1// Copyright 2015 Google Inc. All Rights Reserved. 2// 3// Use of this source code is governed by a BSD-style license 4// that can be found in the COPYING file in the root of the source 5// tree. An additional intellectual property rights grant can be found 6// in the file PATENTS. All contributing project authors may 7// be found in the AUTHORS file in the root of the source tree. 8// ----------------------------------------------------------------------------- 9// 10// SSE2 variant of methods for lossless encoder 11// 12// Author: Skal (pascal.massimino@gmail.com) 13 14#include "./dsp.h" 15 16#if defined(WEBP_USE_SSE2) 17#include <assert.h> 18#include <emmintrin.h> 19#include "./lossless.h" 20#include "./common_sse2.h" 21#include "./lossless_common.h" 22 23// For sign-extended multiplying constants, pre-shifted by 5: 24#define CST_5b(X) (((int16_t)((uint16_t)X << 8)) >> 5) 25 26//------------------------------------------------------------------------------ 27// Subtract-Green Transform 28 29static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) { 30 int i; 31 for (i = 0; i + 4 <= num_pixels; i += 4) { 32 const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb 33 const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g 34 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); 35 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g 36 const __m128i out = _mm_sub_epi8(in, C); 37 _mm_storeu_si128((__m128i*)&argb_data[i], out); 38 } 39 // fallthrough and finish off with plain-C 40 if (i != num_pixels) { 41 VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); 42 } 43} 44 45//------------------------------------------------------------------------------ 46// Color Transform 47 48static void TransformColor(const VP8LMultipliers* const m, 49 uint32_t* argb_data, int num_pixels) { 50 const __m128i mults_rb = _mm_set_epi16( 51 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), 52 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), 53 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_), 54 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_)); 55 const __m128i mults_b2 = _mm_set_epi16( 56 CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0, 57 CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0); 58 const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks 59 const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks 60 int i; 61 for (i = 0; i + 4 <= num_pixels; i += 4) { 62 const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb 63 const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 64 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); 65 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 66 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 67 const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0 68 const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0 69 const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2 70 const __m128i H = _mm_add_epi8(G, D); // x dr x db 71 const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db 72 const __m128i out = _mm_sub_epi8(in, I); 73 _mm_storeu_si128((__m128i*)&argb_data[i], out); 74 } 75 // fallthrough and finish off with plain-C 76 if (i != num_pixels) { 77 VP8LTransformColor_C(m, argb_data + i, num_pixels - i); 78 } 79} 80 81//------------------------------------------------------------------------------ 82#define SPAN 8 83static void CollectColorBlueTransforms(const uint32_t* argb, int stride, 84 int tile_width, int tile_height, 85 int green_to_blue, int red_to_blue, 86 int histo[]) { 87 const __m128i mults_r = _mm_set_epi16( 88 CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0, 89 CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0); 90 const __m128i mults_g = _mm_set_epi16( 91 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue), 92 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue)); 93 const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask 94 const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask 95 int y; 96 for (y = 0; y < tile_height; ++y) { 97 const uint32_t* const src = argb + y * stride; 98 int i, x; 99 for (x = 0; x + SPAN <= tile_width; x += SPAN) { 100 uint16_t values[SPAN]; 101 const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); 102 const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); 103 const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0 104 const __m128i A1 = _mm_slli_epi16(in1, 8); 105 const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 106 const __m128i B1 = _mm_and_si128(in1, mask_g); 107 const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0 108 const __m128i C1 = _mm_mulhi_epi16(A1, mults_r); 109 const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db 110 const __m128i D1 = _mm_mulhi_epi16(B1, mults_g); 111 const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b' 112 const __m128i E1 = _mm_sub_epi8(in1, D1); 113 const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db 114 const __m128i F1 = _mm_srli_epi32(C1, 16); 115 const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b' 116 const __m128i G1 = _mm_sub_epi8(E1, F1); 117 const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b 118 const __m128i H1 = _mm_and_si128(G1, mask_b); 119 const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b' 120 _mm_storeu_si128((__m128i*)values, I); 121 for (i = 0; i < SPAN; ++i) ++histo[values[i]]; 122 } 123 } 124 { 125 const int left_over = tile_width & (SPAN - 1); 126 if (left_over > 0) { 127 VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, 128 left_over, tile_height, 129 green_to_blue, red_to_blue, histo); 130 } 131 } 132} 133 134static void CollectColorRedTransforms(const uint32_t* argb, int stride, 135 int tile_width, int tile_height, 136 int green_to_red, int histo[]) { 137 const __m128i mults_g = _mm_set_epi16( 138 0, CST_5b(green_to_red), 0, CST_5b(green_to_red), 139 0, CST_5b(green_to_red), 0, CST_5b(green_to_red)); 140 const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask 141 const __m128i mask = _mm_set1_epi32(0xff); 142 143 int y; 144 for (y = 0; y < tile_height; ++y) { 145 const uint32_t* const src = argb + y * stride; 146 int i, x; 147 for (x = 0; x + SPAN <= tile_width; x += SPAN) { 148 uint16_t values[SPAN]; 149 const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); 150 const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); 151 const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 152 const __m128i A1 = _mm_and_si128(in1, mask_g); 153 const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r 154 const __m128i B1 = _mm_srli_epi32(in1, 16); 155 const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr 156 const __m128i C1 = _mm_mulhi_epi16(A1, mults_g); 157 const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r' 158 const __m128i E1 = _mm_sub_epi8(B1, C1); 159 const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r' 160 const __m128i F1 = _mm_and_si128(E1, mask); 161 const __m128i I = _mm_packs_epi32(F0, F1); 162 _mm_storeu_si128((__m128i*)values, I); 163 for (i = 0; i < SPAN; ++i) ++histo[values[i]]; 164 } 165 } 166 { 167 const int left_over = tile_width & (SPAN - 1); 168 if (left_over > 0) { 169 VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, 170 left_over, tile_height, 171 green_to_red, histo); 172 } 173 } 174} 175#undef SPAN 176 177//------------------------------------------------------------------------------ 178 179#define LINE_SIZE 16 // 8 or 16 180static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out, 181 int size) { 182 int i; 183 assert(size % LINE_SIZE == 0); 184 for (i = 0; i < size; i += LINE_SIZE) { 185 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); 186 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); 187#if (LINE_SIZE == 16) 188 const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); 189 const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); 190#endif 191 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]); 192 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]); 193#if (LINE_SIZE == 16) 194 const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]); 195 const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]); 196#endif 197 _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); 198 _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); 199#if (LINE_SIZE == 16) 200 _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); 201 _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); 202#endif 203 } 204} 205 206static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) { 207 int i; 208 assert(size % LINE_SIZE == 0); 209 for (i = 0; i < size; i += LINE_SIZE) { 210 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); 211 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); 212#if (LINE_SIZE == 16) 213 const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); 214 const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); 215#endif 216 const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]); 217 const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]); 218#if (LINE_SIZE == 16) 219 const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]); 220 const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]); 221#endif 222 _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); 223 _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); 224#if (LINE_SIZE == 16) 225 _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); 226 _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); 227#endif 228 } 229} 230#undef LINE_SIZE 231 232// Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But 233// that's ok since the histogram values are less than 1<<28 (max picture size). 