1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_FACTORY_H_
6#define V8_FACTORY_H_
7
8#include "src/feedback-vector.h"
9#include "src/globals.h"
10#include "src/isolate.h"
11#include "src/messages.h"
12#include "src/objects/scope-info.h"
13
14namespace v8 {
15namespace internal {
16
17class BoilerplateDescription;
18class ConstantElementsPair;
19
20enum FunctionMode {
21  // With prototype.
22  FUNCTION_WITH_WRITEABLE_PROTOTYPE,
23  FUNCTION_WITH_READONLY_PROTOTYPE,
24  // Without prototype.
25  FUNCTION_WITHOUT_PROTOTYPE
26};
27
28// Interface for handle based allocation.
29class V8_EXPORT_PRIVATE Factory final {
30 public:
31  Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
32                             Handle<Object> to_number, const char* type_of,
33                             byte kind);
34
35  // Allocates a fixed array initialized with undefined values.
36  Handle<FixedArray> NewFixedArray(int size,
37                                   PretenureFlag pretenure = NOT_TENURED);
38  // Tries allocating a fixed array initialized with undefined values.
39  // In case of an allocation failure (OOM) an empty handle is returned.
40  // The caller has to manually signal an
41  // v8::internal::Heap::FatalProcessOutOfMemory typically by calling
42  // NewFixedArray as a fallback.
43  MUST_USE_RESULT
44  MaybeHandle<FixedArray> TryNewFixedArray(
45      int size, PretenureFlag pretenure = NOT_TENURED);
46
47  // Allocate a new fixed array with non-existing entries (the hole).
48  Handle<FixedArray> NewFixedArrayWithHoles(
49      int size,
50      PretenureFlag pretenure = NOT_TENURED);
51
52  // Allocates an uninitialized fixed array. It must be filled by the caller.
53  Handle<FixedArray> NewUninitializedFixedArray(int size);
54
55  // Allocates a fixed array for name-value pairs of boilerplate properties and
56  // calculates the number of properties we need to store in the backing store.
57  Handle<BoilerplateDescription> NewBoilerplateDescription(int boilerplate,
58                                                           int all_properties,
59                                                           int index_keys,
60                                                           bool has_seen_proto);
61
62  // Allocate a new uninitialized fixed double array.
63  // The function returns a pre-allocated empty fixed array for capacity = 0,
64  // so the return type must be the general fixed array class.
65  Handle<FixedArrayBase> NewFixedDoubleArray(
66      int size,
67      PretenureFlag pretenure = NOT_TENURED);
68
69  // Allocate a new fixed double array with hole values.
70  Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
71      int size,
72      PretenureFlag pretenure = NOT_TENURED);
73
74  Handle<FrameArray> NewFrameArray(int number_of_frames,
75                                   PretenureFlag pretenure = NOT_TENURED);
76
77  Handle<OrderedHashSet> NewOrderedHashSet();
78  Handle<OrderedHashMap> NewOrderedHashMap();
79
80  // Create a new PrototypeInfo struct.
81  Handle<PrototypeInfo> NewPrototypeInfo();
82
83  // Create a new Tuple2 struct.
84  Handle<Tuple2> NewTuple2(Handle<Object> value1, Handle<Object> value2);
85
86  // Create a new Tuple3 struct.
87  Handle<Tuple3> NewTuple3(Handle<Object> value1, Handle<Object> value2,
88                           Handle<Object> value3);
89
90  // Create a new ContextExtension struct.
91  Handle<ContextExtension> NewContextExtension(Handle<ScopeInfo> scope_info,
92                                               Handle<Object> extension);
93
94  // Create a new ConstantElementsPair struct.
95  Handle<ConstantElementsPair> NewConstantElementsPair(
96      ElementsKind elements_kind, Handle<FixedArrayBase> constant_values);
97
98  // Create a pre-tenured empty AccessorPair.
99  Handle<AccessorPair> NewAccessorPair();
100
101  // Create an empty TypeFeedbackInfo.
102  Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
103
104  // Finds the internalized copy for string in the string table.
