1/* deflate.c -- compress data using the deflation algorithm 2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6/* 7 * ALGORITHM 8 * 9 * The "deflation" process depends on being able to identify portions 10 * of the input text which are identical to earlier input (within a 11 * sliding window trailing behind the input currently being processed). 12 * 13 * The most straightforward technique turns out to be the fastest for 14 * most input files: try all possible matches and select the longest. 15 * The key feature of this algorithm is that insertions into the string 16 * dictionary are very simple and thus fast, and deletions are avoided 17 * completely. Insertions are performed at each input character, whereas 18 * string matches are performed only when the previous match ends. So it 19 * is preferable to spend more time in matches to allow very fast string 20 * insertions and avoid deletions. The matching algorithm for small 21 * strings is inspired from that of Rabin & Karp. A brute force approach 22 * is used to find longer strings when a small match has been found. 23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 24 * (by Leonid Broukhis). 25 * A previous version of this file used a more sophisticated algorithm 26 * (by Fiala and Greene) which is guaranteed to run in linear amortized 27 * time, but has a larger average cost, uses more memory and is patented. 28 * However the F&G algorithm may be faster for some highly redundant 29 * files if the parameter max_chain_length (described below) is too large. 30 * 31 * ACKNOWLEDGEMENTS 32 * 33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 34 * I found it in 'freeze' written by Leonid Broukhis. 35 * Thanks to many people for bug reports and testing. 36 * 37 * REFERENCES 38 * 39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 40 * Available in http://www.ietf.org/rfc/rfc1951.txt 41 * 42 * A description of the Rabin and Karp algorithm is given in the book 43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 44 * 45 * Fiala,E.R., and Greene,D.H. 46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 47 * 48 */ 49 50/* @(#) $Id$ */ 51 52#include "deflate.h" 53 54const char deflate_copyright[] = 55 " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler "; 56/* 57 If you use the zlib library in a product, an acknowledgment is welcome 58 in the documentation of your product. If for some reason you cannot 59 include such an acknowledgment, I would appreciate that you keep this 60 copyright string in the executable of your product. 61 */ 62 63/* =========================================================================== 64 * Function prototypes. 65 */ 66typedef enum { 67 need_more, /* block not completed, need more input or more output */ 68 block_done, /* block flush performed */ 69 finish_started, /* finish started, need only more output at next deflate */ 70 finish_done /* finish done, accept no more input or output */ 71} block_state; 72 73typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 74/* Compression function. Returns the block state after the call. */ 75 76local void fill_window OF((deflate_state *s)); 77local block_state deflate_stored OF((deflate_state *s, int flush)); 78local block_state deflate_fast OF((deflate_state *s, int flush)); 79#ifndef FASTEST 80local block_state deflate_slow OF((deflate_state *s, int flush)); 81#endif 82local block_state deflate_rle OF((deflate_state *s, int flush)); 83local block_state deflate_huff OF((deflate_state *s, int flush)); 84local void lm_init OF((deflate_state *s)); 85local void putShortMSB OF((deflate_state *s, uInt b)); 86local void flush_pending OF((z_streamp strm)); 87local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); 88#ifdef ASMV 89 void match_init OF((void)); /* asm code initialization */ 90 uInt longest_match OF((deflate_state *s, IPos cur_match)); 91#else 92local uInt longest_match OF((deflate_state *s, IPos cur_match)); 93#endif 94 95#ifdef DEBUG_ZLIB 96local void check_match OF((deflate_state *s, IPos start, IPos match, 97 int length)); 98#endif 99 100/* =========================================================================== 101 * Local data 102 */ 103 104#define NIL 0 105/* Tail of hash chains */ 106 107#ifndef TOO_FAR 108# define TOO_FAR 4096 109#endif 110/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 111 112/* Values for max_lazy_match, good_match and max_chain_length, depending on 113 * the desired pack level (0..9). The values given below have been tuned to 114 * exclude worst case performance for pathological files. Better values may be 115 * found for specific files. 116 */ 117typedef struct config_s { 118 ush good_length; /* reduce lazy search above this match length */ 119 ush max_lazy; /* do not perform lazy search above this match length */ 120 ush nice_length; /* quit search above this match length */ 121 ush max_chain; 122 compress_func func; 123} config; 124 125#ifdef FASTEST 126local const config configuration_table[2] = { 127/* good lazy nice chain */ 128/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 129/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ 130#else 131local const config configuration_table[10] = { 132/* good lazy nice chain */ 133/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 134/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ 135/* 2 */ {4, 5, 16, 8, deflate_fast}, 136/* 3 */ {4, 6, 32, 32, deflate_fast}, 137 138/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 139/* 5 */ {8, 16, 32, 32, deflate_slow}, 140/* 6 */ {8, 16, 128, 128, deflate_slow}, 141/* 7 */ {8, 32, 128, 256, deflate_slow}, 142/* 8 */ {32, 128, 258, 1024, deflate_slow}, 143/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 144#endif 145 146/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 148 * meaning. 149 */ 150 151#define EQUAL 0 152/* result of memcmp for equal strings */ 153 154#ifndef NO_DUMMY_DECL 155struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ 156#endif 157 158/* =========================================================================== 159 * Update a hash value with the given input byte 160 * IN assertion: all calls to to UPDATE_HASH are made with consecutive 161 * input characters, so that a running hash key can be computed from the 162 * previous key instead of complete recalculation each time. 163 */ 164#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 165 166 167/* =========================================================================== 168 * Insert string str in the dictionary and set match_head to the previous head 169 * of the hash chain (the most recent string with same hash key). Return 170 * the previous length of the hash chain. 171 * If this file is compiled with -DFASTEST, the compression level is forced 172 * to 1, and no hash chains are maintained. 173 * IN assertion: all calls to to INSERT_STRING are made with consecutive 174 * input characters and the first MIN_MATCH bytes of str are valid 175 * (except for the last MIN_MATCH-1 bytes of the input file). 