234static void HistogramAdd(const VP8LHistogram* const a, 235 const VP8LHistogram* const b, 236 VP8LHistogram* const out) { 237 int i; 238 const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); 239 assert(a->palette_code_bits_ == b->palette_code_bits_); 240 if (b != out) { 241 AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES); 242 AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES); 243 AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES); 244 AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES); 245 } else { 246 AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES); 247 AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES); 248 AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES); 249 AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES); 250 } 251 for (i = NUM_LITERAL_CODES; i < literal_size; ++i) { 252 out->literal_[i] = a->literal_[i] + b->literal_[i]; 253 } 254 for (i = 0; i < NUM_DISTANCE_CODES; ++i) { 255 out->distance_[i] = a->distance_[i] + b->distance_[i]; 256 } 257} 258 259//------------------------------------------------------------------------------ 260// Entropy 261 262// Checks whether the X or Y contribution is worth computing and adding. 263// Used in loop unrolling. 264#define ANALYZE_X_OR_Y(x_or_y, j) \ 265 do { \ 266 if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \ 267 } while (0) 268 269// Checks whether the X + Y contribution is worth computing and adding. 270// Used in loop unrolling. 271#define ANALYZE_XY(j) \ 272 do { \ 273 if (tmp[j] != 0) { \ 274 retval -= VP8LFastSLog2(tmp[j]); \ 275 ANALYZE_X_OR_Y(X, j); \ 276 } \ 277 } while (0) 278 279static float CombinedShannonEntropy(const int X[256], const int Y[256]) { 280 int i; 281 double retval = 0.; 282 int sumX, sumXY; 283 int32_t tmp[4]; 284 __m128i zero = _mm_setzero_si128(); 285 // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY). 286 __m128i sumXY_128 = zero; 287 __m128i sumX_128 = zero; 288 289 for (i = 0; i < 256; i += 4) { 290 const __m128i x = _mm_loadu_si128((const __m128i*)(X + i)); 291 const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i)); 292 293 // Check if any X is non-zero: this actually provides a speedup as X is 294 // usually sparse. 295 if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) { 296 const __m128i xy_128 = _mm_add_epi32(x, y); 297 sumXY_128 = _mm_add_epi32(sumXY_128, xy_128); 298 299 sumX_128 = _mm_add_epi32(sumX_128, x); 300 301 // Analyze the different X + Y. 302 _mm_storeu_si128((__m128i*)tmp, xy_128); 303 304 ANALYZE_XY(0); 305 ANALYZE_XY(1); 306 ANALYZE_XY(2); 307 ANALYZE_XY(3); 308 } else { 309 // X is fully 0, so only deal with Y. 310 sumXY_128 = _mm_add_epi32(sumXY_128, y); 311 312 ANALYZE_X_OR_Y(Y, 0); 313 ANALYZE_X_OR_Y(Y, 1); 314 ANALYZE_X_OR_Y(Y, 2); 315 ANALYZE_X_OR_Y(Y, 3); 316 } 317 } 318 319 // Sum up sumX_128 to get sumX. 320 _mm_storeu_si128((__m128i*)tmp, sumX_128); 321 sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0]; 322 323 // Sum up sumXY_128 to get sumXY. 324 _mm_storeu_si128((__m128i*)tmp, sumXY_128); 325 sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0]; 326 327 retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); 328 return (float)retval; 329} 330#undef ANALYZE_X_OR_Y 331#undef ANALYZE_XY 332 333//------------------------------------------------------------------------------ 334 335static int VectorMismatch(const uint32_t* const array1, 336 const uint32_t* const array2, int length) { 337 int match_len; 338 339 if (length >= 12) { 340 __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]); 341 __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]); 342 match_len = 0; 343 do { 344 // Loop unrolling and early load both provide a speedup of 10% for the 345 // current function. Also, max_limit can be MAX_LENGTH=4096 at most. 346 const __m128i cmpA = _mm_cmpeq_epi32(A0, A1); 347 const __m128i B0 = 348 _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); 349 const __m128i B1 = 350 _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); 351 if (_mm_movemask_epi8(cmpA) != 0xffff) break; 352 match_len += 4; 353 354 { 355 const __m128i cmpB = _mm_cmpeq_epi32(B0, B1); 356 A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); 357 A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); 358 if (_mm_movemask_epi8(cmpB) != 0xffff) break; 359 match_len += 4; 360 } 361 } while (match_len + 12 < length); 362 } else { 363 match_len = 0; 364 // Unroll the potential first two loops. 