1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31//
32// The Google C++ Testing Framework (Google Test)
33//
34// This header file declares functions and macros used internally by
35// Google Test.  They are subject to change without notice.
36
37#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40#include "gtest/internal/gtest-port.h"
41
42#if GTEST_OS_LINUX
43# include <stdlib.h>
44# include <sys/types.h>
45# include <sys/wait.h>
46# include <unistd.h>
47#endif  // GTEST_OS_LINUX
48
49#if GTEST_HAS_EXCEPTIONS
50# include <stdexcept>
51#endif
52
53#include <ctype.h>
54#include <float.h>
55#include <string.h>
56#include <iomanip>
57#include <limits>
58#include <map>
59#include <set>
60#include <string>
61#include <vector>
62
63#include "gtest/gtest-message.h"
64#include "gtest/internal/gtest-string.h"
65#include "gtest/internal/gtest-filepath.h"
66#include "gtest/internal/gtest-type-util.h"
67
68// Due to C++ preprocessor weirdness, we need double indirection to
69// concatenate two tokens when one of them is __LINE__.  Writing
70//
71//   foo ## __LINE__
72//
73// will result in the token foo__LINE__, instead of foo followed by
74// the current line number.  For more details, see
75// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
76#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
77#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
78
79class ProtocolMessage;
80namespace proto2 { class Message; }
81
82namespace testing {
83
84// Forward declarations.
85
86class AssertionResult;                 // Result of an assertion.
87class Message;                         // Represents a failure message.
88class Test;                            // Represents a test.
89class TestInfo;                        // Information about a test.
90class TestPartResult;                  // Result of a test part.
91class UnitTest;                        // A collection of test cases.
92
93template <typename T>
94::std::string PrintToString(const T& value);
95
96namespace internal {
97
98struct TraceInfo;                      // Information about a trace point.
99class ScopedTrace;                     // Implements scoped trace.
100class TestInfoImpl;                    // Opaque implementation of TestInfo
101class UnitTestImpl;                    // Opaque implementation of UnitTest
102
103// The text used in failure messages to indicate the start of the
104// stack trace.
105GTEST_API_ extern const char kStackTraceMarker[];
106
107// Two overloaded helpers for checking at compile time whether an
108// expression is a null pointer literal (i.e. NULL or any 0-valued
109// compile-time integral constant).  Their return values have
110// different sizes, so we can use sizeof() to test which version is
111// picked by the compiler.  These helpers have no implementations, as
112// we only need their signatures.
113//
114// Given IsNullLiteralHelper(x), the compiler will pick the first
115// version if x can be implicitly converted to Secret*, and pick the
116// second version otherwise.  Since Secret is a secret and incomplete
117// type, the only expression a user can write that has type Secret* is
118// a null pointer literal.  Therefore, we know that x is a null
119// pointer literal if and only if the first version is picked by the
120// compiler.
121char IsNullLiteralHelper(Secret* p);
122char (&IsNullLiteralHelper(...))[2];  // NOLINT
123
124// A compile-time bool constant that is true if and only if x is a
125// null pointer literal (i.e. NULL or any 0-valued compile-time
126// integral constant).
127#ifdef GTEST_ELLIPSIS_NEEDS_POD_
128// We lose support for NULL detection where the compiler doesn't like
129// passing non-POD classes through ellipsis (...).
130# define GTEST_IS_NULL_LITERAL_(x) false
131#else
132# define GTEST_IS_NULL_LITERAL_(x) \
133    (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
134#endif  // GTEST_ELLIPSIS_NEEDS_POD_
135
136// Appends the user-supplied message to the Google-Test-generated message.
137GTEST_API_ std::string AppendUserMessage(
138    const std::string& gtest_msg, const Message& user_msg);
139
140#if GTEST_HAS_EXCEPTIONS
141
142// This exception is thrown by (and only by) a failed Google Test
143// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
144// are enabled).  We derive it from std::runtime_error, which is for
145// errors presumably detectable only at run time.  Since
146// std::runtime_error inherits from std::exception, many testing
147// frameworks know how to extract and print the message inside it.
148class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
149 public:
150  explicit GoogleTestFailureException(const TestPartResult& failure);
151};
152
153#endif  // GTEST_HAS_EXCEPTIONS
154
155// A helper class for creating scoped traces in user programs.
156class GTEST_API_ ScopedTrace {
157 public:
158  // The c'tor pushes the given source file location and message onto
159  // a trace stack maintained by Google Test.
160  ScopedTrace(const char* file, int line, const Message& message);
161
162  // The d'tor pops the info pushed by the c'tor.
163  //
164  // Note that the d'tor is not virtual in order to be efficient.
165  // Don't inherit from ScopedTrace!
166  ~ScopedTrace();
167
168 private:
169  GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
170} GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
171                            // c'tor and d'tor.  Therefore it doesn't
172                            // need to be used otherwise.
173
174namespace edit_distance {
175// Returns the optimal edits to go from 'left' to 'right'.