176 */ 177#ifdef FASTEST 178#define INSERT_STRING(s, str, match_head) \ 179 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 180 match_head = s->head[s->ins_h], \ 181 s->head[s->ins_h] = (Pos)(str)) 182#else 183#define INSERT_STRING(s, str, match_head) \ 184 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 185 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 186 s->head[s->ins_h] = (Pos)(str)) 187#endif 188 189/* =========================================================================== 190 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 191 * prev[] will be initialized on the fly. 192 */ 193#define CLEAR_HASH(s) \ 194 s->head[s->hash_size-1] = NIL; \ 195 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); 196 197/* ========================================================================= */ 198int ZEXPORT deflateInit_(strm, level, version, stream_size) 199 z_streamp strm; 200 int level; 201 const char *version; 202 int stream_size; 203{ 204 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 205 Z_DEFAULT_STRATEGY, version, stream_size); 206 /* To do: ignore strm->next_in if we use it as window */ 207} 208 209/* ========================================================================= */ 210int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 211 version, stream_size) 212 z_streamp strm; 213 int level; 214 int method; 215 int windowBits; 216 int memLevel; 217 int strategy; 218 const char *version; 219 int stream_size; 220{ 221 deflate_state *s; 222 int wrap = 1; 223 static const char my_version[] = ZLIB_VERSION; 224 225 ushf *overlay; 226 /* We overlay pending_buf and d_buf+l_buf. This works since the average 227 * output size for (length,distance) codes is <= 24 bits. 228 */ 229 230 if (version == Z_NULL || version[0] != my_version[0] || 231 stream_size != sizeof(z_stream)) { 232 return Z_VERSION_ERROR; 233 } 234 if (strm == Z_NULL) return Z_STREAM_ERROR; 235 236 strm->msg = Z_NULL; 237 if (strm->zalloc == (alloc_func)0) { 238 strm->zalloc = zcalloc; 239 strm->opaque = (voidpf)0; 240 } 241 if (strm->zfree == (free_func)0) strm->zfree = zcfree; 242 243#ifdef FASTEST 244 if (level != 0) level = 1; 245#else 246 if (level == Z_DEFAULT_COMPRESSION) level = 6; 247#endif 248 249 if (windowBits < 0) { /* suppress zlib wrapper */ 250 wrap = 0; 251 windowBits = -windowBits; 252 } 253#ifdef GZIP 254 else if (windowBits > 15) { 255 wrap = 2; /* write gzip wrapper instead */ 256 windowBits -= 16; 257 } 258#endif 259 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 260 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 261 strategy < 0 || strategy > Z_FIXED) { 262 return Z_STREAM_ERROR; 263 } 264 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 265 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 266 if (s == Z_NULL) return Z_MEM_ERROR; 267 strm->state = (struct internal_state FAR *)s; 268 s->strm = strm; 269 270 s->wrap = wrap; 271 s->gzhead = Z_NULL; 272 s->w_bits = windowBits; 273 s->w_size = 1 << s->w_bits; 274 s->w_mask = s->w_size - 1; 275 276 s->hash_bits = memLevel + 7; 277 s->hash_size = 1 << s->hash_bits; 278 s->hash_mask = s->hash_size - 1; 279 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 280 281 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 282 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 283 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 284 285 s->high_water = 0; /* nothing written to s->window yet */ 286 287 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 288 289 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); 290 s->pending_buf = (uchf *) overlay; 291 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); 292 293 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 294 s->pending_buf == Z_NULL) { 295 s->status = FINISH_STATE; 296 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); 297 deflateEnd (strm); 298 return Z_MEM_ERROR; 299 } 300 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); 301 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; 302 303 s->level = level; 304 s->strategy = strategy; 305 s->method = (Byte)method; 306 307 return deflateReset(strm); 308} 309 310/* ========================================================================= */ 311int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) 312 z_streamp strm; 313 const Bytef *dictionary; 314 uInt dictLength; 315{ 316 deflate_state *s; 317 uInt length = dictLength; 318 uInt n; 319 IPos hash_head = 0; 320 321 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || 322 strm->state->wrap == 2 || 323 (strm->state->wrap == 1 && strm->state->status != INIT_STATE)) 324 return Z_STREAM_ERROR; 325 326 s = strm->state; 327 if (s->wrap) 328 strm->adler = adler32(strm->adler, dictionary, dictLength); 329 330 if (length < MIN_MATCH) return Z_OK; 331 if (length > s->w_size) { 332 length = s->w_size; 333 dictionary += dictLength - length; /* use the tail of the dictionary */ 334 } 335 zmemcpy(s->window, dictionary, length); 336 s->strstart = length; 337 s->block_start = (long)length; 338 339 /* Insert all strings in the hash table (except for the last two bytes). 340 * s->lookahead stays null, so s->ins_h will be recomputed at the next 341 * call of fill_window. 342 */ 343 s->ins_h = s->window[0]; 344 UPDATE_HASH(s, s->ins_h, s->window[1]); 345 for (n = 0; n <= length - MIN_MATCH; n++) { 346 INSERT_STRING(s, n, hash_head); 347 } 348 if (hash_head) hash_head = 0; /* to make compiler happy */ 349 return Z_OK; 350} 351 352/* ========================================================================= */ 353int ZEXPORT deflateReset (strm) 354 z_streamp strm; 355{ 356 deflate_state *s; 357 358 if (strm == Z_NULL || strm->state == Z_NULL || 359 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { 360 return Z_STREAM_ERROR; 361 } 362 363 strm->total_in = strm->total_out = 0; 364 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 365 strm->data_type = Z_UNKNOWN; 366 367 s = (deflate_state *)strm->state; 368 s->pending = 0; 369 s->pending_out = s->pending_buf; 370 371 if (s->wrap < 0) { 372 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 373 } 374 s->status = s->wrap ? INIT_STATE : BUSY_STATE; 375 strm->adler = 376#ifdef GZIP 377 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : 378#endif 379 adler32(0L, Z_NULL, 0); 380 s->last_flush = Z_NO_FLUSH; 381 382 _tr_init(s); 383 lm_init(s); 384 385 return Z_OK; 386} 387 388/* ========================================================================= */ 389int ZEXPORT deflateSetHeader (strm, head) 390 z_streamp strm; 391 gz_headerp head; 392{ 393 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 394 if (strm->state->wrap != 2) return Z_STREAM_ERROR; 395 strm->state->gzhead = head; 396 return Z_OK; 397} 398 399/* ========================================================================= */ 400int ZEXPORT deflatePrime (strm, bits, value) 401 z_streamp strm; 402 int bits; 403 int value; 404{ 405 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 406 strm->state->bi_valid = bits; 407 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1)); 408 return Z_OK; 409} 410 411/* ========================================================================= */ 412int ZEXPORT deflateParams(strm, level, strategy) 413 z_streamp strm; 414 int level; 415 int strategy; 416{ 417 deflate_state *s; 418 compress_func func; 419 int err = Z_OK; 420 421 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 422 s = strm->state; 423 424#ifdef FASTEST 425 if (level != 0) level = 1; 426#else 427 if (level == Z_DEFAULT_COMPRESSION) level = 6; 428#endif 429 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { 430 return Z_STREAM_ERROR; 431 } 432 func = configuration_table[s->level].func; 433 434 if ((strategy != s->strategy || func != configuration_table[level].func) && 435 strm->total_in != 0) { 436 /* Flush the last buffer: */ 437 err = deflate(strm, Z_BLOCK); 438 } 439 if (s->level != level) { 440 s->level = level; 441 s->max_lazy_match = configuration_table[level].max_lazy; 442 s->good_match = configuration_table[level].good_length; 443 s->nice_match = configuration_table[level].nice_length; 444 s->max_chain_length = configuration_table[level].max_chain; 445 } 446 s->strategy = strategy; 447 return err; 448} 449 450/* ========================================================================= */ 451int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) 452 z_streamp strm; 453 int good_length; 454 int max_lazy; 455 int nice_length; 456 int max_chain; 457{ 458 deflate_state *s; 459 460 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 461 s = strm->state; 462 s->good_match = good_length; 463 s->max_lazy_match = max_lazy; 464 s->nice_match = nice_length; 465 s->max_chain_length = max_chain; 466 return Z_OK; 467} 468 469/* ========================================================================= 470 * For the default windowBits of 15 and memLevel of 8, this function returns 471 * a close to exact, as well as small, upper bound on the compressed size. 472 * They are coded as constants here for a reason--if the #define's are 473 * changed, then this function needs to be changed as well. The return 474 * value for 15 and 8 only works for those exact settings. 