105  // If not found, a new string is added to the table and returned.
106  Handle<String> InternalizeUtf8String(Vector<const char> str);
107  Handle<String> InternalizeUtf8String(const char* str) {
108    return InternalizeUtf8String(CStrVector(str));
109  }
110
111  Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
112  Handle<String> InternalizeOneByteString(
113      Handle<SeqOneByteString>, int from, int length);
114
115  Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
116
117  template<class StringTableKey>
118  Handle<String> InternalizeStringWithKey(StringTableKey* key);
119
120  // Internalized strings are created in the old generation (data space).
121  Handle<String> InternalizeString(Handle<String> string) {
122    if (string->IsInternalizedString()) return string;
123    return StringTable::LookupString(isolate(), string);
124  }
125
126  Handle<Name> InternalizeName(Handle<Name> name) {
127    if (name->IsUniqueName()) return name;
128    return StringTable::LookupString(isolate(), Handle<String>::cast(name));
129  }
130
131  // String creation functions.  Most of the string creation functions take
132  // a Heap::PretenureFlag argument to optionally request that they be
133  // allocated in the old generation.  The pretenure flag defaults to
134  // DONT_TENURE.
135  //
136  // Creates a new String object.  There are two String encodings: one-byte and
137  // two-byte.  One should choose between the three string factory functions
138  // based on the encoding of the string buffer that the string is
139  // initialized from.
140  //   - ...FromOneByte initializes the string from a buffer that is Latin1
141  //     encoded (it does not check that the buffer is Latin1 encoded) and
142  //     the result will be Latin1 encoded.
143  //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
144  //     encoded.  If the characters are all ASCII characters, the result
145  //     will be Latin1 encoded, otherwise it will converted to two-byte.
146  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
147  //     encoded.  If the characters are all Latin1 characters, the result
148  //     will be converted to Latin1, otherwise it will be left as two-byte.
149  //
150  // One-byte strings are pretenured when used as keys in the SourceCodeCache.
151  MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
152      Vector<const uint8_t> str, PretenureFlag pretenure = NOT_TENURED);
153
154  template <size_t N>
155  inline Handle<String> NewStringFromStaticChars(
156      const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
157    DCHECK(N == StrLength(str) + 1);
158    return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
159        .ToHandleChecked();
160  }
161
162  inline Handle<String> NewStringFromAsciiChecked(
163      const char* str,
164      PretenureFlag pretenure = NOT_TENURED) {
165    return NewStringFromOneByte(
166        OneByteVector(str), pretenure).ToHandleChecked();
167  }
168
169
170  // Allocates and fully initializes a String.  There are two String encodings:
171  // one-byte and two-byte. One should choose between the threestring
172  // allocation functions based on the encoding of the string buffer used to
173  // initialized the string.
174  //   - ...FromOneByte initializes the string from a buffer that is Latin1
175  //     encoded (it does not check that the buffer is Latin1 encoded) and the
176  //     result will be Latin1 encoded.
177  //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
178  //     encoded.  If the characters are all ASCII characters, the result
179  //     will be Latin1 encoded, otherwise it will converted to two-byte.
180  //   - ...FromTwoByte initializes the string from a buffer that is two-byte
181  //     encoded.  If the characters are all Latin1 characters, the
182  //     result will be converted to Latin1, otherwise it will be left as
183  //     two-byte.
184
185  // TODO(dcarney): remove this function.
186  MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
187      Vector<const char> str,
188      PretenureFlag pretenure = NOT_TENURED) {
189    return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
190  }
191
192  // UTF8 strings are pretenured when used for regexp literal patterns and
193  // flags in the parser.
194  MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
195      Vector<const char> str, PretenureFlag pretenure = NOT_TENURED);
196
197  MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8SubString(
198      Handle<SeqOneByteString> str, int begin, int end,
199      PretenureFlag pretenure = NOT_TENURED);
200
201  MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
202      Vector<const uc16> str, PretenureFlag pretenure = NOT_TENURED);
203
204  MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
205      const ZoneVector<uc16>* str, PretenureFlag pretenure = NOT_TENURED);
206
207  Handle<JSStringIterator> NewJSStringIterator(Handle<String> string);
208
209  // Allocates an internalized string in old space based on the character
210  // stream.
