1/*
2 * Portions of this file taken from the Linux kernel,
3 * Copyright 1991-2009 Linus Torvalds and contributors
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
17*/
18
19#include <stdio.h>
20#include <string.h>
21#include "cpuid.h"
22
23const char *cpu_flags_names[] = {
24    CPU_FLAGS(STRUCT_MEMBER_NAMES)
25};
26
27size_t cpu_flags_offset[] = {
28    CPU_FLAGS(STRUCTURE_MEMBER_OFFSETS)
29};
30
31size_t cpu_flags_count = sizeof cpu_flags_names / sizeof *cpu_flags_names;
32
33struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = { };
34
35bool get_cpu_flag_value_from_name(s_cpu *cpu, const char * flag_name) {
36    size_t i;
37    bool cpu_flag_present=false, *flag_value = &cpu_flag_present;
38
39    for (i = 0; i < cpu_flags_count; i++) {
40	if (strcmp(cpu_flags_names[i],flag_name) == 0) {
41        	flag_value = (bool *)((char *)&cpu->flags + cpu_flags_offset[i]);
42	}
43    }
44    return *flag_value;
45}
46
47
48/*
49* CPUID functions returning a single datum
50*/
51
52/* Probe for the CPUID instruction */
53static int have_cpuid_p(void)
54{
55    return cpu_has_eflag(X86_EFLAGS_ID);
56}
57
58static struct cpu_dev amd_cpu_dev = {
59    .c_vendor = "AMD",
60    .c_ident = {"AuthenticAMD"}
61};
62
63static struct cpu_dev intel_cpu_dev = {
64    .c_vendor = "Intel",
65    .c_ident = {"GenuineIntel"}
66};
67
68static struct cpu_dev cyrix_cpu_dev = {
69    .c_vendor = "Cyrix",
70    .c_ident = {"CyrixInstead"}
71};
72
73static struct cpu_dev umc_cpu_dev = {
74    .c_vendor = "UMC",
75    .c_ident = {"UMC UMC UMC"}
76
77};
78
79static struct cpu_dev nexgen_cpu_dev = {
80    .c_vendor = "Nexgen",
81    .c_ident = {"NexGenDriven"}
82};
83
84static struct cpu_dev centaur_cpu_dev = {
85    .c_vendor = "Centaur",
86    .c_ident = {"CentaurHauls"}
87};
88
89static struct cpu_dev rise_cpu_dev = {
90    .c_vendor = "Rise",
91    .c_ident = {"RiseRiseRise"}
92};
93
94static struct cpu_dev transmeta_cpu_dev = {
95    .c_vendor = "Transmeta",
96    .c_ident = {"GenuineTMx86", "TransmetaCPU"}
97};
98
99static struct cpu_dev nsc_cpu_dev = {
100    .c_vendor = "National Semiconductor",
101    .c_ident = {"Geode by NSC"}
102};
103
104static struct cpu_dev unknown_cpu_dev = {
105    .c_vendor = "Unknown Vendor",
106    .c_ident = {"Unknown CPU"}
107};
108
109/*
110 * Read NSC/Cyrix DEVID registers (DIR) to get more detailed info. about the CPU
111 */
112void do_cyrix_devid(unsigned char *dir0, unsigned char *dir1)
113{
114	unsigned char ccr2, ccr3;
115
116	/* we test for DEVID by checking whether CCR3 is writable */
117	ccr3 = getCx86(CX86_CCR3);
118	setCx86(CX86_CCR3, ccr3 ^ 0x80);
119	getCx86(0xc0);   /* dummy to change bus */
120
121	if (getCx86(CX86_CCR3) == ccr3) {       /* no DEVID regs. */
122		ccr2 = getCx86(CX86_CCR2);
123		setCx86(CX86_CCR2, ccr2 ^ 0x04);
124		getCx86(0xc0);  /* dummy */
125
126		if (getCx86(CX86_CCR2) == ccr2) /* old Cx486SLC/DLC */
127			*dir0 = 0xfd;
128		else {                          /* Cx486S A step */