475 * 476 * For any setting other than those defaults for windowBits and memLevel, 477 * the value returned is a conservative worst case for the maximum expansion 478 * resulting from using fixed blocks instead of stored blocks, which deflate 479 * can emit on compressed data for some combinations of the parameters. 480 * 481 * This function could be more sophisticated to provide closer upper bounds for 482 * every combination of windowBits and memLevel. But even the conservative 483 * upper bound of about 14% expansion does not seem onerous for output buffer 484 * allocation. 485 */ 486uLong ZEXPORT deflateBound(strm, sourceLen) 487 z_streamp strm; 488 uLong sourceLen; 489{ 490 deflate_state *s; 491 uLong complen, wraplen; 492 Bytef *str; 493 494 /* conservative upper bound for compressed data */ 495 complen = sourceLen + 496 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; 497 498 /* if can't get parameters, return conservative bound plus zlib wrapper */ 499 if (strm == Z_NULL || strm->state == Z_NULL) 500 return complen + 6; 501 502 /* compute wrapper length */ 503 s = strm->state; 504 switch (s->wrap) { 505 case 0: /* raw deflate */ 506 wraplen = 0; 507 break; 508 case 1: /* zlib wrapper */ 509 wraplen = 6 + (s->strstart ? 4 : 0); 510 break; 511 case 2: /* gzip wrapper */ 512 wraplen = 18; 513 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ 514 if (s->gzhead->extra != Z_NULL) 515 wraplen += 2 + s->gzhead->extra_len; 516 str = s->gzhead->name; 517 if (str != Z_NULL) 518 do { 519 wraplen++; 520 } while (*str++); 521 str = s->gzhead->comment; 522 if (str != Z_NULL) 523 do { 524 wraplen++; 525 } while (*str++); 526 if (s->gzhead->hcrc) 527 wraplen += 2; 528 } 529 break; 530 default: /* for compiler happiness */ 531 wraplen = 6; 532 } 533 534 /* if not default parameters, return conservative bound */ 535 if (s->w_bits != 15 || s->hash_bits != 8 + 7) 536 return complen + wraplen; 537 538 /* default settings: return tight bound for that case */ 539 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 540 (sourceLen >> 25) + 13 - 6 + wraplen; 541} 542 543/* ========================================================================= 544 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 545 * IN assertion: the stream state is correct and there is enough room in 546 * pending_buf. 547 */ 548local void putShortMSB (s, b) 549 deflate_state *s; 550 uInt b; 551{ 552 put_byte(s, (Byte)(b >> 8)); 553 put_byte(s, (Byte)(b & 0xff)); 554} 555 556/* ========================================================================= 557 * Flush as much pending output as possible. All deflate() output goes 558 * through this function so some applications may wish to modify it 559 * to avoid allocating a large strm->next_out buffer and copying into it. 560 * (See also read_buf()). 561 */ 562local void flush_pending(strm) 563 z_streamp strm; 564{ 565 unsigned len = strm->state->pending; 566 567 if (len > strm->avail_out) len = strm->avail_out; 568 if (len == 0) return; 569 570 zmemcpy(strm->next_out, strm->state->pending_out, len); 571 strm->next_out += len; 572 strm->state->pending_out += len; 573 strm->total_out += len; 574 strm->avail_out -= len; 575 strm->state->pending -= len; 576 if (strm->state->pending == 0) { 577 strm->state->pending_out = strm->state->pending_buf; 578 } 579} 580 581/* ========================================================================= */ 582int ZEXPORT deflate (strm, flush) 583 z_streamp strm; 584 int flush; 585{ 586 int old_flush; /* value of flush param for previous deflate call */ 587 deflate_state *s; 588 589 if (strm == Z_NULL || strm->state == Z_NULL || 590 flush > Z_BLOCK || flush < 0) { 591 return Z_STREAM_ERROR; 592 } 593 s = strm->state; 594 595 if (strm->next_out == Z_NULL || 596 (strm->next_in == Z_NULL && strm->avail_in != 0) || 597 (s->status == FINISH_STATE && flush != Z_FINISH)) { 598 ERR_RETURN(strm, Z_STREAM_ERROR); 599 } 600 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 601 602 s->strm = strm; /* just in case */ 603 old_flush = s->last_flush; 604 s->last_flush = flush; 605 606 /* Write the header */ 607 if (s->status == INIT_STATE) { 608#ifdef GZIP 609 if (s->wrap == 2) { 610 strm->adler = crc32(0L, Z_NULL, 0); 611 put_byte(s, 31); 612 put_byte(s, 139); 613 put_byte(s, 8); 614 if (s->gzhead == Z_NULL) { 615 put_byte(s, 0); 616 put_byte(s, 0); 617 put_byte(s, 0); 618 put_byte(s, 0); 619 put_byte(s, 0); 620 put_byte(s, s->level == 9 ? 2 : 621 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 622 4 : 0)); 623 put_byte(s, OS_CODE); 624 s->status = BUSY_STATE; 625 } 626 else { 627 put_byte(s, (s->gzhead->text ? 1 : 0) + 628 (s->gzhead->hcrc ? 2 : 0) + 629 (s->gzhead->extra == Z_NULL ? 0 : 4) + 630 (s->gzhead->name == Z_NULL ? 0 : 8) + 631 (s->gzhead->comment == Z_NULL ? 0 : 16) 632 ); 633 put_byte(s, (Byte)(s->gzhead->time & 0xff)); 634 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); 635 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); 636 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); 637 put_byte(s, s->level == 9 ? 2 : 638 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 639 4 : 0)); 640 put_byte(s, s->gzhead->os & 0xff); 641 if (s->gzhead->extra != Z_NULL) { 642 put_byte(s, s->gzhead->extra_len & 0xff); 643 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); 644 } 645 if (s->gzhead->hcrc) 646 strm->adler = crc32(strm->adler, s->pending_buf, 647 s->pending); 648 s->gzindex = 0; 649 s->status = EXTRA_STATE; 650 } 651 } 652 else 653#endif 654 { 655 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 656 uInt level_flags; 657 658 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 659 level_flags = 0; 660 else if (s->level < 6) 661 level_flags = 1; 662 else if (s->level == 6) 663 level_flags = 2; 664 else 665 level_flags = 3; 666 header |= (level_flags << 6); 667 if (s->strstart != 0) header |= PRESET_DICT; 668 header += 31 - (header % 31); 669 670 s->status = BUSY_STATE; 671 putShortMSB(s, header); 672 673 /* Save the adler32 of the preset dictionary: */ 674 if (s->strstart != 0) { 675 putShortMSB(s, (uInt)(strm->adler >> 16)); 676 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 677 } 678 strm->adler = adler32(0L, Z_NULL, 0); 679 } 680 } 681#ifdef GZIP 682 if (s->status == EXTRA_STATE) { 683 if (s->gzhead->extra != Z_NULL) { 684 uInt beg = s->pending; /* start of bytes to update crc */ 685 686 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { 687 if (s->pending == s->pending_buf_size) { 688 if (s->gzhead->hcrc && s->pending > beg) 689 strm->adler = crc32(strm->adler, s->pending_buf + beg, 690 s->pending - beg); 691 flush_pending(strm); 692 beg = s->pending; 693 if (s->pending == s->pending_buf_size) 694 break; 695 } 696 put_byte(s, s->gzhead->extra[s->gzindex]); 697 s->gzindex++; 698 } 699 if (s->gzhead->hcrc && s->pending > beg) 700 strm->adler = crc32(strm->adler, s->pending_buf + beg, 701 s->pending - beg); 702 if (s->gzindex == s->gzhead->extra_len) { 703 s->gzindex = 0; 