211  Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str,
212                                               int chars, uint32_t hash_field);
213
214  Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str,
215                                              uint32_t hash_field);
216
217  Handle<String> NewOneByteInternalizedSubString(
218      Handle<SeqOneByteString> string, int offset, int length,
219      uint32_t hash_field);
220
221  Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str,
222                                              uint32_t hash_field);
223
224  Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
225                                           uint32_t hash_field);
226
227  // Compute the matching internalized string map for a string if possible.
228  // Empty handle is returned if string is in new space or not flattened.
229  MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
230      Handle<String> string);
231
232  // Creates an internalized copy of an external string. |string| must be
233  // of type StringClass.
234  template <class StringClass>
235  Handle<StringClass> InternalizeExternalString(Handle<String> string);
236
237  // Allocates and partially initializes an one-byte or two-byte String. The
238  // characters of the string are uninitialized. Currently used in regexp code
239  // only, where they are pretenured.
240  MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
241      int length,
242      PretenureFlag pretenure = NOT_TENURED);
243  MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
244      int length,
245      PretenureFlag pretenure = NOT_TENURED);
246
247  // Creates a single character string where the character has given code.
248  // A cache is used for Latin1 codes.
249  Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
250
251  // Create a new cons string object which consists of a pair of strings.
252  MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
253                                                    Handle<String> right);
254
255  // Create or lookup a single characters tring made up of a utf16 surrogate
256  // pair.
257  Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail);
258
259  // Create a new string object which holds a proper substring of a string.
260  Handle<String> NewProperSubString(Handle<String> str,
261                                    int begin,
262                                    int end);
263
264  // Create a new string object which holds a substring of a string.
265  Handle<String> NewSubString(Handle<String> str, int begin, int end) {
266    if (begin == 0 && end == str->length()) return str;
267    return NewProperSubString(str, begin, end);
268  }
269
270  // Creates a new external String object.  There are two String encodings
271  // in the system: one-byte and two-byte.  Unlike other String types, it does
272  // not make sense to have a UTF-8 factory function for external strings,
273  // because we cannot change the underlying buffer.  Note that these strings
274  // are backed by a string resource that resides outside the V8 heap.
275  MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
276      const ExternalOneByteString::Resource* resource);
277  MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
278      const ExternalTwoByteString::Resource* resource);
279  // Create a new external string object for one-byte encoded native script.
280  // It does not cache the resource data pointer.
281  Handle<ExternalOneByteString> NewNativeSourceString(
282      const ExternalOneByteString::Resource* resource);
283
284  // Create a symbol.
285  Handle<Symbol> NewSymbol();
286  Handle<Symbol> NewPrivateSymbol();
287
288  // Create a global (but otherwise uninitialized) context.
289  Handle<Context> NewNativeContext();
290
291  // Create a script context.
292  Handle<Context> NewScriptContext(Handle<JSFunction> function,
293                                   Handle<ScopeInfo> scope_info);
294
295  // Create an empty script context table.
296  Handle<ScriptContextTable> NewScriptContextTable();
297
298  // Create a module context.
299  Handle<Context> NewModuleContext(Handle<Module> module,
300                                   Handle<JSFunction> function,
301                                   Handle<ScopeInfo> scope_info);
302
303  // Create a function or eval context.
304  Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function,
305                                     ScopeType scope_type);
306
307  // Create a catch context.
308  Handle<Context> NewCatchContext(Handle<JSFunction> function,
309                                  Handle<Context> previous,
310                                  Handle<ScopeInfo> scope_info,
311                                  Handle<String> name,
312                                  Handle<Object> thrown_object);
313
314  // Create a 'with' context.