176// All edits cost the same, with replace having lower priority than
177// add/remove.
178// Simple implementation of the Wagner–Fischer algorithm.
179// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
180enum EditType { kMatch, kAdd, kRemove, kReplace };
181GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
182    const std::vector<size_t>& left, const std::vector<size_t>& right);
183
184// Same as above, but the input is represented as strings.
185GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
186    const std::vector<std::string>& left,
187    const std::vector<std::string>& right);
188
189// Create a diff of the input strings in Unified diff format.
190GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
191                                         const std::vector<std::string>& right,
192                                         size_t context = 2);
193
194}  // namespace edit_distance
195
196// Calculate the diff between 'left' and 'right' and return it in unified diff
197// format.
198// If not null, stores in 'total_line_count' the total number of lines found
199// in left + right.
200GTEST_API_ std::string DiffStrings(const std::string& left,
201                                   const std::string& right,
202                                   size_t* total_line_count);
203
204// Constructs and returns the message for an equality assertion
205// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
206//
207// The first four parameters are the expressions used in the assertion
208// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
209// where foo is 5 and bar is 6, we have:
210//
211//   expected_expression: "foo"
212//   actual_expression:   "bar"
213//   expected_value:      "5"
214//   actual_value:        "6"
215//
216// The ignoring_case parameter is true iff the assertion is a
217// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
218// be inserted into the message.
219GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
220                                     const char* actual_expression,
221                                     const std::string& expected_value,
222                                     const std::string& actual_value,
223                                     bool ignoring_case);
224
225// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
226GTEST_API_ std::string GetBoolAssertionFailureMessage(
227    const AssertionResult& assertion_result,
228    const char* expression_text,
229    const char* actual_predicate_value,
230    const char* expected_predicate_value);
231
232// This template class represents an IEEE floating-point number
233// (either single-precision or double-precision, depending on the
234// template parameters).
235//
236// The purpose of this class is to do more sophisticated number
237// comparison.  (Due to round-off error, etc, it's very unlikely that
238// two floating-points will be equal exactly.  Hence a naive
239// comparison by the == operation often doesn't work.)
240//
241// Format of IEEE floating-point:
242//
243//   The most-significant bit being the leftmost, an IEEE
244//   floating-point looks like
245//
246//     sign_bit exponent_bits fraction_bits
247//
248//   Here, sign_bit is a single bit that designates the sign of the
249//   number.
250//
251//   For float, there are 8 exponent bits and 23 fraction bits.
252//
253//   For double, there are 11 exponent bits and 52 fraction bits.
254//
255//   More details can be found at
256//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
257//
258// Template parameter:
259//
260//   RawType: the raw floating-point type (either float or double)
261template <typename RawType>
262class FloatingPoint {
263 public:
264  // Defines the unsigned integer type that has the same size as the
265  // floating point number.
266  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
267
268  // Constants.
269
270  // # of bits in a number.
271  static const size_t kBitCount = 8*sizeof(RawType);
272
273  // # of fraction bits in a number.
274  static const size_t kFractionBitCount =
275    std::numeric_limits<RawType>::digits - 1;
276
277  // # of exponent bits in a number.
278  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
279
280  // The mask for the sign bit.
281  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
282
283  // The mask for the fraction bits.
284  static const Bits kFractionBitMask =
285    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
286
287  // The mask for the exponent bits.
288  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
289
290  // How many ULP's (Units in the Last Place) we want to tolerate when
291  // comparing two numbers.  The larger the value, the more error we
292  // allow.  A 0 value means that two numbers must be exactly the same
293  // to be considered equal.
294  //
295  // The maximum error of a single floating-point operation is 0.5
296  // units in the last place.  On Intel CPU's, all floating-point
297  // calculations are done with 80-bit precision, while double has 64
298  // bits.  Therefore, 4 should be enough for ordinary use.
299  //
300  // See the following article for more details on ULP:
301  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
302  static const size_t kMaxUlps = 4;
303
304  // Constructs a FloatingPoint from a raw floating-point number.
305  //
306  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
307  // around may change its bits, although the new value is guaranteed
308  // to be also a NAN.  Therefore, don't expect this constructor to
309  // preserve the bits in x when x is a NAN.
310  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
311
312  // Static methods
313
314  // Reinterprets a bit pattern as a floating-point number.
315  //
316  // This function is needed to test the AlmostEquals() method.
317  static RawType ReinterpretBits(const Bits bits) {
318    FloatingPoint fp(0);
319    fp.u_.bits_ = bits;
320    return fp.u_.value_;
321  }
322
323  // Returns the floating-point number that represent positive infinity.
324  static RawType Infinity() {
325    return ReinterpretBits(kExponentBitMask);
326  }
327
328  // Returns the maximum representable finite floating-point number.
329  static RawType Max();
330
331  // Non-static methods
332
333  // Returns the bits that represents this number.
334  const Bits &bits() const { return u_.bits_; }
335
336  // Returns the exponent bits of this number.
337  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
338
339  // Returns the fraction bits of this number.