129			setCx86(CX86_CCR2, ccr2);
130			*dir0 = 0xfe;
131		}
132	} else {
133		setCx86(CX86_CCR3, ccr3);  /* restore CCR3 */
134
135		/* read DIR0 and DIR1 CPU registers */
136		*dir0 = getCx86(CX86_DIR0);
137		*dir1 = getCx86(CX86_DIR1);
138	}
139}
140
141void init_cpu_devs(void)
142{
143    cpu_devs[X86_VENDOR_INTEL] = &intel_cpu_dev;
144    cpu_devs[X86_VENDOR_CYRIX] = &cyrix_cpu_dev;
145    cpu_devs[X86_VENDOR_AMD] = &amd_cpu_dev;
146    cpu_devs[X86_VENDOR_UMC] = &umc_cpu_dev;
147    cpu_devs[X86_VENDOR_NEXGEN] = &nexgen_cpu_dev;
148    cpu_devs[X86_VENDOR_CENTAUR] = &centaur_cpu_dev;
149    cpu_devs[X86_VENDOR_RISE] = &rise_cpu_dev;
150    cpu_devs[X86_VENDOR_TRANSMETA] = &transmeta_cpu_dev;
151    cpu_devs[X86_VENDOR_NSC] = &nsc_cpu_dev;
152    cpu_devs[X86_VENDOR_UNKNOWN] = &unknown_cpu_dev;
153}
154
155void get_cpu_vendor(struct cpuinfo_x86 *c)
156{
157    char *v = c->x86_vendor_id;
158    int i;
159    init_cpu_devs();
160    for (i = 0; i < X86_VENDOR_NUM-1; i++) {
161	if (cpu_devs[i]) {
162	    if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
163		(cpu_devs[i]->c_ident[1] &&
164		 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
165		c->x86_vendor = i;
166		return;
167	    }
168	}
169    }
170
171    c->x86_vendor = X86_VENDOR_UNKNOWN;
172}
173
174int get_model_name(struct cpuinfo_x86 *c)
175{
176    unsigned int *v;
177    char *p, *q;
178
179    if (cpuid_eax(0x80000000) < 0x80000004)
180	return 0;
181
182    v = (unsigned int *)c->x86_model_id;
183    cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
184    cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
185    cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
186    c->x86_model_id[48] = 0;
187
188    /* Intel chips right-justify this string for some dumb reason;
189       undo that brain damage */
190    p = q = &c->x86_model_id[0];
191    while (*p == ' ')
192	p++;
193    if (p != q) {
194	while (*p)
195	    *q++ = *p++;
196	while (q <= &c->x86_model_id[48])
197	    *q++ = '\0';	/* Zero-pad the rest */
198    }
199
200    return 1;
201}
202
203void detect_cache(uint32_t xlvl, struct cpuinfo_x86 *c)
204{
205    uint32_t eax, ebx, ecx, edx, l2size;
206    /* Detecting L1 cache */
207    if (xlvl >= 0x80000005) {
208	cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
209	c->x86_l1_data_cache_size = ecx >> 24;
210	c->x86_l1_instruction_cache_size = edx >> 24;
211    }
212
213    /* Detecting L2 cache */
214    c->x86_l2_cache_size = 0;
215
216    if (xlvl < 0x80000006)	/* Some chips just has a large L1. */
217	return;
218
219    cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
220    l2size = ecx >> 16;
221
222    /* Vendor based fixes */
223    switch (c->x86_vendor) {
224    case X86_VENDOR_INTEL:
225	/*
226	 * Intel PIII Tualatin. This comes in two flavours.
227	 * One has 256kb of cache, the other 512. We have no way
228	 * to determine which, so we use a boottime override
229	 * for the 512kb model, and assume 256 otherwise.