365 if (length >= 4 && 366 _mm_movemask_epi8(_mm_cmpeq_epi32( 367 _mm_loadu_si128((const __m128i*)&array1[0]), 368 _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) { 369 match_len = 4; 370 if (length >= 8 && 371 _mm_movemask_epi8(_mm_cmpeq_epi32( 372 _mm_loadu_si128((const __m128i*)&array1[4]), 373 _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) { 374 match_len = 8; 375 } 376 } 377 } 378 379 while (match_len < length && array1[match_len] == array2[match_len]) { 380 ++match_len; 381 } 382 return match_len; 383} 384 385// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. 386static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits, 387 uint32_t* dst) { 388 int x; 389 assert(xbits >= 0); 390 assert(xbits <= 3); 391 switch (xbits) { 392 case 0: { 393 const __m128i ff = _mm_set1_epi16(0xff00); 394 const __m128i zero = _mm_setzero_si128(); 395 // Store 0xff000000 | (row[x] << 8). 396 for (x = 0; x + 16 <= width; x += 16, dst += 16) { 397 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); 398 const __m128i in_lo = _mm_unpacklo_epi8(zero, in); 399 const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff); 400 const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff); 401 const __m128i in_hi = _mm_unpackhi_epi8(zero, in); 402 const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff); 403 const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff); 404 _mm_storeu_si128((__m128i*)&dst[0], dst0); 405 _mm_storeu_si128((__m128i*)&dst[4], dst1); 406 _mm_storeu_si128((__m128i*)&dst[8], dst2); 407 _mm_storeu_si128((__m128i*)&dst[12], dst3); 408 } 409 break; 410 } 411 case 1: { 412 const __m128i ff = _mm_set1_epi16(0xff00); 413 const __m128i mul = _mm_set1_epi16(0x110); 414 for (x = 0; x + 16 <= width; x += 16, dst += 8) { 415 // 0a0b | (where a/b are 4 bits). 416 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); 417 const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0 418 const __m128i pack = _mm_and_si128(tmp, ff); // ab00 419 const __m128i dst0 = _mm_unpacklo_epi16(pack, ff); 420 const __m128i dst1 = _mm_unpackhi_epi16(pack, ff); 421 _mm_storeu_si128((__m128i*)&dst[0], dst0); 422 _mm_storeu_si128((__m128i*)&dst[4], dst1); 423 } 424 break; 425 } 426 case 2: { 427 const __m128i mask_or = _mm_set1_epi32(0xff000000); 428 const __m128i mul_cst = _mm_set1_epi16(0x0104); 429 const __m128i mask_mul = _mm_set1_epi16(0x0f00); 430 for (x = 0; x + 16 <= width; x += 16, dst += 4) { 431 // 000a000b000c000d | (where a/b/c/d are 2 bits). 432 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); 433 const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 434 const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000 435 const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000 436 const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000 437 // Convert to 0xff00**00. 438 const __m128i res = _mm_or_si128(pack, mask_or); 439 _mm_storeu_si128((__m128i*)dst, res); 440 } 441 break; 442 } 443 default: { 444 assert(xbits == 3); 445 for (x = 0; x + 16 <= width; x += 16, dst += 2) { 446 // 0000000a00000000b... | (where a/b are 1 bit). 447 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); 448 const __m128i shift = _mm_slli_epi64(in, 7); 449 const uint32_t move = _mm_movemask_epi8(shift); 450 dst[0] = 0xff000000 | ((move & 0xff) << 8); 451 dst[1] = 0xff000000 | (move & 0xff00); 452 } 453 break; 454 } 455 } 456 if (x != width) { 457 VP8LBundleColorMap_C(row + x, width - x, xbits, dst); 458 } 459} 460 461//------------------------------------------------------------------------------ 462// Batch version of Predictor Transform subtraction 463 464static WEBP_INLINE void Average2_m128i(const __m128i* const a0, 465 const __m128i* const a1, 466 __m128i* const avg) { 467 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) 468 const __m128i ones = _mm_set1_epi8(1); 469 const __m128i avg1 = _mm_avg_epu8(*a0, *a1); 470 const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); 471 *avg = _mm_sub_epi8(avg1, one); 472} 473 474// Predictor0: ARGB_BLACK. 