1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40
41#include <set>
42
43#include "src/assembler.h"
44#include "src/mips64/constants-mips64.h"
45
46namespace v8 {
47namespace internal {
48
49// clang-format off
50#define GENERAL_REGISTERS(V)                              \
51  V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52  V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2)  V(t3)  \
53  V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54  V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55
56#define ALLOCATABLE_GENERAL_REGISTERS(V) \
57  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58  V(a4)  V(a5)  V(a6)  V(a7)  V(t0)  V(t1)  V(t2) V(s7)
59
60#define DOUBLE_REGISTERS(V)                               \
61  V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62  V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63  V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64  V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65
66#define FLOAT_REGISTERS DOUBLE_REGISTERS
67#define SIMD128_REGISTERS DOUBLE_REGISTERS
68
69#define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
70  V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
71  V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
72// clang-format on
73
74// CPU Registers.
75//
76// 1) We would prefer to use an enum, but enum values are assignment-
77// compatible with int, which has caused code-generation bugs.
78//
79// 2) We would prefer to use a class instead of a struct but we don't like
80// the register initialization to depend on the particular initialization
81// order (which appears to be different on OS X, Linux, and Windows for the
82// installed versions of C++ we tried). Using a struct permits C-style
83// "initialization". Also, the Register objects cannot be const as this
84// forces initialization stubs in MSVC, making us dependent on initialization
85// order.
86//
87// 3) By not using an enum, we are possibly preventing the compiler from
88// doing certain constant folds, which may significantly reduce the
89// code generated for some assembly instructions (because they boil down
90// to a few constants). If this is a problem, we could change the code
91// such that we use an enum in optimized mode, and the struct in debug
92// mode. This way we get the compile-time error checking in debug mode
93// and best performance in optimized code.
94
95
96// -----------------------------------------------------------------------------
97// Implementation of Register and FPURegister.
98
99struct Register {
100  static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
101
102#if defined(V8_TARGET_LITTLE_ENDIAN)
103  static const int kMantissaOffset = 0;
104  static const int kExponentOffset = 4;
105#elif defined(V8_TARGET_BIG_ENDIAN)
106  static const int kMantissaOffset = 4;
107  static const int kExponentOffset = 0;
108#else
109#error Unknown endianness
110#endif
111
112  enum Code {
113#define REGISTER_CODE(R) kCode_##R,
114    GENERAL_REGISTERS(REGISTER_CODE)
115#undef REGISTER_CODE
116        kAfterLast,
117    kCode_no_reg = -1
118  };
119
120  static const int kNumRegisters = Code::kAfterLast;
121
122  static Register from_code(int code) {
123    DCHECK(code >= 0);
124    DCHECK(code < kNumRegisters);
125    Register r = { code };
126    return r;
127  }
128
129  bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
130  bool is(Register reg) const { return reg_code == reg.reg_code; }
131  int code() const {
132    DCHECK(is_valid());
133    return reg_code;
134  }
135  int bit() const {
136    DCHECK(is_valid());
137    return 1 << reg_code;
138  }
139
140  // Unfortunately we can't make this private in a struct.
141  int reg_code;
142};
143
144// s7: context register
145// s3: lithium scratch
146// s4: lithium scratch2
147#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
148GENERAL_REGISTERS(DECLARE_REGISTER)
149#undef DECLARE_REGISTER
150const Register no_reg = {Register::kCode_no_reg};
151
152
153int ToNumber(Register reg);
154
155Register ToRegister(int num);
156
157static const bool kSimpleFPAliasing = true;
158static const bool kSimdMaskRegisters = false;
159
160// Coprocessor register.
161struct FPURegister {
162  enum Code {
163#define REGISTER_CODE(R) kCode_##R,
164    DOUBLE_REGISTERS(REGISTER_CODE)
165#undef REGISTER_CODE
166        kAfterLast,
167    kCode_no_reg = -1
168  };
169
170  static const int kMaxNumRegisters = Code::kAfterLast;
171
172  inline static int NumRegisters();
173
174  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
175  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
176  // number of Double regs (64-bit regs, or FPU-reg-pairs).
177
178  bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
179  bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
180  FPURegister low() const {
181    // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
182    // Find low reg of a Double-reg pair, which is the reg itself.
183    DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
184    FPURegister reg;
185    reg.reg_code = reg_code;
186    DCHECK(reg.is_valid());
187    return reg;
188  }
189  FPURegister high() const {
190    // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
191    // Find high reg of a Doubel-reg pair, which is reg + 1.
192    DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
193    FPURegister reg;
194    reg.reg_code = reg_code + 1;
195    DCHECK(reg.is_valid());
196    return reg;
197  }
198
199  int code() const {
200    DCHECK(is_valid());
201    return reg_code;
202  }
203  int bit() const {
204    DCHECK(is_valid());
205    return 1 << reg_code;
206  }
207
208  static FPURegister from_code(int code) {
209    FPURegister r = {code};
210    return r;
211  }
212  void setcode(int f) {
213    reg_code = f;
214    DCHECK(is_valid());
215  }
216  // Unfortunately we can't make this private in a struct.
217  int reg_code;
218};
219
220// A few double registers are reserved: one as a scratch register and one to
221// hold 0.0.
222//  f28: 0.0
223//  f30: scratch register.
224
225// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
226// 32-bit registers, f0 through f31. When used as 'double' they are used
227// in pairs, starting with the even numbered register. So a double operation
228// on f0 really uses f0 and f1.
229// (Modern mips hardware also supports 32 64-bit registers, via setting
230// (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
231// but it is not in common use. Someday we will want to support this in v8.)
232
233// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
234typedef FPURegister FloatRegister;
235
236typedef FPURegister DoubleRegister;
237
238// TODO(mips64) Define SIMD registers.
239typedef FPURegister Simd128Register;
240
241const DoubleRegister no_freg = {-1};
242
243const DoubleRegister f0 = {0};  // Return value in hard float mode.
244const DoubleRegister f1 = {1};
245const DoubleRegister f2 = {2};
246const DoubleRegister f3 = {3};
247const DoubleRegister f4 = {4};
248const DoubleRegister f5 = {5};
249const DoubleRegister f6 = {6};
250const DoubleRegister f7 = {7};
251const DoubleRegister f8 = {8};
252const DoubleRegister f9 = {9};
253const DoubleRegister f10 = {10};
254const DoubleRegister f11 = {11};
255const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
256const DoubleRegister f13 = {13};
257const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
258const DoubleRegister f15 = {15};
259const DoubleRegister f16 = {16};
260const DoubleRegister f17 = {17};
261const DoubleRegister f18 = {18};
262const DoubleRegister f19 = {19};
263const DoubleRegister f20 = {20};
264const DoubleRegister f21 = {21};
265const DoubleRegister f22 = {22};
266const DoubleRegister f23 = {23};
267const DoubleRegister f24 = {24};
268const DoubleRegister f25 = {25};
269const DoubleRegister f26 = {26};
270const DoubleRegister f27 = {27};
271const DoubleRegister f28 = {28};
272const DoubleRegister f29 = {29};
273const DoubleRegister f30 = {30};
274const DoubleRegister f31 = {31};
275
276// Register aliases.