230	 */
231	if ((c->x86 == 6) && (c->x86_model == 11) && (l2size == 0))
232	    l2size = 256;
233	break;
234    case X86_VENDOR_AMD:
235	/* AMD errata T13 (order #21922) */
236	if ((c->x86 == 6)) {
237	    if (c->x86_model == 3 && c->x86_mask == 0)	/* Duron Rev A0 */
238		l2size = 64;
239	    if (c->x86_model == 4 && (c->x86_mask == 0 || c->x86_mask == 1))	/* Tbird rev A1/A2 */
240		l2size = 256;
241	}
242	break;
243    }
244    c->x86_l2_cache_size = l2size;
245}
246
247void detect_cyrix(struct cpuinfo_x86 *c) {
248	unsigned char dir0, dir0_msn, dir0_lsn, dir1 = 0;
249        char *buf = c->x86_model_id;
250	char Cx86_cb[] = "?.5x Core/Bus Clock";
251	const char cyrix_model_mult1[] = "12??43";
252	const char cyrix_model_mult2[] = "12233445";
253        const char *p = NULL;
254
255	do_cyrix_devid(&dir0, &dir1);
256	dir0_msn = dir0 >> 4; /* identifies CPU "family"   */
257	dir0_lsn = dir0 & 0xf;                /* model or clock multiplier */
258	c->x86_model = (dir1 >> 4) + 1;
259        c->x86_mask = dir1 & 0xf;
260	switch (dir0_msn) {
261		unsigned char tmp;
262
263	        case 0: /* Cx486SLC/DLC/SRx/DRx */
264                	 p = Cx486_name[dir0_lsn & 7];
265			 break;
266
267		case 1: /* Cx486S/DX/DX2/DX4 */
268	                 p = (dir0_lsn & 8) ? Cx486D_name[dir0_lsn & 5] : Cx486S_name[dir0_lsn & 3];
269			 break;
270
271	         case 2: /* 5x86 */
272	                 Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
273			 p = Cx86_cb+2;
274			 break;
275
276		case 3: /* 6x86/6x86L */
277			   Cx86_cb[1] = ' ';
278			   Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
279			   if (dir1 > 0x21) { /* 686L */
280				   Cx86_cb[0] = 'L';
281				   p = Cx86_cb;
282				   (c->x86_model)++;
283			   } else             /* 686 */
284				   p = Cx86_cb+1;
285
286			   c->coma_bug = 1;
287			   break;
288		case 4:
289	                   c->x86_l1_data_cache_size = 16; /* Yep 16K integrated cache thats it */
290			   if (c->cpuid_level != 2) { /* Media GX */
291				   Cx86_cb[2] = (dir0_lsn & 1) ? '3' : '4';
292				   p = Cx86_cb+2;
293			   }
294			   break;
295
296		case 5: /* 6x86MX/M II */
297			   if (dir1 > 7) {
298				   dir0_msn++;  /* M II */
299			   } else {
300	                           c->coma_bug = 1;      /* 6x86MX, it has the bug. */
301			   }
302
303			   tmp = (!(dir0_lsn & 7) || dir0_lsn & 1) ? 2 : 0;
304			   Cx86_cb[tmp] = cyrix_model_mult2[dir0_lsn & 7];
305			   p = Cx86_cb+tmp;
306			   if (((dir1 & 0x0f) > 4) || ((dir1 & 0xf0) == 0x20))
307				   (c->x86_model)++;
308			   break;
309
310		case 0xf:  /* Cyrix 486 without DEVID registers */
311			   switch (dir0_lsn) {
312				   case 0xd:  /* either a 486SLC or DLC w/o DEVID */
313					   dir0_msn = 0;