475static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper, 476 int num_pixels, uint32_t* out) { 477 int i; 478 const __m128i black = _mm_set1_epi32(ARGB_BLACK); 479 for (i = 0; i + 4 <= num_pixels; i += 4) { 480 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 481 const __m128i res = _mm_sub_epi8(src, black); 482 _mm_storeu_si128((__m128i*)&out[i], res); 483 } 484 if (i != num_pixels) { 485 VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i); 486 } 487} 488 489#define GENERATE_PREDICTOR_1(X, IN) \ 490static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ 491 int num_pixels, uint32_t* out) { \ 492 int i; \ 493 for (i = 0; i + 4 <= num_pixels; i += 4) { \ 494 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ 495 const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \ 496 const __m128i res = _mm_sub_epi8(src, pred); \ 497 _mm_storeu_si128((__m128i*)&out[i], res); \ 498 } \ 499 if (i != num_pixels) { \ 500 VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ 501 } \ 502} 503 504GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L 505GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T 506GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR 507GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL 508#undef GENERATE_PREDICTOR_1 509 510// Predictor5: avg2(avg2(L, TR), T) 511static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper, 512 int num_pixels, uint32_t* out) { 513 int i; 514 for (i = 0; i + 4 <= num_pixels; i += 4) { 515 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); 516 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 517 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); 518 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 519 __m128i avg, pred, res; 520 Average2_m128i(&L, &TR, &avg); 521 Average2_m128i(&avg, &T, &pred); 522 res = _mm_sub_epi8(src, pred); 523 _mm_storeu_si128((__m128i*)&out[i], res); 524 } 525 if (i != num_pixels) { 526 VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i); 527 } 528} 529 530#define GENERATE_PREDICTOR_2(X, A, B) \ 531static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ 532 int num_pixels, uint32_t* out) { \ 533 int i; \ 534 for (i = 0; i + 4 <= num_pixels; i += 4) { \ 535 const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \ 536 const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \ 537 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ 538 __m128i pred, res; \ 539 Average2_m128i(&tA, &tB, &pred); \ 540 res = _mm_sub_epi8(src, pred); \ 541 _mm_storeu_si128((__m128i*)&out[i], res); \ 542 } \ 543 if (i != num_pixels) { \ 544 VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ 545 } \ 546} 547 548GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) 549GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) 550GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) 551GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) 552#undef GENERATE_PREDICTOR_2 553 554// Predictor10: avg(avg(L,TL), avg(T, TR)). 555static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper, 556 int num_pixels, uint32_t* out) { 557 int i; 558 for (i = 0; i + 4 <= num_pixels; i += 4) { 559 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); 560 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 561 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); 562 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 563 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); 564 __m128i avgTTR, avgLTL, avg, res; 565 Average2_m128i(&T, &TR, &avgTTR); 566 Average2_m128i(&L, &TL, &avgLTL); 567 Average2_m128i(&avgTTR, &avgLTL, &avg); 568 res = _mm_sub_epi8(src, avg); 569 _mm_storeu_si128((__m128i*)&out[i], res); 570 } 571 if (i != num_pixels) { 572 VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i); 573 } 574} 575 576// Predictor11: select. 577static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B, 578 __m128i* const out) { 579 // We can unpack with any value on the upper 32 bits, provided it's the same 580 // on both operands (to that their sum of abs diff is zero). Here we use *A. 581 const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); 582 const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); 583 const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); 584 const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); 585 const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); 586 const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); 587 *out = _mm_packs_epi32(s_lo, s_hi); 588} 589 590static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper, 591 int num_pixels, uint32_t* out) { 592 int i; 593 for (i = 0; i + 4 <= num_pixels; i += 4) { 594 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); 595 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 596 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); 597 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 598 __m128i pa, pb; 599 GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL| 600 GetSumAbsDiff32(&L, &TL, &pb); // pb = sum |L-TL| 601 { 602 const __m128i mask = _mm_cmpgt_epi32(pb, pa); 603 const __m128i A = _mm_and_si128(mask, L); 604 const __m128i B = _mm_andnot_si128(mask, T); 605 const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T 606 const __m128i res = _mm_sub_epi8(src, pred); 607 _mm_storeu_si128((__m128i*)&out[i], res); 608 } 609 } 610 if (i != num_pixels) { 611 VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i); 612 } 613} 614 615// Predictor12: ClampedSubSubtractFull. 