1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Constants.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/Instructions.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Pass.h"
32#include "llvm/Assembly/Writer.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ValueHandle.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/PostOrderIterator.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/DenseMap.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
49  struct ValueEntry {
50    unsigned Rank;
51    Value *Op;
52    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53  };
54  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
56  }
57}
58
59#ifndef NDEBUG
60/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
63  Module *M = I->getParent()->getParent()->getParent();
64  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
65       << *Ops[0].Op->getType() << '\t';
66  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67    dbgs() << "[ ";
68    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
69    dbgs() << ", #" << Ops[i].Rank << "] ";
70  }
71}
72#endif
73
74namespace {
75  class Reassociate : public FunctionPass {
76    DenseMap<BasicBlock*, unsigned> RankMap;
77    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
78    SmallVector<WeakVH, 8> RedoInsts;
79    SmallVector<WeakVH, 8> DeadInsts;
80    bool MadeChange;
81  public:
82    static char ID; // Pass identification, replacement for typeid
83    Reassociate() : FunctionPass(ID) {
84      initializeReassociatePass(*PassRegistry::getPassRegistry());
85    }
86
87    bool runOnFunction(Function &F);
88
89    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
90      AU.setPreservesCFG();
91    }
92  private:
93    void BuildRankMap(Function &F);
94    unsigned getRank(Value *V);
95    Value *ReassociateExpression(BinaryOperator *I);
96    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
97                         unsigned Idx = 0);
98    Value *OptimizeExpression(BinaryOperator *I,
99                              SmallVectorImpl<ValueEntry> &Ops);
100    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
101    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
102    void LinearizeExpr(BinaryOperator *I);
103    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
104    void ReassociateInst(BasicBlock::iterator &BBI);
105
106    void RemoveDeadBinaryOp(Value *V);
107  };
108}
109
110char Reassociate::ID = 0;
111INITIALIZE_PASS(Reassociate, "reassociate",
112                "Reassociate expressions", false, false)
113
114// Public interface to the Reassociate pass
115FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
116
117void Reassociate::RemoveDeadBinaryOp(Value *V) {
118  Instruction *Op = dyn_cast<Instruction>(V);
119  if (!Op || !isa<BinaryOperator>(Op))
120    return;
121
122  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
123
124  ValueRankMap.erase(Op);
125  DeadInsts.push_back(Op);
126  RemoveDeadBinaryOp(LHS);
127  RemoveDeadBinaryOp(RHS);
128}
129
130
131static bool isUnmovableInstruction(Instruction *I) {
132  if (I->getOpcode() == Instruction::PHI ||
133      I->getOpcode() == Instruction::Alloca ||
134      I->getOpcode() == Instruction::Load ||
135      I->getOpcode() == Instruction::Invoke ||
136      (I->getOpcode() == Instruction::Call &&
137       !isa<DbgInfoIntrinsic>(I)) ||
138      I->getOpcode() == Instruction::UDiv ||
139      I->getOpcode() == Instruction::SDiv ||
140      I->getOpcode() == Instruction::FDiv ||
141      I->getOpcode() == Instruction::URem ||
142      I->getOpcode() == Instruction::SRem ||
143      I->getOpcode() == Instruction::FRem)
144    return true;
145  return false;
146}
147
148void Reassociate::BuildRankMap(Function &F) {
149  unsigned i = 2;
150
151  // Assign distinct ranks to function arguments
152  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
153    ValueRankMap[&*I] = ++i;
154
155  ReversePostOrderTraversal<Function*> RPOT(&F);
156  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
157         E = RPOT.end(); I != E; ++I) {
158    BasicBlock *BB = *I;
159    unsigned BBRank = RankMap[BB] = ++i << 16;
160
161    // Walk the basic block, adding precomputed ranks for any instructions that
162    // we cannot move.  This ensures that the ranks for these instructions are
163    // all different in the block.
164    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
165      if (isUnmovableInstruction(I))
166        ValueRankMap[&*I] = ++BBRank;
167  }
168}
169
170unsigned Reassociate::getRank(Value *V) {
171  Instruction *I = dyn_cast<Instruction>(V);
172  if (I == 0) {
173    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
174    return 0;  // Otherwise it's a global or constant, rank 0.
175  }
176
177  if (unsigned Rank = ValueRankMap[I])
178    return Rank;    // Rank already known?
