1// This file was extracted from the TCG Published
2// Trusted Platform Module Library
3// Part 4: Supporting Routines
4// Family "2.0"
5// Level 00 Revision 01.16
6// October 30, 2014
7
8#define NV_C
9#include "InternalRoutines.h"
10#include "Platform.h"
11//
12//      NV Index/evict object iterator value
13//
14typedef        UINT32              NV_ITER;              // type of a NV iterator
15#define        NV_ITER_INIT        0xFFFFFFFF            // initial value to start an
16                                                        // iterator
17//
18//
19//           NV Utility Functions
20//
21//           NvCheckState()
22//
23//     Function to check the NV state by accessing the platform-specific function to get the NV state. The result
24//     state is registered in s_NvIsAvailable that will be reported by NvIsAvailable().
25//     This function is called at the beginning of ExecuteCommand() before any potential call to NvIsAvailable().
26//
27void
28NvCheckState(void)
29{
30    int        func_return;
31    func_return = _plat__IsNvAvailable();
32    if(func_return == 0)
33    {
34        s_NvStatus = TPM_RC_SUCCESS;
35    }
36    else if(func_return == 1)
37    {
38        s_NvStatus = TPM_RC_NV_UNAVAILABLE;
39    }
40    else
41    {
42        s_NvStatus = TPM_RC_NV_RATE;
43    }
44    return;
45}
46//
47//
48//           NvIsAvailable()
49//
50//     This function returns the NV availability parameter.
51//
52//     Error Returns                     Meaning
53//
54//     TPM_RC_SUCCESS                    NV is available
55//     TPM_RC_NV_RATE                    NV is unavailable because of rate limit
56//     TPM_RC_NV_UNAVAILABLE             NV is inaccessible
57//
58TPM_RC
59NvIsAvailable(
60    void
61    )
62{
63    // Make sure that NV state is still good
64    if (s_NvStatus == TPM_RC_SUCCESS)
65	NvCheckState();
66
67    return s_NvStatus;
68}
69//
70//
71//           NvCommit
72//
73//     This is a wrapper for the platform function to commit pending NV writes.
74//
75BOOL
76NvCommit(
77    void
78    )
79{
80    BOOL    success = (_plat__NvCommit() == 0);
81    return success;
82}
83//
84//
85//          NvReadMaxCount()
86//
87//     This function returns the max NV counter value.
88//
89static UINT64
90NvReadMaxCount(
91    void
92    )
93{
94    UINT64      countValue;
95    _plat__NvMemoryRead(s_maxCountAddr, sizeof(UINT64), &countValue);
96    return countValue;
97}
98//
99//
100//          NvWriteMaxCount()
101//
102//     This function updates the max counter value to NV memory.
103//
104static void
105NvWriteMaxCount(
106    UINT64               maxCount
107    )
108{
109    _plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &maxCount);
110    return;
111}
112//
113//
114//          NV Index and Persistent Object Access Functions
115//
116//          Introduction
117//
118//     These functions are used to access an NV Index and persistent object memory. In this implementation,
119//     the memory is simulated with RAM. The data in dynamic area is organized as a linked list, starting from
120//     address s_evictNvStart. The first 4 bytes of a node in this link list is the offset of next node, followed by
121//     the data entry. A 0-valued offset value indicates the end of the list. If the data entry area of the last node
122//     happens to reach the end of the dynamic area without space left for an additional 4 byte end marker, the
123//     end address, s_evictNvEnd, should serve as the mark of list end
124//
125//          NvNext()
126//
127//     This function provides a method to traverse every data entry in NV dynamic area.
128//     To begin with, parameter iter should be initialized to NV_ITER_INIT indicating the first element. Every
129//     time this function is called, the value in iter would be adjusted pointing to the next element in traversal. If
130//     there is no next element, iter value would be 0. This function returns the address of the 'data entry'
131//     pointed by the iter. If there is no more element in the set, a 0 value is returned indicating the end of
132//     traversal.
133//
134static UINT32
135NvNext(
136    NV_ITER             *iter
137    )
138{
139   NV_ITER        currentIter;
140   // If iterator is at the beginning of list
141   if(*iter == NV_ITER_INIT)
142   {
143       // Initialize iterator
144       *iter = s_evictNvStart;
145   }
146   // If iterator reaches the end of NV space, or iterator indicates list end
147   if(*iter + sizeof(UINT32) > s_evictNvEnd || *iter == 0)
148       return 0;
149   // Save the current iter offset
150   currentIter = *iter;
151   // Adjust iter pointer pointing to next entity
152   // Read pointer value
153   _plat__NvMemoryRead(*iter, sizeof(UINT32), iter);
154   if(*iter == 0) return 0;
155   return currentIter + sizeof(UINT32);                // entity stores after the pointer
156}
157//
158//
159//           NvGetEnd()
160//
161//      Function to find the end of the NV dynamic data list
162//
163static UINT32
164NvGetEnd(
165   void
166   )
167{
168   NV_ITER             iter = NV_ITER_INIT;
169   UINT32              endAddr = s_evictNvStart;
170   UINT32              currentAddr;
171   while((currentAddr = NvNext(&iter)) != 0)
172       endAddr = currentAddr;
173   if(endAddr != s_evictNvStart)
174   {
175       // Read offset
176       endAddr -= sizeof(UINT32);
177       _plat__NvMemoryRead(endAddr, sizeof(UINT32), &endAddr);
178   }
179   return endAddr;
180}
181//
182//
183//           NvGetFreeByte
184//
185//      This function returns the number of free octets in NV space.
186//
187static UINT32
188NvGetFreeByte(
189   void
190   )
191{
192   return s_evictNvEnd - NvGetEnd();
193}
194//
195//           NvGetEvictObjectSize
196//
197//      This function returns the size of an evict object in NV space
198//
199static UINT32
200NvGetEvictObjectSize(
201    void
202    )
203{
204    return sizeof(TPM_HANDLE) + sizeof(OBJECT) + sizeof(UINT32);
205}
206//
207//
208//           NvGetCounterSize
209//
210//      This function returns the size of a counter index in NV space.
211//
212static UINT32
213NvGetCounterSize(
214    void
215    )
216{
217    // It takes an offset field, a handle and the sizeof(NV_INDEX) and
218    // sizeof(UINT64) for counter data
219    return sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + sizeof(UINT64) + sizeof(UINT32);
220}
221//
222//
223//           NvTestSpace()
224//
225//      This function will test if there is enough space to add a new entity.
226//
227//      Return Value                      Meaning
228//
229//      TRUE                              space available
230//      FALSE                             no enough space
231//
232static BOOL
233NvTestSpace(
234    UINT32               size,               // IN: size of the entity to be added
235    BOOL                 isIndex             // IN: TRUE if the entity is an index
236    )
237{
238    UINT32         remainByte = NvGetFreeByte();
239    // For NV Index, need to make sure that we do not allocate and Index if this
240    // would mean that the TPM cannot allocate the minimum number of evict
241    // objects.
242    if(isIndex)
243    {
244        // Get the number of persistent objects allocated
245        UINT32      persistentNum = NvCapGetPersistentNumber();
246         // If we have not allocated the requisite number of evict objects, then we
247         // need to reserve space for them.
248         // NOTE: some of this is not written as simply as it might seem because
249         // the values are all unsigned and subtracting needs to be done carefully
250         // so that an underflow doesn't cause problems.
251         if(persistentNum < MIN_EVICT_OBJECTS)
252         {
253             UINT32      needed = (MIN_EVICT_OBJECTS - persistentNum)
254                                 * NvGetEvictObjectSize();
255             if(needed > remainByte)
256                 remainByte = 0;
257             else
258                 remainByte -= needed;
259         }
260         // if the requisite number of evict objects have been allocated then
261         // no need to reserve additional space
262   }
263   // This checks for the size of the value being added plus the index value.
264   // NOTE: This does not check to see if the end marker can be placed in
265   // memory because the end marker will not be written if it will not fit.
266   return (size + sizeof(UINT32) <= remainByte);
267}
268//
269//
270//           NvAdd()
271//
272//      This function adds a new entity to NV.
273//      This function requires that there is enough space to add a new entity (i.e., that NvTestSpace() has been
274//      called and the available space is at least as large as the required space).
275//
276static void
277NvAdd(
278   UINT32                totalSize,       // IN: total size needed for this        entity For
279                                          //     evict object, totalSize is        the same as
280                                          //     bufferSize. For NV Index,         totalSize is
281                                          //     bufferSize plus index data        size
282   UINT32                bufferSize,      // IN: size of initial buffer
283   BYTE                 *entity           // IN: initial buffer
284   )
285{
286   UINT32               endAddr;
287   UINT32               nextAddr;
288   UINT32               listEnd = 0;
289   // Get the end of data list
290   endAddr = NvGetEnd();
291   // Calculate the value of next pointer, which is the size of a pointer +
292   // the entity data size
293   nextAddr = endAddr + sizeof(UINT32) + totalSize;
294   // Write next pointer
295   _plat__NvMemoryWrite(endAddr, sizeof(UINT32), &nextAddr);
296   // Write entity data
297   _plat__NvMemoryWrite(endAddr + sizeof(UINT32), bufferSize, entity);
298   // Write the end of list if it is not going to exceed the NV space
299   if(nextAddr + sizeof(UINT32) <= s_evictNvEnd)
300       _plat__NvMemoryWrite(nextAddr, sizeof(UINT32), &listEnd);
301   // Set the flag so that NV changes are committed before the command completes.
302   g_updateNV = TRUE;
303}
304//
305//
306//           NvDelete()
307//
308//      This function is used to delete an NV Index or persistent object from NV memory.
309//
310static void
311NvDelete(
312   UINT32                entityAddr       // IN: address of entity to be deleted
313   )
314{
315   UINT32              next;
316   UINT32              entrySize;
317   UINT32              entryAddr = entityAddr - sizeof(UINT32);
318   UINT32              listEnd = 0;
319   // Get the offset of the next entry.
