1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Platform-specific code for Win32.
6
7// Secure API functions are not available using MinGW with msvcrt.dll
8// on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9// disable definition of secure API functions in standard headers that
10// would conflict with our own implementation.
11#ifdef __MINGW32__
12#include <_mingw.h>
13#ifdef MINGW_HAS_SECURE_API
14#undef MINGW_HAS_SECURE_API
15#endif  // MINGW_HAS_SECURE_API
16#endif  // __MINGW32__
17
18#include <limits>
19
20#include "src/base/win32-headers.h"
21
22#include "src/base/bits.h"
23#include "src/base/lazy-instance.h"
24#include "src/base/macros.h"
25#include "src/base/platform/platform.h"
26#include "src/base/platform/time.h"
27#include "src/base/utils/random-number-generator.h"
28
29
30// Extra functions for MinGW. Most of these are the _s functions which are in
31// the Microsoft Visual Studio C++ CRT.
32#ifdef __MINGW32__
33
34
35#ifndef __MINGW64_VERSION_MAJOR
36
37#define _TRUNCATE 0
38#define STRUNCATE 80
39
40inline void MemoryBarrier() {
41  int barrier = 0;
42  __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
43}
44
45#endif  // __MINGW64_VERSION_MAJOR
46
47
48int localtime_s(tm* out_tm, const time_t* time) {
49  tm* posix_local_time_struct = localtime_r(time, out_tm);
50  if (posix_local_time_struct == NULL) return 1;
51  return 0;
52}
53
54
55int fopen_s(FILE** pFile, const char* filename, const char* mode) {
56  *pFile = fopen(filename, mode);
57  return *pFile != NULL ? 0 : 1;
58}
59
60int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
61                 const char* format, va_list argptr) {
62  DCHECK(count == _TRUNCATE);
63  return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
64}
65
66
67int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
68  CHECK(source != NULL);
69  CHECK(dest != NULL);
70  CHECK_GT(dest_size, 0);
71
72  if (count == _TRUNCATE) {
73    while (dest_size > 0 && *source != 0) {
74      *(dest++) = *(source++);
75      --dest_size;
76    }
77    if (dest_size == 0) {
78      *(dest - 1) = 0;
79      return STRUNCATE;
80    }
81  } else {
82    while (dest_size > 0 && count > 0 && *source != 0) {
83      *(dest++) = *(source++);
84      --dest_size;
85      --count;
86    }
87  }
88  CHECK_GT(dest_size, 0);
89  *dest = 0;
90  return 0;
91}
92
93#endif  // __MINGW32__
94
95namespace v8 {
96namespace base {
97
98namespace {
99
100bool g_hard_abort = false;
101
102}  // namespace
103
104class TimezoneCache {
105 public:
106  TimezoneCache() : initialized_(false) { }
107
108  void Clear() {
109    initialized_ = false;
110  }
111
112  // Initialize timezone information. The timezone information is obtained from
113  // windows. If we cannot get the timezone information we fall back to CET.
114  void InitializeIfNeeded() {
115    // Just return if timezone information has already been initialized.
116    if (initialized_) return;
117
118    // Initialize POSIX time zone data.
119    _tzset();
120    // Obtain timezone information from operating system.
121    memset(&tzinfo_, 0, sizeof(tzinfo_));
122    if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
123      // If we cannot get timezone information we fall back to CET.
124      tzinfo_.Bias = -60;
125      tzinfo_.StandardDate.wMonth = 10;
126      tzinfo_.StandardDate.wDay = 5;
127      tzinfo_.StandardDate.wHour = 3;
128      tzinfo_.StandardBias = 0;
129      tzinfo_.DaylightDate.wMonth = 3;
130      tzinfo_.DaylightDate.wDay = 5;
131      tzinfo_.DaylightDate.wHour = 2;
132      tzinfo_.DaylightBias = -60;
133    }
134
135    // Make standard and DST timezone names.
136    WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
137                        std_tz_name_, kTzNameSize, NULL, NULL);
138    std_tz_name_[kTzNameSize - 1] = '\0';
139    WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
140                        dst_tz_name_, kTzNameSize, NULL, NULL);
141    dst_tz_name_[kTzNameSize - 1] = '\0';
142
143    // If OS returned empty string or resource id (like "@tzres.dll,-211")
144    // simply guess the name from the UTC bias of the timezone.
145    // To properly resolve the resource identifier requires a library load,
146    // which is not possible in a sandbox.
147    if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
148      OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
149                   "%s Standard Time",
150                   GuessTimezoneNameFromBias(tzinfo_.Bias));
151    }
152    if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
153      OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
154                   "%s Daylight Time",
155                   GuessTimezoneNameFromBias(tzinfo_.Bias));
156    }
157    // Timezone information initialized.
158    initialized_ = true;
159  }
160
161  // Guess the name of the timezone from the bias.
162  // The guess is very biased towards the northern hemisphere.