340  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
341
342  // Returns the sign bit of this number.
343  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
344
345  // Returns true iff this is NAN (not a number).
346  bool is_nan() const {
347    // It's a NAN if the exponent bits are all ones and the fraction
348    // bits are not entirely zeros.
349    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
350  }
351
352  // Returns true iff this number is at most kMaxUlps ULP's away from
353  // rhs.  In particular, this function:
354  //
355  //   - returns false if either number is (or both are) NAN.
356  //   - treats really large numbers as almost equal to infinity.
357  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
358  bool AlmostEquals(const FloatingPoint& rhs) const {
359    // The IEEE standard says that any comparison operation involving
360    // a NAN must return false.
361    if (is_nan() || rhs.is_nan()) return false;
362
363    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
364        <= kMaxUlps;
365  }
366
367 private:
368  // The data type used to store the actual floating-point number.
369  union FloatingPointUnion {
370    RawType value_;  // The raw floating-point number.
371    Bits bits_;      // The bits that represent the number.
372  };
373
374  // Converts an integer from the sign-and-magnitude representation to
375  // the biased representation.  More precisely, let N be 2 to the
376  // power of (kBitCount - 1), an integer x is represented by the
377  // unsigned number x + N.
378  //
379  // For instance,
380  //
381  //   -N + 1 (the most negative number representable using
382  //          sign-and-magnitude) is represented by 1;
383  //   0      is represented by N; and
384  //   N - 1  (the biggest number representable using
385  //          sign-and-magnitude) is represented by 2N - 1.
386  //
387  // Read http://en.wikipedia.org/wiki/Signed_number_representations
388  // for more details on signed number representations.
389  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
390    if (kSignBitMask & sam) {
391      // sam represents a negative number.
392      return ~sam + 1;
393    } else {
394      // sam represents a positive number.
395      return kSignBitMask | sam;
396    }
397  }
398
399  // Given two numbers in the sign-and-magnitude representation,
400  // returns the distance between them as an unsigned number.
401  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
402                                                     const Bits &sam2) {
403    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
404    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
405    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
406  }
407
408  FloatingPointUnion u_;
409};
410
411// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
412// macro defined by <windows.h>.
413template <>
414inline float FloatingPoint<float>::Max() { return FLT_MAX; }
415template <>
416inline double FloatingPoint<double>::Max() { return DBL_MAX; }
417
418// Typedefs the instances of the FloatingPoint template class that we
419// care to use.
420typedef FloatingPoint<float> Float;
421typedef FloatingPoint<double> Double;
422
423// In order to catch the mistake of putting tests that use different
424// test fixture classes in the same test case, we need to assign
425// unique IDs to fixture classes and compare them.  The TypeId type is
426// used to hold such IDs.  The user should treat TypeId as an opaque
427// type: the only operation allowed on TypeId values is to compare
428// them for equality using the == operator.
429typedef const void* TypeId;
430
431template <typename T>
432class TypeIdHelper {
433 public:
434  // dummy_ must not have a const type.  Otherwise an overly eager
435  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
436  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
437  static bool dummy_;
438};
439
440template <typename T>
441bool TypeIdHelper<T>::dummy_ = false;
442
443// GetTypeId<T>() returns the ID of type T.  Different values will be
444// returned for different types.  Calling the function twice with the
445// same type argument is guaranteed to return the same ID.
446template <typename T>
447TypeId GetTypeId() {
448  // The compiler is required to allocate a different
449  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
450  // the template.  Therefore, the address of dummy_ is guaranteed to
451  // be unique.
452  return &(TypeIdHelper<T>::dummy_);
453}
454
455// Returns the type ID of ::testing::Test.  Always call this instead
456// of GetTypeId< ::testing::Test>() to get the type ID of
457// ::testing::Test, as the latter may give the wrong result due to a
458// suspected linker bug when compiling Google Test as a Mac OS X
459// framework.
460GTEST_API_ TypeId GetTestTypeId();
461
462// Defines the abstract factory interface that creates instances
463// of a Test object.
464class TestFactoryBase {
465 public:
466  virtual ~TestFactoryBase() {}
467
468  // Creates a test instance to run. The instance is both created and destroyed
469  // within TestInfoImpl::Run()
470  virtual Test* CreateTest() = 0;
471
472 protected:
473  TestFactoryBase() {}
474
475 private:
476  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
477};
478
479// This class provides implementation of TeastFactoryBase interface.
480// It is used in TEST and TEST_F macros.
481template <class TestClass>
482class TestFactoryImpl : public TestFactoryBase {
483 public:
484  virtual Test* CreateTest() { return new TestClass; }
485};
486
487#if GTEST_OS_WINDOWS
488
489// Predicate-formatters for implementing the HRESULT checking macros
490// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
491// We pass a long instead of HRESULT to avoid causing an
492// include dependency for the HRESULT type.
493GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
494                                            long hr);  // NOLINT
495GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
496                                            long hr);  // NOLINT
497
498#endif  // GTEST_OS_WINDOWS
499
500// Types of SetUpTestCase() and TearDownTestCase() functions.
501typedef void (*SetUpTestCaseFunc)();
502typedef void (*TearDownTestCaseFunc)();
503
504struct CodeLocation {
505  CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {}
506
507  string file;
508  int line;
509};
510
511// Creates a new TestInfo object and registers it with Google Test;
512// returns the created object.
513//
514// Arguments:
515//
516//   test_case_name:   name of the test case
517//   name:             name of the test
518//   type_param        the name of the test's type parameter, or NULL if
519//                     this is not a typed or a type-parameterized test.
520//   value_param       text representation of the test's value parameter,
521//                     or NULL if this is not a type-parameterized test.
522//   code_location:    code location where the test is defined
523//   fixture_class_id: ID of the test fixture class
524//   set_up_tc:        pointer to the function that sets up the test case
525//   tear_down_tc:     pointer to the function that tears down the test case
526//   factory:          pointer to the factory that creates a test object.
527//                     The newly created TestInfo instance will assume
528//                     ownership of the factory object.
529GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
530    const char* test_case_name,
531    const char* name,
532    const char* type_param,
533    const char* value_param,
534    CodeLocation code_location,
535    TypeId fixture_class_id,
536    SetUpTestCaseFunc set_up_tc,
537    TearDownTestCaseFunc tear_down_tc,
538    TestFactoryBase* factory);
539
540// If *pstr starts with the given prefix, modifies *pstr to be right
541// past the prefix and returns true; otherwise leaves *pstr unchanged
542// and returns false.  None of pstr, *pstr, and prefix can be NULL.
543GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
544
545#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
546
547// State of the definition of a type-parameterized test case.
548class GTEST_API_ TypedTestCasePState {
549 public:
550  TypedTestCasePState() : registered_(false) {}
551
552  // Adds the given test name to defined_test_names_ and return true
553  // if the test case hasn't been registered; otherwise aborts the
554  // program.
555  bool AddTestName(const char* file, int line, const char* case_name,
556                   const char* test_name) {
557    if (registered_) {
558      fprintf(stderr, "%s Test %s must be defined before "
559              "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
560              FormatFileLocation(file, line).c_str(), test_name, case_name);
561      fflush(stderr);
562      posix::Abort();
563    }
564    registered_tests_.insert(
565        ::std::make_pair(test_name, CodeLocation(file, line)));
566    return true;
567  }
568
569  bool TestExists(const std::string& test_name) const {
570    return registered_tests_.count(test_name) > 0;
571  }
572
573  const CodeLocation& GetCodeLocation(const std::string& test_name) const {
574    RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
575    GTEST_CHECK_(it != registered_tests_.end());
576    return it->second;
577  }
578
579  // Verifies that registered_tests match the test names in
580  // defined_test_names_; returns registered_tests if successful, or
581  // aborts the program otherwise.
582  const char* VerifyRegisteredTestNames(
583      const char* file, int line, const char* registered_tests);
584
585 private:
586  typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
587
588  bool registered_;
589  RegisteredTestsMap registered_tests_;
590};
591
592// Skips to the first non-space char after the first comma in 'str';
593// returns NULL if no comma is found in 'str'.
594inline const char* SkipComma(const char* str) {
595  const char* comma = strchr(str, ',');
596  if (comma == NULL) {
597    return NULL;
598  }
599  while (IsSpace(*(++comma))) {}
600  return comma;
601}
602
603// Returns the prefix of 'str' before the first comma in it; returns
604// the entire string if it contains no comma.
605inline std::string GetPrefixUntilComma(const char* str) {
606  const char* comma = strchr(str, ',');
607  return comma == NULL ? str : std::string(str, comma);
608}
609
610// Splits a given string on a given delimiter, populating a given
611// vector with the fields.
612void SplitString(const ::std::string& str, char delimiter,
613                 ::std::vector< ::std::string>* dest);
614
615// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
616// registers a list of type-parameterized tests with Google Test.  The
617// return value is insignificant - we just need to return something
618// such that we can call this function in a namespace scope.
619//
620// Implementation note: The GTEST_TEMPLATE_ macro declares a template
621// template parameter.  It's defined in gtest-type-util.h.
622template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
623class TypeParameterizedTest {
624 public:
625  // 'index' is the index of the test in the type list 'Types'
626  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
627  // Types).  Valid values for 'index' are [0, N - 1] where N is the
628  // length of Types.
629  static bool Register(const char* prefix,
630                       CodeLocation code_location,
631                       const char* case_name, const char* test_names,
632                       int index) {
633    typedef typename Types::Head Type;
634    typedef Fixture<Type> FixtureClass;
635    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
636
637    // First, registers the first type-parameterized test in the type
638    // list.