315  Handle<Context> NewWithContext(Handle<JSFunction> function,
316                                 Handle<Context> previous,
317                                 Handle<ScopeInfo> scope_info,
318                                 Handle<JSReceiver> extension);
319
320  Handle<Context> NewDebugEvaluateContext(Handle<Context> previous,
321                                          Handle<ScopeInfo> scope_info,
322                                          Handle<JSReceiver> extension,
323                                          Handle<Context> wrapped,
324                                          Handle<StringSet> whitelist);
325
326  // Create a block context.
327  Handle<Context> NewBlockContext(Handle<JSFunction> function,
328                                  Handle<Context> previous,
329                                  Handle<ScopeInfo> scope_info);
330
331  // Allocate a new struct.  The struct is pretenured (allocated directly in
332  // the old generation).
333  Handle<Struct> NewStruct(InstanceType type);
334
335  Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
336      int aliased_context_slot);
337
338  Handle<AccessorInfo> NewAccessorInfo();
339
340  Handle<Script> NewScript(Handle<String> source);
341
342  Handle<BreakPointInfo> NewBreakPointInfo(int source_position);
343
344  // Foreign objects are pretenured when allocated by the bootstrapper.
345  Handle<Foreign> NewForeign(Address addr,
346                             PretenureFlag pretenure = NOT_TENURED);
347
348  // Allocate a new foreign object.  The foreign is pretenured (allocated
349  // directly in the old generation).
350  Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
351
352  Handle<ByteArray> NewByteArray(int length,
353                                 PretenureFlag pretenure = NOT_TENURED);
354
355  Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
356                                         int frame_size, int parameter_count,
357                                         Handle<FixedArray> constant_pool);
358
359  Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
360      int length, ExternalArrayType array_type, void* external_pointer,
361      PretenureFlag pretenure = NOT_TENURED);
362
363  Handle<FixedTypedArrayBase> NewFixedTypedArray(
364      int length, ExternalArrayType array_type, bool initialize,
365      PretenureFlag pretenure = NOT_TENURED);
366
367  Handle<Cell> NewCell(Handle<Object> value);
368
369  Handle<PropertyCell> NewPropertyCell();
370
371  Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
372
373  Handle<Cell> NewNoClosuresCell(Handle<Object> value);
374  Handle<Cell> NewOneClosureCell(Handle<Object> value);
375  Handle<Cell> NewManyClosuresCell(Handle<Object> value);
376
377  Handle<TransitionArray> NewTransitionArray(int capacity);
378
379  // Allocate a tenured AllocationSite. It's payload is null.
380  Handle<AllocationSite> NewAllocationSite();
381
382  Handle<Map> NewMap(
383      InstanceType type,
384      int instance_size,
385      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
386
387  Handle<HeapObject> NewFillerObject(int size,
388                                     bool double_align,
389                                     AllocationSpace space);
390
391  Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
392
393  Handle<JSObject> CopyJSObject(Handle<JSObject> object);
394
395  Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
396                                                  Handle<AllocationSite> site);
397
398  Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
399                                           Handle<Map> map);
400
401  Handle<FixedArray> CopyFixedArrayAndGrow(
402      Handle<FixedArray> array, int grow_by,
403      PretenureFlag pretenure = NOT_TENURED);
404
405  Handle<FixedArray> CopyFixedArrayUpTo(Handle<FixedArray> array, int new_len,
406                                        PretenureFlag pretenure = NOT_TENURED);
407
408  Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
409
410  // This method expects a COW array in new space, and creates a copy
411  // of it in old space.
412  Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
413
414  Handle<FixedDoubleArray> CopyFixedDoubleArray(
415      Handle<FixedDoubleArray> array);
416
417  // Numbers (e.g. literals) are pretenured by the parser.
418  // The return value may be a smi or a heap number.
419  Handle<Object> NewNumber(double value,
420                           PretenureFlag pretenure = NOT_TENURED);
421
422  Handle<Object> NewNumberFromInt(int32_t value,
423                                  PretenureFlag pretenure = NOT_TENURED);
424  Handle<Object> NewNumberFromUint(uint32_t value,
425                                  PretenureFlag pretenure = NOT_TENURED);
426  Handle<Object> NewNumberFromSize(size_t value,
427                                   PretenureFlag pretenure = NOT_TENURED) {
428    // We can't use Smi::IsValid() here because that operates on a signed
429    // intptr_t, and casting from size_t could create a bogus sign bit.