179
180  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181  // we can reassociate expressions for code motion!  Since we do not recurse
182  // for PHI nodes, we cannot have infinite recursion here, because there
183  // cannot be loops in the value graph that do not go through PHI nodes.
184  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185  for (unsigned i = 0, e = I->getNumOperands();
186       i != e && Rank != MaxRank; ++i)
187    Rank = std::max(Rank, getRank(I->getOperand(i)));
188
189  // If this is a not or neg instruction, do not count it for rank.  This
190  // assures us that X and ~X will have the same rank.
191  if (!I->getType()->isIntegerTy() ||
192      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
193    ++Rank;
194
195  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
196  //     << Rank << "\n");
197
198  return ValueRankMap[I] = Rank;
199}
200
201/// isReassociableOp - Return true if V is an instruction of the specified
202/// opcode and if it only has one use.
203static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
204  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
205      cast<Instruction>(V)->getOpcode() == Opcode)
206    return cast<BinaryOperator>(V);
207  return 0;
208}
209
210/// LowerNegateToMultiply - Replace 0-X with X*-1.
211///
212static Instruction *LowerNegateToMultiply(Instruction *Neg,
213                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
214  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
215
216  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
217  ValueRankMap.erase(Neg);
218  Res->takeName(Neg);
219  Neg->replaceAllUsesWith(Res);
220  Res->setDebugLoc(Neg->getDebugLoc());
221  Neg->eraseFromParent();
222  return Res;
223}
224
225// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
226// Note that if D is also part of the expression tree that we recurse to
227// linearize it as well.  Besides that case, this does not recurse into A,B, or
228// C.
229void Reassociate::LinearizeExpr(BinaryOperator *I) {
230  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
231  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
232  assert(isReassociableOp(LHS, I->getOpcode()) &&
233         isReassociableOp(RHS, I->getOpcode()) &&
234         "Not an expression that needs linearization?");
235
236  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
237
238  // Move the RHS instruction to live immediately before I, avoiding breaking
239  // dominator properties.
240  RHS->moveBefore(I);
241
242  // Move operands around to do the linearization.
243  I->setOperand(1, RHS->getOperand(0));
244  RHS->setOperand(0, LHS);
245  I->setOperand(0, RHS);
246
247  // Conservatively clear all the optional flags, which may not hold
248  // after the reassociation.
249  I->clearSubclassOptionalData();
250  LHS->clearSubclassOptionalData();
251  RHS->clearSubclassOptionalData();
252
253  ++NumLinear;
254  MadeChange = true;
255  DEBUG(dbgs() << "Linearized: " << *I << '\n');
256
257  // If D is part of this expression tree, tail recurse.
258  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
259    LinearizeExpr(I);
260}
261
262
263/// LinearizeExprTree - Given an associative binary expression tree, traverse
264/// all of the uses putting it into canonical form.  This forces a left-linear
265/// form of the expression (((a+b)+c)+d), and collects information about the
266/// rank of the non-tree operands.
267///
268/// NOTE: These intentionally destroys the expression tree operands (turning
269/// them into undef values) to reduce #uses of the values.  This means that the
270/// caller MUST use something like RewriteExprTree to put the values back in.
271///
272void Reassociate::LinearizeExprTree(BinaryOperator *I,
273                                    SmallVectorImpl<ValueEntry> &Ops) {
274  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
275  unsigned Opcode = I->getOpcode();
276
277  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
278  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
279  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
280
281  // If this is a multiply expression tree and it contains internal negations,
282  // transform them into multiplies by -1 so they can be reassociated.
283  if (I->getOpcode() == Instruction::Mul) {
284    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
285      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
286      LHSBO = isReassociableOp(LHS, Opcode);
287    }
288    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
289      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
290      RHSBO = isReassociableOp(RHS, Opcode);
291    }
292  }
293
294  if (!LHSBO) {
295    if (!RHSBO) {
296      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
297      // such, just remember these operands and their rank.
298      Ops.push_back(ValueEntry(getRank(LHS), LHS));
299      Ops.push_back(ValueEntry(getRank(RHS), RHS));
300
301      // Clear the leaves out.
302      I->setOperand(0, UndefValue::get(I->getType()));
303      I->setOperand(1, UndefValue::get(I->getType()));
304      return;
305    }
306
307    // Turn X+(Y+Z) -> (Y+Z)+X
308    std::swap(LHSBO, RHSBO);
309    std::swap(LHS, RHS);
310    bool Success = !I->swapOperands();
311    assert(Success && "swapOperands failed");
312    (void)Success;
313    MadeChange = true;
314  } else if (RHSBO) {
315    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
316    // part of the expression tree.