639    MakeAndRegisterTestInfo(
640        (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
641         + StreamableToString(index)).c_str(),
642        StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
643        GetTypeName<Type>().c_str(),
644        NULL,  // No value parameter.
645        code_location,
646        GetTypeId<FixtureClass>(),
647        TestClass::SetUpTestCase,
648        TestClass::TearDownTestCase,
649        new TestFactoryImpl<TestClass>);
650
651    // Next, recurses (at compile time) with the tail of the type list.
652    return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
653        ::Register(prefix, code_location, case_name, test_names, index + 1);
654  }
655};
656
657// The base case for the compile time recursion.
658template <GTEST_TEMPLATE_ Fixture, class TestSel>
659class TypeParameterizedTest<Fixture, TestSel, Types0> {
660 public:
661  static bool Register(const char* /*prefix*/, CodeLocation,
662                       const char* /*case_name*/, const char* /*test_names*/,
663                       int /*index*/) {
664    return true;
665  }
666};
667
668// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
669// registers *all combinations* of 'Tests' and 'Types' with Google
670// Test.  The return value is insignificant - we just need to return
671// something such that we can call this function in a namespace scope.
672template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
673class TypeParameterizedTestCase {
674 public:
675  static bool Register(const char* prefix, CodeLocation code_location,
676                       const TypedTestCasePState* state,
677                       const char* case_name, const char* test_names) {
678    std::string test_name = StripTrailingSpaces(
679        GetPrefixUntilComma(test_names));
680    if (!state->TestExists(test_name)) {
681      fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
682              case_name, test_name.c_str(),
683              FormatFileLocation(code_location.file.c_str(),
684                                 code_location.line).c_str());
685      fflush(stderr);
686      posix::Abort();
687    }
688    const CodeLocation& test_location = state->GetCodeLocation(test_name);
689
690    typedef typename Tests::Head Head;
691
692    // First, register the first test in 'Test' for each type in 'Types'.
693    TypeParameterizedTest<Fixture, Head, Types>::Register(
694        prefix, test_location, case_name, test_names, 0);
695
696    // Next, recurses (at compile time) with the tail of the test list.
697    return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
698        ::Register(prefix, code_location, state,
699                   case_name, SkipComma(test_names));
700  }
701};
702
703// The base case for the compile time recursion.
704template <GTEST_TEMPLATE_ Fixture, typename Types>
705class TypeParameterizedTestCase<Fixture, Templates0, Types> {
706 public:
707  static bool Register(const char* /*prefix*/, CodeLocation,
708                       const TypedTestCasePState* /*state*/,
709                       const char* /*case_name*/, const char* /*test_names*/) {
710    return true;
711  }
712};
713
714#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
715
716// Returns the current OS stack trace as an std::string.
717//
718// The maximum number of stack frames to be included is specified by
719// the gtest_stack_trace_depth flag.  The skip_count parameter
720// specifies the number of top frames to be skipped, which doesn't
721// count against the number of frames to be included.
722//
723// For example, if Foo() calls Bar(), which in turn calls
724// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
725// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
726GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
727    UnitTest* unit_test, int skip_count);
728
729// Helpers for suppressing warnings on unreachable code or constant
730// condition.
731
732// Always returns true.
733GTEST_API_ bool AlwaysTrue();
734
735// Always returns false.
736inline bool AlwaysFalse() { return !AlwaysTrue(); }
737
738// Helper for suppressing false warning from Clang on a const char*
739// variable declared in a conditional expression always being NULL in
740// the else branch.
741struct GTEST_API_ ConstCharPtr {
742  ConstCharPtr(const char* str) : value(str) {}
743  operator bool() const { return true; }
744  const char* value;
745};
746
747// A simple Linear Congruential Generator for generating random
748// numbers with a uniform distribution.  Unlike rand() and srand(), it
749// doesn't use global state (and therefore can't interfere with user
750// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
751// but it's good enough for our purposes.
752class GTEST_API_ Random {
753 public:
754  static const UInt32 kMaxRange = 1u << 31;
755
756  explicit Random(UInt32 seed) : state_(seed) {}
757
758  void Reseed(UInt32 seed) { state_ = seed; }
759
760  // Generates a random number from [0, range).  Crashes if 'range' is
761  // 0 or greater than kMaxRange.
762  UInt32 Generate(UInt32 range);
763
764 private:
765  UInt32 state_;
766  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
767};
768
769// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
770// compiler error iff T1 and T2 are different types.
771template <typename T1, typename T2>
772struct CompileAssertTypesEqual;
773
774template <typename T>
775struct CompileAssertTypesEqual<T, T> {
776};
777
778// Removes the reference from a type if it is a reference type,
779// otherwise leaves it unchanged.  This is the same as
780// tr1::remove_reference, which is not widely available yet.
781template <typename T>
782struct RemoveReference { typedef T type; };  // NOLINT
783template <typename T>
784struct RemoveReference<T&> { typedef T type; };  // NOLINT
785
786// A handy wrapper around RemoveReference that works when the argument
787// T depends on template parameters.