314					   p = Cx486_name[(c->hard_math) ? 1 : 0];
315					   break;
316
317				   case 0xe:  /* a 486S A step */
318					   dir0_msn = 0;
319					   p = Cx486S_name[0];
320					   break;
321			   }
322			   break;
323
324		default:
325			   dir0_msn = 7;
326			   break;
327	}
328
329	/* If the processor is unknown, we keep the model name we got
330	 * from the generic call */
331	if (dir0_msn < 7) {
332		strcpy(buf, Cx86_model[dir0_msn & 7]);
333		if (p) strcat(buf, p);
334	}
335}
336
337void generic_identify(struct cpuinfo_x86 *c)
338{
339    uint32_t tfms, xlvl;
340    uint32_t eax, ebx, ecx, edx;
341
342    /* Get vendor name */
343    cpuid(0x00000000,
344	  (uint32_t *) & c->cpuid_level,
345	  (uint32_t *) & c->x86_vendor_id[0],
346	  (uint32_t *) & c->x86_vendor_id[8],
347	  (uint32_t *) & c->x86_vendor_id[4]);
348
349    get_cpu_vendor(c);
350
351    /* Intel-defined flags: level 0x00000001 */
352    if (c->cpuid_level >= 0x00000001) {
353	uint32_t capability, excap;
354	cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
355	c->x86_capability[0] = capability;
356	c->x86_capability[4] = excap;
357	c->x86 = (tfms >> 8) & 15;
358	c->x86_model = (tfms >> 4) & 15;
359	if (c->x86 == 0xf)
360	    c->x86 += (tfms >> 20) & 0xff;
361	if (c->x86 >= 0x6)
362	    c->x86_model += ((tfms >> 16) & 0xF) << 4;
363	c->x86_mask = tfms & 15;
364	if (cpu_has(c, X86_FEATURE_CLFLSH))
365	    c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
366    } else {
367	/* Have CPUID level 0 only - unheard of */
368	c->x86 = 4;
369    }
370
371    /* AMD-defined flags: level 0x80000001 */
372    xlvl = cpuid_eax(0x80000000);
373    if ((xlvl & 0xffff0000) == 0x80000000) {
374	if (xlvl >= 0x80000001) {
375	    c->x86_capability[1] = cpuid_edx(0x80000001);
376	    c->x86_capability[6] = cpuid_ecx(0x80000001);
377	}
378	if (xlvl >= 0x80000004)
379	    get_model_name(c);	/* Default name */
380    }
381
382    /* Specific detection code */
383    switch (c->x86_vendor) {
384	    case X86_VENDOR_CYRIX:
385	    case X86_VENDOR_NSC: detect_cyrix(c); break;
386	    default: break;
387    }
388
389    /* Detecting the number of cores */
390    switch (c->x86_vendor) {
391    case X86_VENDOR_AMD:
392	if (xlvl >= 0x80000008) {
393	    c->x86_num_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
394	    if (c->x86_num_cores & (c->x86_num_cores - 1))
395		c->x86_num_cores = 1;
396	}
397	break;
398    case X86_VENDOR_INTEL:
399	if (c->cpuid_level >= 0x00000004) {
400	    cpuid(0x4, &eax, &ebx, &ecx, &edx);
401	    c->x86_num_cores = ((eax & 0xfc000000) >> 26) + 1;
402	}
403	break;
404    default:
405	c->x86_num_cores = 1;
406	break;
407    }
408
409    detect_cache(xlvl, c);
410}
411
412/*
413 * Checksum an MP configuration block.