704 s->status = NAME_STATE; 705 } 706 } 707 else 708 s->status = NAME_STATE; 709 } 710 if (s->status == NAME_STATE) { 711 if (s->gzhead->name != Z_NULL) { 712 uInt beg = s->pending; /* start of bytes to update crc */ 713 int val; 714 715 do { 716 if (s->pending == s->pending_buf_size) { 717 if (s->gzhead->hcrc && s->pending > beg) 718 strm->adler = crc32(strm->adler, s->pending_buf + beg, 719 s->pending - beg); 720 flush_pending(strm); 721 beg = s->pending; 722 if (s->pending == s->pending_buf_size) { 723 val = 1; 724 break; 725 } 726 } 727 val = s->gzhead->name[s->gzindex++]; 728 put_byte(s, val); 729 } while (val != 0); 730 if (s->gzhead->hcrc && s->pending > beg) 731 strm->adler = crc32(strm->adler, s->pending_buf + beg, 732 s->pending - beg); 733 if (val == 0) { 734 s->gzindex = 0; 735 s->status = COMMENT_STATE; 736 } 737 } 738 else 739 s->status = COMMENT_STATE; 740 } 741 if (s->status == COMMENT_STATE) { 742 if (s->gzhead->comment != Z_NULL) { 743 uInt beg = s->pending; /* start of bytes to update crc */ 744 int val; 745 746 do { 747 if (s->pending == s->pending_buf_size) { 748 if (s->gzhead->hcrc && s->pending > beg) 749 strm->adler = crc32(strm->adler, s->pending_buf + beg, 750 s->pending - beg); 751 flush_pending(strm); 752 beg = s->pending; 753 if (s->pending == s->pending_buf_size) { 754 val = 1; 755 break; 756 } 757 } 758 val = s->gzhead->comment[s->gzindex++]; 759 put_byte(s, val); 760 } while (val != 0); 761 if (s->gzhead->hcrc && s->pending > beg) 762 strm->adler = crc32(strm->adler, s->pending_buf + beg, 763 s->pending - beg); 764 if (val == 0) 765 s->status = HCRC_STATE; 766 } 767 else 768 s->status = HCRC_STATE; 769 } 770 if (s->status == HCRC_STATE) { 771 if (s->gzhead->hcrc) { 772 if (s->pending + 2 > s->pending_buf_size) 773 flush_pending(strm); 774 if (s->pending + 2 <= s->pending_buf_size) { 775 put_byte(s, (Byte)(strm->adler & 0xff)); 776 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 777 strm->adler = crc32(0L, Z_NULL, 0); 778 s->status = BUSY_STATE; 779 } 780 } 781 else 782 s->status = BUSY_STATE; 783 } 784#endif 785 786 /* Flush as much pending output as possible */ 787 if (s->pending != 0) { 788 flush_pending(strm); 789 if (strm->avail_out == 0) { 790 /* Since avail_out is 0, deflate will be called again with 791 * more output space, but possibly with both pending and 792 * avail_in equal to zero. There won't be anything to do, 793 * but this is not an error situation so make sure we 794 * return OK instead of BUF_ERROR at next call of deflate: 795 */ 796 s->last_flush = -1; 797 return Z_OK; 798 } 799 800 /* Make sure there is something to do and avoid duplicate consecutive 801 * flushes. For repeated and useless calls with Z_FINISH, we keep 802 * returning Z_STREAM_END instead of Z_BUF_ERROR. 803 */ 804 } else if (strm->avail_in == 0 && flush <= old_flush && 805 flush != Z_FINISH) { 806 ERR_RETURN(strm, Z_BUF_ERROR); 807 } 808 809 /* User must not provide more input after the first FINISH: */ 810 if (s->status == FINISH_STATE && strm->avail_in != 0) { 811 ERR_RETURN(strm, Z_BUF_ERROR); 812 } 813 814 /* Start a new block or continue the current one. 815 */ 816 if (strm->avail_in != 0 || s->lookahead != 0 || 817 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 818 block_state bstate; 819 820 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 821 (s->strategy == Z_RLE ? deflate_rle(s, flush) : 822 (*(configuration_table[s->level].func))(s, flush)); 823 824 if (bstate == finish_started || bstate == finish_done) { 825 s->status = FINISH_STATE; 826 } 827 if (bstate == need_more || bstate == finish_started) { 828 if (strm->avail_out == 0) { 829 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 830 } 831 return Z_OK; 832 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 833 * of deflate should use the same flush parameter to make sure 834 * that the flush is complete. So we don't have to output an 835 * empty block here, this will be done at next call. This also 836 * ensures that for a very small output buffer, we emit at most 837 * one empty block. 838 */ 839 } 840 if (bstate == block_done) { 841 if (flush == Z_PARTIAL_FLUSH) { 842 _tr_align(s); 843 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 844 _tr_stored_block(s, (char*)0, 0L, 0); 845 /* For a full flush, this empty block will be recognized 846 * as a special marker by inflate_sync(). 847 */ 848 if (flush == Z_FULL_FLUSH) { 849 CLEAR_HASH(s); /* forget history */ 850 if (s->lookahead == 0) { 851 s->strstart = 0; 852 s->block_start = 0L; 853 } 854 } 855 } 856 flush_pending(strm); 857 if (strm->avail_out == 0) { 858 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 859 return Z_OK; 860 } 861 } 862 } 863 Assert(strm->avail_out > 0, "bug2"); 864 865 if (flush != Z_FINISH) return Z_OK; 866 if (s->wrap <= 0) return Z_STREAM_END; 867 868 /* Write the trailer */ 869#ifdef GZIP 870 if (s->wrap == 2) { 871 put_byte(s, (Byte)(strm->adler & 0xff)); 872 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 873 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); 874 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); 875 put_byte(s, (Byte)(strm->total_in & 0xff)); 876 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); 877 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); 878 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); 879 } 880 else 881#endif 882 { 883 putShortMSB(s, (uInt)(strm->adler >> 16)); 884 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 885 } 886 flush_pending(strm); 887 /* If avail_out is zero, the application will call deflate again 888 * to flush the rest. 889 */ 890 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 891 return s->pending != 0 ? Z_OK : Z_STREAM_END; 892} 893 894/* ========================================================================= */ 895int ZEXPORT deflateEnd (strm) 896 z_streamp strm; 897{ 898 int status; 899 900 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 901 902 status = strm->state->status; 903 if (status != INIT_STATE && 904 status != EXTRA_STATE && 905 status != NAME_STATE && 906 status != COMMENT_STATE && 907 status != HCRC_STATE && 908 status != BUSY_STATE && 909 status != FINISH_STATE) { 910 return Z_STREAM_ERROR; 911 } 912 913 /* Deallocate in reverse order of allocations: */ 914 TRY_FREE(strm, strm->state->pending_buf); 915 TRY_FREE(strm, strm->state->head); 916 TRY_FREE(strm, strm->state->prev); 917 TRY_FREE(strm, strm->state->window); 918 919 ZFREE(strm, strm->state); 920 strm->state = Z_NULL; 921 922 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 923} 924 925/* ========================================================================= 926 * Copy the source state to the destination state. 927 * To simplify the source, this is not supported for 16-bit MSDOS (which 928 * doesn't have enough memory anyway to duplicate compression states). 