277// cp is assumed to be a callee saved register.
278// Defined using #define instead of "static const Register&" because Clang
279// complains otherwise when a compilation unit that includes this header
280// doesn't use the variables.
281#define kRootRegister s6
282#define cp s7
283#define kLithiumScratchReg s3
284#define kLithiumScratchReg2 s4
285#define kLithiumScratchDouble f30
286#define kDoubleRegZero f28
287// Used on mips64r6 for compare operations.
288// We use the last non-callee saved odd register for N64 ABI
289#define kDoubleCompareReg f23
290
291// FPU (coprocessor 1) control registers.
292// Currently only FCSR (#31) is implemented.
293struct FPUControlRegister {
294  bool is_valid() const { return reg_code == kFCSRRegister; }
295  bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
296  int code() const {
297    DCHECK(is_valid());
298    return reg_code;
299  }
300  int bit() const {
301    DCHECK(is_valid());
302    return 1 << reg_code;
303  }
304  void setcode(int f) {
305    reg_code = f;
306    DCHECK(is_valid());
307  }
308  // Unfortunately we can't make this private in a struct.
309  int reg_code;
310};
311
312const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
313const FPUControlRegister FCSR = { kFCSRRegister };
314
315// -----------------------------------------------------------------------------
316// Machine instruction Operands.
317const int kSmiShift = kSmiTagSize + kSmiShiftSize;
318const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
319// Class Operand represents a shifter operand in data processing instructions.
320class Operand BASE_EMBEDDED {
321 public:
322  // Immediate.
323  INLINE(explicit Operand(int64_t immediate,
324         RelocInfo::Mode rmode = RelocInfo::NONE64));
325  INLINE(explicit Operand(const ExternalReference& f));
326  INLINE(explicit Operand(const char* s));
327  INLINE(explicit Operand(Object** opp));
328  INLINE(explicit Operand(Context** cpp));
329  explicit Operand(Handle<Object> handle);
330  INLINE(explicit Operand(Smi* value));
331
332  // Register.
333  INLINE(explicit Operand(Register rm));
334
335  // Return true if this is a register operand.
336  INLINE(bool is_reg() const);
337
338  inline int64_t immediate() const {
339    DCHECK(!is_reg());
340    return imm64_;
341  }
342
343  Register rm() const { return rm_; }
344
345 private:
346  Register rm_;
347  int64_t imm64_;  // Valid if rm_ == no_reg.
348  RelocInfo::Mode rmode_;
349
350  friend class Assembler;
351  friend class MacroAssembler;
352};
353
354
355// On MIPS we have only one adressing mode with base_reg + offset.
356// Class MemOperand represents a memory operand in load and store instructions.
357class MemOperand : public Operand {
358 public:
359  // Immediate value attached to offset.
360  enum OffsetAddend {
361    offset_minus_one = -1,
362    offset_zero = 0
363  };
364
365  explicit MemOperand(Register rn, int32_t offset = 0);
366  explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
367                      OffsetAddend offset_addend = offset_zero);
368  int32_t offset() const { return offset_; }
369
370  bool OffsetIsInt16Encodable() const {
371    return is_int16(offset_);
372  }
373
374 private:
375  int32_t offset_;
376
377  friend class Assembler;
378};
379
380
381class Assembler : public AssemblerBase {
382 public:
383  // Create an assembler. Instructions and relocation information are emitted
384  // into a buffer, with the instructions starting from the beginning and the
385  // relocation information starting from the end of the buffer. See CodeDesc
386  // for a detailed comment on the layout (globals.h).
387  //
388  // If the provided buffer is NULL, the assembler allocates and grows its own
389  // buffer, and buffer_size determines the initial buffer size. The buffer is
390  // owned by the assembler and deallocated upon destruction of the assembler.
391  //
392  // If the provided buffer is not NULL, the assembler uses the provided buffer
393  // for code generation and assumes its size to be buffer_size. If the buffer
394  // is too small, a fatal error occurs. No deallocation of the buffer is done
395  // upon destruction of the assembler.
396  Assembler(Isolate* isolate, void* buffer, int buffer_size);
397  virtual ~Assembler() { }
398
399  // GetCode emits any pending (non-emitted) code and fills the descriptor
400  // desc. GetCode() is idempotent; it returns the same result if no other
401  // Assembler functions are invoked in between GetCode() calls.
402  void GetCode(CodeDesc* desc);
403
404  // Label operations & relative jumps (PPUM Appendix D).
405  //
406  // Takes a branch opcode (cc) and a label (L) and generates
407  // either a backward branch or a forward branch and links it
408  // to the label fixup chain. Usage:
409  //
410  // Label L;    // unbound label
411  // j(cc, &L);  // forward branch to unbound label
412  // bind(&L);   // bind label to the current pc
413  // j(cc, &L);  // backward branch to bound label
414  // bind(&L);   // illegal: a label may be bound only once
415  //
416  // Note: The same Label can be used for forward and backward branches
417  // but it may be bound only once.
418  void bind(Label* L);  // Binds an unbound label L to current code position.
419
420  enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
421
422  // Determines if Label is bound and near enough so that branch instruction
423  // can be used to reach it, instead of jump instruction.
424  bool is_near(Label* L);
425  bool is_near(Label* L, OffsetSize bits);
426  bool is_near_branch(Label* L);
427  inline bool is_near_pre_r6(Label* L) {
428    DCHECK(!(kArchVariant == kMips64r6));
429    return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
430  }
431  inline bool is_near_r6(Label* L) {
432    DCHECK(kArchVariant == kMips64r6);
433    return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
434  }
435
436  int BranchOffset(Instr instr);
437
438  // Returns the branch offset to the given label from the current code
439  // position. Links the label to the current position if it is still unbound.
440  // Manages the jump elimination optimization if the second parameter is true.
441  int32_t branch_offset_helper(Label* L, OffsetSize bits);
442  inline int32_t branch_offset(Label* L) {
443    return branch_offset_helper(L, OffsetSize::kOffset16);
444  }
445  inline int32_t branch_offset21(Label* L) {
446    return branch_offset_helper(L, OffsetSize::kOffset21);
447  }
448  inline int32_t branch_offset26(Label* L) {
449    return branch_offset_helper(L, OffsetSize::kOffset26);
450  }
451  inline int32_t shifted_branch_offset(Label* L) {
452    return branch_offset(L) >> 2;
453  }
454  inline int32_t shifted_branch_offset21(Label* L) {
455    return branch_offset21(L) >> 2;
456  }
457  inline int32_t shifted_branch_offset26(Label* L) {
458    return branch_offset26(L) >> 2;
459  }
460  uint64_t jump_address(Label* L);
461  uint64_t jump_offset(Label* L);
462
463  // Puts a labels target address at the given position.