320   _plat__NvMemoryRead(entryAddr, sizeof(UINT32), &next);
321   // The size of this entry is the difference between the current entry and the
322   // next entry.
323   entrySize = next - entryAddr;
324   //    Move each entry after the current one to fill the freed space.
325   //    Stop when we have reached the end of all the indexes. There are two
326   //    ways to detect the end of the list. The first is to notice that there
327   //    is no room for anything else because we are at the end of NV. The other
328   //    indication is that we find an end marker.
329   // The loop condition checks for the end of NV.
330   while(next + sizeof(UINT32) <= s_evictNvEnd)
331   {
332       UINT32      size, oldAddr, newAddr;
333         // Now check for the end marker
334         _plat__NvMemoryRead(next, sizeof(UINT32), &oldAddr);
335         if(oldAddr == 0)
336             break;
337         size = oldAddr - next;
338         // Move entry
339         _plat__NvMemoryMove(next, next - entrySize, size);
340         // Update forward link
341         newAddr = oldAddr - entrySize;
342         _plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &newAddr);
343         next = oldAddr;
344   }
345   // Mark the end of list
346   _plat__NvMemoryWrite(next - entrySize, sizeof(UINT32), &listEnd);
347   // Set the flag so that NV changes are committed before the command completes.
348   g_updateNV = TRUE;
349}
350//
351//
352//           RAM-based NV Index Data Access Functions
353//
354//           Introduction
355//
356//      The data layout in ram buffer is {size of(NV_handle() + data), NV_handle(), data} for each NV Index data
357//      stored in RAM.
358//      NV storage is updated when a NV Index is added or deleted. We do NOT updated NV storage when the
359//      data is updated/
360//
361//           NvTestRAMSpace()
362//
363//      This function indicates if there is enough RAM space to add a data for a new NV Index.
364//
365//
366//
367//
368//      Return Value                      Meaning
369//
370//      TRUE                              space available
371//      FALSE                             no enough space
372//
373static BOOL
374NvTestRAMSpace(
375   UINT32                size                // IN: size of the data to be added to RAM
376   )
377{
378   BOOL           success = (       s_ramIndexSize
379                                  + size
380                                  + sizeof(TPM_HANDLE) + sizeof(UINT32)
381                                  <= RAM_INDEX_SPACE);
382   return success;
383}
384//
385//
386//           NvGetRamIndexOffset
387//
388//      This function returns the offset of NV data in the RAM buffer
389//      This function requires that NV Index is in RAM. That is, the index must be known to exist.
390//
391static UINT32
392NvGetRAMIndexOffset(
393   TPMI_RH_NV_INDEX           handle               // IN: NV handle
394   )
395{
396   UINT32         currAddr = 0;
397   while(currAddr < s_ramIndexSize)
398   {
399       TPMI_RH_NV_INDEX    currHandle;
400       UINT32              currSize;
401       memcpy(&currHandle, &s_ramIndex[currAddr + sizeof(UINT32)],
402              sizeof(currHandle));
403         // Found a match
404         if(currHandle == handle)
405              // data buffer follows the handle and size field
406              break;
407         memcpy(&currSize, &s_ramIndex[currAddr], sizeof(currSize));
408         currAddr += sizeof(UINT32) + currSize;
409   }
410   // We assume the index data is existing in RAM space
411   pAssert(currAddr < s_ramIndexSize);
412   return currAddr + sizeof(TPMI_RH_NV_INDEX) + sizeof(UINT32);
413}
414//
415//
416//           NvAddRAM()
417//
418//      This function adds a new data area to RAM.
419//      This function requires that enough free RAM space is available to add the new data.
420//
421static void
422NvAddRAM(
423   TPMI_RH_NV_INDEX           handle,              // IN: NV handle
424   UINT32                     size                 // IN: size of data
425   )
426{
427   // Add data space at the end of reserved RAM buffer
428   UINT32 value = size + sizeof(TPMI_RH_NV_INDEX);
429   memcpy(&s_ramIndex[s_ramIndexSize], &value,
430          sizeof(s_ramIndex[s_ramIndexSize]));
431   memcpy(&s_ramIndex[s_ramIndexSize + sizeof(UINT32)], &handle,
432          sizeof(s_ramIndex[s_ramIndexSize + sizeof(UINT32)]));
433   s_ramIndexSize += sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX) + size;
434   pAssert(s_ramIndexSize <= RAM_INDEX_SPACE);
435   // Update NV version of s_ramIndexSize
436   _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize);
437   // Write reserved RAM space to NV to reflect the newly added NV Index
438   _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
439   return;
440}
441//
442//
443//          NvDeleteRAM()
444//
445//      This function is used to delete a RAM-backed NV Index data area.
446//      This function assumes the data of NV Index exists in RAM
447//
448static void
449NvDeleteRAM(
450   TPMI_RH_NV_INDEX          handle           // IN: NV handle
451   )
452{
453   UINT32             nodeOffset;
454   UINT32             nextNode;
455   UINT32             size;
456   nodeOffset = NvGetRAMIndexOffset(handle);
457   // Move the pointer back to get the size field of this node
458   nodeOffset -= sizeof(UINT32) + sizeof(TPMI_RH_NV_INDEX);
459   // Get node size
460   memcpy(&size, &s_ramIndex[nodeOffset], sizeof(size));
461   // Get the offset of next node
462   nextNode = nodeOffset + sizeof(UINT32) + size;
463   // Move data
464   MemoryMove(s_ramIndex + nodeOffset, s_ramIndex + nextNode,
465              s_ramIndexSize - nextNode, s_ramIndexSize - nextNode);
466   // Update RAM size
467   s_ramIndexSize -= size + sizeof(UINT32);
468   // Update NV version of s_ramIndexSize
469   _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize);
470   // Write reserved RAM space to NV to reflect the newly delete NV Index
471   _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
472   return;
473}
474//
475//
476//
477//           Utility Functions
478//
479//           NvInitStatic()
480//
481//      This function initializes the static variables used in the NV subsystem.
482//
483static void
484NvInitStatic(
485    void
486    )
487{
488    UINT16         i;
489    UINT32         reservedAddr;
490    s_reservedSize[NV_DISABLE_CLEAR] = sizeof(gp.disableClear);
491    s_reservedSize[NV_OWNER_ALG] = sizeof(gp.ownerAlg);
492    s_reservedSize[NV_ENDORSEMENT_ALG] = sizeof(gp.endorsementAlg);
493    s_reservedSize[NV_LOCKOUT_ALG] = sizeof(gp.lockoutAlg);
494    s_reservedSize[NV_OWNER_POLICY] = sizeof(gp.ownerPolicy);
495    s_reservedSize[NV_ENDORSEMENT_POLICY] = sizeof(gp.endorsementPolicy);
496    s_reservedSize[NV_LOCKOUT_POLICY] = sizeof(gp.lockoutPolicy);
497    s_reservedSize[NV_OWNER_AUTH] = sizeof(gp.ownerAuth);
498    s_reservedSize[NV_ENDORSEMENT_AUTH] = sizeof(gp.endorsementAuth);
499    s_reservedSize[NV_LOCKOUT_AUTH] = sizeof(gp.lockoutAuth);
500    s_reservedSize[NV_EP_SEED] = sizeof(gp.EPSeed);
501    s_reservedSize[NV_SP_SEED] = sizeof(gp.SPSeed);
502    s_reservedSize[NV_PP_SEED] = sizeof(gp.PPSeed);
503    s_reservedSize[NV_PH_PROOF] = sizeof(gp.phProof);
504    s_reservedSize[NV_SH_PROOF] = sizeof(gp.shProof);
505    s_reservedSize[NV_EH_PROOF] = sizeof(gp.ehProof);
506    s_reservedSize[NV_TOTAL_RESET_COUNT] = sizeof(gp.totalResetCount);
507    s_reservedSize[NV_RESET_COUNT] = sizeof(gp.resetCount);
508    s_reservedSize[NV_PCR_POLICIES] = sizeof(gp.pcrPolicies);
509    s_reservedSize[NV_PCR_ALLOCATED] = sizeof(gp.pcrAllocated);
510    s_reservedSize[NV_PP_LIST] = sizeof(gp.ppList);
511    s_reservedSize[NV_FAILED_TRIES] = sizeof(gp.failedTries);
512    s_reservedSize[NV_MAX_TRIES] = sizeof(gp.maxTries);
513    s_reservedSize[NV_RECOVERY_TIME] = sizeof(gp.recoveryTime);
514    s_reservedSize[NV_LOCKOUT_RECOVERY] = sizeof(gp.lockoutRecovery);
515    s_reservedSize[NV_LOCKOUT_AUTH_ENABLED] = sizeof(gp.lockOutAuthEnabled);
516    s_reservedSize[NV_ORDERLY] = sizeof(gp.orderlyState);
517    s_reservedSize[NV_AUDIT_COMMANDS] = sizeof(gp.auditComands);
518    s_reservedSize[NV_AUDIT_HASH_ALG] = sizeof(gp.auditHashAlg);
519    s_reservedSize[NV_AUDIT_COUNTER] = sizeof(gp.auditCounter);
520    s_reservedSize[NV_ALGORITHM_SET] = sizeof(gp.algorithmSet);
521    s_reservedSize[NV_FIRMWARE_V1] = sizeof(gp.firmwareV1);
522    s_reservedSize[NV_FIRMWARE_V2] = sizeof(gp.firmwareV2);
523    s_reservedSize[NV_ORDERLY_DATA] = sizeof(go);
524    s_reservedSize[NV_STATE_CLEAR] = sizeof(gc);
525    s_reservedSize[NV_STATE_RESET] = sizeof(gr);
526    // Initialize reserved data address. In this implementation, reserved data
527    // is stored at the start of NV memory
528    reservedAddr = 0;
529    for(i = 0; i < NV_RESERVE_LAST; i++)
530    {
531        s_reservedAddr[i] = reservedAddr;
532        reservedAddr += s_reservedSize[i];
533    }
534    // Initialize auxiliary variable space for index/evict implementation.
