case Instruction::Add: 2374 case Instruction::Sub: 2375 case Instruction::Xor: 2376 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 2377 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2378 BO1->getOperand(0)); 2379 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 2380 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 2381 if (CI->getValue().isSignBit()) { 2382 ICmpInst::Predicate Pred = I.isSigned() 2383 ? I.getUnsignedPredicate() 2384 : I.getSignedPredicate(); 2385 return new ICmpInst(Pred, BO0->getOperand(0), 2386 BO1->getOperand(0)); 2387 } 2388 2389 if (CI->isMaxValue(true)) { 2390 ICmpInst::Predicate Pred = I.isSigned() 2391 ? I.getUnsignedPredicate() 2392 : I.getSignedPredicate(); 2393 Pred = I.getSwappedPredicate(Pred); 2394 return new ICmpInst(Pred, BO0->getOperand(0), 2395 BO1->getOperand(0)); 2396 } 2397 } 2398 break; 2399 case Instruction::Mul: 2400 if (!I.isEquality()) 2401 break; 2402 2403 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 2404 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 2405 // Mask = -1 >> count-trailing-zeros(Cst). 2406 if (!CI->isZero() && !CI->isOne()) { 2407 const APInt &AP = CI->getValue(); 2408 ConstantInt *Mask = ConstantInt::get(I.getContext(), 2409 APInt::getLowBitsSet(AP.getBitWidth(), 2410 AP.getBitWidth() - 2411 AP.countTrailingZeros())); 2412 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 2413 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 2414 return new ICmpInst(I.getPredicate(), And1, And2); 2415 } 2416 } 2417 break; 2418 case Instruction::UDiv: 2419 case Instruction::LShr: 2420 if (I.isSigned()) 2421 break; 2422 // fall-through 2423 case Instruction::SDiv: 2424 case Instruction::AShr: 2425 if (!BO0->isExact() || !BO1->isExact()) 2426 break; 2427 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2428 BO1->getOperand(0)); 2429 case Instruction::Shl: { 2430 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 2431 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 2432 if (!NUW && !NSW) 2433 break; 2434 if (!NSW && I.isSigned()) 2435 break; 2436 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 2437 BO1->getOperand(0)); 2438 } 2439 } 2440 } 2441 } 2442 2443 { Value *A, *B; 2444 // ~x < ~y --> y < x 2445 // ~x < cst --> ~cst < x 2446 if (match(Op0, m_Not(m_Value(A)))) { 2447 if (match(Op1, m_Not(m_Value(B)))) 2448 return new ICmpInst(I.getPredicate(), B, A); 2449 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 2450 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 2451 } 2452 2453 // (a+b) <u a --> llvm.uadd.with.overflow. 2454 // (a+b) <u b --> llvm.uadd.with.overflow. 2455 if (I.getPredicate() == ICmpInst::ICMP_ULT && 2456 match(Op0, m_Add(m_Value(A), m_Value(B))) && 2457 (Op1 == A || Op1 == B)) 2458 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this)) 2459 return R; 2460 2461 // a >u (a+b) --> llvm.uadd.with.overflow. 2462 // b >u (a+b) --> llvm.uadd.with.overflow. 2463 if (I.getPredicate() == ICmpInst::ICMP_UGT && 2464 match(Op1, m_Add(m_Value(A), m_Value(B))) && 2465 (Op0 == A || Op0 == B)) 2466 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this)) 2467 return R; 2468 } 2469 2470 if (I.isEquality()) { 2471 Value *A, *B, *C, *D; 2472 2473 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 2474 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 2475 Value *OtherVal = A == Op1 ? B : A; 2476 return new ICmpInst(I.getPredicate(), OtherVal, 2477 Constant::getNullValue(A->getType())); 2478 } 2479 2480 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 2481 // A^c1 == C^c2 --> A == C^(c1^c2) 2482 ConstantInt *C1, *C2; 2483 if (match(B, m_ConstantInt(C1)) && 2484 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 2485 Constant *NC = ConstantInt::get(I.getContext(), 2486 C1->getValue() ^ C2->getValue()); 2487 Value *Xor = Builder->CreateXor(C, NC); 2488 return new ICmpInst(I.getPredicate(), A, Xor); 2489 } 2490 2491 // A^B == A^D -> B == D 2492 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 2493 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 2494 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 2495 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 2496 } 2497 } 2498 2499 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2500 (A == Op0 || B == Op0)) { 2501 // A == (A^B) -> B == 0 2502 Value *OtherVal = A == Op0 ? B : A; 2503 return new ICmpInst(I.getPredicate(), OtherVal, 2504 Constant::getNullValue(A->getType())); 2505 } 2506 2507 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 2508 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 2509 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 2510 Value *X = 0, *Y = 0, *Z = 0; 2511 2512 if (A == C) { 2513 X = B; Y = D; Z = A; 2514 } else if (A == D) { 2515 X = B; Y = C; Z = A; 2516 } else if (B == C) { 2517 X = A; Y = D; Z = B; 2518 } else if (B == D) { 2519 X = A; Y = C; Z = B; 2520 } 2521 2522 if (X) { // Build (X^Y) & Z 2523 Op1 = Builder->CreateXor(X, Y); 2524 Op1 = Builder->CreateAnd(Op1, Z); 2525 I.setOperand(0, Op1); 2526 I.setOperand(1, Constant::getNullValue(Op1->getType())); 2527 return &I; 2528 } 2529 } 2530 2531 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 2532 // "icmp (and X, mask), cst" 2533 uint64_t ShAmt = 0; 2534 ConstantInt *Cst1; 2535 if (Op0->hasOneUse() && 2536 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 2537 m_ConstantInt(ShAmt))))) && 2538 match(Op1, m_ConstantInt(Cst1)) && 2539 // Only do this when A has multiple uses. This is most important to do 2540 // when it exposes other optimizations. 