788#define GTEST_REMOVE_REFERENCE_(T) \
789    typename ::testing::internal::RemoveReference<T>::type
790
791// Removes const from a type if it is a const type, otherwise leaves
792// it unchanged.  This is the same as tr1::remove_const, which is not
793// widely available yet.
794template <typename T>
795struct RemoveConst { typedef T type; };  // NOLINT
796template <typename T>
797struct RemoveConst<const T> { typedef T type; };  // NOLINT
798
799// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
800// definition to fail to remove the const in 'const int[3]' and 'const
801// char[3][4]'.  The following specialization works around the bug.
802template <typename T, size_t N>
803struct RemoveConst<const T[N]> {
804  typedef typename RemoveConst<T>::type type[N];
805};
806
807#if defined(_MSC_VER) && _MSC_VER < 1400
808// This is the only specialization that allows VC++ 7.1 to remove const in
809// 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
810// and thus needs to be conditionally compiled.
811template <typename T, size_t N>
812struct RemoveConst<T[N]> {
813  typedef typename RemoveConst<T>::type type[N];
814};
815#endif
816
817// A handy wrapper around RemoveConst that works when the argument
818// T depends on template parameters.
819#define GTEST_REMOVE_CONST_(T) \
820    typename ::testing::internal::RemoveConst<T>::type
821
822// Turns const U&, U&, const U, and U all into U.
823#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
824    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
825
826// Adds reference to a type if it is not a reference type,
827// otherwise leaves it unchanged.  This is the same as
828// tr1::add_reference, which is not widely available yet.
829template <typename T>
830struct AddReference { typedef T& type; };  // NOLINT
831template <typename T>
832struct AddReference<T&> { typedef T& type; };  // NOLINT
833
834// A handy wrapper around AddReference that works when the argument T
835// depends on template parameters.
836#define GTEST_ADD_REFERENCE_(T) \
837    typename ::testing::internal::AddReference<T>::type
838
839// Adds a reference to const on top of T as necessary.  For example,
840// it transforms
841//
842//   char         ==> const char&
843//   const char   ==> const char&
844//   char&        ==> const char&
845//   const char&  ==> const char&
846//
847// The argument T must depend on some template parameters.
848#define GTEST_REFERENCE_TO_CONST_(T) \
849    GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
850
851// ImplicitlyConvertible<From, To>::value is a compile-time bool
852// constant that's true iff type From can be implicitly converted to
853// type To.
854template <typename From, typename To>
855class ImplicitlyConvertible {
856 private:
857  // We need the following helper functions only for their types.
858  // They have no implementations.
859
860  // MakeFrom() is an expression whose type is From.  We cannot simply
861  // use From(), as the type From may not have a public default
862  // constructor.
863  static typename AddReference<From>::type MakeFrom();
864
865  // These two functions are overloaded.  Given an expression
866  // Helper(x), the compiler will pick the first version if x can be
867  // implicitly converted to type To; otherwise it will pick the
868  // second version.
869  //
870  // The first version returns a value of size 1, and the second
871  // version returns a value of size 2.  Therefore, by checking the
872  // size of Helper(x), which can be done at compile time, we can tell
873  // which version of Helper() is used, and hence whether x can be
874  // implicitly converted to type To.
875  static char Helper(To);
876  static char (&Helper(...))[2];  // NOLINT
877
878  // We have to put the 'public' section after the 'private' section,
879  // or MSVC refuses to compile the code.
880 public:
881#if defined(__BORLANDC__)
882  // C++Builder cannot use member overload resolution during template
883  // instantiation.  The simplest workaround is to use its C++0x type traits
884  // functions (C++Builder 2009 and above only).
885  static const bool value = __is_convertible(From, To);
886#else
887  // MSVC warns about implicitly converting from double to int for
888  // possible loss of data, so we need to temporarily disable the
889  // warning.
890  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
891  static const bool value =
892      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
893  GTEST_DISABLE_MSC_WARNINGS_POP_()
894#endif  // __BORLANDC__
895};
896template <typename From, typename To>
897const bool ImplicitlyConvertible<From, To>::value;
898
899// IsAProtocolMessage<T>::value is a compile-time bool constant that's
900// true iff T is type ProtocolMessage, proto2::Message, or a subclass
901// of those.
902template <typename T>
903struct IsAProtocolMessage
904    : public bool_constant<
905  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
906  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
907};
908
909// When the compiler sees expression IsContainerTest<C>(0), if C is an
910// STL-style container class, the first overload of IsContainerTest
911// will be viable (since both C::iterator* and C::const_iterator* are
912// valid types and NULL can be implicitly converted to them).  It will
913// be picked over the second overload as 'int' is a perfect match for
914// the type of argument 0.  If C::iterator or C::const_iterator is not
915// a valid type, the first overload is not viable, and the second
916// overload will be picked.  Therefore, we can determine whether C is
917// a container class by checking the type of IsContainerTest<C>(0).
918// The value of the expression is insignificant.