430    if (value <= static_cast<size_t>(Smi::kMaxValue)) {
431      return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
432                            isolate());
433    }
434    return NewNumber(static_cast<double>(value), pretenure);
435  }
436  Handle<Object> NewNumberFromInt64(int64_t value,
437                                    PretenureFlag pretenure = NOT_TENURED) {
438    if (value <= std::numeric_limits<int32_t>::max() &&
439        value >= std::numeric_limits<int32_t>::min() &&
440        Smi::IsValid(static_cast<int32_t>(value))) {
441      return Handle<Object>(Smi::FromInt(static_cast<int32_t>(value)),
442                            isolate());
443    }
444    return NewNumber(static_cast<double>(value), pretenure);
445  }
446  Handle<HeapNumber> NewHeapNumber(double value, MutableMode mode = IMMUTABLE,
447                                   PretenureFlag pretenure = NOT_TENURED) {
448    Handle<HeapNumber> heap_number = NewHeapNumber(mode, pretenure);
449    heap_number->set_value(value);
450    return heap_number;
451  }
452  Handle<HeapNumber> NewHeapNumberFromBits(
453      uint64_t bits, MutableMode mode = IMMUTABLE,
454      PretenureFlag pretenure = NOT_TENURED) {
455    Handle<HeapNumber> heap_number = NewHeapNumber(mode, pretenure);
456    heap_number->set_value_as_bits(bits);
457    return heap_number;
458  }
459  // Creates mutable heap number object with value field set to hole NaN.
460  Handle<HeapNumber> NewMutableHeapNumber(
461      PretenureFlag pretenure = NOT_TENURED) {
462    return NewHeapNumberFromBits(kHoleNanInt64, MUTABLE, pretenure);
463  }
464
465  // Creates heap number object with not yet set value field.
466  Handle<HeapNumber> NewHeapNumber(MutableMode mode,
467                                   PretenureFlag pretenure = NOT_TENURED);
468
469  Handle<JSWeakMap> NewJSWeakMap();
470
471  Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
472
473  // JS objects are pretenured when allocated by the bootstrapper and
474  // runtime.
475  Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
476                               PretenureFlag pretenure = NOT_TENURED);
477  // JSObject without a prototype.
478  Handle<JSObject> NewJSObjectWithNullProto(
479      PretenureFlag pretenure = NOT_TENURED);
480
481  // Global objects are pretenured and initialized based on a constructor.
482  Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
483
484  // JS objects are pretenured when allocated by the bootstrapper and
485  // runtime.
486  Handle<JSObject> NewJSObjectFromMap(
487      Handle<Map> map,
488      PretenureFlag pretenure = NOT_TENURED,
489      Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
490
491  // JS arrays are pretenured when allocated by the parser.
492
493  // Create a JSArray with a specified length and elements initialized
494  // according to the specified mode.
495  Handle<JSArray> NewJSArray(
496      ElementsKind elements_kind, int length, int capacity,
497      ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
498      PretenureFlag pretenure = NOT_TENURED);
499
500  Handle<JSArray> NewJSArray(
501      int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
502      PretenureFlag pretenure = NOT_TENURED) {
503    if (capacity != 0) {
504      elements_kind = GetHoleyElementsKind(elements_kind);
505    }
506    return NewJSArray(elements_kind, 0, capacity,
507                      INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
508  }
509
510  // Create a JSArray with the given elements.