535    // Auxiliary variables are stored after reserved data area
536    // RAM index copy starts at the beginning
537    s_ramIndexSizeAddr = reservedAddr;
538    s_ramIndexAddr = s_ramIndexSizeAddr + sizeof(UINT32);
539    // Maximum counter value
540    s_maxCountAddr = s_ramIndexAddr + RAM_INDEX_SPACE;
541    // dynamic memory start
542    s_evictNvStart = s_maxCountAddr + sizeof(UINT64);
543    // dynamic memory ends at the end of NV memory
544    s_evictNvEnd = NV_MEMORY_SIZE;
545    return;
546}
547//
548//
549//           NvInit()
550//
551//      This function initializes the NV system at pre-install time.
552//      This function should only be called in a manufacturing environment or in a simulation.
553//      The layout of NV memory space is an implementation choice.
554//
555void
556NvInit(
557    void
558    )
559{
560    UINT32         nullPointer = 0;
561    UINT64         zeroCounter = 0;
562    // Initialize static variables
563    NvInitStatic();
564    // Initialize RAM index space as unused
565    _plat__NvMemoryWrite(s_ramIndexSizeAddr, sizeof(UINT32), &nullPointer);
566    // Initialize max counter value to 0
567    _plat__NvMemoryWrite(s_maxCountAddr, sizeof(UINT64), &zeroCounter);
568    // Initialize the next offset of the first entry in evict/index list to 0
569    _plat__NvMemoryWrite(s_evictNvStart, sizeof(TPM_HANDLE), &nullPointer);
570    return;
571}
572//
573//
574//           NvReadReserved()
575//
576//      This function is used to move reserved data from NV memory to RAM.
577//
578void
579NvReadReserved(
580    NV_RESERVE           type,               // IN: type of reserved data
581    void                *buffer              // OUT: buffer receives the data.
582    )
583{
584    // Input type should be valid
585    pAssert(type >= 0 && type < NV_RESERVE_LAST);
586    _plat__NvMemoryRead(s_reservedAddr[type], s_reservedSize[type], buffer);
587    return;
588}
589//
590//
591//           NvWriteReserved()
592//
593//      This function is used to post a reserved data for writing to NV memory. Before the TPM completes the
594//      operation, the value will be written.
595//
596void
597NvWriteReserved(
598   NV_RESERVE           type,              // IN: type of reserved data
599   void                *buffer             // IN: data buffer
600   )
601{
602   // Input type should be valid
603   pAssert(type >= 0 && type < NV_RESERVE_LAST);
604   _plat__NvMemoryWrite(s_reservedAddr[type], s_reservedSize[type], buffer);
605   // Set the flag that a NV write happens
606   g_updateNV = TRUE;
607   return;
608}
609//
610//
611//           NvReadPersistent()
612//
613//      This function reads persistent data to the RAM copy of the gp structure.
614//
615void
616NvReadPersistent(
617   void
618   )
619{
620   // Hierarchy persistent data
621   NvReadReserved(NV_DISABLE_CLEAR, &gp.disableClear);
622   NvReadReserved(NV_OWNER_ALG, &gp.ownerAlg);
623   NvReadReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg);
624   NvReadReserved(NV_LOCKOUT_ALG, &gp.lockoutAlg);
625   NvReadReserved(NV_OWNER_POLICY, &gp.ownerPolicy);
626   NvReadReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy);
627   NvReadReserved(NV_LOCKOUT_POLICY, &gp.lockoutPolicy);
628   NvReadReserved(NV_OWNER_AUTH, &gp.ownerAuth);
629   NvReadReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth);
630   NvReadReserved(NV_LOCKOUT_AUTH, &gp.lockoutAuth);
631   NvReadReserved(NV_EP_SEED, &gp.EPSeed);
632   NvReadReserved(NV_SP_SEED, &gp.SPSeed);
633   NvReadReserved(NV_PP_SEED, &gp.PPSeed);
634   NvReadReserved(NV_PH_PROOF, &gp.phProof);
635   NvReadReserved(NV_SH_PROOF, &gp.shProof);
636   NvReadReserved(NV_EH_PROOF, &gp.ehProof);
637   // Time persistent data
638   NvReadReserved(NV_TOTAL_RESET_COUNT, &gp.totalResetCount);
639   NvReadReserved(NV_RESET_COUNT, &gp.resetCount);
640   // PCR persistent data
641   NvReadReserved(NV_PCR_POLICIES, &gp.pcrPolicies);
642   NvReadReserved(NV_PCR_ALLOCATED, &gp.pcrAllocated);
643   // Physical Presence persistent data
644   NvReadReserved(NV_PP_LIST, &gp.ppList);
645   // Dictionary attack values persistent data
646   NvReadReserved(NV_FAILED_TRIES, &gp.failedTries);
647   NvReadReserved(NV_MAX_TRIES, &gp.maxTries);
648   NvReadReserved(NV_RECOVERY_TIME, &gp.recoveryTime);
649//
650    NvReadReserved(NV_LOCKOUT_RECOVERY, &gp.lockoutRecovery);
651    NvReadReserved(NV_LOCKOUT_AUTH_ENABLED, &gp.lockOutAuthEnabled);
652    // Orderly State persistent data
653    NvReadReserved(NV_ORDERLY, &gp.orderlyState);
654    // Command audit values persistent data
655    NvReadReserved(NV_AUDIT_COMMANDS, &gp.auditComands);
656    NvReadReserved(NV_AUDIT_HASH_ALG, &gp.auditHashAlg);
657    NvReadReserved(NV_AUDIT_COUNTER, &gp.auditCounter);
658    // Algorithm selection persistent data
659    NvReadReserved(NV_ALGORITHM_SET, &gp.algorithmSet);
660    // Firmware version persistent data
661#ifdef EMBEDDED_MODE
662   _plat__GetFwVersion(&gp.firmwareV1, &gp.firmwareV2);
663#else
664    NvReadReserved(NV_FIRMWARE_V1, &gp.firmwareV1);
665    NvReadReserved(NV_FIRMWARE_V2, &gp.firmwareV2);
666#endif
667    return;
668}
669//
670//
671//           NvIsPlatformPersistentHandle()
672//
673//      This function indicates if a handle references a persistent object in the range belonging to the platform.
674//
675//      Return Value                      Meaning
676//
677//      TRUE                              handle references a platform persistent object
678//      FALSE                             handle does not reference platform persistent object and may
679//                                        reference an owner persistent object either
680//
681BOOL
682NvIsPlatformPersistentHandle(
683    TPM_HANDLE           handle              // IN: handle
684    )
685{
686    return (handle >= PLATFORM_PERSISTENT && handle <= PERSISTENT_LAST);
687}
688//
689//
690//           NvIsOwnerPersistentHandle()
691//
692//      This function indicates if a handle references a persistent object in the range belonging to the owner.
693//
694//      Return Value                      Meaning
695//
696//      TRUE                              handle is owner persistent handle
697//      FALSE                             handle is not owner persistent handle and may not be a persistent
698//                                        handle at all
699//
700BOOL
701NvIsOwnerPersistentHandle(
702    TPM_HANDLE           handle              // IN: handle
703    )
704{
705    return (handle >= PERSISTENT_FIRST && handle < PLATFORM_PERSISTENT);
706}
707//
708//
709//           NvNextIndex()
710//
711//      This function returns the offset in NV of the next NV Index entry. A value of 0 indicates the end of the list.
712//      Family "2.0"                                   TCG Published                                          Page 131
713//      Level 00 Revision 01.16               Copyright © TCG 2006-2014                            October 30, 2014
714//      Trusted Platform Module Library                                                Part 4: Supporting Routines
715//
716static UINT32
717NvNextIndex(
718   NV_ITER             *iter
719   )
720{
721   UINT32         addr;
722   TPM_HANDLE     handle;
723   while((addr = NvNext(iter)) != 0)
724   {
725       // Read handle
726       _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle);
727       if(HandleGetType(handle) == TPM_HT_NV_INDEX)
728           return addr;
729   }
730   pAssert(addr == 0);
731   return addr;
732}
733//
734//
735//           NvNextEvict()
736//
737//      This function returns the offset in NV of the next evict object entry. A value of 0 indicates the end of the
738//      list.
739//
740static UINT32
741NvNextEvict(
742   NV_ITER             *iter
743   )
744{
745   UINT32         addr;
746   TPM_HANDLE     handle;
747   while((addr = NvNext(iter)) != 0)
748   {
749       // Read handle
750       _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &handle);
751       if(HandleGetType(handle) == TPM_HT_PERSISTENT)
752           return addr;
753   }
754   pAssert(addr == 0);
755   return addr;
756}
757//
758//
759//          NvFindHandle()
760//
761//      this function returns the offset in NV memory of the entity associated with the input handle. A value of
762//      zero indicates that handle does not exist reference an existing persistent object or defined NV Index.
763//
764static UINT32
765NvFindHandle(
766   TPM_HANDLE            handle
767   )
768{
769   UINT32              addr;
770   NV_ITER             iter = NV_ITER_INIT;
771   while((addr = NvNext(&iter)) != 0)
772   {
773       TPM_HANDLE          entityHandle;
774       // Read handle
775//
776          _plat__NvMemoryRead(addr, sizeof(TPM_HANDLE), &entityHandle);
777          if(entityHandle == handle)
778              return addr;
779    }
780    pAssert(addr == 0);
781    return addr;
782}
783
784//
785//   NvCheckAndMigrateIfNeeded()
786//
787// Supported only in EMBEDDED_MODE.
788//
789// Check if the NVRAM storage format changed, and if so - reinitialize the
790// NVRAM. No content migration yet, hopefully it will come one day.
791//
792// Note that the NV_FIRMWARE_V1 and NV_FIRMWARE_V2 values not used to store
793// TPM versoion when in embedded mode are used for NVRAM format version
794// instead.