464  // The high 8 bits are set to zero.
465  void label_at_put(Label* L, int at_offset);
466
467  // Read/Modify the code target address in the branch/call instruction at pc.
468  static Address target_address_at(Address pc);
469  static void set_target_address_at(
470      Isolate* isolate, Address pc, Address target,
471      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
472  // On MIPS there is no Constant Pool so we skip that parameter.
473  INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
474    return target_address_at(pc);
475  }
476  INLINE(static void set_target_address_at(
477      Isolate* isolate, Address pc, Address constant_pool, Address target,
478      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
479    set_target_address_at(isolate, pc, target, icache_flush_mode);
480  }
481  INLINE(static Address target_address_at(Address pc, Code* code));
482  INLINE(static void set_target_address_at(
483      Isolate* isolate, Address pc, Code* code, Address target,
484      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
485
486  // Return the code target address at a call site from the return address
487  // of that call in the instruction stream.
488  inline static Address target_address_from_return_address(Address pc);
489
490  static void JumpLabelToJumpRegister(Address pc);
491
492  static void QuietNaN(HeapObject* nan);
493
494  // This sets the branch destination (which gets loaded at the call address).
495  // This is for calls and branches within generated code.  The serializer
496  // has already deserialized the lui/ori instructions etc.
497  inline static void deserialization_set_special_target_at(
498      Isolate* isolate, Address instruction_payload, Code* code,
499      Address target) {
500    set_target_address_at(
501        isolate,
502        instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code,
503        target);
504  }
505
506  // This sets the internal reference at the pc.
507  inline static void deserialization_set_target_internal_reference_at(
508      Isolate* isolate, Address pc, Address target,
509      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
510
511  // Size of an instruction.
512  static const int kInstrSize = sizeof(Instr);
513
514  // Difference between address of current opcode and target address offset.
515  static const int kBranchPCOffset = 4;
516
517  // Here we are patching the address in the LUI/ORI instruction pair.
518  // These values are used in the serialization process and must be zero for
519  // MIPS platform, as Code, Embedded Object or External-reference pointers
520  // are split across two consecutive instructions and don't exist separately
521  // in the code, so the serializer should not step forwards in memory after
522  // a target is resolved and written.
523  static const int kSpecialTargetSize = 0;
524
525  // Number of consecutive instructions used to store 32bit/64bit constant.
526  // This constant was used in RelocInfo::target_address_address() function
527  // to tell serializer address of the instruction that follows
528  // LUI/ORI instruction pair.
529  static const int kInstructionsFor32BitConstant = 2;
530  static const int kInstructionsFor64BitConstant = 4;
531
532  // Distance between the instruction referring to the address of the call
533  // target and the return address.
534#ifdef _MIPS_ARCH_MIPS64R6
535  static const int kCallTargetAddressOffset = 5 * kInstrSize;
536#else
537  static const int kCallTargetAddressOffset = 6 * kInstrSize;
538#endif
539
540  // Distance between start of patched debug break slot and the emitted address
541  // to jump to.
542  static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize;
543
544  // Difference between address of current opcode and value read from pc
545  // register.
546  static const int kPcLoadDelta = 4;
547
548#ifdef _MIPS_ARCH_MIPS64R6
549  static const int kDebugBreakSlotInstructions = 5;
550#else
551  static const int kDebugBreakSlotInstructions = 6;
552#endif
553  static const int kDebugBreakSlotLength =
554      kDebugBreakSlotInstructions * kInstrSize;
555
556  // Max offset for instructions with 16-bit offset field
557  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
558
559  // Max offset for compact branch instructions with 26-bit offset field
560  static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
561
562  static const int kTrampolineSlotsSize = 2 * kInstrSize;
563
564  // ---------------------------------------------------------------------------
565  // Code generation.
566
567  // Insert the smallest number of nop instructions
568  // possible to align the pc offset to a multiple
569  // of m. m must be a power of 2 (>= 4).
570  void Align(int m);
571  // Insert the smallest number of zero bytes possible to align the pc offset
572  // to a mulitple of m. m must be a power of 2 (>= 2).
573  void DataAlign(int m);
574  // Aligns code to something that's optimal for a jump target for the platform.
575  void CodeTargetAlign();
576
577  // Different nop operations are used by the code generator to detect certain
578  // states of the generated code.
579  enum NopMarkerTypes {
580    NON_MARKING_NOP = 0,
581    DEBUG_BREAK_NOP,
582    // IC markers.
583    PROPERTY_ACCESS_INLINED,
584    PROPERTY_ACCESS_INLINED_CONTEXT,
585    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
586    // Helper values.
587    LAST_CODE_MARKER,
588    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
589    // Code aging
590    CODE_AGE_MARKER_NOP = 6,
591    CODE_AGE_SEQUENCE_NOP
592  };
593
594  // Type == 0 is the default non-marking nop. For mips this is a
595  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
596  // marking, to avoid conflict with ssnop and ehb instructions.
597  void nop(unsigned int type = 0) {
598    DCHECK(type < 32);
599    Register nop_rt_reg = (type == 0) ? zero_reg : at;
600    sll(zero_reg, nop_rt_reg, type, true);
601  }
602
603
604  // --------Branch-and-jump-instructions----------
605  // We don't use likely variant of instructions.