163  const char* GuessTimezoneNameFromBias(int bias) {
164    static const int kHour = 60;
165    switch (-bias) {
166      case -9*kHour: return "Alaska";
167      case -8*kHour: return "Pacific";
168      case -7*kHour: return "Mountain";
169      case -6*kHour: return "Central";
170      case -5*kHour: return "Eastern";
171      case -4*kHour: return "Atlantic";
172      case  0*kHour: return "GMT";
173      case +1*kHour: return "Central Europe";
174      case +2*kHour: return "Eastern Europe";
175      case +3*kHour: return "Russia";
176      case +5*kHour + 30: return "India";
177      case +8*kHour: return "China";
178      case +9*kHour: return "Japan";
179      case +12*kHour: return "New Zealand";
180      default: return "Local";
181    }
182  }
183
184
185 private:
186  static const int kTzNameSize = 128;
187  bool initialized_;
188  char std_tz_name_[kTzNameSize];
189  char dst_tz_name_[kTzNameSize];
190  TIME_ZONE_INFORMATION tzinfo_;
191  friend class Win32Time;
192};
193
194
195// ----------------------------------------------------------------------------
196// The Time class represents time on win32. A timestamp is represented as
197// a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
198// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
199// January 1, 1970.
200
201class Win32Time {
202 public:
203  // Constructors.
204  Win32Time();
205  explicit Win32Time(double jstime);
206  Win32Time(int year, int mon, int day, int hour, int min, int sec);
207
208  // Convert timestamp to JavaScript representation.
209  double ToJSTime();
210
211  // Set timestamp to current time.
212  void SetToCurrentTime();
213
214  // Returns the local timezone offset in milliseconds east of UTC. This is
215  // the number of milliseconds you must add to UTC to get local time, i.e.
216  // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
217  // routine also takes into account whether daylight saving is effect
218  // at the time.
219  int64_t LocalOffset(TimezoneCache* cache);
220
221  // Returns the daylight savings time offset for the time in milliseconds.
222  int64_t DaylightSavingsOffset(TimezoneCache* cache);
223
224  // Returns a string identifying the current timezone for the
225  // timestamp taking into account daylight saving.
226  char* LocalTimezone(TimezoneCache* cache);
227
228 private:
229  // Constants for time conversion.
230  static const int64_t kTimeEpoc = 116444736000000000LL;
231  static const int64_t kTimeScaler = 10000;
232  static const int64_t kMsPerMinute = 60000;
233
234  // Constants for timezone information.
235  static const bool kShortTzNames = false;
236
237  // Return whether or not daylight savings time is in effect at this time.
238  bool InDST(TimezoneCache* cache);
239
240  // Accessor for FILETIME representation.
241  FILETIME& ft() { return time_.ft_; }
242
243  // Accessor for integer representation.
244  int64_t& t() { return time_.t_; }
245
246  // Although win32 uses 64-bit integers for representing timestamps,
247  // these are packed into a FILETIME structure. The FILETIME structure
248  // is just a struct representing a 64-bit integer. The TimeStamp union
249  // allows access to both a FILETIME and an integer representation of
250  // the timestamp.
251  union TimeStamp {
252    FILETIME ft_;
253    int64_t t_;
254  };
255
256  TimeStamp time_;
257};
258
259
260// Initialize timestamp to start of epoc.
261Win32Time::Win32Time() {
262  t() = 0;
263}
264
265
266// Initialize timestamp from a JavaScript timestamp.
267Win32Time::Win32Time(double jstime) {
268  t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
269}
270
271
272// Initialize timestamp from date/time components.
273Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
274  SYSTEMTIME st;
275  st.wYear = year;
276  st.wMonth = mon;
277  st.wDay = day;
278  st.wHour = hour;
279  st.wMinute = min;
280  st.wSecond = sec;
281  st.wMilliseconds = 0;
282  SystemTimeToFileTime(&st, &ft());
283}
284
285
286// Convert timestamp to JavaScript timestamp.
287double Win32Time::ToJSTime() {
288  return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
289}
290
291
292// Set timestamp to current time.
293void Win32Time::SetToCurrentTime() {
294  // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
295  // Because we're fast, we like fast timers which have at least a
296  // 1ms resolution.
297  //
298  // timeGetTime() provides 1ms granularity when combined with
299  // timeBeginPeriod().  If the host application for v8 wants fast
300  // timers, it can use timeBeginPeriod to increase the resolution.
301  //
302  // Using timeGetTime() has a drawback because it is a 32bit value
303  // and hence rolls-over every ~49days.
304  //
305  // To use the clock, we use GetSystemTimeAsFileTime as our base;
306  // and then use timeGetTime to extrapolate current time from the
307  // start time.  To deal with rollovers, we resync the clock
308  // any time when more than kMaxClockElapsedTime has passed or
309  // whenever timeGetTime creates a rollover.
310
311  static bool initialized = false;
312  static TimeStamp init_time;
313  static DWORD init_ticks;
314  static const int64_t kHundredNanosecondsPerSecond = 10000000;
315  static const int64_t kMaxClockElapsedTime =
316      60*kHundredNanosecondsPerSecond;  // 1 minute
317
318  // If we are uninitialized, we need to resync the clock.
319  bool needs_resync = !initialized;
320
321  // Get the current time.
322  TimeStamp time_now;
323  GetSystemTimeAsFileTime(&time_now.ft_);
324  DWORD ticks_now = timeGetTime();
325
326  // Check if we need to resync due to clock rollover.
327  needs_resync |= ticks_now < init_ticks;
328
329  // Check if we need to resync due to elapsed time.
330  needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
331
332  // Check if we need to resync due to backwards time change.