795//
796//
797static void
798NvCheckAndMigrateIfNeeded(void)
799{
800#ifdef EMBEDDED_MODE
801  UINT32 nv_vers1;
802  UINT32 nv_vers2;
803
804  NvReadReserved(NV_FIRMWARE_V1, &nv_vers1);
805  NvReadReserved(NV_FIRMWARE_V2, &nv_vers2);
806
807  if ((nv_vers1 == ~nv_vers2) && (nv_vers1 == NV_FORMAT_VERSION))
808    return; // All is well.
809
810  // This will reinitialize NVRAM to empty. Migration code will come here
811  // later.
812  NvInit();
813
814  nv_vers1 = NV_FORMAT_VERSION;
815  nv_vers2 = ~NV_FORMAT_VERSION;
816
817  NvWriteReserved(NV_FIRMWARE_V1, &nv_vers1);
818  NvWriteReserved(NV_FIRMWARE_V2, &nv_vers2);
819
820  NvCommit();
821#endif
822}
823
824
825//
826//
827//          NvPowerOn()
828//
829//      This function is called at _TPM_Init() to initialize the NV environment.
830//
831//      Return Value                      Meaning
832//
833//      TRUE                              all NV was initialized
834//      FALSE                             the NV     containing saved     state    had   an   error   and
835//                                        TPM2_Startup(CLEAR) is required
836//
837BOOL
838NvPowerOn(
839    void
840    )
841{
842    int          nvError = 0;
843    // If power was lost, need to re-establish the RAM data that is loaded from
844    // NV and initialize the static variables
845    if(_plat__WasPowerLost(TRUE))
846    {
847        if((nvError = _plat__NVEnable(0)) < 0)
848            FAIL(FATAL_ERROR_NV_UNRECOVERABLE);
849	NvInitStatic();
850	NvCheckAndMigrateIfNeeded();
851    }
852    return nvError == 0;
853}
854//
855//
856//          NvStateSave()
857//
858//      This function is used to cause the memory containing the RAM backed NV Indices to be written to NV.
859//
860void
861NvStateSave(
862    void
863    )
864{
865    // Write RAM backed NV Index info to NV
866    // No need to save s_ramIndexSize because we save it to NV whenever it is
867    // updated.
868    _plat__NvMemoryWrite(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
869    // Set the flag so that an NV write happens before the command completes.
870    g_updateNV = TRUE;
871    return;
872}
873//
874//
875//
876//           NvEntityStartup()
877//
878//      This function is called at TPM_Startup(). If the startup completes a TPM Resume cycle, no action is
879//      taken. If the startup is a TPM Reset or a TPM Restart, then this function will:
880//      a) clear read/write lock;
881//      b) reset NV Index data that has TPMA_NV_CLEAR_STCLEAR SET; and
882//      c) set the lower bits in orderly counters to 1 for a non-orderly startup
883//      It is a prerequisite that NV be available for writing before this function is called.
884//
885void
886NvEntityStartup(
887    STARTUP_TYPE           type               // IN: start up type
888    )
889{
890    NV_ITER                   iter = NV_ITER_INIT;
891    UINT32                    currentAddr;         // offset points to the current entity
892    // Restore RAM index data
893    _plat__NvMemoryRead(s_ramIndexSizeAddr, sizeof(UINT32), &s_ramIndexSize);
894    _plat__NvMemoryRead(s_ramIndexAddr, RAM_INDEX_SPACE, s_ramIndex);
895    // If recovering from state save, do nothing
896    if(type == SU_RESUME)
897        return;
898    // Iterate all the NV Index to clear the locks
899    while((currentAddr = NvNextIndex(&iter)) != 0)
900    {
901        NV_INDEX    nvIndex;
902        UINT32      indexAddr;              // NV address points to index info
903        TPMA_NV     attributes;
904        UINT32      attributesValue;
905        UINT32      publicAreaAttributesValue;
906          indexAddr = currentAddr + sizeof(TPM_HANDLE);
907          // Read NV Index info structure
908          _plat__NvMemoryRead(indexAddr, sizeof(NV_INDEX), &nvIndex);
909          attributes = nvIndex.publicArea.attributes;
910          // Clear read/write lock
911          if(attributes.TPMA_NV_READLOCKED == SET)
912              attributes.TPMA_NV_READLOCKED = CLEAR;
913          if(         attributes.TPMA_NV_WRITELOCKED == SET
914                 &&   (   attributes.TPMA_NV_WRITTEN == CLEAR
915                      || attributes.TPMA_NV_WRITEDEFINE == CLEAR
916                      )
917                )
918                 attributes.TPMA_NV_WRITELOCKED = CLEAR;
919          // Reset NV data for TPMA_NV_CLEAR_STCLEAR
920          if(attributes.TPMA_NV_CLEAR_STCLEAR == SET)
921          {
922              attributes.TPMA_NV_WRITTEN = CLEAR;
923              attributes.TPMA_NV_WRITELOCKED = CLEAR;
924          }
925          // Reset NV data for orderly values that are not counters
926          // NOTE: The function has already exited on a TPM Resume, so the only
927          // things being processed are TPM Restart and TPM Reset
928          if(     type == SU_RESET
929              && attributes.TPMA_NV_ORDERLY == SET
930              && attributes.TPMA_NV_COUNTER == CLEAR
931             )
932                 attributes.TPMA_NV_WRITTEN = CLEAR;
933         // Write NV Index info back if it has changed
934         memcpy(&attributesValue, &attributes, sizeof(attributesValue));
935         memcpy(&publicAreaAttributesValue, &nvIndex.publicArea.attributes,
936                sizeof(publicAreaAttributesValue));
937         if(attributesValue != publicAreaAttributesValue)
938         {
939             nvIndex.publicArea.attributes = attributes;
940             _plat__NvMemoryWrite(indexAddr, sizeof(NV_INDEX), &nvIndex);
941                 // Set the flag that a NV write happens
942                 g_updateNV = TRUE;
943         }
944         // Set the lower bits in an orderly counter to 1 for a non-orderly startup
945         if(    g_prevOrderlyState == SHUTDOWN_NONE
946             && attributes.TPMA_NV_WRITTEN == SET)
947         {
948              if(    attributes.TPMA_NV_ORDERLY == SET
949                  && attributes.TPMA_NV_COUNTER == SET)
950              {
951                   TPMI_RH_NV_INDEX    nvHandle;
952                   UINT64              counter;
953                     // Read NV handle
954                     _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle);
955                     // Read the counter value saved to NV upon the last roll over.
956                     // Do not use RAM backed storage for this once.
957                     nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = CLEAR;
958                     NvGetIntIndexData(nvHandle, &nvIndex, &counter);
959                     nvIndex.publicArea.attributes.TPMA_NV_ORDERLY = SET;
960                     // Set the lower bits of counter to 1's
961                     counter |= MAX_ORDERLY_COUNT;
962                     // Write back to RAM
963                     NvWriteIndexData(nvHandle, &nvIndex, 0, sizeof(counter), &counter);
964                     // No write to NV because an orderly shutdown will update the
965                     // counters.
966                 }
967         }
968   }
969   return;
970}
971//
972//
973//           NV Access Functions
974//
975//             Introduction
976//
977//      This set of functions provide accessing NV Index and persistent objects based using a handle for
978//      reference to the entity.
979//
980//             NvIsUndefinedIndex()
981//
982//      This function is used to verify that an NV Index is not defined. This is only used by
983//      TPM2_NV_DefineSpace().
984//
985//
986//
987//
988//      Return Value                      Meaning
989//
990//      TRUE                              the handle points to an existing NV Index
991//      FALSE                             the handle points to a non-existent Index
992//
993BOOL
994NvIsUndefinedIndex(
995   TPMI_RH_NV_INDEX         handle                 // IN: handle
996   )
997{
998   UINT32             entityAddr;                  // offset points to the entity
999   pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
1000   // Find the address of index
1001   entityAddr = NvFindHandle(handle);
1002   // If handle is not found, return TPM_RC_SUCCESS
1003   if(entityAddr == 0)
1004       return TPM_RC_SUCCESS;
1005   // NV Index is defined
1006   return TPM_RC_NV_DEFINED;
1007}
1008//
1009//
1010//          NvIndexIsAccessible()
1011//
1012//      This function validates that a handle references a defined NV Index and that the Index is currently
1013//      accessible.
1014//
1015//      Error Returns                     Meaning
1016//
1017//      TPM_RC_HANDLE                     the handle points to an undefined NV Index If shEnable is CLEAR,
1018//                                        this would include an index created using ownerAuth. If phEnableNV
1019//                                        is CLEAR, this would include and index created using platform auth
1020//      TPM_RC_NV_READLOCKED              Index is present but locked for reading and command does not write
1021//                                        to the index
1022//      TPM_RC_NV_WRITELOCKED             Index is present but locked for writing and command writes to the
1023//                                        index
1024//
1025TPM_RC
1026NvIndexIsAccessible(
1027   TPMI_RH_NV_INDEX         handle,                // IN: handle
1028   TPM_CC                   commandCode            // IN: the command
1029   )
1030{
1031   UINT32                  entityAddr;             // offset points to the entity
1032   NV_INDEX                nvIndex;                //
1033   pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
1034   // Find the address of index
1035   entityAddr = NvFindHandle(handle);
1036   // If handle is not found, return TPM_RC_HANDLE
1037   if(entityAddr == 0)
1038       return TPM_RC_HANDLE;
1039   // Read NV Index info structure
1040   _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX),
1041                           &nvIndex);
1042   if(gc.shEnable == FALSE || gc.phEnableNV == FALSE)
1043   {
1044       // if shEnable is CLEAR, an ownerCreate NV Index should not be
1045       // indicated as present
1046       if(nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR)
1047       {
1048           if(gc.shEnable == FALSE)
1049               return TPM_RC_HANDLE;
1050       }
1051       // if phEnableNV is CLEAR, a platform created Index should not
1052       // be visible
1053       else if(gc.phEnableNV == FALSE)
1054           return TPM_RC_HANDLE;
1055   }
1056   // If the Index is write locked and this is an NV Write operation...