414 */
415
416static int mpf_checksum(unsigned char *mp, int len)
417{
418    int sum = 0;
419
420    while (len--)
421	sum += *mp++;
422
423    return sum & 0xFF;
424}
425
426static int smp_scan_config(unsigned long base, unsigned long length)
427{
428    unsigned long *bp = (unsigned long *)base;
429    struct intel_mp_floating *mpf;
430
431//        printf("Scan SMP from %p for %ld bytes.\n", bp,length);
432    if (sizeof(*mpf) != 16) {
433	printf("Error: MPF size\n");
434	return 0;
435    }
436
437    while (length > 0) {
438	mpf = (struct intel_mp_floating *)bp;
439	if ((*bp == SMP_MAGIC_IDENT) &&
440	    (mpf->mpf_length == 1) &&
441	    !mpf_checksum((unsigned char *)bp, 16) &&
442	    ((mpf->mpf_specification == 1)
443	     || (mpf->mpf_specification == 4))) {
444	    return 1;
445	}
446	bp += 4;
447	length -= 16;
448    }
449    return 0;
450}
451
452int find_smp_config(void)
453{
454//        unsigned int address;
455
456    /*
457     * FIXME: Linux assumes you have 640K of base ram..
458     * this continues the error...
459     *
460     * 1) Scan the bottom 1K for a signature
461     * 2) Scan the top 1K of base RAM
462     * 3) Scan the 64K of bios
463     */
464    if (smp_scan_config(0x0, 0x400) ||
465	smp_scan_config(639 * 0x400, 0x400) ||
466	smp_scan_config(0xF0000, 0x10000))
467	return 1;
468    /*
469     * If it is an SMP machine we should know now, unless the
470     * configuration is in an EISA/MCA bus machine with an
471     * extended bios data area.
472     *
473     * there is a real-mode segmented pointer pointing to the
474     * 4K EBDA area at 0x40E, calculate and scan it here.
475     *
476     * NOTE! There are Linux loaders that will corrupt the EBDA
477     * area, and as such this kind of SMP config may be less
478     * trustworthy, simply because the SMP table may have been
479     * stomped on during early boot. These loaders are buggy and
480     * should be fixed.
481     *
482     * MP1.4 SPEC states to only scan first 1K of 4K EBDA.
483     */
484
485//        address = get_bios_ebda();
486//        if (address)
487//                smp_scan_config(address, 0x400);
488    return 0;
489}
490
491void set_cpu_flags(struct cpuinfo_x86 *c, s_cpu * cpu)
492{
493    cpu->flags.fpu = cpu_has(c, X86_FEATURE_FPU);
494    cpu->flags.vme = cpu_has(c, X86_FEATURE_VME);
495    cpu->flags.de = cpu_has(c, X86_FEATURE_DE);
496    cpu->flags.pse = cpu_has(c, X86_FEATURE_PSE);
497    cpu->flags.tsc = cpu_has(c, X86_FEATURE_TSC);
498    cpu->flags.msr = cpu_has(c, X86_FEATURE_MSR);
499    cpu->flags.pae = cpu_has(c, X86_FEATURE_PAE);
500    cpu->flags.mce = cpu_has(c, X86_FEATURE_MCE);
501    cpu->flags.cx8 = cpu_has(c, X86_FEATURE_CX8);
502    cpu->flags.apic = cpu_has(c, X86_FEATURE_APIC);