333  needs_resync |= time_now.t_ < init_time.t_;
334
335  // Resync the clock if necessary.
336  if (needs_resync) {
337    GetSystemTimeAsFileTime(&init_time.ft_);
338    init_ticks = ticks_now = timeGetTime();
339    initialized = true;
340  }
341
342  // Finally, compute the actual time.  Why is this so hard.
343  DWORD elapsed = ticks_now - init_ticks;
344  this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
345}
346
347
348// Return the local timezone offset in milliseconds east of UTC. This
349// takes into account whether daylight saving is in effect at the time.
350// Only times in the 32-bit Unix range may be passed to this function.
351// Also, adding the time-zone offset to the input must not overflow.
352// The function EquivalentTime() in date.js guarantees this.
353int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
354  cache->InitializeIfNeeded();
355
356  Win32Time rounded_to_second(*this);
357  rounded_to_second.t() =
358      rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
359  // Convert to local time using POSIX localtime function.
360  // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
361  // very slow.  Other browsers use localtime().
362
363  // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
364  // POSIX seconds past 1/1/1970 0:00:00.
365  double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
366  if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
367    return 0;
368  }
369  // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
370  time_t posix_time = static_cast<time_t>(unchecked_posix_time);
371
372  // Convert to local time, as struct with fields for day, hour, year, etc.
373  tm posix_local_time_struct;
374  if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
375
376  if (posix_local_time_struct.tm_isdst > 0) {
377    return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
378  } else if (posix_local_time_struct.tm_isdst == 0) {
379    return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
380  } else {
381    return cache->tzinfo_.Bias * -kMsPerMinute;
382  }
383}
384
385
386// Return whether or not daylight savings time is in effect at this time.
387bool Win32Time::InDST(TimezoneCache* cache) {
388  cache->InitializeIfNeeded();
389
390  // Determine if DST is in effect at the specified time.
391  bool in_dst = false;
392  if (cache->tzinfo_.StandardDate.wMonth != 0 ||
393      cache->tzinfo_.DaylightDate.wMonth != 0) {
394    // Get the local timezone offset for the timestamp in milliseconds.
395    int64_t offset = LocalOffset(cache);
396
397    // Compute the offset for DST. The bias parameters in the timezone info
398    // are specified in minutes. These must be converted to milliseconds.
399    int64_t dstofs =
400        -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
401
402    // If the local time offset equals the timezone bias plus the daylight
403    // bias then DST is in effect.
404    in_dst = offset == dstofs;
405  }
406
407  return in_dst;
408}
409
410
411// Return the daylight savings time offset for this time.
412int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
413  return InDST(cache) ? 60 * kMsPerMinute : 0;
414}
415
416
417// Returns a string identifying the current timezone for the
418// timestamp taking into account daylight saving.
419char* Win32Time::LocalTimezone(TimezoneCache* cache) {
420  // Return the standard or DST time zone name based on whether daylight
421  // saving is in effect at the given time.
422  return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
423}
424
425
426// Returns the accumulated user time for thread.
427int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
428  FILETIME dummy;
429  uint64_t usertime;
430
431  // Get the amount of time that the thread has executed in user mode.
432  if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
433                      reinterpret_cast<FILETIME*>(&usertime))) return -1;
434
435  // Adjust the resolution to micro-seconds.
436  usertime /= 10;
437
438  // Convert to seconds and microseconds
439  *secs = static_cast<uint32_t>(usertime / 1000000);
440  *usecs = static_cast<uint32_t>(usertime % 1000000);
441  return 0;
442}
443
444
445// Returns current time as the number of milliseconds since
446// 00:00:00 UTC, January 1, 1970.
447double OS::TimeCurrentMillis() {
448  return Time::Now().ToJsTime();
449}
450
451
452TimezoneCache* OS::CreateTimezoneCache() {
453  return new TimezoneCache();
454}
455
456
457void OS::DisposeTimezoneCache(TimezoneCache* cache) {
458  delete cache;
459}
460
461
462void OS::ClearTimezoneCache(TimezoneCache* cache) {
463  cache->Clear();
464}
465
466
467// Returns a string identifying the current timezone taking into
468// account daylight saving.
469const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
470  return Win32Time(time).LocalTimezone(cache);
471}
472
473
474// Returns the local time offset in milliseconds east of UTC without
475// taking daylight savings time into account.
476double OS::LocalTimeOffset(TimezoneCache* cache) {
477  // Use current time, rounded to the millisecond.
478  Win32Time t(TimeCurrentMillis());
479  // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
480  return static_cast<double>(t.LocalOffset(cache) -
481                             t.DaylightSavingsOffset(cache));
482}
483
484
485// Returns the daylight savings offset in milliseconds for the given
486// time.
487double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
488  int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
489  return static_cast<double>(offset);
490}
491
492
493int OS::GetLastError() {
494  return ::GetLastError();
495}
496
497
498int OS::GetCurrentProcessId() {
499  return static_cast<int>(::GetCurrentProcessId());
500}
501
502
503int OS::GetCurrentThreadId() {
504  return static_cast<int>(::GetCurrentThreadId());
505}
506
507
508// ----------------------------------------------------------------------------
509// Win32 console output.