616static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper, 617 int num_pixels, uint32_t* out) { 618 int i; 619 const __m128i zero = _mm_setzero_si128(); 620 for (i = 0; i + 4 <= num_pixels; i += 4) { 621 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 622 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); 623 const __m128i L_lo = _mm_unpacklo_epi8(L, zero); 624 const __m128i L_hi = _mm_unpackhi_epi8(L, zero); 625 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 626 const __m128i T_lo = _mm_unpacklo_epi8(T, zero); 627 const __m128i T_hi = _mm_unpackhi_epi8(T, zero); 628 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); 629 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); 630 const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); 631 const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); 632 const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); 633 const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo); 634 const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi); 635 const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi); 636 const __m128i res = _mm_sub_epi8(src, pred); 637 _mm_storeu_si128((__m128i*)&out[i], res); 638 } 639 if (i != num_pixels) { 640 VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i); 641 } 642} 643 644// Predictors13: ClampedAddSubtractHalf 645static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper, 646 int num_pixels, uint32_t* out) { 647 int i; 648 const __m128i zero = _mm_setzero_si128(); 649 for (i = 0; i + 2 <= num_pixels; i += 2) { 650 // we can only process two pixels at a time 651 const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]); 652 const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]); 653 const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]); 654 const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]); 655 const __m128i L_lo = _mm_unpacklo_epi8(L, zero); 656 const __m128i T_lo = _mm_unpacklo_epi8(T, zero); 657 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); 658 const __m128i sum = _mm_add_epi16(T_lo, L_lo); 659 const __m128i avg = _mm_srli_epi16(sum, 1); 660 const __m128i A1 = _mm_sub_epi16(avg, TL_lo); 661 const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg); 662 const __m128i A2 = _mm_sub_epi16(A1, bit_fix); 663 const __m128i A3 = _mm_srai_epi16(A2, 1); 664 const __m128i A4 = _mm_add_epi16(avg, A3); 665 const __m128i pred = _mm_packus_epi16(A4, A4); 666 const __m128i res = _mm_sub_epi8(src, pred); 667 _mm_storel_epi64((__m128i*)&out[i], res); 668 } 669 if (i != num_pixels) { 670 VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i); 671 } 672} 673 674//------------------------------------------------------------------------------ 675// Entry point 676 677extern void VP8LEncDspInitSSE2(void); 678 679WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) { 680 VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed; 681 VP8LTransformColor = TransformColor; 682 VP8LCollectColorBlueTransforms = CollectColorBlueTransforms; 683 VP8LCollectColorRedTransforms = CollectColorRedTransforms; 684 VP8LHistogramAdd = HistogramAdd; 685 VP8LCombinedShannonEntropy = CombinedShannonEntropy; 686 VP8LVectorMismatch = VectorMismatch; 687 VP8LBundleColorMap = BundleColorMap_SSE2; 688 689 VP8LPredictorsSub[0] = PredictorSub0_SSE2; 690 VP8LPredictorsSub[1] = PredictorSub1_SSE2; 691 VP8LPredictorsSub[2] = PredictorSub2_SSE2; 692 VP8LPredictorsSub[3] = PredictorSub3_SSE2; 693 VP8LPredictorsSub[4] = PredictorSub4_SSE2; 694 VP8LPredictorsSub[5] = PredictorSub5_SSE2; 695 VP8LPredictorsSub[6] = PredictorSub6_SSE2; 696 VP8LPredictorsSub[7] = PredictorSub7_SSE2; 697 VP8LPredictorsSub[8] = PredictorSub8_SSE2; 698 VP8LPredictorsSub[9] = PredictorSub9_SSE2; 699 VP8LPredictorsSub[10] = PredictorSub10_SSE2; 700 VP8LPredictorsSub[11] = PredictorSub11_SSE2; 701 VP8LPredictorsSub[12] = PredictorSub12_SSE2; 702 VP8LPredictorsSub[13] = PredictorSub13_SSE2; 703 VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels 704 VP8LPredictorsSub[15] = PredictorSub0_SSE2; 705} 706 707#else // !WEBP_USE_SSE2 708 709WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2) 710 711#endif // WEBP_USE_SSE2 712