919//
920// Note that we look for both C::iterator and C::const_iterator.  The
921// reason is that C++ injects the name of a class as a member of the
922// class itself (e.g. you can refer to class iterator as either
923// 'iterator' or 'iterator::iterator').  If we look for C::iterator
924// only, for example, we would mistakenly think that a class named
925// iterator is an STL container.
926//
927// Also note that the simpler approach of overloading
928// IsContainerTest(typename C::const_iterator*) and
929// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
930typedef int IsContainer;
931template <class C>
932IsContainer IsContainerTest(int /* dummy */,
933                            typename C::iterator* /* it */ = NULL,
934                            typename C::const_iterator* /* const_it */ = NULL) {
935  return 0;
936}
937
938typedef char IsNotContainer;
939template <class C>
940IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
941
942// EnableIf<condition>::type is void when 'Cond' is true, and
943// undefined when 'Cond' is false.  To use SFINAE to make a function
944// overload only apply when a particular expression is true, add
945// "typename EnableIf<expression>::type* = 0" as the last parameter.
946template<bool> struct EnableIf;
947template<> struct EnableIf<true> { typedef void type; };  // NOLINT
948
949// Utilities for native arrays.
950
951// ArrayEq() compares two k-dimensional native arrays using the
952// elements' operator==, where k can be any integer >= 0.  When k is
953// 0, ArrayEq() degenerates into comparing a single pair of values.
954
955template <typename T, typename U>
956bool ArrayEq(const T* lhs, size_t size, const U* rhs);
957
958// This generic version is used when k is 0.
959template <typename T, typename U>
960inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
961
962// This overload is used when k >= 1.
963template <typename T, typename U, size_t N>
964inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
965  return internal::ArrayEq(lhs, N, rhs);
966}
967
968// This helper reduces code bloat.  If we instead put its logic inside
969// the previous ArrayEq() function, arrays with different sizes would
970// lead to different copies of the template code.
971template <typename T, typename U>
972bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
973  for (size_t i = 0; i != size; i++) {
974    if (!internal::ArrayEq(lhs[i], rhs[i]))
975      return false;
976  }
977  return true;
978}
979
980// Finds the first element in the iterator range [begin, end) that
981// equals elem.  Element may be a native array type itself.
982template <typename Iter, typename Element>
983Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
984  for (Iter it = begin; it != end; ++it) {
985    if (internal::ArrayEq(*it, elem))
986      return it;
987  }
988  return end;
989}
990
991// CopyArray() copies a k-dimensional native array using the elements'
992// operator=, where k can be any integer >= 0.  When k is 0,
993// CopyArray() degenerates into copying a single value.
994
995template <typename T, typename U>
996void CopyArray(const T* from, size_t size, U* to);
997
998// This generic version is used when k is 0.
999template <typename T, typename U>
1000inline void CopyArray(const T& from, U* to) { *to = from; }
1001
1002// This overload is used when k >= 1.
1003template <typename T, typename U, size_t N>
1004inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1005  internal::CopyArray(from, N, *to);
1006}
1007
1008// This helper reduces code bloat.  If we instead put its logic inside
1009// the previous CopyArray() function, arrays with different sizes
1010// would lead to different copies of the template code.
1011template <typename T, typename U>
1012void CopyArray(const T* from, size_t size, U* to) {
1013  for (size_t i = 0; i != size; i++) {
1014    internal::CopyArray(from[i], to + i);
1015  }
1016}
1017
1018// The relation between an NativeArray object (see below) and the
1019// native array it represents.
1020// We use 2 different structs to allow non-copyable types to be used, as long
1021// as RelationToSourceReference() is passed.
1022struct RelationToSourceReference {};
1023struct RelationToSourceCopy {};
1024
1025// Adapts a native array to a read-only STL-style container.  Instead
1026// of the complete STL container concept, this adaptor only implements
1027// members useful for Google Mock's container matchers.  New members
1028// should be added as needed.  To simplify the implementation, we only
1029// support Element being a raw type (i.e. having no top-level const or
1030// reference modifier).  It's the client's responsibility to satisfy
1031// this requirement.  Element can be an array type itself (hence
1032// multi-dimensional arrays are supported).
1033template <typename Element>
1034class NativeArray {
1035 public:
1036  // STL-style container typedefs.
1037  typedef Element value_type;
1038  typedef Element* iterator;
1039  typedef const Element* const_iterator;
1040
1041  // Constructs from a native array. References the source.
1042  NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1043    InitRef(array, count);
1044  }
1045
1046  // Constructs from a native array. Copies the source.
1047  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1048    InitCopy(array, count);
1049  }
1050
1051  // Copy constructor.
1052  NativeArray(const NativeArray& rhs) {
1053    (this->*rhs.clone_)(rhs.array_, rhs.size_);
1054  }
1055
1056  ~NativeArray() {
1057    if (clone_ != &NativeArray::InitRef)
1058      delete[] array_;
1059  }
1060
1061  // STL-style container methods.