317    LinearizeExpr(I);
318    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
319    RHS = I->getOperand(1);
320    RHSBO = 0;
321  }
322
323  // Okay, now we know that the LHS is a nested expression and that the RHS is
324  // not.  Perform reassociation.
325  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
326
327  // Move LHS right before I to make sure that the tree expression dominates all
328  // values.
329  LHSBO->moveBefore(I);
330
331  // Linearize the expression tree on the LHS.
332  LinearizeExprTree(LHSBO, Ops);
333
334  // Remember the RHS operand and its rank.
335  Ops.push_back(ValueEntry(getRank(RHS), RHS));
336
337  // Clear the RHS leaf out.
338  I->setOperand(1, UndefValue::get(I->getType()));
339}
340
341// RewriteExprTree - Now that the operands for this expression tree are
342// linearized and optimized, emit them in-order.  This function is written to be
343// tail recursive.
344void Reassociate::RewriteExprTree(BinaryOperator *I,
345                                  SmallVectorImpl<ValueEntry> &Ops,
346                                  unsigned i) {
347  if (i+2 == Ops.size()) {
348    if (I->getOperand(0) != Ops[i].Op ||
349        I->getOperand(1) != Ops[i+1].Op) {
350      Value *OldLHS = I->getOperand(0);
351      DEBUG(dbgs() << "RA: " << *I << '\n');
352      I->setOperand(0, Ops[i].Op);
353      I->setOperand(1, Ops[i+1].Op);
354
355      // Clear all the optional flags, which may not hold after the
356      // reassociation if the expression involved more than just this operation.
357      if (Ops.size() != 2)
358        I->clearSubclassOptionalData();
359
360      DEBUG(dbgs() << "TO: " << *I << '\n');
361      MadeChange = true;
362      ++NumChanged;
363
364      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
365      // delete the extra, now dead, nodes.
366      RemoveDeadBinaryOp(OldLHS);
367    }
368    return;
369  }
370  assert(i+2 < Ops.size() && "Ops index out of range!");
371
372  if (I->getOperand(1) != Ops[i].Op) {
373    DEBUG(dbgs() << "RA: " << *I << '\n');
374    I->setOperand(1, Ops[i].Op);
375
376    // Conservatively clear all the optional flags, which may not hold
377    // after the reassociation.
378    I->clearSubclassOptionalData();
379
380    DEBUG(dbgs() << "TO: " << *I << '\n');
381    MadeChange = true;
382    ++NumChanged;
383  }
384
385  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
386  assert(LHS->getOpcode() == I->getOpcode() &&
387         "Improper expression tree!");
388
389  // Compactify the tree instructions together with each other to guarantee
390  // that the expression tree is dominated by all of Ops.
391  LHS->moveBefore(I);
392  RewriteExprTree(LHS, Ops, i+1);
393}
394
395
396
397// NegateValue - Insert instructions before the instruction pointed to by BI,
398// that computes the negative version of the value specified.  The negative
399// version of the value is returned, and BI is left pointing at the instruction
400// that should be processed next by the reassociation pass.
401//
402static Value *NegateValue(Value *V, Instruction *BI) {
403  if (Constant *C = dyn_cast<Constant>(V))
404    return ConstantExpr::getNeg(C);
405
406  // We are trying to expose opportunity for reassociation.  One of the things
407  // that we want to do to achieve this is to push a negation as deep into an
408  // expression chain as possible, to expose the add instructions.  In practice,
409  // this means that we turn this:
410  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
411  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
412  // the constants.  We assume that instcombine will clean up the mess later if
413  // we introduce tons of unnecessary negation instructions.
414  //
415  if (Instruction *I = dyn_cast<Instruction>(V))
416    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
417      // Push the negates through the add.
418      I->setOperand(0, NegateValue(I->getOperand(0), BI));
419      I->setOperand(1, NegateValue(I->getOperand(1), BI));
420
421      // We must move the add instruction here, because the neg instructions do
422      // not dominate the old add instruction in general.  By moving it, we are
423      // assured that the neg instructions we just inserted dominate the
424      // instruction we are about to insert after them.
425      //
426      I->moveBefore(BI);
427      I->setName(I->getName()+".neg");
428      return I;
429    }
430
431  // Okay, we need to materialize a negated version of V with an instruction.