2541 !A->hasOneUse()) { 2542 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 2543 2544 if (ShAmt < ASize) { 2545 APInt MaskV = 2546 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 2547 MaskV <<= ShAmt; 2548 2549 APInt CmpV = Cst1->getValue().zext(ASize); 2550 CmpV <<= ShAmt; 2551 2552 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 2553 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 2554 } 2555 } 2556 } 2557 2558 { 2559 Value *X; ConstantInt *Cst; 2560 // icmp X+Cst, X 2561 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 2562 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0); 2563 2564 // icmp X, X+Cst 2565 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 2566 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1); 2567 } 2568 return Changed ? &I : 0; 2569} 2570 2571 2572 2573 2574 2575 2576/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible. 2577/// 2578Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 2579 Instruction *LHSI, 2580 Constant *RHSC) { 2581 if (!isa<ConstantFP>(RHSC)) return 0; 2582 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 2583 2584 // Get the width of the mantissa. We don't want to hack on conversions that 2585 // might lose information from the integer, e.g. "i64 -> float" 2586 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 2587 if (MantissaWidth == -1) return 0; // Unknown. 2588 2589 // Check to see that the input is converted from an integer type that is small 2590 // enough that preserves all bits. TODO: check here for "known" sign bits. 2591 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 2592 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); 2593 2594 // If this is a uitofp instruction, we need an extra bit to hold the sign. 2595 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 2596 if (LHSUnsigned) 2597 ++InputSize; 2598 2599 // If the conversion would lose info, don't hack on this. 2600 if ((int)InputSize > MantissaWidth) 2601 return 0; 2602 2603 // Otherwise, we can potentially simplify the comparison. We know that it 2604 // will always come through as an integer value and we know the constant is 2605 // not a NAN (it would have been previously simplified). 2606 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 2607 2608 ICmpInst::Predicate Pred; 2609 switch (I.getPredicate()) { 2610 default: llvm_unreachable("Unexpected predicate!"); 2611 case FCmpInst::FCMP_UEQ: 2612 case FCmpInst::FCMP_OEQ: 2613 Pred = ICmpInst::ICMP_EQ; 2614 break; 2615 case FCmpInst::FCMP_UGT: 2616 case FCmpInst::FCMP_OGT: 2617 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 2618 break; 2619 case FCmpInst::FCMP_UGE: 2620 case FCmpInst::FCMP_OGE: 2621 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 2622 break; 2623 case FCmpInst::FCMP_ULT: 2624 case FCmpInst::FCMP_OLT: 2625 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 2626 break; 2627 case FCmpInst::FCMP_ULE: 2628 case FCmpInst::FCMP_OLE: 2629 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 2630 break; 2631 case FCmpInst::FCMP_UNE: 2632 case FCmpInst::FCMP_ONE: 2633 Pred = ICmpInst::ICMP_NE; 2634 break; 2635 case FCmpInst::FCMP_ORD: 2636 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2637 case FCmpInst::FCMP_UNO: 2638 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2639 } 2640 2641 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 2642 2643 // Now we know that the APFloat is a normal number, zero or inf. 2644 2645 // See if the FP constant is too large for the integer. For example, 2646 // comparing an i8 to 300.0. 2647 unsigned IntWidth = IntTy->getScalarSizeInBits(); 2648 2649 if (!LHSUnsigned) { 2650 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 2651 // and large values. 2652 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false); 2653 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 2654 APFloat::rmNearestTiesToEven); 2655 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 2656 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 2657 Pred == ICmpInst::ICMP_SLE) 2658 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2659 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2660 } 2661 } else { 2662 // If the RHS value is > UnsignedMax, fold the comparison. This handles 2663 // +INF and large values. 