510//
511// If a Win32 application is linked as a console application it has a normal
512// standard output and standard error. In this case normal printf works fine
513// for output. However, if the application is linked as a GUI application,
514// the process doesn't have a console, and therefore (debugging) output is lost.
515// This is the case if we are embedded in a windows program (like a browser).
516// In order to be able to get debug output in this case the the debugging
517// facility using OutputDebugString. This output goes to the active debugger
518// for the process (if any). Else the output can be monitored using DBMON.EXE.
519
520enum OutputMode {
521  UNKNOWN,  // Output method has not yet been determined.
522  CONSOLE,  // Output is written to stdout.
523  ODS       // Output is written to debug facility.
524};
525
526static OutputMode output_mode = UNKNOWN;  // Current output mode.
527
528
529// Determine if the process has a console for output.
530static bool HasConsole() {
531  // Only check the first time. Eventual race conditions are not a problem,
532  // because all threads will eventually determine the same mode.
533  if (output_mode == UNKNOWN) {
534    // We cannot just check that the standard output is attached to a console
535    // because this would fail if output is redirected to a file. Therefore we
536    // say that a process does not have an output console if either the
537    // standard output handle is invalid or its file type is unknown.
538    if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
539        GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
540      output_mode = CONSOLE;
541    else
542      output_mode = ODS;
543  }
544  return output_mode == CONSOLE;
545}
546
547
548static void VPrintHelper(FILE* stream, const char* format, va_list args) {
549  if ((stream == stdout || stream == stderr) && !HasConsole()) {
550    // It is important to use safe print here in order to avoid
551    // overflowing the buffer. We might truncate the output, but this
552    // does not crash.
553    char buffer[4096];
554    OS::VSNPrintF(buffer, sizeof(buffer), format, args);
555    OutputDebugStringA(buffer);
556  } else {
557    vfprintf(stream, format, args);
558  }
559}
560
561
562FILE* OS::FOpen(const char* path, const char* mode) {
563  FILE* result;
564  if (fopen_s(&result, path, mode) == 0) {
565    return result;
566  } else {
567    return NULL;
568  }
569}
570
571
572bool OS::Remove(const char* path) {
573  return (DeleteFileA(path) != 0);
574}
575
576char OS::DirectorySeparator() { return '\\'; }
577
578bool OS::isDirectorySeparator(const char ch) {
579  return ch == '/' || ch == '\\';
580}
581
582
583FILE* OS::OpenTemporaryFile() {
584  // tmpfile_s tries to use the root dir, don't use it.
585  char tempPathBuffer[MAX_PATH];
586  DWORD path_result = 0;
587  path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
588  if (path_result > MAX_PATH || path_result == 0) return NULL;
589  UINT name_result = 0;
590  char tempNameBuffer[MAX_PATH];
591  name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
592  if (name_result == 0) return NULL;
593  FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
594  if (result != NULL) {
595    Remove(tempNameBuffer);  // Delete on close.
596  }
597  return result;
598}
599
600
601// Open log file in binary mode to avoid /n -> /r/n conversion.
602const char* const OS::LogFileOpenMode = "wb";
603
604
605// Print (debug) message to console.
606void OS::Print(const char* format, ...) {
607  va_list args;
608  va_start(args, format);
609  VPrint(format, args);
610  va_end(args);
611}
612
613
614void OS::VPrint(const char* format, va_list args) {
615  VPrintHelper(stdout, format, args);
616}
617
618
619void OS::FPrint(FILE* out, const char* format, ...) {
620  va_list args;
621  va_start(args, format);
622  VFPrint(out, format, args);
623  va_end(args);
624}
625
626
627void OS::VFPrint(FILE* out, const char* format, va_list args) {
628  VPrintHelper(out, format, args);
629}
630
631
632// Print error message to console.
633void OS::PrintError(const char* format, ...) {
634  va_list args;
635  va_start(args, format);
636  VPrintError(format, args);
637  va_end(args);
638}
639
640
641void OS::VPrintError(const char* format, va_list args) {
642  VPrintHelper(stderr, format, args);
643}
644
645
646int OS::SNPrintF(char* str, int length, const char* format, ...) {
647  va_list args;
648  va_start(args, format);
649  int result = VSNPrintF(str, length, format, args);
650  va_end(args);
651  return result;
652}
653
654
655int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
656  int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
657  // Make sure to zero-terminate the string if the output was
658  // truncated or if there was an error.
659  if (n < 0 || n >= length) {
660    if (length > 0)
661      str[length - 1] = '\0';
662    return -1;
663  } else {
664    return n;
665  }
666}
667
668
669char* OS::StrChr(char* str, int c) {
670  return const_cast<char*>(strchr(str, c));
671}
672
673
674void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
675  // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
676  size_t buffer_size = static_cast<size_t>(length);
677  if (n + 1 > buffer_size)  // count for trailing '\0'
678    n = _TRUNCATE;
679  int result = strncpy_s(dest, length, src, n);
680  USE(result);
681  DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
682}
683
684
685#undef _TRUNCATE
686#undef STRUNCATE
687
688
689// Get the system's page size used by VirtualAlloc() or the next power
690// of two. The reason for always returning a power of two is that the
691// rounding up in OS::Allocate expects that.