606  void b(int16_t offset);
607  inline void b(Label* L) { b(shifted_branch_offset(L)); }
608  void bal(int16_t offset);
609  inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
610  void bc(int32_t offset);
611  inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
612  void balc(int32_t offset);
613  inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
614
615  void beq(Register rs, Register rt, int16_t offset);
616  inline void beq(Register rs, Register rt, Label* L) {
617    beq(rs, rt, shifted_branch_offset(L));
618  }
619  void bgez(Register rs, int16_t offset);
620  void bgezc(Register rt, int16_t offset);
621  inline void bgezc(Register rt, Label* L) {
622    bgezc(rt, shifted_branch_offset(L));
623  }
624  void bgeuc(Register rs, Register rt, int16_t offset);
625  inline void bgeuc(Register rs, Register rt, Label* L) {
626    bgeuc(rs, rt, shifted_branch_offset(L));
627  }
628  void bgec(Register rs, Register rt, int16_t offset);
629  inline void bgec(Register rs, Register rt, Label* L) {
630    bgec(rs, rt, shifted_branch_offset(L));
631  }
632  void bgezal(Register rs, int16_t offset);
633  void bgezalc(Register rt, int16_t offset);
634  inline void bgezalc(Register rt, Label* L) {
635    bgezalc(rt, shifted_branch_offset(L));
636  }
637  void bgezall(Register rs, int16_t offset);
638  inline void bgezall(Register rs, Label* L) {
639    bgezall(rs, branch_offset(L) >> 2);
640  }
641  void bgtz(Register rs, int16_t offset);
642  void bgtzc(Register rt, int16_t offset);
643  inline void bgtzc(Register rt, Label* L) {
644    bgtzc(rt, shifted_branch_offset(L));
645  }
646  void blez(Register rs, int16_t offset);
647  void blezc(Register rt, int16_t offset);
648  inline void blezc(Register rt, Label* L) {
649    blezc(rt, shifted_branch_offset(L));
650  }
651  void bltz(Register rs, int16_t offset);
652  void bltzc(Register rt, int16_t offset);
653  inline void bltzc(Register rt, Label* L) {
654    bltzc(rt, shifted_branch_offset(L));
655  }
656  void bltuc(Register rs, Register rt, int16_t offset);
657  inline void bltuc(Register rs, Register rt, Label* L) {
658    bltuc(rs, rt, shifted_branch_offset(L));
659  }
660  void bltc(Register rs, Register rt, int16_t offset);
661  inline void bltc(Register rs, Register rt, Label* L) {
662    bltc(rs, rt, shifted_branch_offset(L));
663  }
664  void bltzal(Register rs, int16_t offset);
665  void blezalc(Register rt, int16_t offset);
666  inline void blezalc(Register rt, Label* L) {
667    blezalc(rt, shifted_branch_offset(L));
668  }
669  void bltzalc(Register rt, int16_t offset);
670  inline void bltzalc(Register rt, Label* L) {
671    bltzalc(rt, shifted_branch_offset(L));
672  }
673  void bgtzalc(Register rt, int16_t offset);
674  inline void bgtzalc(Register rt, Label* L) {
675    bgtzalc(rt, shifted_branch_offset(L));
676  }
677  void beqzalc(Register rt, int16_t offset);
678  inline void beqzalc(Register rt, Label* L) {
679    beqzalc(rt, shifted_branch_offset(L));
680  }
681  void beqc(Register rs, Register rt, int16_t offset);
682  inline void beqc(Register rs, Register rt, Label* L) {
683    beqc(rs, rt, shifted_branch_offset(L));
684  }
685  void beqzc(Register rs, int32_t offset);
686  inline void beqzc(Register rs, Label* L) {
687    beqzc(rs, shifted_branch_offset21(L));
688  }
689  void bnezalc(Register rt, int16_t offset);
690  inline void bnezalc(Register rt, Label* L) {
691    bnezalc(rt, shifted_branch_offset(L));
692  }
693  void bnec(Register rs, Register rt, int16_t offset);
694  inline void bnec(Register rs, Register rt, Label* L) {
695    bnec(rs, rt, shifted_branch_offset(L));
696  }
697  void bnezc(Register rt, int32_t offset);
698  inline void bnezc(Register rt, Label* L) {
699    bnezc(rt, shifted_branch_offset21(L));
700  }
701  void bne(Register rs, Register rt, int16_t offset);
702  inline void bne(Register rs, Register rt, Label* L) {
703    bne(rs, rt, shifted_branch_offset(L));
704  }
705  void bovc(Register rs, Register rt, int16_t offset);
706  inline void bovc(Register rs, Register rt, Label* L) {
707    bovc(rs, rt, shifted_branch_offset(L));
708  }
709  void bnvc(Register rs, Register rt, int16_t offset);
710  inline void bnvc(Register rs, Register rt, Label* L) {
711    bnvc(rs, rt, shifted_branch_offset(L));
712  }
713
714  // Never use the int16_t b(l)cond version with a branch offset
715  // instead of using the Label* version.
716
717  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
718  void j(int64_t target);
719  void jal(int64_t target);
720  void j(Label* target);
721  void jal(Label* target);
722  void jalr(Register rs, Register rd = ra);
723  void jr(Register target);
724  void jic(Register rt, int16_t offset);
725  void jialc(Register rt, int16_t offset);
726
727
728  // -------Data-processing-instructions---------
729
730  // Arithmetic.
731  void addu(Register rd, Register rs, Register rt);
732  void subu(Register rd, Register rs, Register rt);
733
734  void div(Register rs, Register rt);
735  void divu(Register rs, Register rt);
736  void ddiv(Register rs, Register rt);
737  void ddivu(Register rs, Register rt);
738  void div(Register rd, Register rs, Register rt);
739  void divu(Register rd, Register rs, Register rt);
740  void ddiv(Register rd, Register rs, Register rt);
741  void ddivu(Register rd, Register rs, Register rt);
742  void mod(Register rd, Register rs, Register rt);
743  void modu(Register rd, Register rs, Register rt);
744  void dmod(Register rd, Register rs, Register rt);
745  void dmodu(Register rd, Register rs, Register rt);
746
747  void mul(Register rd, Register rs, Register rt);
748  void muh(Register rd, Register rs, Register rt);
749  void mulu(Register rd, Register rs, Register rt);
750  void muhu(Register rd, Register rs, Register rt);
751  void mult(Register rs, Register rt);
752  void multu(Register rs, Register rt);
753  void dmul(Register rd, Register rs, Register rt);
754  void dmuh(Register rd, Register rs, Register rt);
755  void dmulu(Register rd, Register rs, Register rt);
756  void dmuhu(Register rd, Register rs, Register rt);
757  void daddu(Register rd, Register rs, Register rt);
758  void dsubu(Register rd, Register rs, Register rt);
759  void dmult(Register rs, Register rt);
760  void dmultu(Register rs, Register rt);
761
762  void addiu(Register rd, Register rs, int32_t j);
763  void daddiu(Register rd, Register rs, int32_t j);
764
765  // Logical.
766  void and_(Register rd, Register rs, Register rt);
767  void or_(Register rd, Register rs, Register rt);
768  void xor_(Register rd, Register rs, Register rt);
769  void nor(Register rd, Register rs, Register rt);
770
771  void andi(Register rd, Register rs, int32_t j);
772  void ori(Register rd, Register rs, int32_t j);
773  void xori(Register rd, Register rs, int32_t j);
774  void lui(Register rd, int32_t j);
775  void aui(Register rt, Register rs, int32_t j);
776  void daui(Register rt, Register rs, int32_t j);
777  void dahi(Register rs, int32_t j);
778  void dati(Register rs, int32_t j);
779
780  // Shifts.
781  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
782  // and may cause problems in normal code. coming_from_nop makes sure this
783  // doesn't happen.