503    cpu->flags.sep = cpu_has(c, X86_FEATURE_SEP);
504    cpu->flags.mtrr = cpu_has(c, X86_FEATURE_MTRR);
505    cpu->flags.pge = cpu_has(c, X86_FEATURE_PGE);
506    cpu->flags.mca = cpu_has(c, X86_FEATURE_MCA);
507    cpu->flags.cmov = cpu_has(c, X86_FEATURE_CMOV);
508    cpu->flags.pat = cpu_has(c, X86_FEATURE_PAT);
509    cpu->flags.pse_36 = cpu_has(c, X86_FEATURE_PSE36);
510    cpu->flags.psn = cpu_has(c, X86_FEATURE_PN);
511    cpu->flags.clflsh = cpu_has(c, X86_FEATURE_CLFLSH);
512    cpu->flags.dts = cpu_has(c, X86_FEATURE_DTES);
513    cpu->flags.acpi = cpu_has(c, X86_FEATURE_ACPI);
514    cpu->flags.pbe = cpu_has(c, X86_FEATURE_PBE);
515    cpu->flags.mmx = cpu_has(c, X86_FEATURE_MMX);
516    cpu->flags.fxsr = cpu_has(c, X86_FEATURE_FXSR);
517    cpu->flags.sse = cpu_has(c, X86_FEATURE_XMM);
518    cpu->flags.sse2 = cpu_has(c, X86_FEATURE_XMM2);
519    cpu->flags.ss = cpu_has(c, X86_FEATURE_SELFSNOOP);
520    cpu->flags.htt = cpu_has(c, X86_FEATURE_HT);
521    cpu->flags.acc = cpu_has(c, X86_FEATURE_ACC);
522    cpu->flags.syscall = cpu_has(c, X86_FEATURE_SYSCALL);
523    cpu->flags.mp = cpu_has(c, X86_FEATURE_MP);
524    cpu->flags.nx = cpu_has(c, X86_FEATURE_NX);
525    cpu->flags.mmxext = cpu_has(c, X86_FEATURE_MMXEXT);
526    cpu->flags.fxsr_opt = cpu_has(c, X86_FEATURE_FXSR_OPT);
527    cpu->flags.gbpages = cpu_has(c, X86_FEATURE_GBPAGES);
528    cpu->flags.rdtscp = cpu_has(c, X86_FEATURE_RDTSCP);
529    cpu->flags.lm = cpu_has(c, X86_FEATURE_LM);
530    cpu->flags.nowext = cpu_has(c, X86_FEATURE_3DNOWEXT);
531    cpu->flags.now = cpu_has(c, X86_FEATURE_3DNOW);
532    cpu->flags.smp = find_smp_config();
533    cpu->flags.pni = cpu_has(c, X86_FEATURE_XMM3);
534    cpu->flags.pclmulqd = cpu_has(c, X86_FEATURE_PCLMULQDQ);
535    cpu->flags.dtes64 = cpu_has(c, X86_FEATURE_DTES64);
536    cpu->flags.vmx = cpu_has(c, X86_FEATURE_VMX);
537    cpu->flags.smx = cpu_has(c, X86_FEATURE_SMX);
538    cpu->flags.est = cpu_has(c, X86_FEATURE_EST);
539    cpu->flags.tm2 = cpu_has(c, X86_FEATURE_TM2);
540    cpu->flags.sse3 = cpu_has(c, X86_FEATURE_SSE3);
541    cpu->flags.cid = cpu_has(c, X86_FEATURE_CID);
542    cpu->flags.fma = cpu_has(c, X86_FEATURE_FMA);
543    cpu->flags.cx16 = cpu_has(c, X86_FEATURE_CX16);
544    cpu->flags.xtpr = cpu_has(c, X86_FEATURE_XTPR);
545    cpu->flags.pdcm = cpu_has(c, X86_FEATURE_PDCM);
546    cpu->flags.dca = cpu_has(c, X86_FEATURE_DCA);
547    cpu->flags.xmm4_1 = cpu_has(c, X86_FEATURE_XMM4_1);
548    cpu->flags.xmm4_2 = cpu_has(c, X86_FEATURE_XMM4_2);
549    cpu->flags.x2apic = cpu_has(c, X86_FEATURE_X2APIC);
550    cpu->flags.movbe = cpu_has(c, X86_FEATURE_MOVBE);
551    cpu->flags.popcnt = cpu_has(c, X86_FEATURE_POPCNT);
552    cpu->flags.aes = cpu_has(c, X86_FEATURE_AES);