1057   if(     nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED
1058       && IsWriteOperation(commandCode))
1059   {
1060       // then return a locked indication unless the command is TPM2_NV_WriteLock
1061       if(commandCode != TPM_CC_NV_WriteLock)
1062           return TPM_RC_NV_LOCKED;
1063       return TPM_RC_SUCCESS;
1064   }
1065   // If the Index is read locked and this is an NV Read operation...
1066   if(     nvIndex.publicArea.attributes.TPMA_NV_READLOCKED
1067       && IsReadOperation(commandCode))
1068   {
1069       // then return a locked indication unless the command is TPM2_NV_ReadLock
1070       if(commandCode != TPM_CC_NV_ReadLock)
1071           return TPM_RC_NV_LOCKED;
1072       return TPM_RC_SUCCESS;
1073   }
1074   // NV Index is accessible
1075   return TPM_RC_SUCCESS;
1076}
1077//
1078//
1079//           NvIsUndefinedEvictHandle()
1080//
1081//      This function indicates if a handle does not reference an existing persistent object. This function requires
1082//      that the handle be in the proper range for persistent objects.
1083//
1084//      Return Value                     Meaning
1085//
1086//      TRUE                             handle does not reference an existing persistent object
1087//      FALSE                            handle does reference an existing persistent object
1088//
1089static BOOL
1090NvIsUndefinedEvictHandle(
1091   TPM_HANDLE            handle             // IN: handle
1092   )
1093{
1094   UINT32           entityAddr;    // offset points to the entity
1095   pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);
1096   // Find the address of evict object
1097   entityAddr = NvFindHandle(handle);
1098   // If handle is not found, return TRUE
1099   if(entityAddr == 0)
1100       return TRUE;
1101    else
1102        return FALSE;
1103}
1104
1105//
1106//
1107//           NvUnmarshalObject()
1108//
1109//      This function accepts a buffer containing a marshaled OBJECT
1110//      structure, a pointer to the area where the input data should be
1111//      unmarshaled, and a pointer to the size of the output area.
1112//
1113//      No error checking is performed, unmarshaled data is guaranteed not to
1114//      spill over the allocated space.
1115//
1116static TPM_RC NvUnmarshalObject(OBJECT *o, BYTE **buf, INT32 *size)
1117{
1118    TPM_RC result;
1119
1120    // There is no generated function to unmarshal the attributes field, do it
1121    // by hand.
1122    MemoryCopy(&o->attributes, *buf, sizeof(o->attributes), *size);
1123    *buf += sizeof(o->attributes);
1124    *size -= sizeof(o->attributes);
1125
1126    result = TPMT_PUBLIC_Unmarshal(&o->publicArea, buf, size);
1127    if (result != TPM_RC_SUCCESS)
1128        return result;
1129
1130    result = TPMT_SENSITIVE_Unmarshal(&o->sensitive, buf, size);
1131    if (result != TPM_RC_SUCCESS)
1132        return result;
1133
1134#ifdef TPM_ALG_RSA
1135    result = TPM2B_PUBLIC_KEY_RSA_Unmarshal(&o->privateExponent, buf, size);
1136    if (result != TPM_RC_SUCCESS)
1137        return result;
1138#endif
1139
1140    result = TPM2B_NAME_Unmarshal(&o->qualifiedName, buf, size);
1141    if (result != TPM_RC_SUCCESS)
1142        return result;
1143
1144    result = TPMI_DH_OBJECT_Unmarshal(&o->evictHandle, buf, size, TRUE);
1145    if (result != TPM_RC_SUCCESS)
1146        return result;
1147
1148    return TPM2B_NAME_Unmarshal(&o->name, buf, size);
1149}
1150
1151//
1152//
1153//           NvGetEvictObject()
1154//
1155//      This function is used to dereference an evict object handle and get a pointer to the object.
1156//
1157//      Error Returns                     Meaning
1158//
1159//      TPM_RC_HANDLE                     the handle does not point to an existing persistent object
1160//
1161TPM_RC
1162NvGetEvictObject(
1163    TPM_HANDLE           handle,              // IN: handle
1164    OBJECT              *object               // OUT: object data
1165    )
1166{
1167    UINT32              entityAddr;         // offset points to the entity
1168    TPM_RC              result = TPM_RC_SUCCESS;
1169    pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);
1170    // Find the address of evict object
1171    entityAddr = NvFindHandle(handle);
1172    // If handle is not found, return an error
1173    if(entityAddr == 0) {
1174        result = TPM_RC_HANDLE;
1175    } else {
1176        UINT32   storedSize;
1177        UINT32   nextEntryAddr;
1178
1179        // Let's calculate the size of object as stored in NVMEM.
1180        _plat__NvMemoryRead(entityAddr - sizeof(UINT32),
1181                            sizeof(UINT32), &nextEntryAddr);
1182
1183        storedSize = nextEntryAddr - entityAddr;
1184
1185        if (storedSize == (sizeof(TPM_HANDLE) + sizeof(OBJECT))) {
1186            // Read evict object stored unmarshaled.
1187            _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE),
1188                                sizeof(OBJECT),
1189                                object);
1190        } else {
1191            // Must be stored marshaled, let's unmarshal it.
1192            BYTE marshaled[sizeof(OBJECT)];
1193            INT32 max_size = sizeof(marshaled);
1194            BYTE *marshaledPtr = marshaled;
1195
1196            _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE),
1197                                storedSize, marshaled);
1198            result = NvUnmarshalObject(object,  &marshaledPtr, &max_size);
1199        }
1200    }
1201    // whether there is an error or not, make sure that the evict
1202    // status of the object is set so that the slot will get freed on exit
1203    object->attributes.evict = SET;
1204    return result;
1205}
1206//
1207//
1208//           NvGetIndexInfo()
1209//
1210//      This function is used to retrieve the contents of an NV Index.
1211//      An implementation is allowed to save the NV Index in a vendor-defined format. If the format is different
1212//      from the default used by the reference code, then this function would be changed to reformat the data into
1213//      the default format.
1214//      A prerequisite to calling this function is that the handle must be known to reference a defined NV Index.
1215//
1216void
1217NvGetIndexInfo(
1218    TPMI_RH_NV_INDEX          handle,              // IN: handle
1219    NV_INDEX                 *nvIndex              // OUT: NV index structure
1220    )
1221{
1222    UINT32                    entityAddr;          // offset points to the entity
1223    pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
1224    // Find the address of NV index
1225    entityAddr = NvFindHandle(handle);
1226    pAssert(entityAddr != 0);
1227    // This implementation uses the default format so just
1228    // read the data in
1229    _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX),
1230                        nvIndex);
1231    return;
1232}
1233//
1234//
1235//           NvInitialCounter()
1236//
1237//      This function returns the value to be used when a counter index is initialized. It will scan the NV counters
1238//      and find the highest value in any active counter. It will use that value as the starting point. If there are no
1239//      active counters, it will use the value of the previous largest counter.
1240//
1241UINT64
1242NvInitialCounter(
1243    void
1244    )
1245{
1246    UINT64              maxCount;
1247    NV_ITER             iter = NV_ITER_INIT;
1248    UINT32              currentAddr;
1249    // Read the maxCount value
1250    maxCount = NvReadMaxCount();
1251    // Iterate all existing counters
1252    while((currentAddr = NvNextIndex(&iter)) != 0)
1253    {
1254        TPMI_RH_NV_INDEX    nvHandle;
1255        NV_INDEX            nvIndex;
1256         // Read NV handle
1257         _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &nvHandle);
1258         // Get NV Index
1259         NvGetIndexInfo(nvHandle, &nvIndex);
1260         if(    nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET
1261             && nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET)
1262         {
1263             UINT64      countValue;
1264             // Read counter value
1265             NvGetIntIndexData(nvHandle, &nvIndex, &countValue);
1266             if(countValue > maxCount)
1267                 maxCount = countValue;
1268         }
1269    }
1270    // Initialize the new counter value to be maxCount + 1
1271    // A counter is only initialized the first time it is written. The
1272    // way to write a counter is with TPM2_NV_INCREMENT(). Since the
1273    // "initial" value of a defined counter is the largest count value that
1274    // may have existed in this index previously, then the first use would
1275    // add one to that value.
1276    return maxCount;
1277}
1278//
1279//
1280//           NvGetIndexData()
1281//
1282//      This function is used to access the data in an NV Index. The data is returned as a byte sequence. Since
1283//      counter values are kept in native format, they are converted to canonical form before being returned.
1284//      Family "2.0"                                  TCG Published                                         Page 139
1285//      Level 00 Revision 01.16               Copyright © TCG 2006-2014                            October 30, 2014
1286//      Trusted Platform Module Library                                                Part 4: Supporting Routines
1287//
1288//
1289//      This function requires that the NV Index be defined, and that the required data is within the data range. It
1290//      also requires that TPMA_NV_WRITTEN of the Index is SET.
1291//
1292void
1293NvGetIndexData(
1294    TPMI_RH_NV_INDEX          handle,            //   IN: handle
1295    NV_INDEX                 *nvIndex,           //   IN: RAM image of index header
1296    UINT32                    offset,            //   IN: offset of NV data
1297    UINT16                    size,              //   IN: size of NV data
1298    void                     *data               //   OUT: data buffer
1299    )
1300{
1301    pAssert(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET);
1302    if(   nvIndex->publicArea.attributes.TPMA_NV_BITS == SET
1303       || nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET)
1304    {
1305        // Read bit or counter data in canonical form
1306        UINT64      dataInInt;
1307        NvGetIntIndexData(handle, nvIndex, &dataInInt);
1308        UINT64_TO_BYTE_ARRAY(dataInInt, (BYTE *)data);
1309    }
1310    else
1311    {
1312        if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET)
1313        {
1314            UINT32      ramAddr;
1315              // Get data from RAM buffer
1316              ramAddr = NvGetRAMIndexOffset(handle);
1317              MemoryCopy(data, s_ramIndex + ramAddr + offset, size, size);
1318         }
1319         else
1320         {
1321              UINT32      entityAddr;
1322              entityAddr = NvFindHandle(handle);
1323              // Get data from NV
1324              // Skip NV Index info, read data buffer
1325              entityAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset;
1326              // Read the data
1327              _plat__NvMemoryRead(entityAddr, size, data);
1328        }
1329    }
1330    return;
1331}
1332//
1333//
1334//           NvGetIntIndexData()
1335//
1336//      Get data in integer format of a bit or counter NV Index.