784  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
785  void sllv(Register rd, Register rt, Register rs);
786  void srl(Register rd, Register rt, uint16_t sa);
787  void srlv(Register rd, Register rt, Register rs);
788  void sra(Register rt, Register rd, uint16_t sa);
789  void srav(Register rt, Register rd, Register rs);
790  void rotr(Register rd, Register rt, uint16_t sa);
791  void rotrv(Register rd, Register rt, Register rs);
792  void dsll(Register rd, Register rt, uint16_t sa);
793  void dsllv(Register rd, Register rt, Register rs);
794  void dsrl(Register rd, Register rt, uint16_t sa);
795  void dsrlv(Register rd, Register rt, Register rs);
796  void drotr(Register rd, Register rt, uint16_t sa);
797  void drotr32(Register rd, Register rt, uint16_t sa);
798  void drotrv(Register rd, Register rt, Register rs);
799  void dsra(Register rt, Register rd, uint16_t sa);
800  void dsrav(Register rd, Register rt, Register rs);
801  void dsll32(Register rt, Register rd, uint16_t sa);
802  void dsrl32(Register rt, Register rd, uint16_t sa);
803  void dsra32(Register rt, Register rd, uint16_t sa);
804
805  // ------------Memory-instructions-------------
806
807  void lb(Register rd, const MemOperand& rs);
808  void lbu(Register rd, const MemOperand& rs);
809  void lh(Register rd, const MemOperand& rs);
810  void lhu(Register rd, const MemOperand& rs);
811  void lw(Register rd, const MemOperand& rs);
812  void lwu(Register rd, const MemOperand& rs);
813  void lwl(Register rd, const MemOperand& rs);
814  void lwr(Register rd, const MemOperand& rs);
815  void sb(Register rd, const MemOperand& rs);
816  void sh(Register rd, const MemOperand& rs);
817  void sw(Register rd, const MemOperand& rs);
818  void swl(Register rd, const MemOperand& rs);
819  void swr(Register rd, const MemOperand& rs);
820  void ldl(Register rd, const MemOperand& rs);
821  void ldr(Register rd, const MemOperand& rs);
822  void sdl(Register rd, const MemOperand& rs);
823  void sdr(Register rd, const MemOperand& rs);
824  void ld(Register rd, const MemOperand& rs);
825  void sd(Register rd, const MemOperand& rs);
826
827
828  // ---------PC-Relative-instructions-----------
829
830  void addiupc(Register rs, int32_t imm19);
831  void lwpc(Register rs, int32_t offset19);
832  void lwupc(Register rs, int32_t offset19);
833  void ldpc(Register rs, int32_t offset18);
834  void auipc(Register rs, int16_t imm16);
835  void aluipc(Register rs, int16_t imm16);
836
837
838  // ----------------Prefetch--------------------
839
840  void pref(int32_t hint, const MemOperand& rs);
841
842
843  // -------------Misc-instructions--------------
844
845  // Break / Trap instructions.
846  void break_(uint32_t code, bool break_as_stop = false);
847  void stop(const char* msg, uint32_t code = kMaxStopCode);
848  void tge(Register rs, Register rt, uint16_t code);
849  void tgeu(Register rs, Register rt, uint16_t code);
850  void tlt(Register rs, Register rt, uint16_t code);
851  void tltu(Register rs, Register rt, uint16_t code);
852  void teq(Register rs, Register rt, uint16_t code);
853  void tne(Register rs, Register rt, uint16_t code);
854
855  // Memory barrier instruction.
856  void sync();
857
858  // Move from HI/LO register.
859  void mfhi(Register rd);
860  void mflo(Register rd);
861
862  // Set on less than.
863  void slt(Register rd, Register rs, Register rt);
864  void sltu(Register rd, Register rs, Register rt);
865  void slti(Register rd, Register rs, int32_t j);
866  void sltiu(Register rd, Register rs, int32_t j);
867
868  // Conditional move.
869  void movz(Register rd, Register rs, Register rt);
870  void movn(Register rd, Register rs, Register rt);
871  void movt(Register rd, Register rs, uint16_t cc = 0);
872  void movf(Register rd, Register rs, uint16_t cc = 0);
873
874  void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
875  void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
876  void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
877  void seleqz(Register rd, Register rs, Register rt);
878  void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
879              FPURegister ft);
880  void selnez(Register rs, Register rt, Register rd);
881  void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
882              FPURegister ft);
883  void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
884  void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
885  void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
886  void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
887
888  void movz_s(FPURegister fd, FPURegister fs, Register rt);
889  void movz_d(FPURegister fd, FPURegister fs, Register rt);
890  void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
891  void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
892  void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
893  void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
894  void movn_s(FPURegister fd, FPURegister fs, Register rt);
895  void movn_d(FPURegister fd, FPURegister fs, Register rt);
896  // Bit twiddling.
897  void clz(Register rd, Register rs);
898  void dclz(Register rd, Register rs);
899  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
900  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
901  void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
902  void dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
903  void dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
904  void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
905  void bitswap(Register rd, Register rt);
906  void dbitswap(Register rd, Register rt);
907  void align(Register rd, Register rs, Register rt, uint8_t bp);
908  void dalign(Register rd, Register rs, Register rt, uint8_t bp);
909
910  void wsbh(Register rd, Register rt);
911  void dsbh(Register rd, Register rt);
912  void dshd(Register rd, Register rt);
913  void seh(Register rd, Register rt);
914  void seb(Register rd, Register rt);
915
916  // --------Coprocessor-instructions----------------
917
918  // Load, store, and move.
919  void lwc1(FPURegister fd, const MemOperand& src);
920  void ldc1(FPURegister fd, const MemOperand& src);
921
922  void swc1(FPURegister fs, const MemOperand& dst);
923  void sdc1(FPURegister fs, const MemOperand& dst);
924
925  void mtc1(Register rt, FPURegister fs);
926  void mthc1(Register rt, FPURegister fs);
927  void dmtc1(Register rt, FPURegister fs);
928
929  void mfc1(Register rt, FPURegister fs);
930  void mfhc1(Register rt, FPURegister fs);
931  void dmfc1(Register rt, FPURegister fs);
932
933  void ctc1(Register rt, FPUControlRegister fs);
934  void cfc1(Register rt, FPUControlRegister fs);
935
936  // Arithmetic.
937  void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
938  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
939  void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
940  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
941  void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
942  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
943  void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
944  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
945  void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
946  void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
947  void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
948  void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
949  void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
950  void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
951  void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
952  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
953  void abs_s(FPURegister fd, FPURegister fs);
954  void abs_d(FPURegister fd, FPURegister fs);
955  void mov_d(FPURegister fd, FPURegister fs);
956  void mov_s(FPURegister fd, FPURegister fs);
957  void neg_s(FPURegister fd, FPURegister fs);
958  void neg_d(FPURegister fd, FPURegister fs);
959  void sqrt_s(FPURegister fd, FPURegister fs);
960  void sqrt_d(FPURegister fd, FPURegister fs);
961  void rsqrt_s(FPURegister fd, FPURegister fs);
962  void rsqrt_d(FPURegister fd, FPURegister fs);
963  void recip_d(FPURegister fd, FPURegister fs);
964  void recip_s(FPURegister fd, FPURegister fs);
965
966  // Conversion.