929 */ 930int ZEXPORT deflateCopy (dest, source) 931 z_streamp dest; 932 z_streamp source; 933{ 934#ifdef MAXSEG_64K 935 return Z_STREAM_ERROR; 936#else 937 deflate_state *ds; 938 deflate_state *ss; 939 ushf *overlay; 940 941 942 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { 943 return Z_STREAM_ERROR; 944 } 945 946 ss = source->state; 947 948 zmemcpy(dest, source, sizeof(z_stream)); 949 950 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 951 if (ds == Z_NULL) return Z_MEM_ERROR; 952 dest->state = (struct internal_state FAR *) ds; 953 zmemcpy(ds, ss, sizeof(deflate_state)); 954 ds->strm = dest; 955 956 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 957 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 958 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 959 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); 960 ds->pending_buf = (uchf *) overlay; 961 962 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 963 ds->pending_buf == Z_NULL) { 964 deflateEnd (dest); 965 return Z_MEM_ERROR; 966 } 967 /* following zmemcpy do not work for 16-bit MSDOS */ 968 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 969 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); 970 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); 971 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 972 973 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 974 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); 975 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; 976 977 ds->l_desc.dyn_tree = ds->dyn_ltree; 978 ds->d_desc.dyn_tree = ds->dyn_dtree; 979 ds->bl_desc.dyn_tree = ds->bl_tree; 980 981 return Z_OK; 982#endif /* MAXSEG_64K */ 983} 984 985/* =========================================================================== 986 * Read a new buffer from the current input stream, update the adler32 987 * and total number of bytes read. All deflate() input goes through 988 * this function so some applications may wish to modify it to avoid 989 * allocating a large strm->next_in buffer and copying from it. 990 * (See also flush_pending()). 991 */ 992local int read_buf(strm, buf, size) 993 z_streamp strm; 994 Bytef *buf; 995 unsigned size; 996{ 997 unsigned len = strm->avail_in; 998 999 if (len > size) len = size; 1000 if (len == 0) return 0; 1001 1002 strm->avail_in -= len; 1003 1004 if (strm->state->wrap == 1) { 1005 strm->adler = adler32(strm->adler, strm->next_in, len); 1006 } 1007#ifdef GZIP 1008 else if (strm->state->wrap == 2) { 1009 strm->adler = crc32(strm->adler, strm->next_in, len); 1010 } 1011#endif 1012 zmemcpy(buf, strm->next_in, len); 1013 strm->next_in += len; 1014 strm->total_in += len; 1015 1016 return (int)len; 1017} 1018 1019/* =========================================================================== 1020 * Initialize the "longest match" routines for a new zlib stream 1021 */ 1022local void lm_init (s) 1023 deflate_state *s; 1024{ 1025 s->window_size = (ulg)2L*s->w_size; 1026 1027 CLEAR_HASH(s); 1028 1029 /* Set the default configuration parameters: 1030 */ 1031 s->max_lazy_match = configuration_table[s->level].max_lazy; 1032 s->good_match = configuration_table[s->level].good_length; 1033 s->nice_match = configuration_table[s->level].nice_length; 1034 s->max_chain_length = configuration_table[s->level].max_chain; 1035 1036 s->strstart = 0; 1037 s->block_start = 0L; 1038 s->lookahead = 0; 1039 s->match_length = s->prev_length = MIN_MATCH-1; 1040 s->match_available = 0; 1041 s->ins_h = 0; 1042#ifndef FASTEST 1043#ifdef ASMV 1044 match_init(); /* initialize the asm code */ 1045#endif 1046#endif 1047} 1048 1049#ifndef FASTEST 1050/* =========================================================================== 1051 * Set match_start to the longest match starting at the given string and 1052 * return its length. Matches shorter or equal to prev_length are discarded, 1053 * in which case the result is equal to prev_length and match_start is 1054 * garbage. 1055 * IN assertions: cur_match is the head of the hash chain for the current 1056 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1057 * OUT assertion: the match length is not greater than s->lookahead. 1058 */ 1059#ifndef ASMV 1060/* For 80x86 and 680x0, an optimized version will be provided in match.asm or 1061 * match.S. The code will be functionally equivalent. 1062 */ 1063local uInt longest_match(s, cur_match) 1064 deflate_state *s; 1065 IPos cur_match; /* current match */ 1066{ 1067 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1068 register Bytef *scan = s->window + s->strstart; /* current string */ 1069 register Bytef *match; /* matched string */ 1070 register int len; /* length of current match */ 1071 int best_len = s->prev_length; /* best match length so far */ 1072 int nice_match = s->nice_match; /* stop if match long enough */ 1073 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1074 s->strstart - (IPos)MAX_DIST(s) : NIL; 1075 /* Stop when cur_match becomes <= limit. To simplify the code, 1076 * we prevent matches with the string of window index 0. 1077 */ 1078 Posf *prev = s->prev; 1079 uInt wmask = s->w_mask; 1080 1081#ifdef UNALIGNED_OK 1082 /* Compare two bytes at a time. Note: this is not always beneficial. 1083 * Try with and without -DUNALIGNED_OK to check. 1084 */ 1085 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1086 register ush scan_start = *(ushf*)scan; 1087 register ush scan_end = *(ushf*)(scan+best_len-1); 1088#else 1089 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1090 register Byte scan_end1 = scan[best_len-1]; 1091 register Byte scan_end = scan[best_len]; 1092#endif 1093 1094 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1095 * It is easy to get rid of this optimization if necessary. 1096 */ 1097 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1098 1099 /* Do not waste too much time if we already have a good match: */ 1100 if (s->prev_length >= s->good_match) { 1101 chain_length >>= 2; 1102 } 1103 /* Do not look for matches beyond the end of the input. This is necessary 1104 * to make deflate deterministic. 1105 */ 1106 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; 1107 1108 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1109 1110 do { 1111 Assert(cur_match < s->strstart, "no future"); 1112 match = s->window + cur_match; 1113 1114 /* Skip to next match if the match length cannot increase 1115 * or if the match length is less than 2. Note that the checks below 1116 * for insufficient lookahead only occur occasionally for performance 1117 * reasons. Therefore uninitialized memory will be accessed, and 1118 * conditional jumps will be made that depend on those values. 1119 * However the length of the match is limited to the lookahead, so 1120 * the output of deflate is not affected by the uninitialized values. 1121 */ 1122#if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1123 /* This code assumes sizeof(unsigned short) == 2. Do not use 1124 * UNALIGNED_OK if your compiler uses a different size. 1125 */ 1126 if (*(ushf*)(match+best_len-1) != scan_end || 1127 *(ushf*)match != scan_start) continue; 1128 1129 /* It is not necessary to compare scan[2] and match[2] since they are 1130 * always equal when the other bytes match, given that the hash keys 1131 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1132 * strstart+3, +5, ... up to strstart+257. We check for insufficient 1133 * lookahead only every 4th comparison; the 128th check will be made 1134 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 1135 * necessary to put more guard bytes at the end of the window, or 1136 * to check more often for insufficient lookahead. 1137 */ 1138 Assert(scan[2] == match[2], "scan[2]?"); 1139 scan++, match++; 1140 do { 1141 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1142 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1143 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1144 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1145 scan < strend); 1146 /* The funny "do {}" generates better code on most compilers */ 1147 1148 /* Here, scan <= window+strstart+257 */ 1149 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1150 if (*scan == *match) scan++; 1151 1152 len = (MAX_MATCH - 1) - (int)(strend-scan); 1153 scan = strend - (MAX_MATCH-1); 1154 1155#else /* UNALIGNED_OK */ 1156 1157 if (match[best_len] != scan_end || 1158 match[best_len-1] != scan_end1 || 1159 *match != *scan || 1160 *++match != scan[1]) continue; 1161 1162 /* The check at best_len-1 can be removed because it will be made 1163 * again later. (This heuristic is not always a win.) 1164 * It is not necessary to compare scan[2] and match[2] since they 1165 * are always equal when the other bytes match, given that 1166 * the hash keys are equal and that HASH_BITS >= 8. 