432  // Scan the use lists of V to see if we have one already.
433  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
434    User *U = *UI;
435    if (!BinaryOperator::isNeg(U)) continue;
436
437    // We found one!  Now we have to make sure that the definition dominates
438    // this use.  We do this by moving it to the entry block (if it is a
439    // non-instruction value) or right after the definition.  These negates will
440    // be zapped by reassociate later, so we don't need much finesse here.
441    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
442
443    // Verify that the negate is in this function, V might be a constant expr.
444    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
445      continue;
446
447    BasicBlock::iterator InsertPt;
448    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
449      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
450        InsertPt = II->getNormalDest()->begin();
451      } else {
452        InsertPt = InstInput;
453        ++InsertPt;
454      }
455      while (isa<PHINode>(InsertPt)) ++InsertPt;
456    } else {
457      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
458    }
459    TheNeg->moveBefore(InsertPt);
460    return TheNeg;
461  }
462
463  // Insert a 'neg' instruction that subtracts the value from zero to get the
464  // negation.
465  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
466}
467
468/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
469/// X-Y into (X + -Y).
470static bool ShouldBreakUpSubtract(Instruction *Sub) {
471  // If this is a negation, we can't split it up!
472  if (BinaryOperator::isNeg(Sub))
473    return false;
474
475  // Don't bother to break this up unless either the LHS is an associable add or
476  // subtract or if this is only used by one.
477  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
478      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
479    return true;
480  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
481      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
482    return true;
483  if (Sub->hasOneUse() &&
484      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
485       isReassociableOp(Sub->use_back(), Instruction::Sub)))
486    return true;
487
488  return false;
489}
490
491/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
492/// only used by an add, transform this into (X+(0-Y)) to promote better
493/// reassociation.
494static Instruction *BreakUpSubtract(Instruction *Sub,
495                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
496  // Convert a subtract into an add and a neg instruction. This allows sub
497  // instructions to be commuted with other add instructions.
498  //
499  // Calculate the negative value of Operand 1 of the sub instruction,
500  // and set it as the RHS of the add instruction we just made.
501  //
502  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
503  Instruction *New =
504    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
505  New->takeName(Sub);
506
507  // Everyone now refers to the add instruction.
508  ValueRankMap.erase(Sub);
509  Sub->replaceAllUsesWith(New);
510  New->setDebugLoc(Sub->getDebugLoc());
511  Sub->eraseFromParent();
512
513  DEBUG(dbgs() << "Negated: " << *New << '\n');
514  return New;
515}
516
517/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
518/// by one, change this into a multiply by a constant to assist with further
519/// reassociation.
520static Instruction *ConvertShiftToMul(Instruction *Shl,
521                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
522  // If an operand of this shift is a reassociable multiply, or if the shift
523  // is used by a reassociable multiply or add, turn into a multiply.
524  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
525      (Shl->hasOneUse() &&
526       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
527        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
528    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
529    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
530
531    Instruction *Mul =
532      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
533    ValueRankMap.erase(Shl);
534    Mul->takeName(Shl);
535    Shl->replaceAllUsesWith(Mul);
536    Mul->setDebugLoc(Shl->getDebugLoc());
537    Shl->eraseFromParent();
538    return Mul;
539  }
540  return 0;
541}
542
543// Scan backwards and forwards among values with the same rank as element i to
544// see if X exists.  If X does not exist, return i.  This is useful when
545// scanning for 'x' when we see '-x' because they both get the same rank.
546static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
547                                  Value *X) {
548  unsigned XRank = Ops[i].Rank;
549  unsigned e = Ops.size();
550  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
551    if (Ops[j].Op == X)
552      return j;
553  // Scan backwards.
554  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
555    if (Ops[j].Op == X)
556      return j;
557  return i;
558}
559
560/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
561/// and returning the result.  Insert the tree before I.
562static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
563  if (Ops.size() == 1) return Ops.back();
564
565  Value *V1 = Ops.back();
566  Ops.pop_back();
567  Value *V2 = EmitAddTreeOfValues(I, Ops);
568  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
569}
570
571/// RemoveFactorFromExpression - If V is an expression tree that is a
572/// multiplication sequence, and if this sequence contains a multiply by Factor,
573/// remove Factor from the tree and return the new tree.
574Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
575  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
576  if (!BO) return 0;
577
578  SmallVector<ValueEntry, 8> Factors;
579  LinearizeExprTree(BO, Factors);
580
581  bool FoundFactor = false;
582  bool NeedsNegate = false;
583  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
584    if (Factors[i].Op == Factor) {
585      FoundFactor = true;
586      Factors.erase(Factors.begin()+i);
587      break;
588    }
589
590    // If this is a negative version of this factor, remove it.
591    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
592      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
593        if (FC1->getValue() == -FC2->getValue()) {
594          FoundFactor = NeedsNegate = true;
595          Factors.erase(Factors.begin()+i);
596          break;
597        }
598  }
599
600  if (!FoundFactor) {
601    // Make sure to restore the operands to the expression tree.
602    RewriteExprTree(BO, Factors);
603    return 0;
604  }
605
606  BasicBlock::iterator InsertPt = BO; ++InsertPt;
607
608  // If this was just a single multiply, remove the multiply and return the only
609  // remaining operand.
610  if (Factors.size() == 1) {
611    ValueRankMap.erase(BO);
612    DeadInsts.push_back(BO);
613    V = Factors[0].Op;
614  } else {
615    RewriteExprTree(BO, Factors);
616    V = BO;
617  }
618
619  if (NeedsNegate)
620    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
621
622  return V;
623}
624
625/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
626/// add its operands as factors, otherwise add V to the list of factors.
627///
628/// Ops is the top-level list of add operands we're trying to factor.
629static void FindSingleUseMultiplyFactors(Value *V,
630                                         SmallVectorImpl<Value*> &Factors,
631                                       const SmallVectorImpl<ValueEntry> &Ops,
632                                         bool IsRoot) {
633  BinaryOperator *BO;
634  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
635      !(BO = dyn_cast<BinaryOperator>(V)) ||
636      BO->getOpcode() != Instruction::Mul) {
637    Factors.push_back(V);
638    return;
639  }
640
641  // If this value has a single use because it is another input to the add
642  // tree we're reassociating and we dropped its use, it actually has two
643  // uses and we can't factor it.
644  if (!IsRoot) {
645    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
646      if (Ops[i].Op == V) {
647        Factors.push_back(V);
648        return;
649      }
650  }
651
652
653  // Otherwise, add the LHS and RHS to the list of factors.
654  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
655  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
656}
657
658/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
659/// instruction.  This optimizes based on identities.  If it can be reduced to
660/// a single Value, it is returned, otherwise the Ops list is mutated as
661/// necessary.
662static Value *OptimizeAndOrXor(unsigned Opcode,
663                               SmallVectorImpl<ValueEntry> &Ops) {
664  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
665  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
666  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
667    // First, check for X and ~X in the operand list.
668    assert(i < Ops.size());
669    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
670      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
671      unsigned FoundX = FindInOperandList(Ops, i, X);
672      if (FoundX != i) {
673        if (Opcode == Instruction::And)   // ...&X&~X = 0
674          return Constant::getNullValue(X->getType());
675
676        if (Opcode == Instruction::Or)    // ...|X|~X = -1
677          return Constant::getAllOnesValue(X->getType());
678      }
679    }
680
681    // Next, check for duplicate pairs of values, which we assume are next to
682    // each other, due to our sorting criteria.
683    assert(i < Ops.size());
684    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
685      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
686        // Drop duplicate values for And and Or.
687        Ops.erase(Ops.begin()+i);
688        --i; --e;
689        ++NumAnnihil;
690        continue;
691      }
692
693      // Drop pairs of values for Xor.
694      assert(Opcode == Instruction::Xor);
695      if (e == 2)
696        return Constant::getNullValue(Ops[0].Op->getType());
697
698      // Y ^ X^X -> Y
699      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
700      i -= 1; e -= 2;
701      ++NumAnnihil;
702    }
703  }
704  return 0;
705}
706
707/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
708/// optimizes based on identities.  If it can be reduced to a single Value, it
709/// is returned, otherwise the Ops list is mutated as necessary.
710Value *Reassociate::OptimizeAdd(Instruction *I,
711                                SmallVectorImpl<ValueEntry> &Ops) {
712  // Scan the operand lists looking for X and -X pairs.  If we find any, we
713  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
714  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
715  //
716  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
717  //
718  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
719    Value *TheOp = Ops[i].Op;
720    // Check to see if we've seen this operand before.  If so, we factor all
721    // instances of the operand together.  Due to our sorting criteria, we know
722    // that these need to be next to each other in the vector.