967  void cvt_w_s(FPURegister fd, FPURegister fs);
968  void cvt_w_d(FPURegister fd, FPURegister fs);
969  void trunc_w_s(FPURegister fd, FPURegister fs);
970  void trunc_w_d(FPURegister fd, FPURegister fs);
971  void round_w_s(FPURegister fd, FPURegister fs);
972  void round_w_d(FPURegister fd, FPURegister fs);
973  void floor_w_s(FPURegister fd, FPURegister fs);
974  void floor_w_d(FPURegister fd, FPURegister fs);
975  void ceil_w_s(FPURegister fd, FPURegister fs);
976  void ceil_w_d(FPURegister fd, FPURegister fs);
977  void rint_s(FPURegister fd, FPURegister fs);
978  void rint_d(FPURegister fd, FPURegister fs);
979  void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
980
981
982  void cvt_l_s(FPURegister fd, FPURegister fs);
983  void cvt_l_d(FPURegister fd, FPURegister fs);
984  void trunc_l_s(FPURegister fd, FPURegister fs);
985  void trunc_l_d(FPURegister fd, FPURegister fs);
986  void round_l_s(FPURegister fd, FPURegister fs);
987  void round_l_d(FPURegister fd, FPURegister fs);
988  void floor_l_s(FPURegister fd, FPURegister fs);
989  void floor_l_d(FPURegister fd, FPURegister fs);
990  void ceil_l_s(FPURegister fd, FPURegister fs);
991  void ceil_l_d(FPURegister fd, FPURegister fs);
992
993  void class_s(FPURegister fd, FPURegister fs);
994  void class_d(FPURegister fd, FPURegister fs);
995
996  void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
997  void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
998  void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
999  void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
1000  void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
1001  void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
1002  void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
1003  void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
1004  void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
1005  void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
1006  void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
1007  void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
1008
1009  void cvt_s_w(FPURegister fd, FPURegister fs);
1010  void cvt_s_l(FPURegister fd, FPURegister fs);
1011  void cvt_s_d(FPURegister fd, FPURegister fs);
1012
1013  void cvt_d_w(FPURegister fd, FPURegister fs);
1014  void cvt_d_l(FPURegister fd, FPURegister fs);
1015  void cvt_d_s(FPURegister fd, FPURegister fs);
1016
1017  // Conditions and branches for MIPSr6.
1018  void cmp(FPUCondition cond, SecondaryField fmt,
1019         FPURegister fd, FPURegister ft, FPURegister fs);
1020  void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1021  void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1022
1023  void bc1eqz(int16_t offset, FPURegister ft);
1024  inline void bc1eqz(Label* L, FPURegister ft) {
1025    bc1eqz(shifted_branch_offset(L), ft);
1026  }
1027  void bc1nez(int16_t offset, FPURegister ft);
1028  inline void bc1nez(Label* L, FPURegister ft) {
1029    bc1nez(shifted_branch_offset(L), ft);
1030  }
1031
1032  // Conditions and branches for non MIPSr6.
1033  void c(FPUCondition cond, SecondaryField fmt,
1034         FPURegister ft, FPURegister fs, uint16_t cc = 0);
1035  void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1036  void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1037
1038  void bc1f(int16_t offset, uint16_t cc = 0);
1039  inline void bc1f(Label* L, uint16_t cc = 0) {
1040    bc1f(shifted_branch_offset(L), cc);
1041  }
1042  void bc1t(int16_t offset, uint16_t cc = 0);
1043  inline void bc1t(Label* L, uint16_t cc = 0) {
1044    bc1t(shifted_branch_offset(L), cc);
1045  }
1046  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1047
1048  // Check the code size generated from label to here.
1049  int SizeOfCodeGeneratedSince(Label* label) {
1050    return pc_offset() - label->pos();
1051  }
1052
1053  // Check the number of instructions generated from label to here.
1054  int InstructionsGeneratedSince(Label* label) {
1055    return SizeOfCodeGeneratedSince(label) / kInstrSize;
1056  }
1057
1058  // Class for scoping postponing the trampoline pool generation.
1059  class BlockTrampolinePoolScope {
1060   public:
1061    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1062      assem_->StartBlockTrampolinePool();
1063    }
1064    ~BlockTrampolinePoolScope() {
1065      assem_->EndBlockTrampolinePool();
1066    }
1067
1068   private:
1069    Assembler* assem_;
1070
1071    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1072  };
1073
1074  // Class for postponing the assembly buffer growth. Typically used for
1075  // sequences of instructions that must be emitted as a unit, before
1076  // buffer growth (and relocation) can occur.
1077  // This blocking scope is not nestable.
1078  class BlockGrowBufferScope {
1079   public:
1080    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1081      assem_->StartBlockGrowBuffer();
1082    }
1083    ~BlockGrowBufferScope() {
1084      assem_->EndBlockGrowBuffer();
1085    }
1086
1087   private:
1088    Assembler* assem_;
1089
1090    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1091  };
1092
1093  // Debugging.
1094
1095  // Mark address of a debug break slot.
1096  void RecordDebugBreakSlot(RelocInfo::Mode mode);
1097
1098  // Record the AST id of the CallIC being compiled, so that it can be placed
1099  // in the relocation information.
1100  void SetRecordedAstId(TypeFeedbackId ast_id) {
1101    DCHECK(recorded_ast_id_.IsNone());
1102    recorded_ast_id_ = ast_id;
1103  }
1104
1105  TypeFeedbackId RecordedAstId() {
1106    DCHECK(!recorded_ast_id_.IsNone());
1107    return recorded_ast_id_;
1108  }
1109
1110  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1111
1112  // Record a comment relocation entry that can be used by a disassembler.
1113  // Use --code-comments to enable.
1114  void RecordComment(const char* msg);
1115
1116  // Record a deoptimization reason that can be used by a log or cpu profiler.
1117  // Use --trace-deopt to enable.
1118  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1119                         int id);
1120
1121  static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1122                                       intptr_t pc_delta);
1123
1124  // Writes a single byte or word of data in the code stream.  Used for
1125  // inline tables, e.g., jump-tables.
1126  void db(uint8_t data);
1127  void dd(uint32_t data);
1128  void dq(uint64_t data);
1129  void dp(uintptr_t data) { dq(data); }
1130  void dd(Label* label);
1131
1132  // Postpone the generation of the trampoline pool for the specified number of
1133  // instructions.
1134  void BlockTrampolinePoolFor(int instructions);
1135
1136  // Check if there is less than kGap bytes available in the buffer.
1137  // If this is the case, we need to grow the buffer before emitting
1138  // an instruction or relocation information.
1139  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1140
1141  // Get the number of bytes available in the buffer.