1167 */ 1168 scan += 2, match++; 1169 Assert(*scan == *match, "match[2]?"); 1170 1171 /* We check for insufficient lookahead only every 8th comparison; 1172 * the 256th check will be made at strstart+258. 1173 */ 1174 do { 1175 } while (*++scan == *++match && *++scan == *++match && 1176 *++scan == *++match && *++scan == *++match && 1177 *++scan == *++match && *++scan == *++match && 1178 *++scan == *++match && *++scan == *++match && 1179 scan < strend); 1180 1181 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1182 1183 len = MAX_MATCH - (int)(strend - scan); 1184 scan = strend - MAX_MATCH; 1185 1186#endif /* UNALIGNED_OK */ 1187 1188 if (len > best_len) { 1189 s->match_start = cur_match; 1190 best_len = len; 1191 if (len >= nice_match) break; 1192#ifdef UNALIGNED_OK 1193 scan_end = *(ushf*)(scan+best_len-1); 1194#else 1195 scan_end1 = scan[best_len-1]; 1196 scan_end = scan[best_len]; 1197#endif 1198 } 1199 } while ((cur_match = prev[cur_match & wmask]) > limit 1200 && --chain_length != 0); 1201 1202 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 1203 return s->lookahead; 1204} 1205#endif /* ASMV */ 1206 1207#else /* FASTEST */ 1208 1209/* --------------------------------------------------------------------------- 1210 * Optimized version for FASTEST only 1211 */ 1212local uInt longest_match(s, cur_match) 1213 deflate_state *s; 1214 IPos cur_match; /* current match */ 1215{ 1216 register Bytef *scan = s->window + s->strstart; /* current string */ 1217 register Bytef *match; /* matched string */ 1218 register int len; /* length of current match */ 1219 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1220 1221 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1222 * It is easy to get rid of this optimization if necessary. 1223 */ 1224 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1225 1226 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1227 1228 Assert(cur_match < s->strstart, "no future"); 1229 1230 match = s->window + cur_match; 1231 1232 /* Return failure if the match length is less than 2: 1233 */ 1234 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; 1235 1236 /* The check at best_len-1 can be removed because it will be made 1237 * again later. (This heuristic is not always a win.) 1238 * It is not necessary to compare scan[2] and match[2] since they 1239 * are always equal when the other bytes match, given that 1240 * the hash keys are equal and that HASH_BITS >= 8. 1241 */ 1242 scan += 2, match += 2; 1243 Assert(*scan == *match, "match[2]?"); 1244 1245 /* We check for insufficient lookahead only every 8th comparison; 1246 * the 256th check will be made at strstart+258. 1247 */ 1248 do { 1249 } while (*++scan == *++match && *++scan == *++match && 1250 *++scan == *++match && *++scan == *++match && 1251 *++scan == *++match && *++scan == *++match && 1252 *++scan == *++match && *++scan == *++match && 1253 scan < strend); 1254 1255 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1256 1257 len = MAX_MATCH - (int)(strend - scan); 1258 1259 if (len < MIN_MATCH) return MIN_MATCH - 1; 1260 1261 s->match_start = cur_match; 1262 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; 1263} 1264 1265#endif /* FASTEST */ 1266 1267#ifdef DEBUG_ZLIB 1268/* =========================================================================== 1269 * Check that the match at match_start is indeed a match. 1270 */ 1271local void check_match(s, start, match, length) 1272 deflate_state *s; 1273 IPos start, match; 1274 int length; 1275{ 1276 /* check that the match is indeed a match */ 1277 if (zmemcmp(s->window + match, 1278 s->window + start, length) != EQUAL) { 1279 fprintf(stderr, " start %u, match %u, length %d\n", 1280 start, match, length); 1281 do { 1282 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1283 } while (--length != 0); 1284 z_error("invalid match"); 1285 } 1286 if (z_verbose > 1) { 1287 fprintf(stderr,"\\[%d,%d]", start-match, length); 1288 do { putc(s->window[start++], stderr); } while (--length != 0); 1289 } 1290} 1291#else 1292# define check_match(s, start, match, length) 1293#endif /* DEBUG_ZLIB */ 1294 1295/* =========================================================================== 1296 * Fill the window when the lookahead becomes insufficient. 1297 * Updates strstart and lookahead. 1298 * 1299 * IN assertion: lookahead < MIN_LOOKAHEAD 1300 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1301 * At least one byte has been read, or avail_in == 0; reads are 1302 * performed for at least two bytes (required for the zip translate_eol 1303 * option -- not supported here). 1304 */ 1305local void fill_window(s) 1306 deflate_state *s; 1307{ 1308 register unsigned n, m; 1309 register Posf *p; 1310 unsigned more; /* Amount of free space at the end of the window. */ 1311 uInt wsize = s->w_size; 1312 1313 do { 1314 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1315 1316 /* Deal with !@#$% 64K limit: */ 1317 if (sizeof(int) <= 2) { 1318 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1319 more = wsize; 1320 1321 } else if (more == (unsigned)(-1)) { 1322 /* Very unlikely, but possible on 16 bit machine if 1323 * strstart == 0 && lookahead == 1 (input done a byte at time) 1324 */ 1325 more--; 1326 } 1327 } 1328 1329 /* If the window is almost full and there is insufficient lookahead, 1330 * move the upper half to the lower one to make room in the upper half. 1331 */ 1332 if (s->strstart >= wsize+MAX_DIST(s)) { 1333 1334 zmemcpy(s->window, s->window+wsize, (unsigned)wsize); 1335 s->match_start -= wsize; 1336 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1337 s->block_start -= (long) wsize; 1338 1339 /* Slide the hash table (could be avoided with 32 bit values 1340 at the expense of memory usage). We slide even when level == 0 1341 to keep the hash table consistent if we switch back to level > 0 1342 later. (Using level 0 permanently is not an optimal usage of 1343 zlib, so we don't care about this pathological case.) 1344 */ 1345 n = s->hash_size; 1346 p = &s->head[n]; 1347 do { 1348 m = *--p; 1349 *p = (Pos)(m >= wsize ? m-wsize : NIL); 1350 } while (--n); 1351 1352 n = wsize; 1353#ifndef FASTEST 1354 p = &s->prev[n]; 1355 do { 1356 m = *--p; 1357 *p = (Pos)(m >= wsize ? m-wsize : NIL); 1358 /* If n is not on any hash chain, prev[n] is garbage but 1359 * its value will never be used. 1360 */ 1361 } while (--n); 1362#endif 1363 more += wsize; 1364 } 1365 if (s->strm->avail_in == 0) return; 1366 1367 /* If there was no sliding: 1368 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1369 * more == window_size - lookahead - strstart 1370 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1371 * => more >= window_size - 2*WSIZE + 2 1372 * In the BIG_MEM or MMAP case (not yet supported), 1373 * window_size == input_size + MIN_LOOKAHEAD && 1374 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1375 * Otherwise, window_size == 2*WSIZE so more >= 2. 1376 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1377 */ 1378 Assert(more >= 2, "more < 2"); 1379 1380 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 1381 s->lookahead += n; 1382 1383 /* Initialize the hash value now that we have some input: */ 1384 if (s->lookahead >= MIN_MATCH) { 1385 s->ins_h = s->window[s->strstart]; 1386 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1387#if MIN_MATCH != 3 1388 Call UPDATE_HASH() MIN_MATCH-3 more times 1389#endif 1390 } 1391 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1392 * but this is not important since only literal bytes will be emitted. 