553    cpu->flags.xsave = cpu_has(c, X86_FEATURE_XSAVE);
554    cpu->flags.osxsave = cpu_has(c, X86_FEATURE_OSXSAVE);
555    cpu->flags.avx = cpu_has(c, X86_FEATURE_AVX);
556    cpu->flags.hypervisor = cpu_has(c, X86_FEATURE_HYPERVISOR);
557    cpu->flags.ace2 = cpu_has(c, X86_FEATURE_ACE2);
558    cpu->flags.ace2_en = cpu_has(c, X86_FEATURE_ACE2_EN);
559    cpu->flags.phe = cpu_has(c, X86_FEATURE_PHE);
560    cpu->flags.phe_en = cpu_has(c, X86_FEATURE_PHE_EN);
561    cpu->flags.pmm = cpu_has(c, X86_FEATURE_PMM);
562    cpu->flags.pmm_en = cpu_has(c, X86_FEATURE_PMM_EN);
563    cpu->flags.extapic = cpu_has(c, X86_FEATURE_EXTAPIC);
564    cpu->flags.cr8_legacy = cpu_has(c, X86_FEATURE_CR8_LEGACY);
565    cpu->flags.abm = cpu_has(c, X86_FEATURE_ABM);
566    cpu->flags.sse4a = cpu_has(c, X86_FEATURE_SSE4A);
567    cpu->flags.misalignsse = cpu_has(c, X86_FEATURE_MISALIGNSSE);
568    cpu->flags.nowprefetch = cpu_has(c, X86_FEATURE_3DNOWPREFETCH);
569    cpu->flags.osvw = cpu_has(c, X86_FEATURE_OSVW);
570    cpu->flags.ibs = cpu_has(c, X86_FEATURE_IBS);
571    cpu->flags.sse5 = cpu_has(c, X86_FEATURE_SSE5);
572    cpu->flags.skinit = cpu_has(c, X86_FEATURE_SKINIT);
573    cpu->flags.wdt = cpu_has(c, X86_FEATURE_WDT);
574    cpu->flags.ida = cpu_has(c, X86_FEATURE_IDA);
575    cpu->flags.arat = cpu_has(c, X86_FEATURE_ARAT);
576    cpu->flags.tpr_shadow = cpu_has(c, X86_FEATURE_TPR_SHADOW);
577    cpu->flags.vnmi = cpu_has(c, X86_FEATURE_VNMI);
578    cpu->flags.flexpriority = cpu_has(c, X86_FEATURE_FLEXPRIORITY);
579    cpu->flags.ept = cpu_has(c, X86_FEATURE_EPT);
580    cpu->flags.vpid = cpu_has(c, X86_FEATURE_VPID);
581    cpu->flags.svm = cpu_has(c, X86_FEATURE_SVM);
582}
583
584void set_generic_info(struct cpuinfo_x86 *c, s_cpu * cpu)
585{
586    cpu->family = c->x86;
587    cpu->vendor_id = c->x86_vendor;
588    cpu->model_id = c->x86_model;
589    cpu->stepping = c->x86_mask;
590    strlcpy(cpu->vendor, cpu_devs[c->x86_vendor]->c_vendor,
591	    sizeof(cpu->vendor));
592    strlcpy(cpu->model, c->x86_model_id, sizeof(cpu->model));
593    cpu->num_cores = c->x86_num_cores;
594    cpu->l1_data_cache_size = c->x86_l1_data_cache_size;
595    cpu->l1_instruction_cache_size = c->x86_l1_instruction_cache_size;
596    cpu->l2_cache_size = c->x86_l2_cache_size;
597}
598
599void detect_cpu(s_cpu * cpu)
600{
601    struct cpuinfo_x86 c;
602    memset(&c,0,sizeof(c));
603    c.x86_clflush_size = 32;
604    c.x86_vendor = X86_VENDOR_UNKNOWN;
605    c.cpuid_level = -1;		/* CPUID not detected */
606    c.x86_num_cores = 1;
607    memset(&cpu->flags, 0, sizeof(s_cpu_flags));
608
609    if (!have_cpuid_p())
610	return;
611
612    generic_identify(&c);
613    set_generic_info(&c, cpu);
614    set_cpu_flags(&c, cpu);
615}
616