511  Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements,
512                                         ElementsKind elements_kind, int length,
513                                         PretenureFlag pretenure = NOT_TENURED);
514
515  Handle<JSArray> NewJSArrayWithElements(
516      Handle<FixedArrayBase> elements,
517      ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
518      PretenureFlag pretenure = NOT_TENURED) {
519    return NewJSArrayWithElements(elements, elements_kind, elements->length(),
520                                  pretenure);
521  }
522
523  void NewJSArrayStorage(
524      Handle<JSArray> array,
525      int length,
526      int capacity,
527      ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
528
529  Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
530
531  Handle<JSModuleNamespace> NewJSModuleNamespace();
532
533  Handle<Module> NewModule(Handle<SharedFunctionInfo> code);
534
535  Handle<JSArrayBuffer> NewJSArrayBuffer(
536      SharedFlag shared = SharedFlag::kNotShared,
537      PretenureFlag pretenure = NOT_TENURED);
538
539  Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
540                                       PretenureFlag pretenure = NOT_TENURED);
541
542  Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
543                                       PretenureFlag pretenure = NOT_TENURED);
544
545  // Creates a new JSTypedArray with the specified buffer.
546  Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
547                                       Handle<JSArrayBuffer> buffer,
548                                       size_t byte_offset, size_t length,
549                                       PretenureFlag pretenure = NOT_TENURED);
550
551  // Creates a new on-heap JSTypedArray.
552  Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
553                                       size_t number_of_elements,
554                                       PretenureFlag pretenure = NOT_TENURED);
555
556  Handle<JSDataView> NewJSDataView();
557  Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
558                                   size_t byte_offset, size_t byte_length);
559
560  Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done);
561  Handle<JSAsyncFromSyncIterator> NewJSAsyncFromSyncIterator(
562      Handle<JSReceiver> sync_iterator);
563
564  Handle<JSMap> NewJSMap();
565  Handle<JSSet> NewJSSet();
566
567  // TODO(aandrey): Maybe these should take table, index and kind arguments.
568  Handle<JSMapIterator> NewJSMapIterator();
569  Handle<JSSetIterator> NewJSSetIterator();
570
571  // Allocates a bound function.
572  MaybeHandle<JSBoundFunction> NewJSBoundFunction(
573      Handle<JSReceiver> target_function, Handle<Object> bound_this,
574      Vector<Handle<Object>> bound_args);
575
576  // Allocates a Harmony proxy.
577  Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
578                             Handle<JSReceiver> handler);
579
580  // Reinitialize an JSGlobalProxy based on a constructor.  The object
581  // must have the same size as objects allocated using the
582  // constructor.  The object is reinitialized and behaves as an
583  // object that has been freshly allocated using the constructor.
584  void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
585                                 Handle<JSFunction> constructor);
586
587  Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size);
588
589  Handle<JSFunction> NewFunction(Handle<Map> map,
590                                 Handle<SharedFunctionInfo> info,
591                                 Handle<Object> context_or_undefined,
592                                 PretenureFlag pretenure = TENURED);
593  Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
594                                 Handle<Object> prototype,
595                                 bool is_strict = false);
596  Handle<JSFunction> NewFunction(Handle<String> name);
597  Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
598                                                 Handle<Code> code,
599                                                 bool is_strict = false);
600
601  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
602      Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
603      Handle<Object> context_or_undefined, Handle<Cell> vector,
604      PretenureFlag pretenure = TENURED);
605
606  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
607      Handle<SharedFunctionInfo> function_info, Handle<Context> context,
608      Handle<Cell> vector, PretenureFlag pretenure = TENURED);
609
610  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
611      Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
612      Handle<Object> context_or_undefined, PretenureFlag pretenure = TENURED);
613
614  Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
615      Handle<SharedFunctionInfo> function_info, Handle<Context> context,
616      PretenureFlag pretenure = TENURED);
617
618  Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
619                                 Handle<Object> prototype, InstanceType type,
620                                 int instance_size,
621                                 bool is_strict = false);
622  Handle<JSFunction> NewFunction(Handle<String> name,
623                                 Handle<Code> code,
624                                 InstanceType type,
625                                 int instance_size);
626  Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name,
627                                 MaybeHandle<Code> maybe_code);
628
629  // Create a serialized scope info.
630  Handle<ScopeInfo> NewScopeInfo(int length);
631
632  Handle<ModuleInfoEntry> NewModuleInfoEntry();
633  Handle<ModuleInfo> NewModuleInfo();
634
635  // Create an External object for V8's external API.