1142  inline intptr_t available_space() const {
1143    return reloc_info_writer.pos() - pc_;
1144  }
1145
1146  // Read/patch instructions.
1147  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1148  static void instr_at_put(byte* pc, Instr instr) {
1149    *reinterpret_cast<Instr*>(pc) = instr;
1150  }
1151  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1152  void instr_at_put(int pos, Instr instr) {
1153    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1154  }
1155
1156  // Check if an instruction is a branch of some kind.
1157  static bool IsBranch(Instr instr);
1158  static bool IsBc(Instr instr);
1159  static bool IsBzc(Instr instr);
1160
1161  static bool IsBeq(Instr instr);
1162  static bool IsBne(Instr instr);
1163  static bool IsBeqzc(Instr instr);
1164  static bool IsBnezc(Instr instr);
1165  static bool IsBeqc(Instr instr);
1166  static bool IsBnec(Instr instr);
1167
1168
1169  static bool IsJump(Instr instr);
1170  static bool IsJ(Instr instr);
1171  static bool IsLui(Instr instr);
1172  static bool IsOri(Instr instr);
1173
1174  static bool IsJal(Instr instr);
1175  static bool IsJr(Instr instr);
1176  static bool IsJalr(Instr instr);
1177
1178  static bool IsNop(Instr instr, unsigned int type);
1179  static bool IsPop(Instr instr);
1180  static bool IsPush(Instr instr);
1181  static bool IsLwRegFpOffset(Instr instr);
1182  static bool IsSwRegFpOffset(Instr instr);
1183  static bool IsLwRegFpNegOffset(Instr instr);
1184  static bool IsSwRegFpNegOffset(Instr instr);
1185
1186  static Register GetRtReg(Instr instr);
1187  static Register GetRsReg(Instr instr);
1188  static Register GetRdReg(Instr instr);
1189
1190  static uint32_t GetRt(Instr instr);
1191  static uint32_t GetRtField(Instr instr);
1192  static uint32_t GetRs(Instr instr);
1193  static uint32_t GetRsField(Instr instr);
1194  static uint32_t GetRd(Instr instr);
1195  static uint32_t GetRdField(Instr instr);
1196  static uint32_t GetSa(Instr instr);
1197  static uint32_t GetSaField(Instr instr);
1198  static uint32_t GetOpcodeField(Instr instr);
1199  static uint32_t GetFunction(Instr instr);
1200  static uint32_t GetFunctionField(Instr instr);
1201  static uint32_t GetImmediate16(Instr instr);
1202  static uint32_t GetLabelConst(Instr instr);
1203
1204  static int32_t GetBranchOffset(Instr instr);
1205  static bool IsLw(Instr instr);
1206  static int16_t GetLwOffset(Instr instr);
1207  static Instr SetLwOffset(Instr instr, int16_t offset);
1208
1209  static bool IsSw(Instr instr);
1210  static Instr SetSwOffset(Instr instr, int16_t offset);
1211  static bool IsAddImmediate(Instr instr);
1212  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1213
1214  static bool IsAndImmediate(Instr instr);
1215  static bool IsEmittedConstant(Instr instr);
1216
1217  void CheckTrampolinePool();
1218
1219  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1220                                          ConstantPoolEntry::Access access,
1221                                          ConstantPoolEntry::Type type) {
1222    // No embedded constant pool support.
1223    UNREACHABLE();
1224  }
1225
1226  bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1227  static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }
1228
1229  inline int UnboundLabelsCount() { return unbound_labels_count_; }
1230
1231 protected:
1232  // Load Scaled Address instructions.
1233  void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1234  void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1235
1236  // Helpers.
1237  void LoadRegPlusOffsetToAt(const MemOperand& src);
1238  int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src);
1239
1240  // Relocation for a type-recording IC has the AST id added to it.  This
1241  // member variable is a way to pass the information from the call site to
1242  // the relocation info.
1243  TypeFeedbackId recorded_ast_id_;
1244
1245  inline static void set_target_internal_reference_encoded_at(Address pc,
1246                                                              Address target);
1247
1248  int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1249
1250  // Decode branch instruction at pos and return branch target pos.
1251  int target_at(int pos, bool is_internal);
1252
1253  // Patch branch instruction at pos to branch to given branch target pos.
1254  void target_at_put(int pos, int target_pos, bool is_internal);
1255
1256  // Say if we need to relocate with this mode.
1257  bool MustUseReg(RelocInfo::Mode rmode);
1258
1259  // Record reloc info for current pc_.
1260  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1261
1262  // Block the emission of the trampoline pool before pc_offset.
1263  void BlockTrampolinePoolBefore(int pc_offset) {
1264    if (no_trampoline_pool_before_ < pc_offset)
1265      no_trampoline_pool_before_ = pc_offset;
1266  }
1267
1268  void StartBlockTrampolinePool() {
1269    trampoline_pool_blocked_nesting_++;
1270  }
1271
1272  void EndBlockTrampolinePool() {
1273    trampoline_pool_blocked_nesting_--;
1274  }
1275
1276  bool is_trampoline_pool_blocked() const {
1277    return trampoline_pool_blocked_nesting_ > 0;
1278  }
1279
1280  bool has_exception() const {
1281    return internal_trampoline_exception_;
1282  }
1283
1284  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1285
1286  bool is_trampoline_emitted() const {
1287    return trampoline_emitted_;
1288  }
1289
1290  // Temporarily block automatic assembly buffer growth.
1291  void StartBlockGrowBuffer() {
1292    DCHECK(!block_buffer_growth_);
1293    block_buffer_growth_ = true;
1294  }
1295
1296  void EndBlockGrowBuffer() {
1297    DCHECK(block_buffer_growth_);
1298    block_buffer_growth_ = false;
1299  }
1300
1301  bool is_buffer_growth_blocked() const {
1302    return block_buffer_growth_;
1303  }
1304
1305  void EmitForbiddenSlotInstruction() {
1306    if (IsPrevInstrCompactBranch()) {
1307      nop();
1308    }
1309  }
1310
1311  inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1312
1313 private:
1314  // Buffer size and constant pool distance are checked together at regular
1315  // intervals of kBufferCheckInterval emitted bytes.
1316  static const int kBufferCheckInterval = 1*KB/2;
1317
1318  // Code generation.
1319  // The relocation writer's position is at least kGap bytes below the end of
1320  // the generated instructions. This is so that multi-instruction sequences do
1321  // not have to check for overflow. The same is true for writes of large
1322  // relocation info entries.
1323  static const int kGap = 32;
1324
1325
1326  // Repeated checking whether the trampoline pool should be emitted is rather
1327  // expensive. By default we only check again once a number of instructions
1328  // has been generated.
1329  static const int kCheckConstIntervalInst = 32;
1330  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1331
1332  int next_buffer_check_;  // pc offset of next buffer check.
1333
1334  // Emission of the trampoline pool may be blocked in some code sequences.