723    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
724      // Rescan the list, remove all instances of this operand from the expr.
725      unsigned NumFound = 0;
726      do {
727        Ops.erase(Ops.begin()+i);
728        ++NumFound;
729      } while (i != Ops.size() && Ops[i].Op == TheOp);
730
731      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
732      ++NumFactor;
733
734      // Insert a new multiply.
735      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
736      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
737
738      // Now that we have inserted a multiply, optimize it. This allows us to
739      // handle cases that require multiple factoring steps, such as this:
740      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
741      RedoInsts.push_back(Mul);
742
743      // If every add operand was a duplicate, return the multiply.
744      if (Ops.empty())
745        return Mul;
746
747      // Otherwise, we had some input that didn't have the dupe, such as
748      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
749      // things being added by this operation.
750      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
751
752      --i;
753      e = Ops.size();
754      continue;
755    }
756
757    // Check for X and -X in the operand list.
758    if (!BinaryOperator::isNeg(TheOp))
759      continue;
760
761    Value *X = BinaryOperator::getNegArgument(TheOp);
762    unsigned FoundX = FindInOperandList(Ops, i, X);
763    if (FoundX == i)
764      continue;
765
766    // Remove X and -X from the operand list.
767    if (Ops.size() == 2)
768      return Constant::getNullValue(X->getType());
769
770    Ops.erase(Ops.begin()+i);
771    if (i < FoundX)
772      --FoundX;
773    else
774      --i;   // Need to back up an extra one.
775    Ops.erase(Ops.begin()+FoundX);
776    ++NumAnnihil;
777    --i;     // Revisit element.
778    e -= 2;  // Removed two elements.
779  }
780
781  // Scan the operand list, checking to see if there are any common factors
782  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
783  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
784  // To efficiently find this, we count the number of times a factor occurs
785  // for any ADD operands that are MULs.
786  DenseMap<Value*, unsigned> FactorOccurrences;
787
788  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
789  // where they are actually the same multiply.
790  unsigned MaxOcc = 0;
791  Value *MaxOccVal = 0;
792  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
793    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
794    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
795      continue;
796
797    // Compute all of the factors of this added value.
798    SmallVector<Value*, 8> Factors;
799    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
800    assert(Factors.size() > 1 && "Bad linearize!");
801
802    // Add one to FactorOccurrences for each unique factor in this op.
803    SmallPtrSet<Value*, 8> Duplicates;
804    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
805      Value *Factor = Factors[i];
806      if (!Duplicates.insert(Factor)) continue;
807
808      unsigned Occ = ++FactorOccurrences[Factor];
809      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
810
811      // If Factor is a negative constant, add the negated value as a factor
812      // because we can percolate the negate out.  Watch for minint, which
813      // cannot be positivified.
814      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
815        if (CI->isNegative() && !CI->isMinValue(true)) {
816          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
817          assert(!Duplicates.count(Factor) &&
818                 "Shouldn't have two constant factors, missed a canonicalize");
819
820          unsigned Occ = ++FactorOccurrences[Factor];
821          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
822        }
823    }
824  }
825
826  // If any factor occurred more than one time, we can pull it out.
827  if (MaxOcc > 1) {
828    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
829    ++NumFactor;
830
831    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
832    // this, we could otherwise run into situations where removing a factor
833    // from an expression will drop a use of maxocc, and this can cause
834    // RemoveFactorFromExpression on successive values to behave differently.
835    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
836    SmallVector<Value*, 4> NewMulOps;
837    for (unsigned i = 0; i != Ops.size(); ++i) {
838      // Only try to remove factors from expressions we're allowed to.
839      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
840      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
841        continue;
842
843      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
844        // The factorized operand may occur several times.  Convert them all in
845        // one fell swoop.
846        for (unsigned j = Ops.size(); j != i;) {
847          --j;
848          if (Ops[j].Op == Ops[i].Op) {
849            NewMulOps.push_back(V);
850            Ops.erase(Ops.begin()+j);
851          }
852        }
853        --i;
854      }
855    }
856
857    // No need for extra uses anymore.
858    delete DummyInst;
859
860    unsigned NumAddedValues = NewMulOps.size();
861    Value *V = EmitAddTreeOfValues(I, NewMulOps);
862
863    // Now that we have inserted the add tree, optimize it. This allows us to
864    // handle cases that require multiple factoring steps, such as this:
865    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
866    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
867    (void)NumAddedValues;
868    V = ReassociateExpression(cast<BinaryOperator>(V));
869
870    // Create the multiply.