1337//      This function requires that the NV Index is defined and that the NV Index previously has been written.
1338//
1339void
1340NvGetIntIndexData(
1341    TPMI_RH_NV_INDEX          handle,            // IN: handle
1342    NV_INDEX                 *nvIndex,           // IN: RAM image of NV Index header
1343    UINT64                   *data               // IN: UINT64 pointer for counter or bit
1344    )
1345{
1346    // Validate that index has been written and is the right type
1347    pAssert(   nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == SET
1348            && (   nvIndex->publicArea.attributes.TPMA_NV_BITS == SET
1349                || nvIndex->publicArea.attributes.TPMA_NV_COUNTER == SET
1350                   )
1351              );
1352    // bit and counter value is store in native format for TPM CPU.                  So we directly
1353    // copy the contents of NV to output data buffer
1354    if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET)
1355    {
1356        UINT32      ramAddr;
1357          // Get data from RAM buffer
1358          ramAddr = NvGetRAMIndexOffset(handle);
1359          MemoryCopy(data, s_ramIndex + ramAddr, sizeof(*data), sizeof(*data));
1360    }
1361    else
1362    {
1363        UINT32      entityAddr;
1364        entityAddr = NvFindHandle(handle);
1365          // Get data from NV
1366          // Skip NV Index info, read data buffer
1367          _plat__NvMemoryRead(
1368              entityAddr + sizeof(TPM_HANDLE) + sizeof(NV_INDEX),
1369              sizeof(UINT64), data);
1370    }
1371    return;
1372}
1373//
1374//
1375//           NvWriteIndexInfo()
1376//
1377//       This function is called to queue the write of NV Index data to persistent memory.
1378//       This function requires that NV Index is defined.
1379//
1380//       Error Returns                        Meaning
1381//
1382//       TPM_RC_NV_RATE                       NV is rate limiting so retry
1383//       TPM_RC_NV_UNAVAILABLE                NV is not available
1384//
1385TPM_RC
1386NvWriteIndexInfo(
1387    TPMI_RH_NV_INDEX            handle,                // IN: handle
1388    NV_INDEX                   *nvIndex                // IN: NV Index info to be written
1389    )
1390{
1391    UINT32             entryAddr;
1392    TPM_RC             result;
1393    // Get the starting offset for the index in the RAM image of NV
1394    entryAddr = NvFindHandle(handle);
1395    pAssert(entryAddr != 0);
1396    // Step over the link value
1397    entryAddr = entryAddr + sizeof(TPM_HANDLE);
1398    // If the index data is actually changed, then a write to NV is required
1399    if(_plat__NvIsDifferent(entryAddr, sizeof(NV_INDEX),nvIndex))
1400    {
1401        // Make sure that NV is available
1402        result = NvIsAvailable();
1403        if(result != TPM_RC_SUCCESS)
1404            return result;
1405        _plat__NvMemoryWrite(entryAddr, sizeof(NV_INDEX), nvIndex);
1406        g_updateNV = TRUE;
1407    }
1408    return TPM_RC_SUCCESS;
1409}
1410//
1411//
1412//            NvWriteIndexData()
1413//
1414//       This function is used to write NV index data.
1415//       This function requires that the NV Index is defined, and the data is within the defined data range for the
1416//       index.
1417//
1418//       Error Returns                     Meaning
1419//
1420//       TPM_RC_NV_RATE                    NV is rate limiting so retry
1421//       TPM_RC_NV_UNAVAILABLE             NV is not available
1422//
1423TPM_RC
1424NvWriteIndexData(
1425    TPMI_RH_NV_INDEX          handle,               //   IN: handle
1426    NV_INDEX                 *nvIndex,              //   IN: RAM copy of NV Index
1427    UINT32                    offset,               //   IN: offset of NV data
1428    UINT32                    size,                 //   IN: size of NV data
1429    void                     *data                  //   OUT: data buffer
1430    )
1431{
1432    TPM_RC               result;
1433    // Validate that write falls within range of the index
1434    pAssert(nvIndex->publicArea.dataSize >= offset + size);
1435    // Update TPMA_NV_WRITTEN bit if necessary
1436    if(nvIndex->publicArea.attributes.TPMA_NV_WRITTEN == CLEAR)
1437    {
1438        nvIndex->publicArea.attributes.TPMA_NV_WRITTEN = SET;
1439        result = NvWriteIndexInfo(handle, nvIndex);
1440        if(result != TPM_RC_SUCCESS)
1441            return result;
1442    }
1443    // Check to see if process for an orderly index is required.
1444    if(nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == SET)
1445    {
1446        UINT32      ramAddr;
1447          // Write data to RAM buffer
1448          ramAddr = NvGetRAMIndexOffset(handle);
1449          MemoryCopy(s_ramIndex + ramAddr + offset, data, size,
1450                     sizeof(s_ramIndex) - ramAddr - offset);
1451          // NV update does not happen for orderly index. Have
1452          // to clear orderlyState to reflect that we have changed the
1453          // NV and an orderly shutdown is required. Only going to do this if we
1454          // are not processing a counter that has just rolled over
1455          if(g_updateNV == FALSE)
1456              g_clearOrderly = TRUE;
1457    }
1458    // Need to process this part if the Index isn't orderly or if it is
1459    // an orderly counter that just rolled over.
1460    if(g_updateNV || nvIndex->publicArea.attributes.TPMA_NV_ORDERLY == CLEAR)
1461    {
1462        // Processing for an index with TPMA_NV_ORDERLY CLEAR
1463        UINT32      entryAddr = NvFindHandle(handle);
1464          pAssert(entryAddr != 0);
1465//
1466          // Offset into the index to the first byte of the data to be written
1467          entryAddr += sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + offset;
1468          // If the data is actually changed, then a write to NV is required
1469          if(_plat__NvIsDifferent(entryAddr, size, data))
1470          {
1471              // Make sure that NV is available
1472              result = NvIsAvailable();
1473              if(result != TPM_RC_SUCCESS)
1474                  return result;
1475              _plat__NvMemoryWrite(entryAddr, size, data);
1476              g_updateNV = TRUE;
1477          }
1478    }
1479    return TPM_RC_SUCCESS;
1480}
1481//
1482//
1483//            NvGetName()
1484//
1485//       This function is used to compute the Name of an NV Index.
1486//       The name buffer receives the bytes of the Name and the return value is the number of octets in the
1487//       Name.
1488//       This function requires that the NV Index is defined.
1489//
1490UINT16
1491NvGetName(
1492    TPMI_RH_NV_INDEX          handle,            // IN: handle of the index
1493    NAME                     *name               // OUT: name of the index
1494    )
1495{
1496    UINT16                    dataSize, digestSize;
1497    NV_INDEX                  nvIndex;
1498    BYTE                      marshalBuffer[sizeof(TPMS_NV_PUBLIC)];
1499    BYTE                     *buffer;
1500    INT32                     bufferSize;
1501    HASH_STATE                hashState;
1502    // Get NV public info
1503    NvGetIndexInfo(handle, &nvIndex);
1504    // Marshal public area
1505    buffer = marshalBuffer;
1506    bufferSize = sizeof(TPMS_NV_PUBLIC);
1507    dataSize = TPMS_NV_PUBLIC_Marshal(&nvIndex.publicArea, &buffer, &bufferSize);
1508    // hash public area
1509    digestSize = CryptStartHash(nvIndex.publicArea.nameAlg, &hashState);
1510    CryptUpdateDigest(&hashState, dataSize, marshalBuffer);
1511    // Complete digest leaving room for the nameAlg
1512    CryptCompleteHash(&hashState, digestSize, &((BYTE *)name)[2]);
1513    // Include the nameAlg
1514    UINT16_TO_BYTE_ARRAY(nvIndex.publicArea.nameAlg, (BYTE *)name);
1515    return digestSize + 2;
1516}
1517//
1518//
1519//            NvDefineIndex()
1520//
1521//       This function is used to assign NV memory to an NV Index.
1522//
1523//
1524//
1525//       Error Returns                     Meaning
1526//
1527//       TPM_RC_NV_SPACE                   insufficient NV space
1528//
1529TPM_RC
1530NvDefineIndex(
1531   TPMS_NV_PUBLIC      *publicArea,          // IN: A template for an area to create.
1532   TPM2B_AUTH          *authValue            // IN: The initial authorization value
1533   )
1534{
1535   // The buffer to be written to NV memory
1536   BYTE            nvBuffer[sizeof(TPM_HANDLE) + sizeof(NV_INDEX)];
1537   NV_INDEX            *nvIndex;                  // a pointer to the NV_INDEX data in
1538                                                  //   nvBuffer
1539   UINT16              entrySize;                 // size of entry
1540   entrySize = sizeof(TPM_HANDLE) + sizeof(NV_INDEX) + publicArea->dataSize;
1541   // Check if we have enough space to create the NV Index
1542   // In this implementation, the only resource limitation is the available NV
1543   // space. Other implementation may have other limitation on counter or on
1544   // NV slot
1545   if(!NvTestSpace(entrySize, TRUE)) return TPM_RC_NV_SPACE;
1546   // if the index to be defined is RAM backed, check RAM space availability
1547   // as well
1548   if(publicArea->attributes.TPMA_NV_ORDERLY == SET
1549           && !NvTestRAMSpace(publicArea->dataSize))
1550       return TPM_RC_NV_SPACE;
1551   // Copy input value to nvBuffer
1552       // Copy handle
1553   memcpy(nvBuffer, &publicArea->nvIndex, sizeof(TPM_HANDLE));
1554       // Copy NV_INDEX
1555   nvIndex = (NV_INDEX *) (nvBuffer + sizeof(TPM_HANDLE));
1556   nvIndex->publicArea = *publicArea;
1557   nvIndex->authValue = *authValue;
1558   // Add index to NV memory
1559   NvAdd(entrySize, sizeof(TPM_HANDLE) + sizeof(NV_INDEX), nvBuffer);
1560   // If the data of NV Index is RAM backed, add the data area in RAM as well
1561   if(publicArea->attributes.TPMA_NV_ORDERLY == SET)
1562       NvAddRAM(publicArea->nvIndex, publicArea->dataSize);
1563   return TPM_RC_SUCCESS;
1564}
1565
1566//
1567//
1568//           NvMarshalObject()
1569//
1570//      This function marshals the passed in OBJECT structure into a buffer. A
1571//      pointer to pointer to the buffer and a pointer to the size of the
1572//      buffer are passed in for this function to update as appropriate.