1393 */ 1394 1395 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1396 1397 /* If the WIN_INIT bytes after the end of the current data have never been 1398 * written, then zero those bytes in order to avoid memory check reports of 1399 * the use of uninitialized (or uninitialised as Julian writes) bytes by 1400 * the longest match routines. Update the high water mark for the next 1401 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 1402 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 1403 */ 1404 if (s->high_water < s->window_size) { 1405 ulg curr = s->strstart + (ulg)(s->lookahead); 1406 ulg init; 1407 1408 if (s->high_water < curr) { 1409 /* Previous high water mark below current data -- zero WIN_INIT 1410 * bytes or up to end of window, whichever is less. 1411 */ 1412 init = s->window_size - curr; 1413 if (init > WIN_INIT) 1414 init = WIN_INIT; 1415 zmemzero(s->window + curr, (unsigned)init); 1416 s->high_water = curr + init; 1417 } 1418 else if (s->high_water < (ulg)curr + WIN_INIT) { 1419 /* High water mark at or above current data, but below current data 1420 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 1421 * to end of window, whichever is less. 1422 */ 1423 init = (ulg)curr + WIN_INIT - s->high_water; 1424 if (init > s->window_size - s->high_water) 1425 init = s->window_size - s->high_water; 1426 zmemzero(s->window + s->high_water, (unsigned)init); 1427 s->high_water += init; 1428 } 1429 } 1430} 1431 1432/* =========================================================================== 1433 * Flush the current block, with given end-of-file flag. 1434 * IN assertion: strstart is set to the end of the current match. 1435 */ 1436#define FLUSH_BLOCK_ONLY(s, last) { \ 1437 _tr_flush_block(s, (s->block_start >= 0L ? \ 1438 (charf *)&s->window[(unsigned)s->block_start] : \ 1439 (charf *)Z_NULL), \ 1440 (ulg)((long)s->strstart - s->block_start), \ 1441 (last)); \ 1442 s->block_start = s->strstart; \ 1443 flush_pending(s->strm); \ 1444 Tracev((stderr,"[FLUSH]")); \ 1445} 1446 1447/* Same but force premature exit if necessary. */ 1448#define FLUSH_BLOCK(s, last) { \ 1449 FLUSH_BLOCK_ONLY(s, last); \ 1450 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 1451} 1452 1453/* =========================================================================== 1454 * Copy without compression as much as possible from the input stream, return 1455 * the current block state. 1456 * This function does not insert new strings in the dictionary since 1457 * uncompressible data is probably not useful. This function is used 1458 * only for the level=0 compression option. 1459 * NOTE: this function should be optimized to avoid extra copying from 1460 * window to pending_buf. 1461 */ 1462local block_state deflate_stored(s, flush) 1463 deflate_state *s; 1464 int flush; 1465{ 1466 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited 1467 * to pending_buf_size, and each stored block has a 5 byte header: 1468 */ 1469 ulg max_block_size = 0xffff; 1470 ulg max_start; 1471 1472 if (max_block_size > s->pending_buf_size - 5) { 1473 max_block_size = s->pending_buf_size - 5; 1474 } 1475 1476 /* Copy as much as possible from input to output: */ 1477 for (;;) { 1478 /* Fill the window as much as possible: */ 1479 if (s->lookahead <= 1) { 1480 1481 Assert(s->strstart < s->w_size+MAX_DIST(s) || 1482 s->block_start >= (long)s->w_size, "slide too late"); 1483 1484 fill_window(s); 1485 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; 1486 1487 if (s->lookahead == 0) break; /* flush the current block */ 1488 } 1489 Assert(s->block_start >= 0L, "block gone"); 1490 1491 s->strstart += s->lookahead; 1492 s->lookahead = 0; 1493 1494 /* Emit a stored block if pending_buf will be full: */ 1495 max_start = s->block_start + max_block_size; 1496 if (s->strstart == 0 || (ulg)s->strstart >= max_start) { 1497 /* strstart == 0 is possible when wraparound on 16-bit machine */ 1498 s->lookahead = (uInt)(s->strstart - max_start); 1499 s->strstart = (uInt)max_start; 1500 FLUSH_BLOCK(s, 0); 1501 } 1502 /* Flush if we may have to slide, otherwise block_start may become 1503 * negative and the data will be gone: 1504 */ 1505 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { 1506 FLUSH_BLOCK(s, 0); 1507 } 1508 } 1509 FLUSH_BLOCK(s, flush == Z_FINISH); 1510 return flush == Z_FINISH ? finish_done : block_done; 1511} 1512 1513/* =========================================================================== 1514 * Compress as much as possible from the input stream, return the current 1515 * block state. 1516 * This function does not perform lazy evaluation of matches and inserts 1517 * new strings in the dictionary only for unmatched strings or for short 1518 * matches. It is used only for the fast compression options. 1519 */ 1520local block_state deflate_fast(s, flush) 1521 deflate_state *s; 1522 int flush; 1523{ 1524 IPos hash_head; /* head of the hash chain */ 1525 int bflush; /* set if current block must be flushed */ 1526 1527 for (;;) { 1528 /* Make sure that we always have enough lookahead, except 1529 * at the end of the input file. We need MAX_MATCH bytes 1530 * for the next match, plus MIN_MATCH bytes to insert the 1531 * string following the next match. 1532 */ 1533 if (s->lookahead < MIN_LOOKAHEAD) { 1534 fill_window(s); 1535 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1536 return need_more; 1537 } 1538 if (s->lookahead == 0) break; /* flush the current block */ 1539 } 1540 1541 /* Insert the string window[strstart .. strstart+2] in the 1542 * dictionary, and set hash_head to the head of the hash chain: 1543 */ 1544 hash_head = NIL; 1545 if (s->lookahead >= MIN_MATCH) { 1546 INSERT_STRING(s, s->strstart, hash_head); 1547 } 1548 1549 /* Find the longest match, discarding those <= prev_length. 1550 * At this point we have always match_length < MIN_MATCH 1551 */ 1552 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1553 /* To simplify the code, we prevent matches with the string 1554 * of window index 0 (in particular we have to avoid a match 1555 * of the string with itself at the start of the input file). 1556 */ 1557 s->match_length = longest_match (s, hash_head); 1558 /* longest_match() sets match_start */ 1559 } 1560 if (s->match_length >= MIN_MATCH) { 1561 check_match(s, s->strstart, s->match_start, s->match_length); 1562 1563 _tr_tally_dist(s, s->strstart - s->match_start, 1564 s->match_length - MIN_MATCH, bflush); 1565 1566 s->lookahead -= s->match_length; 1567 1568 /* Insert new strings in the hash table only if the match length 1569 * is not too large. This saves time but degrades compression. 1570 */ 1571#ifndef FASTEST 1572 if (s->match_length <= s->max_insert_length && 1573 s->lookahead >= MIN_MATCH) { 1574 s->match_length--; /* string at strstart already in table */ 1575 do { 1576 s->strstart++; 1577 INSERT_STRING(s, s->strstart, hash_head); 1578 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1579 * always MIN_MATCH bytes ahead. 1580 */ 1581 } while (--s->match_length != 0); 1582 s->strstart++; 1583 } else 1584#endif 1585 { 1586 s->strstart += s->match_length; 1587 s->match_length = 0; 1588 s->ins_h = s->window[s->strstart]; 1589 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1590#if MIN_MATCH != 3 1591 Call UPDATE_HASH() MIN_MATCH-3 more times 1592#endif 1593 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1594 * matter since it will be recomputed at next deflate call. 1595 */ 1596 } 1597 } else { 1598 /* No match, output a literal byte */ 1599 Tracevv((stderr,"%c", s->window[s->strstart])); 1600 _tr_tally_lit (s, s->window[s->strstart], bflush); 1601 s->lookahead--; 1602 s->strstart++; 1603 } 1604 if (bflush) FLUSH_BLOCK(s, 0); 1605 } 1606 FLUSH_BLOCK(s, flush == Z_FINISH); 1607 return flush == Z_FINISH ? finish_done : block_done; 1608} 1609 1610#ifndef FASTEST 1611/* =========================================================================== 1612 * Same as above, but achieves better compression. We use a lazy 1613 * evaluation for matches: a match is finally adopted only if there is 1614 * no better match at the next window position. 