871    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
872
873    // Rerun associate on the multiply in case the inner expression turned into
874    // a multiply.  We want to make sure that we keep things in canonical form.
875    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
876
877    // If every add operand included the factor (e.g. "A*B + A*C"), then the
878    // entire result expression is just the multiply "A*(B+C)".
879    if (Ops.empty())
880      return V2;
881
882    // Otherwise, we had some input that didn't have the factor, such as
883    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
884    // things being added by this operation.
885    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
886  }
887
888  return 0;
889}
890
891Value *Reassociate::OptimizeExpression(BinaryOperator *I,
892                                       SmallVectorImpl<ValueEntry> &Ops) {
893  // Now that we have the linearized expression tree, try to optimize it.
894  // Start by folding any constants that we found.
895  bool IterateOptimization = false;
896  if (Ops.size() == 1) return Ops[0].Op;
897
898  unsigned Opcode = I->getOpcode();
899
900  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
901    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
902      Ops.pop_back();
903      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
904      return OptimizeExpression(I, Ops);
905    }
906
907  // Check for destructive annihilation due to a constant being used.
908  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
909    switch (Opcode) {
910    default: break;
911    case Instruction::And:
912      if (CstVal->isZero())                  // X & 0 -> 0
913        return CstVal;
914      if (CstVal->isAllOnesValue())          // X & -1 -> X
915        Ops.pop_back();
916      break;
917    case Instruction::Mul:
918      if (CstVal->isZero()) {                // X * 0 -> 0
919        ++NumAnnihil;
920        return CstVal;
921      }
922
923      if (cast<ConstantInt>(CstVal)->isOne())
924        Ops.pop_back();                      // X * 1 -> X
925      break;
926    case Instruction::Or:
927      if (CstVal->isAllOnesValue())          // X | -1 -> -1
928        return CstVal;
929      // FALLTHROUGH!
930    case Instruction::Add:
931    case Instruction::Xor:
932      if (CstVal->isZero())                  // X [|^+] 0 -> X
933        Ops.pop_back();
934      break;
935    }
936  if (Ops.size() == 1) return Ops[0].Op;
937
938  // Handle destructive annihilation due to identities between elements in the
939  // argument list here.
940  switch (Opcode) {
941  default: break;
942  case Instruction::And:
943  case Instruction::Or:
944  case Instruction::Xor: {
945    unsigned NumOps = Ops.size();
946    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
947      return Result;
948    IterateOptimization |= Ops.size() != NumOps;
949    break;
950  }
951
952  case Instruction::Add: {
953    unsigned NumOps = Ops.size();
954    if (Value *Result = OptimizeAdd(I, Ops))
955      return Result;
956    IterateOptimization |= Ops.size() != NumOps;
957  }
958
959    break;
960  //case Instruction::Mul:
961  }
962
963  if (IterateOptimization)
964    return OptimizeExpression(I, Ops);
965  return 0;
966}
967
968
969/// ReassociateInst - Inspect and reassociate the instruction at the
970/// given position, post-incrementing the position.
971void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
972  Instruction *BI = BBI++;
973  if (BI->getOpcode() == Instruction::Shl &&
974      isa<ConstantInt>(BI->getOperand(1)))
975    if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
976      MadeChange = true;
977      BI = NI;
978    }
979
980  // Reject cases where it is pointless to do this.
981  if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
982      BI->getType()->isVectorTy())
983    return;  // Floating point ops are not associative.
984
985  // Do not reassociate boolean (i1) expressions.  We want to preserve the
986  // original order of evaluation for short-circuited comparisons that
987  // SimplifyCFG has folded to AND/OR expressions.  If the expression
988  // is not further optimized, it is likely to be transformed back to a
989  // short-circuited form for code gen, and the source order may have been
990  // optimized for the most likely conditions.
991  if (BI->getType()->isIntegerTy(1))
992    return;
993
994  // If this is a subtract instruction which is not already in negate form,
995  // see if we can convert it to X+-Y.
996  if (BI->getOpcode() == Instruction::Sub) {
997    if (ShouldBreakUpSubtract(BI)) {
998      BI = BreakUpSubtract(BI, ValueRankMap);
999      // Reset the BBI iterator in case BreakUpSubtract changed the
1000      // instruction it points to.