636  Handle<JSObject> NewExternal(void* value);
637
638  // The reference to the Code object is stored in self_reference.
639  // This allows generated code to reference its own Code object
640  // by containing this handle.
641  Handle<Code> NewCode(const CodeDesc& desc,
642                       Code::Flags flags,
643                       Handle<Object> self_reference,
644                       bool immovable = false,
645                       bool crankshafted = false,
646                       int prologue_offset = Code::kPrologueOffsetNotSet,
647                       bool is_debug = false);
648
649  Handle<Code> CopyCode(Handle<Code> code);
650
651  Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>);
652
653  // Interface for creating error objects.
654  Handle<Object> NewError(Handle<JSFunction> constructor,
655                          Handle<String> message);
656
657  Handle<Object> NewInvalidStringLengthError();
658
659  Handle<Object> NewURIError() {
660    return NewError(isolate()->uri_error_function(),
661                    MessageTemplate::kURIMalformed);
662  }
663
664  Handle<Object> NewError(Handle<JSFunction> constructor,
665                          MessageTemplate::Template template_index,
666                          Handle<Object> arg0 = Handle<Object>(),
667                          Handle<Object> arg1 = Handle<Object>(),
668                          Handle<Object> arg2 = Handle<Object>());
669
670#define DECLARE_ERROR(NAME)                                          \
671  Handle<Object> New##NAME(MessageTemplate::Template template_index, \
672                           Handle<Object> arg0 = Handle<Object>(),   \
673                           Handle<Object> arg1 = Handle<Object>(),   \
674                           Handle<Object> arg2 = Handle<Object>());
675  DECLARE_ERROR(Error)
676  DECLARE_ERROR(EvalError)
677  DECLARE_ERROR(RangeError)
678  DECLARE_ERROR(ReferenceError)
679  DECLARE_ERROR(SyntaxError)
680  DECLARE_ERROR(TypeError)
681  DECLARE_ERROR(WasmCompileError)
682  DECLARE_ERROR(WasmLinkError)
683  DECLARE_ERROR(WasmRuntimeError)
684#undef DECLARE_ERROR
685
686  Handle<String> NumberToString(Handle<Object> number,
687                                bool check_number_string_cache = true);
688
689  Handle<String> Uint32ToString(uint32_t value) {
690    return NumberToString(NewNumberFromUint(value));
691  }
692
693  Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
694
695#define ROOT_ACCESSOR(type, name, camel_name)                         \
696  inline Handle<type> name() {                                        \
697    return Handle<type>(bit_cast<type**>(                             \
698        &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
699  }
700  ROOT_LIST(ROOT_ACCESSOR)
701#undef ROOT_ACCESSOR
702
703#define STRUCT_MAP_ACCESSOR(NAME, Name, name)                      \
704  inline Handle<Map> name##_map() {                                \
705    return Handle<Map>(bit_cast<Map**>(                            \
706        &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
707  }
708  STRUCT_LIST(STRUCT_MAP_ACCESSOR)
709#undef STRUCT_MAP_ACCESSOR
710
711#define STRING_ACCESSOR(name, str)                              \
712  inline Handle<String> name() {                                \
713    return Handle<String>(bit_cast<String**>(                   \
714        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
715  }
716  INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
717#undef STRING_ACCESSOR
718
719#define SYMBOL_ACCESSOR(name)                                   \
720  inline Handle<Symbol> name() {                                \
721    return Handle<Symbol>(bit_cast<Symbol**>(                   \
722        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
723  }
724  PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
725#undef SYMBOL_ACCESSOR
726
727#define SYMBOL_ACCESSOR(name, description)                      \
728  inline Handle<Symbol> name() {                                \
729    return Handle<Symbol>(bit_cast<Symbol**>(                   \
730        &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
731  }
732  PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
733  WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
734#undef SYMBOL_ACCESSOR
735
736  // Allocates a new SharedFunctionInfo object.