1335  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1336  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1337
1338  // Keep track of the last emitted pool to guarantee a maximal distance.
1339  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1340
1341  // Automatic growth of the assembly buffer may be blocked for some sequences.
1342  bool block_buffer_growth_;  // Block growth when true.
1343
1344  // Relocation information generation.
1345  // Each relocation is encoded as a variable size value.
1346  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1347  RelocInfoWriter reloc_info_writer;
1348
1349  // The bound position, before this we cannot do instruction elimination.
1350  int last_bound_pos_;
1351
1352  // Readable constants for compact branch handling in emit()
1353  enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1354
1355  // Code emission.
1356  inline void CheckBuffer();
1357  void GrowBuffer();
1358  inline void emit(Instr x,
1359                   CompactBranchType is_compact_branch = CompactBranchType::NO);
1360  inline void emit(uint64_t x);
1361  inline void CheckForEmitInForbiddenSlot();
1362  template <typename T>
1363  inline void EmitHelper(T x);
1364  inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1365
1366  // Instruction generation.
1367  // We have 3 different kind of encoding layout on MIPS.
1368  // However due to many different types of objects encoded in the same fields
1369  // we have quite a few aliases for each mode.
1370  // Using the same structure to refer to Register and FPURegister would spare a
1371  // few aliases, but mixing both does not look clean to me.
1372  // Anyway we could surely implement this differently.
1373
1374  void GenInstrRegister(Opcode opcode,
1375                        Register rs,
1376                        Register rt,
1377                        Register rd,
1378                        uint16_t sa = 0,
1379                        SecondaryField func = NULLSF);
1380
1381  void GenInstrRegister(Opcode opcode,
1382                        Register rs,
1383                        Register rt,
1384                        uint16_t msb,
1385                        uint16_t lsb,
1386                        SecondaryField func);
1387
1388  void GenInstrRegister(Opcode opcode,
1389                        SecondaryField fmt,
1390                        FPURegister ft,
1391                        FPURegister fs,
1392                        FPURegister fd,
1393                        SecondaryField func = NULLSF);
1394
1395  void GenInstrRegister(Opcode opcode,
1396                        FPURegister fr,
1397                        FPURegister ft,
1398                        FPURegister fs,
1399                        FPURegister fd,
1400                        SecondaryField func = NULLSF);
1401
1402  void GenInstrRegister(Opcode opcode,
1403                        SecondaryField fmt,
1404                        Register rt,
1405                        FPURegister fs,
1406                        FPURegister fd,
1407                        SecondaryField func = NULLSF);
1408
1409  void GenInstrRegister(Opcode opcode,
1410                        SecondaryField fmt,
1411                        Register rt,
1412                        FPUControlRegister fs,
1413                        SecondaryField func = NULLSF);
1414
1415
1416  void GenInstrImmediate(
1417      Opcode opcode, Register rs, Register rt, int32_t j,
1418      CompactBranchType is_compact_branch = CompactBranchType::NO);
1419  void GenInstrImmediate(
1420      Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1421      CompactBranchType is_compact_branch = CompactBranchType::NO);
1422  void GenInstrImmediate(
1423      Opcode opcode, Register r1, FPURegister r2, int32_t j,
1424      CompactBranchType is_compact_branch = CompactBranchType::NO);
1425  void GenInstrImmediate(
1426      Opcode opcode, Register rs, int32_t offset21,
1427      CompactBranchType is_compact_branch = CompactBranchType::NO);
1428  void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1429  void GenInstrImmediate(
1430      Opcode opcode, int32_t offset26,
1431      CompactBranchType is_compact_branch = CompactBranchType::NO);
1432
1433  void GenInstrJump(Opcode opcode,
1434                     uint32_t address);
1435
1436  // Labels.
1437  void print(Label* L);
1438  void bind_to(Label* L, int pos);
1439  void next(Label* L, bool is_internal);
1440
1441  // One trampoline consists of:
1442  // - space for trampoline slots,
1443  // - space for labels.
1444  //
1445  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1446  // Space for trampoline slots preceeds space for labels. Each label is of one
1447  // instruction size, so total amount for labels is equal to
1448  // label_count *  kInstrSize.
1449  class Trampoline {
1450   public:
1451    Trampoline() {
1452      start_ = 0;
1453      next_slot_ = 0;
1454      free_slot_count_ = 0;
1455      end_ = 0;
1456    }
1457    Trampoline(int start, int slot_count) {
1458      start_ = start;
1459      next_slot_ = start;
1460      free_slot_count_ = slot_count;
1461      end_ = start + slot_count * kTrampolineSlotsSize;
1462    }
1463    int start() {
1464      return start_;
1465    }
1466    int end() {
1467      return end_;
1468    }
1469    int take_slot() {
1470      int trampoline_slot = kInvalidSlotPos;
1471      if (free_slot_count_ <= 0) {
1472        // We have run out of space on trampolines.
1473        // Make sure we fail in debug mode, so we become aware of each case
1474        // when this happens.
1475        DCHECK(0);
1476        // Internal exception will be caught.
1477      } else {
1478        trampoline_slot = next_slot_;
1479        free_slot_count_--;
1480        next_slot_ += kTrampolineSlotsSize;
1481      }
1482      return trampoline_slot;
1483    }
1484
1485   private:
1486    int start_;
1487    int end_;
1488    int next_slot_;
1489    int free_slot_count_;
1490  };
1491
1492  int32_t get_trampoline_entry(int32_t pos);
1493  int unbound_labels_count_;
1494  // After trampoline is emitted, long branches are used in generated code for
1495  // the forward branches whose target offsets could be beyond reach of branch
1496  // instruction. We use this information to trigger different mode of
1497  // branch instruction generation, where we use jump instructions rather
1498  // than regular branch instructions.
1499  bool trampoline_emitted_;
1500  static const int kInvalidSlotPos = -1;
1501
1502  // Internal reference positions, required for unbounded internal reference
1503  // labels.
1504  std::set<int64_t> internal_reference_positions_;
1505  bool is_internal_reference(Label* L) {
1506    return internal_reference_positions_.find(L->pos()) !=
1507           internal_reference_positions_.end();
1508  }
1509
1510  void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
1511  void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1512  bool prev_instr_compact_branch_ = false;
1513
1514  Trampoline trampoline_;
1515  bool internal_trampoline_exception_;
1516
1517  friend class RegExpMacroAssemblerMIPS;
1518  friend class RelocInfo;
1519  friend class CodePatcher;
1520  friend class BlockTrampolinePoolScope;
1521  friend class EnsureSpace;
1522};
1523
1524
1525class EnsureSpace BASE_EMBEDDED {
1526 public:
1527  explicit EnsureSpace(Assembler* assembler) {
1528    assembler->CheckBuffer();
1529  }
1530};
1531
1532}  // namespace internal
1533}  // namespace v8
1534
1535#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1536