692static size_t GetPageSize() {
693  static size_t page_size = 0;
694  if (page_size == 0) {
695    SYSTEM_INFO info;
696    GetSystemInfo(&info);
697    page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
698  }
699  return page_size;
700}
701
702
703// The allocation alignment is the guaranteed alignment for
704// VirtualAlloc'ed blocks of memory.
705size_t OS::AllocateAlignment() {
706  static size_t allocate_alignment = 0;
707  if (allocate_alignment == 0) {
708    SYSTEM_INFO info;
709    GetSystemInfo(&info);
710    allocate_alignment = info.dwAllocationGranularity;
711  }
712  return allocate_alignment;
713}
714
715
716static LazyInstance<RandomNumberGenerator>::type
717    platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
718
719
720void OS::Initialize(int64_t random_seed, bool hard_abort,
721                    const char* const gc_fake_mmap) {
722  if (random_seed) {
723    platform_random_number_generator.Pointer()->SetSeed(random_seed);
724  }
725  g_hard_abort = hard_abort;
726}
727
728
729void* OS::GetRandomMmapAddr() {
730  // The address range used to randomize RWX allocations in OS::Allocate
731  // Try not to map pages into the default range that windows loads DLLs
732  // Use a multiple of 64k to prevent committing unused memory.
733  // Note: This does not guarantee RWX regions will be within the
734  // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
735#ifdef V8_HOST_ARCH_64_BIT
736  static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
737  static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
738#else
739  static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
740  static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
741#endif
742  uintptr_t address;
743  platform_random_number_generator.Pointer()->NextBytes(&address,
744                                                        sizeof(address));
745  address <<= kPageSizeBits;
746  address += kAllocationRandomAddressMin;
747  address &= kAllocationRandomAddressMax;
748  return reinterpret_cast<void *>(address);
749}
750
751
752static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
753  LPVOID base = NULL;
754  static BOOL use_aslr = -1;
755#ifdef V8_HOST_ARCH_32_BIT
756  // Don't bother randomizing on 32-bit hosts, because they lack the room and
757  // don't have viable ASLR anyway.
758  if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
759    use_aslr = FALSE;
760#else
761  use_aslr = TRUE;
762#endif
763
764  if (use_aslr &&
765      (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS)) {
766    // For executable pages try and randomize the allocation address
767    for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
768      base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
769    }
770  }
771
772  // After three attempts give up and let the OS find an address to use.
773  if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
774
775  return base;
776}
777
778
779void* OS::Allocate(const size_t requested,
780                   size_t* allocated,
781                   bool is_executable) {
782  // VirtualAlloc rounds allocated size to page size automatically.
783  size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
784
785  // Windows XP SP2 allows Data Excution Prevention (DEP).
786  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
787
788  LPVOID mbase = RandomizedVirtualAlloc(msize,
789                                        MEM_COMMIT | MEM_RESERVE,
790                                        prot);
791
792  if (mbase == NULL) return NULL;
793
794  DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
795
796  *allocated = msize;
797  return mbase;
798}
799
800void* OS::AllocateGuarded(const size_t requested) {
801  return VirtualAlloc(nullptr, requested, MEM_RESERVE, PAGE_NOACCESS);
802}
803
804void OS::Free(void* address, const size_t size) {
805  // TODO(1240712): VirtualFree has a return value which is ignored here.
806  VirtualFree(address, 0, MEM_RELEASE);
807  USE(size);
808}
809
810
811intptr_t OS::CommitPageSize() {
812  return 4096;
813}
814
815
816void OS::ProtectCode(void* address, const size_t size) {
817  DWORD old_protect;
818  VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
819}
820
821
822void OS::Guard(void* address, const size_t size) {
823  DWORD oldprotect;
824  VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
825}
826
827void OS::Unprotect(void* address, const size_t size) {
828  LPVOID result = VirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE);
829  DCHECK_IMPLIES(result != nullptr, GetLastError() == 0);
830}
831
832void OS::Sleep(TimeDelta interval) {
833  ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
834}
835
836
837void OS::Abort() {
838  if (g_hard_abort) {
839    V8_IMMEDIATE_CRASH();
840  }
841  // Make the MSVCRT do a silent abort.
842  raise(SIGABRT);
843
844  // Make sure function doesn't return.