737  Handle<SharedFunctionInfo> NewSharedFunctionInfo(
738      Handle<String> name, FunctionKind kind, Handle<Code> code,
739      Handle<ScopeInfo> scope_info);
740  Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
741                                                   MaybeHandle<Code> code,
742                                                   bool is_constructor);
743
744  Handle<SharedFunctionInfo> NewSharedFunctionInfoForLiteral(
745      FunctionLiteral* literal, Handle<Script> script);
746
747  static bool IsFunctionModeWithPrototype(FunctionMode function_mode) {
748    return (function_mode == FUNCTION_WITH_WRITEABLE_PROTOTYPE ||
749            function_mode == FUNCTION_WITH_READONLY_PROTOTYPE);
750  }
751
752  Handle<Map> CreateSloppyFunctionMap(FunctionMode function_mode);
753
754  Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode,
755                                      Handle<JSFunction> empty_function);
756
757  Handle<Map> CreateClassFunctionMap(Handle<JSFunction> empty_function);
758
759  // Allocates a new JSMessageObject object.
760  Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message,
761                                             Handle<Object> argument,
762                                             int start_position,
763                                             int end_position,
764                                             Handle<Object> script,
765                                             Handle<Object> stack_frames);
766
767  Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
768
769  // Return a map for given number of properties using the map cache in the
770  // native context.
771  Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
772                                        int number_of_properties,
773                                        bool* is_result_from_cache);
774
775  Handle<RegExpMatchInfo> NewRegExpMatchInfo();
776
777  // Creates a new FixedArray that holds the data associated with the
778  // atom regexp and stores it in the regexp.
779  void SetRegExpAtomData(Handle<JSRegExp> regexp,
780                         JSRegExp::Type type,
781                         Handle<String> source,
782                         JSRegExp::Flags flags,
783                         Handle<Object> match_pattern);
784
785  // Creates a new FixedArray that holds the data associated with the
786  // irregexp regexp and stores it in the regexp.
787  void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
788                             JSRegExp::Type type,
789                             Handle<String> source,
790                             JSRegExp::Flags flags,
791                             int capture_count);
792
793  // Returns the value for a known global constant (a property of the global
794  // object which is neither configurable nor writable) like 'undefined'.
795  // Returns a null handle when the given name is unknown.
796  Handle<Object> GlobalConstantFor(Handle<Name> name);
797
798  // Converts the given boolean condition to JavaScript boolean value.
799  Handle<Object> ToBoolean(bool value);
800
801  // Converts the given ToPrimitive hint to it's string representation.
802  Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint);
803
804 private:
805  Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
806
807  // Creates a heap object based on the map. The fields of the heap object are
808  // not initialized by New<>() functions. It's the responsibility of the caller
809  // to do that.
810  template<typename T>
811  Handle<T> New(Handle<Map> map, AllocationSpace space);
812
813  template<typename T>
814  Handle<T> New(Handle<Map> map,
815                AllocationSpace space,
816                Handle<AllocationSite> allocation_site);
817
818  MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length,
819                                           PretenureFlag pretenure);
820
821  // Creates a code object that is not yet fully initialized yet.
822  inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
823
824  // Attempt to find the number in a small cache.  If we finds it, return
825  // the string representation of the number.  Otherwise return undefined.
826  Handle<Object> GetNumberStringCache(Handle<Object> number);
827
828  // Update the cache with a new number-string pair.
829  void SetNumberStringCache(Handle<Object> number, Handle<String> string);
830
831  // Create a JSArray with no elements and no length.
832  Handle<JSArray> NewJSArray(ElementsKind elements_kind,
833                             PretenureFlag pretenure = NOT_TENURED);
834
835  void SetFunctionInstanceDescriptor(Handle<Map> map,
836                                     FunctionMode function_mode);
837
838  void SetStrictFunctionInstanceDescriptor(Handle<Map> map,
839                                           FunctionMode function_mode);
840
841  void SetClassFunctionInstanceDescriptor(Handle<Map> map);
842};
843
844}  // namespace internal
845}  // namespace v8
846
847#endif  // V8_FACTORY_H_
848