1615 */ 1616local block_state deflate_slow(s, flush) 1617 deflate_state *s; 1618 int flush; 1619{ 1620 IPos hash_head; /* head of hash chain */ 1621 int bflush; /* set if current block must be flushed */ 1622 1623 /* Process the input block. */ 1624 for (;;) { 1625 /* Make sure that we always have enough lookahead, except 1626 * at the end of the input file. We need MAX_MATCH bytes 1627 * for the next match, plus MIN_MATCH bytes to insert the 1628 * string following the next match. 1629 */ 1630 if (s->lookahead < MIN_LOOKAHEAD) { 1631 fill_window(s); 1632 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1633 return need_more; 1634 } 1635 if (s->lookahead == 0) break; /* flush the current block */ 1636 } 1637 1638 /* Insert the string window[strstart .. strstart+2] in the 1639 * dictionary, and set hash_head to the head of the hash chain: 1640 */ 1641 hash_head = NIL; 1642 if (s->lookahead >= MIN_MATCH) { 1643 INSERT_STRING(s, s->strstart, hash_head); 1644 } 1645 1646 /* Find the longest match, discarding those <= prev_length. 1647 */ 1648 s->prev_length = s->match_length, s->prev_match = s->match_start; 1649 s->match_length = MIN_MATCH-1; 1650 1651 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 1652 s->strstart - hash_head <= MAX_DIST(s)) { 1653 /* To simplify the code, we prevent matches with the string 1654 * of window index 0 (in particular we have to avoid a match 1655 * of the string with itself at the start of the input file). 1656 */ 1657 s->match_length = longest_match (s, hash_head); 1658 /* longest_match() sets match_start */ 1659 1660 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 1661#if TOO_FAR <= 32767 1662 || (s->match_length == MIN_MATCH && 1663 s->strstart - s->match_start > TOO_FAR) 1664#endif 1665 )) { 1666 1667 /* If prev_match is also MIN_MATCH, match_start is garbage 1668 * but we will ignore the current match anyway. 1669 */ 1670 s->match_length = MIN_MATCH-1; 1671 } 1672 } 1673 /* If there was a match at the previous step and the current 1674 * match is not better, output the previous match: 1675 */ 1676 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 1677 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 1678 /* Do not insert strings in hash table beyond this. */ 1679 1680 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 1681 1682 _tr_tally_dist(s, s->strstart -1 - s->prev_match, 1683 s->prev_length - MIN_MATCH, bflush); 1684 1685 /* Insert in hash table all strings up to the end of the match. 1686 * strstart-1 and strstart are already inserted. If there is not 1687 * enough lookahead, the last two strings are not inserted in 1688 * the hash table. 1689 */ 1690 s->lookahead -= s->prev_length-1; 1691 s->prev_length -= 2; 1692 do { 1693 if (++s->strstart <= max_insert) { 1694 INSERT_STRING(s, s->strstart, hash_head); 1695 } 1696 } while (--s->prev_length != 0); 1697 s->match_available = 0; 1698 s->match_length = MIN_MATCH-1; 1699 s->strstart++; 1700 1701 if (bflush) FLUSH_BLOCK(s, 0); 1702 1703 } else if (s->match_available) { 1704 /* If there was no match at the previous position, output a 1705 * single literal. If there was a match but the current match 1706 * is longer, truncate the previous match to a single literal. 1707 */ 1708 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1709 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 1710 if (bflush) { 1711 FLUSH_BLOCK_ONLY(s, 0); 1712 } 1713 s->strstart++; 1714 s->lookahead--; 1715 if (s->strm->avail_out == 0) return need_more; 1716 } else { 1717 /* There is no previous match to compare with, wait for 1718 * the next step to decide. 1719 */ 1720 s->match_available = 1; 1721 s->strstart++; 1722 s->lookahead--; 1723 } 1724 } 1725 Assert (flush != Z_NO_FLUSH, "no flush?"); 1726 if (s->match_available) { 1727 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1728 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 1729 s->match_available = 0; 1730 } 1731 FLUSH_BLOCK(s, flush == Z_FINISH); 1732 return flush == Z_FINISH ? finish_done : block_done; 1733} 1734#endif /* FASTEST */ 1735 1736/* =========================================================================== 1737 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 1738 * one. Do not maintain a hash table. (It will be regenerated if this run of 1739 * deflate switches away from Z_RLE.) 1740 */ 1741local block_state deflate_rle(s, flush) 1742 deflate_state *s; 1743 int flush; 1744{ 1745 int bflush; /* set if current block must be flushed */ 1746 uInt prev; /* byte at distance one to match */ 1747 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 1748 1749 for (;;) { 1750 /* Make sure that we always have enough lookahead, except 1751 * at the end of the input file. We need MAX_MATCH bytes 1752 * for the longest encodable run. 1753 */ 1754 if (s->lookahead < MAX_MATCH) { 1755 fill_window(s); 1756 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) { 1757 return need_more; 1758 } 1759 if (s->lookahead == 0) break; /* flush the current block */ 1760 } 1761 1762 /* See how many times the previous byte repeats */ 1763 s->match_length = 0; 1764 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 1765 scan = s->window + s->strstart - 1; 1766 prev = *scan; 1767 if (prev == *++scan && prev == *++scan && prev == *++scan) { 1768 strend = s->window + s->strstart + MAX_MATCH; 1769 do { 1770 } while (prev == *++scan && prev == *++scan && 1771 prev == *++scan && prev == *++scan && 1772 prev == *++scan && prev == *++scan && 1773 prev == *++scan && prev == *++scan && 1774 scan < strend); 1775 s->match_length = MAX_MATCH - (int)(strend - scan); 1776 if (s->match_length > s->lookahead) 1777 s->match_length = s->lookahead; 1778 } 1779 } 1780 1781 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 1782 if (s->match_length >= MIN_MATCH) { 1783 check_match(s, s->strstart, s->strstart - 1, s->match_length); 1784 1785 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 1786 1787 s->lookahead -= s->match_length; 1788 s->strstart += s->match_length; 1789 s->match_length = 0; 1790 } else { 1791 /* No match, output a literal byte */ 1792 Tracevv((stderr,"%c", s->window[s->strstart])); 1793 _tr_tally_lit (s, s->window[s->strstart], bflush); 1794 s->lookahead--; 1795 s->strstart++; 1796 } 1797 if (bflush) FLUSH_BLOCK(s, 0); 1798 } 1799 FLUSH_BLOCK(s, flush == Z_FINISH); 1800 return flush == Z_FINISH ? finish_done : block_done; 1801} 1802 1803/* =========================================================================== 1804 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 1805 * (It will be regenerated if this run of deflate switches away from Huffman.) 1806 */ 1807local block_state deflate_huff(s, flush) 1808 deflate_state *s; 1809 int flush; 1810{ 1811 int bflush; /* set if current block must be flushed */ 1812 1813 for (;;) { 1814 /* Make sure that we have a literal to write. */ 1815 if (s->lookahead == 0) { 1816 fill_window(s); 1817 if (s->lookahead == 0) { 1818 if (flush == Z_NO_FLUSH) 1819 return need_more; 1820 break; /* flush the current block */ 1821 } 1822 } 1823 1824 /* Output a literal byte */ 1825 s->match_length = 0; 1826 Tracevv((stderr,"%c", s->window[s->strstart])); 1827 _tr_tally_lit (s, s->window[s->strstart], bflush); 1828 s->lookahead--; 1829 s->strstart++; 1830 if (bflush) FLUSH_BLOCK(s, 0); 1831 } 1832 FLUSH_BLOCK(s, flush == Z_FINISH); 1833 return flush == Z_FINISH ? finish_done : block_done; 1834} 1835