845  abort();
846}
847
848
849void OS::DebugBreak() {
850#if V8_CC_MSVC
851  // To avoid Visual Studio runtime support the following code can be used
852  // instead
853  // __asm { int 3 }
854  __debugbreak();
855#else
856  ::DebugBreak();
857#endif
858}
859
860
861class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
862 public:
863  Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
864                        size_t size)
865      : file_(file),
866        file_mapping_(file_mapping),
867        memory_(memory),
868        size_(size) {}
869  ~Win32MemoryMappedFile() final;
870  void* memory() const final { return memory_; }
871  size_t size() const final { return size_; }
872
873 private:
874  HANDLE const file_;
875  HANDLE const file_mapping_;
876  void* const memory_;
877  size_t const size_;
878};
879
880
881// static
882OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
883  // Open a physical file
884  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
885      FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
886  if (file == INVALID_HANDLE_VALUE) return NULL;
887
888  DWORD size = GetFileSize(file, NULL);
889
890  // Create a file mapping for the physical file
891  HANDLE file_mapping =
892      CreateFileMapping(file, NULL, PAGE_READWRITE, 0, size, NULL);
893  if (file_mapping == NULL) return NULL;
894
895  // Map a view of the file into memory
896  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
897  return new Win32MemoryMappedFile(file, file_mapping, memory, size);
898}
899
900
901// static
902OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
903                                                   size_t size, void* initial) {
904  // Open a physical file
905  HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
906                            FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
907                            OPEN_ALWAYS, 0, NULL);
908  if (file == NULL) return NULL;
909  // Create a file mapping for the physical file
910  HANDLE file_mapping = CreateFileMapping(file, NULL, PAGE_READWRITE, 0,
911                                          static_cast<DWORD>(size), NULL);
912  if (file_mapping == NULL) return NULL;
913  // Map a view of the file into memory
914  void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
915  if (memory) memmove(memory, initial, size);
916  return new Win32MemoryMappedFile(file, file_mapping, memory, size);
917}
918
919
920Win32MemoryMappedFile::~Win32MemoryMappedFile() {
921  if (memory_) UnmapViewOfFile(memory_);
922  CloseHandle(file_mapping_);
923  CloseHandle(file_);
924}
925
926
927// The following code loads functions defined in DbhHelp.h and TlHelp32.h
928// dynamically. This is to avoid being depending on dbghelp.dll and
929// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
930// kernel32.dll at some point so loading functions defines in TlHelp32.h
931// dynamically might not be necessary any more - for some versions of Windows?).
932
933// Function pointers to functions dynamically loaded from dbghelp.dll.
934#define DBGHELP_FUNCTION_LIST(V)  \
935  V(SymInitialize)                \
936  V(SymGetOptions)                \
937  V(SymSetOptions)                \
938  V(SymGetSearchPath)             \
939  V(SymLoadModule64)              \
940  V(StackWalk64)                  \
941  V(SymGetSymFromAddr64)          \
942  V(SymGetLineFromAddr64)         \
943  V(SymFunctionTableAccess64)     \
944  V(SymGetModuleBase64)
945
946// Function pointers to functions dynamically loaded from dbghelp.dll.
947#define TLHELP32_FUNCTION_LIST(V)  \
948  V(CreateToolhelp32Snapshot)      \
949  V(Module32FirstW)                \
950  V(Module32NextW)
951
952// Define the decoration to use for the type and variable name used for
953// dynamically loaded DLL function..
954#define DLL_FUNC_TYPE(name) _##name##_
955#define DLL_FUNC_VAR(name) _##name
956
957// Define the type for each dynamically loaded DLL function. The function
958// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
959// from the Windows include files are redefined here to have the function
960// definitions to be as close to the ones in the original .h files as possible.
961#ifndef IN
962#define IN
963#endif
964#ifndef VOID
965#define VOID void
966#endif
967
968// DbgHelp isn't supported on MinGW yet
969#ifndef __MINGW32__
970// DbgHelp.h functions.
971typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
972                                                       IN PSTR UserSearchPath,
973                                                       IN BOOL fInvadeProcess);
974typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
975typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
976typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
977    IN HANDLE hProcess,
978    OUT PSTR SearchPath,
979    IN DWORD SearchPathLength);
980typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
981    IN HANDLE hProcess,
982    IN HANDLE hFile,
983    IN PSTR ImageName,
984    IN PSTR ModuleName,
985    IN DWORD64 BaseOfDll,
986    IN DWORD SizeOfDll);
987typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
988    DWORD MachineType,
989    HANDLE hProcess,
990    HANDLE hThread,
991    LPSTACKFRAME64 StackFrame,
992    PVOID ContextRecord,
993    PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
994    PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
995    PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
996    PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
997typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
998    IN HANDLE hProcess,
999    IN DWORD64 qwAddr,
1000    OUT PDWORD64 pdwDisplacement,
1001    OUT PIMAGEHLP_SYMBOL64 Symbol);
1002typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1003    IN HANDLE hProcess,
1004    IN DWORD64 qwAddr,
1005    OUT PDWORD pdwDisplacement,
1006    OUT PIMAGEHLP_LINE64 Line64);
1007// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1008typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1009    HANDLE hProcess,
1010    DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1011typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1012    HANDLE hProcess,
1013    DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1014
1015// TlHelp32.h functions.
1016typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1017    DWORD dwFlags,
1018    DWORD th32ProcessID);
1019typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1020                                                        LPMODULEENTRY32W lpme);
1021typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1022                                                       LPMODULEENTRY32W lpme);
1023
1024#undef IN
1025#undef VOID
1026
1027// Declare a variable for each dynamically loaded DLL function.
1028#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1029DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1030TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1031#undef DEF_DLL_FUNCTION
1032
1033// Load the functions. This function has a lot of "ugly" macros in order to
1034// keep down code duplication.
1035
1036static bool LoadDbgHelpAndTlHelp32() {
1037  static bool dbghelp_loaded = false;
1038
1039  if (dbghelp_loaded) return true;
1040
1041  HMODULE module;
1042
1043  // Load functions from the dbghelp.dll module.