1573//
1574//      On top of marshaling the object, this function also modifies one of
1575//      the object's properties and sets the evictHandle field of the
1576//      marshaled object to the requested value.
1577//
1578//      Returns
1579//
1580//      Marshaled size of the object.
1581//
1582static UINT16 NvMarshalObject(OBJECT *o, TPMI_DH_OBJECT evictHandle,
1583                              BYTE **buf, INT32 *size)
1584{
1585    UINT16 marshaledSize;
1586    OBJECT_ATTRIBUTES stored_attributes;
1587
1588    stored_attributes = o->attributes;
1589    stored_attributes.evict = SET;
1590    marshaledSize = sizeof(stored_attributes);
1591    MemoryCopy(*buf, &stored_attributes, marshaledSize, *size);
1592    *buf += marshaledSize;
1593    *size -= marshaledSize;
1594
1595    marshaledSize += TPMT_PUBLIC_Marshal(&o->publicArea, buf, size);
1596    marshaledSize += TPMT_SENSITIVE_Marshal(&o->sensitive, buf, size);
1597#ifdef TPM_ALG_RSA
1598    marshaledSize += TPM2B_PUBLIC_KEY_RSA_Marshal(&o->privateExponent,
1599                                                  buf, size);
1600#endif
1601    marshaledSize += TPM2B_NAME_Marshal(&o->qualifiedName, buf, size);
1602
1603    // Use the supplied handle instead of the object contents.
1604    marshaledSize += TPMI_DH_OBJECT_Marshal(&evictHandle, buf, size);
1605    marshaledSize += TPM2B_NAME_Marshal(&o->name, buf, size);
1606
1607    return marshaledSize;
1608}
1609
1610//
1611//
1612//           NvAddEvictObject()
1613//
1614//       This function is used to assign NV memory to a persistent object.
1615//
1616//       Error Returns                     Meaning
1617//
1618//       TPM_RC_NV_HANDLE                  the requested handle is already in use
1619//       TPM_RC_NV_SPACE                   insufficient NV space
1620//
1621TPM_RC
1622NvAddEvictObject(
1623   TPMI_DH_OBJECT       evictHandle,         // IN: new evict handle
1624//
1625    OBJECT              *object              // IN: object to be added
1626    )
1627{
1628    // The buffer to be written to NV memory
1629    BYTE            nvBuffer[sizeof(TPM_HANDLE) + sizeof(OBJECT)];
1630    UINT16              entrySize;                // size of entry
1631    BYTE                *marshalSpace;
1632    INT32               marshalRoom;
1633
1634    // evict handle type should match the object hierarchy
1635    pAssert(   (   NvIsPlatformPersistentHandle(evictHandle)
1636                && object->attributes.ppsHierarchy == SET)
1637            || (   NvIsOwnerPersistentHandle(evictHandle)
1638                && (   object->attributes.spsHierarchy == SET
1639                    || object->attributes.epsHierarchy == SET)));
1640
1641    // Do not attemp storing a duplicate handle.
1642    if(!NvIsUndefinedEvictHandle(evictHandle))
1643        return TPM_RC_NV_DEFINED;
1644
1645        // Copy handle
1646    entrySize = sizeof(TPM_HANDLE);
1647    memcpy(nvBuffer, &evictHandle, entrySize);
1648
1649    // Let's serialize the object before storing it in NVMEM
1650    marshalSpace = nvBuffer + entrySize;
1651    marshalRoom = sizeof(nvBuffer) - entrySize;
1652    entrySize += NvMarshalObject(object, evictHandle,
1653                                 &marshalSpace, &marshalRoom);
1654
1655    // Check if we have enough space to add this evict object
1656    if(!NvTestSpace(entrySize, FALSE)) return TPM_RC_NV_SPACE;
1657
1658    // Add evict to NV memory
1659    NvAdd(entrySize, entrySize, nvBuffer);
1660    return TPM_RC_SUCCESS;
1661}
1662//
1663//
1664//           NvDeleteEntity()
1665//
1666//       This function will delete a NV Index or an evict object.
1667//       This function requires that the index/evict object has been defined.
1668//
1669void
1670NvDeleteEntity(
1671    TPM_HANDLE           handle              // IN: handle of entity to be deleted
1672    )
1673{
1674    UINT32         entityAddr;         // pointer to entity
1675    entityAddr = NvFindHandle(handle);
1676    pAssert(entityAddr != 0);
1677    if(HandleGetType(handle) == TPM_HT_NV_INDEX)
1678    {
1679        NV_INDEX    nvIndex;
1680          // Read the NV Index info
1681          _plat__NvMemoryRead(entityAddr + sizeof(TPM_HANDLE), sizeof(NV_INDEX),
1682                              &nvIndex);
1683          // If the entity to be deleted is a counter with the maximum counter
1684          // value, record it in NV memory
1685          if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET
1686                  && nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET)
1687          {
1688              UINT64      countValue;
1689              UINT64      maxCount;
1690              NvGetIntIndexData(handle, &nvIndex, &countValue);
1691              maxCount = NvReadMaxCount();
1692              if(countValue > maxCount)
1693                  NvWriteMaxCount(countValue);
1694          }
1695          // If the NV Index is RAM back, delete the RAM data as well
1696          if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET)
1697              NvDeleteRAM(handle);
1698    }
1699    NvDelete(entityAddr);
1700    return;
1701}
1702//
1703//
1704//            NvFlushHierarchy()
1705//
1706//       This function will delete persistent objects belonging to the indicated If the storage hierarchy is selected,
1707//       the function will also delete any NV Index define using ownerAuth.
1708//
1709void
1710NvFlushHierarchy(
1711    TPMI_RH_HIERARCHY         hierarchy          // IN: hierarchy to be flushed.
1712    )
1713{
1714    NV_ITER             iter = NV_ITER_INIT;
1715    UINT32              currentAddr;
1716    while((currentAddr = NvNext(&iter)) != 0)
1717    {
1718        TPM_HANDLE      entityHandle;
1719          // Read handle information.
1720          _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle);
1721          if(HandleGetType(entityHandle) == TPM_HT_NV_INDEX)
1722          {
1723              // Handle NV Index
1724              NV_INDEX    nvIndex;
1725              // If flush endorsement or platform hierarchy, no NV Index would be
1726              // flushed
1727              if(hierarchy == TPM_RH_ENDORSEMENT || hierarchy == TPM_RH_PLATFORM)
1728                  continue;
1729              _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE),
1730                                  sizeof(NV_INDEX), &nvIndex);
1731              // For storage hierarchy, flush OwnerCreated index
1732               if(    nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == CLEAR)
1733               {
1734                     // Delete the NV Index
1735                     NvDelete(currentAddr);
1736                     // Re-iterate from beginning after a delete
1737                     iter = NV_ITER_INIT;
1738                     // If the NV Index is RAM back, delete the RAM data as well
1739                     if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET)
1740                         NvDeleteRAM(entityHandle);
1741              }
1742          }
1743          else if(HandleGetType(entityHandle) == TPM_HT_PERSISTENT)
1744          {
1745              OBJECT          object;
1746               // Get evict object
1747               NvGetEvictObject(entityHandle, &object);
1748               // If the evict object belongs to the hierarchy to be flushed
1749               if(     (    hierarchy == TPM_RH_PLATFORM
1750                        && object.attributes.ppsHierarchy == SET)
1751                   || (     hierarchy == TPM_RH_OWNER
1752                        && object.attributes.spsHierarchy == SET)
1753                   || (     hierarchy == TPM_RH_ENDORSEMENT
1754                        && object.attributes.epsHierarchy == SET)
1755                   )
1756               {
1757                     // Delete the evict object
1758                     NvDelete(currentAddr);
1759                     // Re-iterate from beginning after a delete
1760                     iter = NV_ITER_INIT;
1761               }
1762          }
1763          else
1764          {
1765               pAssert(FALSE);
1766          }
1767   }
1768   return;
1769}
1770//
1771//
1772//              NvSetGlobalLock()
1773//
1774//       This function is used to SET the TPMA_NV_WRITELOCKED attribute for all NV Indices that have
1775//       TPMA_NV_GLOBALLOCK SET. This function is use by TPM2_NV_GlobalWriteLock().