1062  size_t size() const { return size_; }
1063  const_iterator begin() const { return array_; }
1064  const_iterator end() const { return array_ + size_; }
1065  bool operator==(const NativeArray& rhs) const {
1066    return size() == rhs.size() &&
1067        ArrayEq(begin(), size(), rhs.begin());
1068  }
1069
1070 private:
1071  enum {
1072    kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1073        Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1074  };
1075
1076  // Initializes this object with a copy of the input.
1077  void InitCopy(const Element* array, size_t a_size) {
1078    Element* const copy = new Element[a_size];
1079    CopyArray(array, a_size, copy);
1080    array_ = copy;
1081    size_ = a_size;
1082    clone_ = &NativeArray::InitCopy;
1083  }
1084
1085  // Initializes this object with a reference of the input.
1086  void InitRef(const Element* array, size_t a_size) {
1087    array_ = array;
1088    size_ = a_size;
1089    clone_ = &NativeArray::InitRef;
1090  }
1091
1092  const Element* array_;
1093  size_t size_;
1094  void (NativeArray::*clone_)(const Element*, size_t);
1095
1096  GTEST_DISALLOW_ASSIGN_(NativeArray);
1097};
1098
1099}  // namespace internal
1100}  // namespace testing
1101
1102#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1103  ::testing::internal::AssertHelper(result_type, file, line, message) \
1104    = ::testing::Message()
1105
1106#define GTEST_MESSAGE_(message, result_type) \
1107  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1108
1109#define GTEST_FATAL_FAILURE_(message) \
1110  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1111
1112#define GTEST_NONFATAL_FAILURE_(message) \
1113  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1114
1115#define GTEST_SUCCESS_(message) \
1116  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1117
1118// Suppresses MSVC warnings 4072 (unreachable code) for the code following
1119// statement if it returns or throws (or doesn't return or throw in some
1120// situations).
1121#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1122  if (::testing::internal::AlwaysTrue()) { statement; }
1123
1124#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1125  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1126  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1127    bool gtest_caught_expected = false; \
1128    try { \
1129      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1130    } \
1131    catch (expected_exception const&) { \
1132      gtest_caught_expected = true; \
1133    } \
1134    catch (...) { \
1135      gtest_msg.value = \
1136          "Expected: " #statement " throws an exception of type " \
1137          #expected_exception ".\n  Actual: it throws a different type."; \
1138      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1139    } \
1140    if (!gtest_caught_expected) { \
1141      gtest_msg.value = \
1142          "Expected: " #statement " throws an exception of type " \
1143          #expected_exception ".\n  Actual: it throws nothing."; \
1144      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1145    } \
1146  } else \
1147    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1148      fail(gtest_msg.value)
1149
1150#define GTEST_TEST_NO_THROW_(statement, fail) \
1151  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1152  if (::testing::internal::AlwaysTrue()) { \
1153    try { \
1154      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1155    } \
1156    catch (...) { \
1157      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1158    } \
1159  } else \
1160    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1161      fail("Expected: " #statement " doesn't throw an exception.\n" \
1162           "  Actual: it throws.")
1163
1164#define GTEST_TEST_ANY_THROW_(statement, fail) \
1165  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1166  if (::testing::internal::AlwaysTrue()) { \
1167    bool gtest_caught_any = false; \
1168    try { \
1169      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1170    } \
1171    catch (...) { \
1172      gtest_caught_any = true; \
1173    } \
1174    if (!gtest_caught_any) { \
1175      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1176    } \
1177  } else \
1178    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1179      fail("Expected: " #statement " throws an exception.\n" \
1180           "  Actual: it doesn't.")
1181
1182
1183// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1184// either a boolean expression or an AssertionResult. text is a textual
1185// represenation of expression as it was passed into the EXPECT_TRUE.
1186#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1187  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1188  if (const ::testing::AssertionResult gtest_ar_ = \
1189      ::testing::AssertionResult(expression)) \
1190    ; \
1191  else \
1192    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1193        gtest_ar_, text, #actual, #expected).c_str())
1194
1195#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1196  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1197  if (::testing::internal::AlwaysTrue()) { \
1198    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1199    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1200    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1201      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1202    } \
1203  } else \
1204    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1205      fail("Expected: " #statement " doesn't generate new fatal " \
1206           "failures in the current thread.\n" \
1207           "  Actual: it does.")
1208
1209// Expands to the name of the class that implements the given test.
1210#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1211  test_case_name##_##test_name##_Test
1212
1213// Helper macro for defining tests.
1214#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1215class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1216 public:\
1217  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1218 private:\
1219  virtual void TestBody();\
1220  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1221  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1222      GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1223};\
1224\
1225::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1226  ::test_info_ =\
1227    ::testing::internal::MakeAndRegisterTestInfo(\
1228        #test_case_name, #test_name, NULL, NULL, \
1229        ::testing::internal::CodeLocation(__FILE__, __LINE__), \
1230        (parent_id), \
1231        parent_class::SetUpTestCase, \
1232        parent_class::TearDownTestCase, \
1233        new ::testing::internal::TestFactoryImpl<\
1234            GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1235void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1236
1237#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1238
1239