2664 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false); 2665 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 2666 APFloat::rmNearestTiesToEven); 2667 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 2668 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 2669 Pred == ICmpInst::ICMP_ULE) 2670 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2671 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2672 } 2673 } 2674 2675 if (!LHSUnsigned) { 2676 // See if the RHS value is < SignedMin. 2677 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); 2678 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 2679 APFloat::rmNearestTiesToEven); 2680 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 2681 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 2682 Pred == ICmpInst::ICMP_SGE) 2683 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2684 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2685 } 2686 } 2687 2688 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 2689 // [0, UMAX], but it may still be fractional. See if it is fractional by 2690 // casting the FP value to the integer value and back, checking for equality. 2691 // Don't do this for zero, because -0.0 is not fractional. 2692 Constant *RHSInt = LHSUnsigned 2693 ? ConstantExpr::getFPToUI(RHSC, IntTy) 2694 : ConstantExpr::getFPToSI(RHSC, IntTy); 2695 if (!RHS.isZero()) { 2696 bool Equal = LHSUnsigned 2697 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 2698 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 2699 if (!Equal) { 2700 // If we had a comparison against a fractional value, we have to adjust 2701 // the compare predicate and sometimes the value. RHSC is rounded towards 2702 // zero at this point. 2703 switch (Pred) { 2704 default: llvm_unreachable("Unexpected integer comparison!"); 2705 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 2706 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2707 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 2708 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2709 case ICmpInst::ICMP_ULE: 2710 // (float)int <= 4.4 --> int <= 4 2711 // (float)int <= -4.4 --> false 2712 if (RHS.isNegative()) 2713 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2714 break; 2715 case ICmpInst::ICMP_SLE: 2716 // (float)int <= 4.4 --> int <= 4 2717 // (float)int <= -4.4 --> int < -4 2718 if (RHS.isNegative()) 2719 Pred = ICmpInst::ICMP_SLT; 2720 break; 2721 case ICmpInst::ICMP_ULT: 2722 // (float)int < -4.4 --> false 2723 // (float)int < 4.4 --> int <= 4 2724 if (RHS.isNegative()) 2725 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); 2726 Pred = ICmpInst::ICMP_ULE; 2727 break; 2728 case ICmpInst::ICMP_SLT: 2729 // (float)int < -4.4 --> int < -4 2730 // (float)int < 4.4 --> int <= 4 2731 if (!RHS.isNegative()) 2732 Pred = ICmpInst::ICMP_SLE; 2733 break; 2734 case ICmpInst::ICMP_UGT: 2735 // (float)int > 4.4 --> int > 4 2736 // (float)int > -4.4 --> true 2737 if (RHS.isNegative()) 2738 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2739 break; 2740 case ICmpInst::ICMP_SGT: 2741 // (float)int > 4.4 --> int > 4 2742 // (float)int > -4.4 --> int >= -4 2743 if (RHS.isNegative()) 2744 Pred = ICmpInst::ICMP_SGE; 2745 break; 2746 case ICmpInst::ICMP_UGE: 2747 // (float)int >= -4.4 --> true 2748 // (float)int >= 4.4 --> int > 4 2749 if (!RHS.isNegative()) 2750 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); 2751 Pred = ICmpInst::ICMP_UGT; 2752 break; 2753 case ICmpInst::ICMP_SGE: 2754 // (float)int >= -4.4 --> int >= -4 2755 // (float)int >= 4.4 --> int > 4 2756 if (!RHS.isNegative()) 2757 Pred = ICmpInst::ICMP_SGT; 2758 break; 2759 } 2760 } 2761 } 2762 2763 // Lower this FP comparison into an appropriate integer version of the 2764 // comparison. 2765 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 2766} 2767 2768Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 2769 bool Changed = false; 2770 2771 /// Orders the operands of the compare so that they are listed from most 2772 /// complex to least complex. This puts constants before unary operators, 2773 /// before binary operators. 2774 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 2775 I.swapOperands(); 2776 Changed = true; 2777 } 2778 2779 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2780 2781 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD)) 2782 return ReplaceInstUsesWith(I, V); 2783 2784 // Simplify 'fcmp pred X, X' 2785 if (Op0 == Op1) { 2786 switch (I.getPredicate()) { 2787 default: llvm_unreachable("Unknown predicate!"); 2788 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 2789 case FCmpInst::FCMP_ULT: // True if unordered or less than 2790 case FCmpInst::FCMP_UGT: // True if unordered or greater than 2791 case FCmpInst::FCMP_UNE: // True if unordered or not equal 2792 // Canonicalize these to be 'fcmp uno %X, 0.0'. 