1776//
1777void
1778NvSetGlobalLock(
1779   void
1780   )
1781{
1782   NV_ITER               iter = NV_ITER_INIT;
1783   UINT32                currentAddr;
1784   // Check all Indices
1785   while((currentAddr = NvNextIndex(&iter)) != 0)
1786   {
1787       NV_INDEX    nvIndex;
1788          // Read the index data
1789          _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE),
1790                              sizeof(NV_INDEX), &nvIndex);
1791          // See if it should be locked
1792          if(nvIndex.publicArea.attributes.TPMA_NV_GLOBALLOCK == SET)
1793          {
1794                // if so, lock it
1795                nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED = SET;
1796                _plat__NvMemoryWrite(currentAddr + sizeof(TPM_HANDLE),
1797                                     sizeof(NV_INDEX), &nvIndex);
1798                // Set the flag that a NV write happens
1799                g_updateNV = TRUE;
1800          }
1801   }
1802   return;
1803}
1804//
1805//
1806//              InsertSort()
1807//
1808//       Sort a handle into handle list in ascending order. The total handle number in the list should not exceed
1809//       MAX_CAP_HANDLES
1810//
1811static void
1812InsertSort(
1813   TPML_HANDLE           *handleList,     // IN/OUT: sorted handle list
1814   UINT32                 count,          // IN: maximum count in the handle list
1815   TPM_HANDLE             entityHandle    // IN: handle to be inserted
1816   )
1817{
1818   UINT32                i, j;
1819   UINT32                originalCount;
1820   // For a corner case that the maximum count is 0, do nothing
1821   if(count == 0) return;
1822   // For empty list, add the handle at the beginning and return
1823   if(handleList->count == 0)
1824   {
1825       handleList->handle[0] = entityHandle;
1826       handleList->count++;
1827       return;
1828   }
1829   // Check if the maximum of the list has been reached
1830   originalCount = handleList->count;
1831   if(originalCount < count)
1832       handleList->count++;
1833   // Insert the handle to the list
1834   for(i = 0; i < originalCount; i++)
1835   {
1836       if(handleList->handle[i] > entityHandle)
1837       {
1838           for(j = handleList->count - 1; j > i; j--)
1839           {
1840               handleList->handle[j] = handleList->handle[j-1];
1841           }
1842           break;
1843       }
1844   }
1845     // If a slot was found, insert the handle in this position
1846     if(i < originalCount || handleList->count > originalCount)
1847         handleList->handle[i] = entityHandle;
1848     return;
1849}
1850//
1851//
1852//            NvCapGetPersistent()
1853//
1854//       This function is used to get a list of handles of the persistent objects, starting at handle.
1855//       Handle must be in valid persistent object handle range, but does not have to reference an existing
1856//       persistent object.
1857//
1858//       Return Value                      Meaning
1859//
1860//       YES                               if there are more handles available
1861//       NO                                all the available handles has been returned
1862//
1863TPMI_YES_NO
1864NvCapGetPersistent(
1865     TPMI_DH_OBJECT       handle,            // IN: start handle
1866     UINT32               count,             // IN: maximum number of returned handle
1867     TPML_HANDLE         *handleList         // OUT: list of handle
1868     )
1869{
1870     TPMI_YES_NO               more = NO;
1871     NV_ITER                   iter = NV_ITER_INIT;
1872     UINT32                    currentAddr;
1873     pAssert(HandleGetType(handle) == TPM_HT_PERSISTENT);
1874     // Initialize output handle list
1875     handleList->count = 0;
1876     // The maximum count of handles we may return is MAX_CAP_HANDLES
1877     if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;
1878     while((currentAddr = NvNextEvict(&iter)) != 0)
1879     {
1880         TPM_HANDLE      entityHandle;
1881          // Read handle information.
1882          _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle);
1883          // Ignore persistent handles that have values less than the input handle
1884          if(entityHandle < handle)
1885              continue;
1886          // if the handles in the list have reached the requested count, and there
1887          // are still handles need to be inserted, indicate that there are more.
1888          if(handleList->count == count)
1889              more = YES;
1890          // A handle with a value larger than start handle is a candidate
1891          // for return. Insert sort it to the return list. Insert sort algorithm
1892          // is chosen here for simplicity based on the assumption that the total
1893          // number of NV Indices is small. For an implementation that may allow
1894          // large number of NV Indices, a more efficient sorting algorithm may be
1895          // used here.
1896          InsertSort(handleList, count, entityHandle);
1897//
1898     }
1899     return more;
1900}
1901//
1902//
1903//            NvCapGetIndex()
1904//
1905//       This function returns a list of handles of NV Indices, starting from handle. Handle must be in the range of
1906//       NV Indices, but does not have to reference an existing NV Index.
1907//
1908//       Return Value                      Meaning
1909//
1910//       YES                               if there are more handles to report
1911//       NO                                all the available handles has been reported
1912//
1913TPMI_YES_NO
1914NvCapGetIndex(
1915     TPMI_DH_OBJECT     handle,              // IN: start handle
1916     UINT32             count,               // IN: maximum number of returned handle
1917     TPML_HANDLE       *handleList           // OUT: list of handle
1918     )
1919{
1920     TPMI_YES_NO             more = NO;
1921     NV_ITER                 iter = NV_ITER_INIT;
1922     UINT32                  currentAddr;
1923     pAssert(HandleGetType(handle) == TPM_HT_NV_INDEX);
1924     // Initialize output handle list
1925     handleList->count = 0;
1926     // The maximum count of handles we may return is MAX_CAP_HANDLES
1927     if(count > MAX_CAP_HANDLES) count = MAX_CAP_HANDLES;
1928     while((currentAddr = NvNextIndex(&iter)) != 0)
1929     {
1930         TPM_HANDLE      entityHandle;
1931          // Read handle information.
1932          _plat__NvMemoryRead(currentAddr, sizeof(TPM_HANDLE), &entityHandle);
1933          // Ignore index handles that have values less than the 'handle'
1934          if(entityHandle < handle)
1935              continue;
1936          // if the count of handles in the list has reached the requested count,
1937          // and there are still handles to report, set more.
1938          if(handleList->count == count)
1939              more = YES;
1940          // A handle with a value larger than start handle is a candidate
1941          // for return. Insert sort it to the return list. Insert sort algorithm
1942          // is chosen here for simplicity based on the assumption that the total
1943          // number of NV Indices is small. For an implementation that may allow
1944          // large number of NV Indices, a more efficient sorting algorithm may be
1945          // used here.
1946          InsertSort(handleList, count, entityHandle);
1947     }
1948     return more;
1949}
1950//
1951//
1952//
1953//           NvCapGetIndexNumber()
1954//
1955//       This function returns the count of NV Indexes currently defined.
1956//
1957UINT32
1958NvCapGetIndexNumber(
1959   void
1960   )
1961{
1962   UINT32              num = 0;
1963   NV_ITER             iter = NV_ITER_INIT;
1964   while(NvNextIndex(&iter) != 0) num++;
1965   return num;
1966}
1967//
1968//
1969//           NvCapGetPersistentNumber()
1970//
1971//       Function returns the count of persistent objects currently in NV memory.
1972//
1973UINT32
1974NvCapGetPersistentNumber(
1975   void
1976   )
1977{
1978   UINT32              num = 0;
1979   NV_ITER             iter = NV_ITER_INIT;
1980   while(NvNextEvict(&iter) != 0) num++;
1981   return num;
1982}
1983//
1984//
1985//           NvCapGetPersistentAvail()
1986//
1987//       This function returns an estimate of the number of additional persistent objects that could be loaded into
1988//       NV memory.
1989//
1990UINT32
1991NvCapGetPersistentAvail(
1992   void
1993   )
1994{
1995   UINT32              availSpace;
1996   UINT32              objectSpace;
1997   // Compute the available space in NV storage
1998   availSpace = NvGetFreeByte();
1999   // Get the space needed to add a persistent object to NV storage
2000   objectSpace = NvGetEvictObjectSize();
2001   return availSpace / objectSpace;
2002}
2003//
2004//
2005//           NvCapGetCounterNumber()
2006//
2007//       Get the number of defined NV Indexes that have NV TPMA_NV_COUNTER attribute SET.
2008//
2009//
2010UINT32
2011NvCapGetCounterNumber(
2012   void
2013   )
2014{
2015   NV_ITER             iter = NV_ITER_INIT;
2016   UINT32              currentAddr;
2017   UINT32              num = 0;
2018   while((currentAddr = NvNextIndex(&iter)) != 0)
2019   {
2020       NV_INDEX    nvIndex;
2021          // Get NV Index info
2022          _plat__NvMemoryRead(currentAddr + sizeof(TPM_HANDLE),
2023                               sizeof(NV_INDEX), &nvIndex);
2024          if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET) num++;
2025   }
2026   return num;
2027}
2028//
2029//
2030//            NvCapGetCounterAvail()
2031//
2032//       This function returns an estimate of the number of additional counter type NV Indices that can be defined.
2033//
2034UINT32
2035NvCapGetCounterAvail(
2036   void
2037   )
2038{
2039   UINT32              availNVSpace;
2040   UINT32              availRAMSpace;
2041   UINT32              counterNVSpace;
2042   UINT32              counterRAMSpace;
2043   UINT32              persistentNum = NvCapGetPersistentNumber();
2044   // Get the available space in NV storage
2045   availNVSpace = NvGetFreeByte();
2046   if (persistentNum < MIN_EVICT_OBJECTS)
2047   {
2048       // Some space have to be reserved for evict object. Adjust availNVSpace.
2049       UINT32       reserved = (MIN_EVICT_OBJECTS - persistentNum)
2050                              * NvGetEvictObjectSize();
2051       if (reserved > availNVSpace)
2052            availNVSpace = 0;
2053       else
2054            availNVSpace -= reserved;
2055   }
2056   // Get the space needed to add a counter index to NV storage
2057   counterNVSpace = NvGetCounterSize();
2058   // Compute the available space in RAM
2059   availRAMSpace = RAM_INDEX_SPACE - s_ramIndexSize;
2060   // Compute the space needed to add a counter index to RAM storage
2061   // It takes an size field, a handle and sizeof(UINT64) for counter data
2062   counterRAMSpace = sizeof(UINT32) + sizeof(TPM_HANDLE) + sizeof(UINT64);
2063   // Return the min of counter number in NV and in RAM
2064   if(availNVSpace / counterNVSpace > availRAMSpace / counterRAMSpace)
2065       return availRAMSpace / counterRAMSpace;
2066     else
2067         return availNVSpace / counterNVSpace;
2068}
2069