1044  module = LoadLibrary(TEXT("dbghelp.dll"));
1045  if (module == NULL) {
1046    return false;
1047  }
1048
1049#define LOAD_DLL_FUNC(name)                                                 \
1050  DLL_FUNC_VAR(name) =                                                      \
1051      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1052
1053DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1054
1055#undef LOAD_DLL_FUNC
1056
1057  // Load functions from the kernel32.dll module (the TlHelp32.h function used
1058  // to be in tlhelp32.dll but are now moved to kernel32.dll).
1059  module = LoadLibrary(TEXT("kernel32.dll"));
1060  if (module == NULL) {
1061    return false;
1062  }
1063
1064#define LOAD_DLL_FUNC(name)                                                 \
1065  DLL_FUNC_VAR(name) =                                                      \
1066      reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1067
1068TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1069
1070#undef LOAD_DLL_FUNC
1071
1072  // Check that all functions where loaded.
1073  bool result =
1074#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1075
1076DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1077TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1078
1079#undef DLL_FUNC_LOADED
1080  true;
1081
1082  dbghelp_loaded = result;
1083  return result;
1084  // NOTE: The modules are never unloaded and will stay around until the
1085  // application is closed.
1086}
1087
1088#undef DBGHELP_FUNCTION_LIST
1089#undef TLHELP32_FUNCTION_LIST
1090#undef DLL_FUNC_VAR
1091#undef DLL_FUNC_TYPE
1092
1093
1094// Load the symbols for generating stack traces.
1095static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1096    HANDLE process_handle) {
1097  static std::vector<OS::SharedLibraryAddress> result;
1098
1099  static bool symbols_loaded = false;
1100
1101  if (symbols_loaded) return result;
1102
1103  BOOL ok;
1104
1105  // Initialize the symbol engine.
1106  ok = _SymInitialize(process_handle,  // hProcess
1107                      NULL,            // UserSearchPath
1108                      false);          // fInvadeProcess
1109  if (!ok) return result;
1110
1111  DWORD options = _SymGetOptions();
1112  options |= SYMOPT_LOAD_LINES;
1113  options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1114  options = _SymSetOptions(options);
1115
1116  char buf[OS::kStackWalkMaxNameLen] = {0};
1117  ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1118  if (!ok) {
1119    int err = GetLastError();
1120    OS::Print("%d\n", err);
1121    return result;
1122  }
1123
1124  HANDLE snapshot = _CreateToolhelp32Snapshot(
1125      TH32CS_SNAPMODULE,       // dwFlags
1126      GetCurrentProcessId());  // th32ProcessId
1127  if (snapshot == INVALID_HANDLE_VALUE) return result;
1128  MODULEENTRY32W module_entry;
1129  module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1130  BOOL cont = _Module32FirstW(snapshot, &module_entry);
1131  while (cont) {
1132    DWORD64 base;
1133    // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1134    // both unicode and ASCII strings even though the parameter is PSTR.
1135    base = _SymLoadModule64(
1136        process_handle,                                       // hProcess
1137        0,                                                    // hFile
1138        reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1139        reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1140        reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1141        module_entry.modBaseSize);                            // SizeOfDll
1142    if (base == 0) {
1143      int err = GetLastError();
1144      if (err != ERROR_MOD_NOT_FOUND &&
1145          err != ERROR_INVALID_HANDLE) {
1146        result.clear();
1147        return result;
1148      }
1149    }
1150    int lib_name_length = WideCharToMultiByte(
1151        CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1152    std::string lib_name(lib_name_length, 0);
1153    WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1154                        lib_name_length, NULL, NULL);
1155    result.push_back(OS::SharedLibraryAddress(
1156        lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
1157        reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
1158                                    module_entry.modBaseSize)));
1159    cont = _Module32NextW(snapshot, &module_entry);
1160  }
1161  CloseHandle(snapshot);
1162
1163  symbols_loaded = true;
1164  return result;
1165}
1166
1167
1168std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1169  // SharedLibraryEvents are logged when loading symbol information.
1170  // Only the shared libraries loaded at the time of the call to
1171  // GetSharedLibraryAddresses are logged.  DLLs loaded after
1172  // initialization are not accounted for.
1173  if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1174  HANDLE process_handle = GetCurrentProcess();
1175  return LoadSymbols(process_handle);
1176}
1177
1178
1179void OS::SignalCodeMovingGC() {
1180}
1181
1182
1183#else  // __MINGW32__
1184std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1185  return std::vector<OS::SharedLibraryAddress>();
1186}
1187
1188
1189void OS::SignalCodeMovingGC() { }
1190#endif  // __MINGW32__
1191
1192
1193int OS::ActivationFrameAlignment() {
1194#ifdef _WIN64
1195  return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1196#elif defined(__MINGW32__)
1197  // With gcc 4.4 the tree vectorization optimizer can generate code
1198  // that requires 16 byte alignment such as movdqa on x86.
1199  return 16;
1200#else
1201  return 8;  // Floating-point math runs faster with 8-byte alignment.
1202#endif
1203}
1204
1205
1206VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1207
1208
1209VirtualMemory::VirtualMemory(size_t size)
1210    : address_(ReserveRegion(size)), size_(size) { }
1211
1212
1213VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1214    : address_(NULL), size_(0) {
1215  DCHECK((alignment % OS::AllocateAlignment()) == 0);
1216  size_t request_size = RoundUp(size + alignment,
1217                                static_cast<intptr_t>(OS::AllocateAlignment()));
1218  void* address = ReserveRegion(request_size);
1219  if (address == NULL) return;
1220  uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
1221  // Try reducing the size by freeing and then reallocating a specific area.