1001      BBI = BI;
1002      ++BBI;
1003      MadeChange = true;
1004    } else if (BinaryOperator::isNeg(BI)) {
1005      // Otherwise, this is a negation.  See if the operand is a multiply tree
1006      // and if this is not an inner node of a multiply tree.
1007      if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1008          (!BI->hasOneUse() ||
1009           !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1010        BI = LowerNegateToMultiply(BI, ValueRankMap);
1011        MadeChange = true;
1012      }
1013    }
1014  }
1015
1016  // If this instruction is a commutative binary operator, process it.
1017  if (!BI->isAssociative()) return;
1018  BinaryOperator *I = cast<BinaryOperator>(BI);
1019
1020  // If this is an interior node of a reassociable tree, ignore it until we
1021  // get to the root of the tree, to avoid N^2 analysis.
1022  if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1023    return;
1024
1025  // If this is an add tree that is used by a sub instruction, ignore it
1026  // until we process the subtract.
1027  if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1028      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1029    return;
1030
1031  ReassociateExpression(I);
1032}
1033
1034Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1035
1036  // First, walk the expression tree, linearizing the tree, collecting the
1037  // operand information.
1038  SmallVector<ValueEntry, 8> Ops;
1039  LinearizeExprTree(I, Ops);
1040
1041  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1042
1043  // Now that we have linearized the tree to a list and have gathered all of
1044  // the operands and their ranks, sort the operands by their rank.  Use a
1045  // stable_sort so that values with equal ranks will have their relative
1046  // positions maintained (and so the compiler is deterministic).  Note that
1047  // this sorts so that the highest ranking values end up at the beginning of
1048  // the vector.
1049  std::stable_sort(Ops.begin(), Ops.end());
1050
1051  // OptimizeExpression - Now that we have the expression tree in a convenient
1052  // sorted form, optimize it globally if possible.
1053  if (Value *V = OptimizeExpression(I, Ops)) {
1054    // This expression tree simplified to something that isn't a tree,
1055    // eliminate it.
1056    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1057    I->replaceAllUsesWith(V);
1058    if (Instruction *VI = dyn_cast<Instruction>(V))
1059      VI->setDebugLoc(I->getDebugLoc());
1060    RemoveDeadBinaryOp(I);
1061    ++NumAnnihil;
1062    return V;
1063  }
1064
1065  // We want to sink immediates as deeply as possible except in the case where
1066  // this is a multiply tree used only by an add, and the immediate is a -1.
1067  // In this case we reassociate to put the negation on the outside so that we
1068  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1069  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1070      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1071      isa<ConstantInt>(Ops.back().Op) &&
1072      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1073    ValueEntry Tmp = Ops.pop_back_val();
1074    Ops.insert(Ops.begin(), Tmp);
1075  }
1076
1077  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1078
1079  if (Ops.size() == 1) {
1080    // This expression tree simplified to something that isn't a tree,
1081    // eliminate it.
1082    I->replaceAllUsesWith(Ops[0].Op);
1083    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1084      OI->setDebugLoc(I->getDebugLoc());
1085    RemoveDeadBinaryOp(I);
1086    return Ops[0].Op;
1087  }
1088
1089  // Now that we ordered and optimized the expressions, splat them back into
1090  // the expression tree, removing any unneeded nodes.
1091  RewriteExprTree(I, Ops);
1092  return I;
1093}
1094
1095
1096bool Reassociate::runOnFunction(Function &F) {
1097  // Recalculate the rank map for F
1098  BuildRankMap(F);
1099
1100  MadeChange = false;
1101  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1102    for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1103      ReassociateInst(BBI);
1104
1105  // Now that we're done, revisit any instructions which are likely to
1106  // have secondary reassociation opportunities.
1107  while (!RedoInsts.empty())
1108    if (Value *V = RedoInsts.pop_back_val()) {
1109      BasicBlock::iterator BBI = cast<Instruction>(V);
1110      ReassociateInst(BBI);
1111    }
1112
1113  // Now that we're done, delete any instructions which are no longer used.
1114  while (!DeadInsts.empty())
1115    if (Value *V = DeadInsts.pop_back_val())
1116      RecursivelyDeleteTriviallyDeadInstructions(V);
1117
1118  // We are done with the rank map.
1119  RankMap.clear();
1120  ValueRankMap.clear();
1121  return MadeChange;
1122}
1123
1124