2793 I.setPredicate(FCmpInst::FCMP_UNO); 2794 I.setOperand(1, Constant::getNullValue(Op0->getType())); 2795 return &I; 2796 2797 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 2798 case FCmpInst::FCMP_OEQ: // True if ordered and equal 2799 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 2800 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 2801 // Canonicalize these to be 'fcmp ord %X, 0.0'. 2802 I.setPredicate(FCmpInst::FCMP_ORD); 2803 I.setOperand(1, Constant::getNullValue(Op0->getType())); 2804 return &I; 2805 } 2806 } 2807 2808 // Handle fcmp with constant RHS 2809 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 2810 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 2811 switch (LHSI->getOpcode()) { 2812 case Instruction::FPExt: { 2813 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 2814 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 2815 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 2816 if (!RHSF) 2817 break; 2818 2819 // We can't convert a PPC double double. 2820 if (RHSF->getType()->isPPC_FP128Ty()) 2821 break; 2822 2823 const fltSemantics *Sem; 2824 // FIXME: This shouldn't be here. 2825 if (LHSExt->getSrcTy()->isFloatTy()) 2826 Sem = &APFloat::IEEEsingle; 2827 else if (LHSExt->getSrcTy()->isDoubleTy()) 2828 Sem = &APFloat::IEEEdouble; 2829 else if (LHSExt->getSrcTy()->isFP128Ty()) 2830 Sem = &APFloat::IEEEquad; 2831 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 2832 Sem = &APFloat::x87DoubleExtended; 2833 else 2834 break; 2835 2836 bool Lossy; 2837 APFloat F = RHSF->getValueAPF(); 2838 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 2839 2840 // Avoid lossy conversions and denormals. Zero is a special case 2841 // that's OK to convert. 2842 APFloat Fabs = F; 2843 Fabs.clearSign(); 2844 if (!Lossy && 2845 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 2846 APFloat::cmpLessThan) || Fabs.isZero())) 2847 2848 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 2849 ConstantFP::get(RHSC->getContext(), F)); 2850 break; 2851 } 2852 case Instruction::PHI: 2853 // Only fold fcmp into the PHI if the phi and fcmp are in the same 2854 // block. If in the same block, we're encouraging jump threading. If 2855 // not, we are just pessimizing the code by making an i1 phi. 2856 if (LHSI->getParent() == I.getParent()) 2857 if (Instruction *NV = FoldOpIntoPhi(I)) 2858 return NV; 2859 break; 2860 case Instruction::SIToFP: 2861 case Instruction::UIToFP: 2862 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 2863 return NV; 2864 break; 2865 case Instruction::Select: { 2866 // If either operand of the select is a constant, we can fold the 2867 // comparison into the select arms, which will cause one to be 2868 // constant folded and the select turned into a bitwise or. 2869 Value *Op1 = 0, *Op2 = 0; 2870 if (LHSI->hasOneUse()) { 2871 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2872 // Fold the known value into the constant operand. 2873 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); 2874 // Insert a new FCmp of the other select operand. 2875 Op2 = Builder->CreateFCmp(I.getPredicate(), 2876 LHSI->getOperand(2), RHSC, I.getName()); 2877 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2878 // Fold the known value into the constant operand. 2879 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); 2880 // Insert a new FCmp of the other select operand. 2881 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1), 2882 RHSC, I.getName()); 2883 } 2884 } 2885 2886 if (Op1) 2887 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2888 break; 2889 } 2890 case Instruction::FSub: { 2891 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 2892 Value *Op; 2893 if (match(LHSI, m_FNeg(m_Value(Op)))) 2894 return new FCmpInst(I.getSwappedPredicate(), Op, 2895 ConstantExpr::getFNeg(RHSC)); 2896 break; 2897 } 2898 case Instruction::Load: 2899 if (GetElementPtrInst *GEP = 2900 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2901 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2902 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2903 !cast<LoadInst>(LHSI)->isVolatile()) 2904 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2905 return Res; 2906 } 2907 break; 2908 } 2909 } 2910 2911 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 2912 Value *X, *Y; 2913 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 2914 return new FCmpInst(I.getSwappedPredicate(), X, Y); 2915 2916 // fcmp (fpext x), (fpext y) -> fcmp x, y 2917 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 2918 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 2919 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 2920 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 2921 RHSExt->getOperand(0)); 2922 2923 return Changed ? &I : 0; 2924} 2925