1222  bool result = ReleaseRegion(address, request_size);
1223  USE(result);
1224  DCHECK(result);
1225  address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1226  if (address != NULL) {
1227    request_size = size;
1228    DCHECK(base == static_cast<uint8_t*>(address));
1229  } else {
1230    // Resizing failed, just go with a bigger area.
1231    address = ReserveRegion(request_size);
1232    if (address == NULL) return;
1233  }
1234  address_ = address;
1235  size_ = request_size;
1236}
1237
1238
1239VirtualMemory::~VirtualMemory() {
1240  if (IsReserved()) {
1241    bool result = ReleaseRegion(address(), size());
1242    DCHECK(result);
1243    USE(result);
1244  }
1245}
1246
1247
1248bool VirtualMemory::IsReserved() {
1249  return address_ != NULL;
1250}
1251
1252
1253void VirtualMemory::Reset() {
1254  address_ = NULL;
1255  size_ = 0;
1256}
1257
1258
1259bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1260  return CommitRegion(address, size, is_executable);
1261}
1262
1263
1264bool VirtualMemory::Uncommit(void* address, size_t size) {
1265  DCHECK(IsReserved());
1266  return UncommitRegion(address, size);
1267}
1268
1269
1270bool VirtualMemory::Guard(void* address) {
1271  if (NULL == VirtualAlloc(address,
1272                           OS::CommitPageSize(),
1273                           MEM_COMMIT,
1274                           PAGE_NOACCESS)) {
1275    return false;
1276  }
1277  return true;
1278}
1279
1280
1281void* VirtualMemory::ReserveRegion(size_t size) {
1282  return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1283}
1284
1285
1286bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1287  int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1288  if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1289    return false;
1290  }
1291  return true;
1292}
1293
1294
1295bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1296  return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1297}
1298
1299bool VirtualMemory::ReleasePartialRegion(void* base, size_t size,
1300                                         void* free_start, size_t free_size) {
1301  return VirtualFree(free_start, free_size, MEM_DECOMMIT) != 0;
1302}
1303
1304bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1305  return VirtualFree(base, 0, MEM_RELEASE) != 0;
1306}
1307
1308
1309bool VirtualMemory::HasLazyCommits() {
1310  // TODO(alph): implement for the platform.
1311  return false;
1312}
1313
1314
1315// ----------------------------------------------------------------------------
1316// Win32 thread support.
1317
1318// Definition of invalid thread handle and id.
1319static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1320
1321// Entry point for threads. The supplied argument is a pointer to the thread
1322// object. The entry function dispatches to the run method in the thread
1323// object. It is important that this function has __stdcall calling
1324// convention.
1325static unsigned int __stdcall ThreadEntry(void* arg) {
1326  Thread* thread = reinterpret_cast<Thread*>(arg);
1327  thread->NotifyStartedAndRun();
1328  return 0;
1329}
1330
1331
1332class Thread::PlatformData {
1333 public:
1334  explicit PlatformData(HANDLE thread) : thread_(thread) {}
1335  HANDLE thread_;
1336  unsigned thread_id_;
1337};
1338
1339
1340// Initialize a Win32 thread object. The thread has an invalid thread
1341// handle until it is started.
1342
1343Thread::Thread(const Options& options)
1344    : stack_size_(options.stack_size()),
1345      start_semaphore_(NULL) {
1346  data_ = new PlatformData(kNoThread);
1347  set_name(options.name());
1348}
1349
1350
1351void Thread::set_name(const char* name) {
1352  OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1353  name_[sizeof(name_) - 1] = '\0';
1354}
1355
1356
1357// Close our own handle for the thread.
1358Thread::~Thread() {
1359  if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1360  delete data_;
1361}
1362
1363
1364// Create a new thread. It is important to use _beginthreadex() instead of
1365// the Win32 function CreateThread(), because the CreateThread() does not
1366// initialize thread specific structures in the C runtime library.
1367void Thread::Start() {
1368  data_->thread_ = reinterpret_cast<HANDLE>(
1369      _beginthreadex(NULL,
1370                     static_cast<unsigned>(stack_size_),
1371                     ThreadEntry,
1372                     this,
1373                     0,
1374                     &data_->thread_id_));
1375}
1376
1377
1378// Wait for thread to terminate.
1379void Thread::Join() {
1380  if (data_->thread_id_ != GetCurrentThreadId()) {
1381    WaitForSingleObject(data_->thread_, INFINITE);
1382  }
1383}
1384
1385
1386Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1387  DWORD result = TlsAlloc();
1388  DCHECK(result != TLS_OUT_OF_INDEXES);
1389  return static_cast<LocalStorageKey>(result);
1390}
1391
1392
1393void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1394  BOOL result = TlsFree(static_cast<DWORD>(key));
1395  USE(result);
1396  DCHECK(result);
1397}
1398
1399
1400void* Thread::GetThreadLocal(LocalStorageKey key) {
1401  return TlsGetValue(static_cast<DWORD>(key));
1402}
1403
1404
1405void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1406  BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1407  USE(result);
1408  DCHECK(result);
1409}
1410
1411}  // namespace base
1412}  // namespace v8
1413