1/*
2**
3** Copyright 2007, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18#define LOG_TAG "AudioMixer"
19//#define LOG_NDEBUG 0
20
21#include <stdint.h>
22#include <string.h>
23#include <stdlib.h>
24#include <math.h>
25#include <sys/types.h>
26
27#include <utils/Errors.h>
28#include <utils/Log.h>
29
30#include <cutils/compiler.h>
31#include <utils/Debug.h>
32
33#include <system/audio.h>
34
35#include <audio_utils/primitives.h>
36#include <audio_utils/format.h>
37#include <media/AudioMixer.h>
38
39#include "AudioMixerOps.h"
40
41// The FCC_2 macro refers to the Fixed Channel Count of 2 for the legacy integer mixer.
42#ifndef FCC_2
43#define FCC_2 2
44#endif
45
46// Look for MONO_HACK for any Mono hack involving legacy mono channel to
47// stereo channel conversion.
48
49/* VERY_VERY_VERBOSE_LOGGING will show exactly which process hook and track hook is
50 * being used. This is a considerable amount of log spam, so don't enable unless you
51 * are verifying the hook based code.
52 */
53//#define VERY_VERY_VERBOSE_LOGGING
54#ifdef VERY_VERY_VERBOSE_LOGGING
55#define ALOGVV ALOGV
56//define ALOGVV printf  // for test-mixer.cpp
57#else
58#define ALOGVV(a...) do { } while (0)
59#endif
60
61#ifndef ARRAY_SIZE
62#define ARRAY_SIZE(x) (sizeof(x)/sizeof((x)[0]))
63#endif
64
65// TODO: Move these macro/inlines to a header file.
66template <typename T>
67static inline
68T max(const T& x, const T& y) {
69    return x > y ? x : y;
70}
71
72// Set kUseNewMixer to true to use the new mixer engine always. Otherwise the
73// original code will be used for stereo sinks, the new mixer for multichannel.
74static const bool kUseNewMixer = true;
75
76// Set kUseFloat to true to allow floating input into the mixer engine.
77// If kUseNewMixer is false, this is ignored or may be overridden internally
78// because of downmix/upmix support.
79static const bool kUseFloat = true;
80
81// Set to default copy buffer size in frames for input processing.
82static const size_t kCopyBufferFrameCount = 256;
83
84namespace android {
85
86// ----------------------------------------------------------------------------
87
88template <typename T>
89T min(const T& a, const T& b)
90{
91    return a < b ? a : b;
92}
93
94// ----------------------------------------------------------------------------
95
96// Ensure mConfiguredNames bitmask is initialized properly on all architectures.
97// The value of 1 << x is undefined in C when x >= 32.
98
99AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate, uint32_t maxNumTracks)
100    :   mTrackNames(0), mConfiguredNames((maxNumTracks >= 32 ? 0 : 1 << maxNumTracks) - 1),
101        mSampleRate(sampleRate)
102{
103    ALOG_ASSERT(maxNumTracks <= MAX_NUM_TRACKS, "maxNumTracks %u > MAX_NUM_TRACKS %u",
104            maxNumTracks, MAX_NUM_TRACKS);
105
106    // AudioMixer is not yet capable of more than 32 active track inputs
107    ALOG_ASSERT(32 >= MAX_NUM_TRACKS, "bad MAX_NUM_TRACKS %d", MAX_NUM_TRACKS);
108
109    pthread_once(&sOnceControl, &sInitRoutine);
110
111    mState.enabledTracks= 0;
112    mState.needsChanged = 0;
113    mState.frameCount   = frameCount;
114    mState.hook         = process__nop;
115    mState.outputTemp   = NULL;
116    mState.resampleTemp = NULL;
117    mState.mNBLogWriter = &mDummyLogWriter;
118    // mState.reserved
119
120    // FIXME Most of the following initialization is probably redundant since
121    // tracks[i] should only be referenced if (mTrackNames & (1 << i)) != 0
122    // and mTrackNames is initially 0.  However, leave it here until that's verified.
123    track_t* t = mState.tracks;
124    for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
125        t->resampler = NULL;
126        t->downmixerBufferProvider = NULL;
127        t->mReformatBufferProvider = NULL;
128        t->mTimestretchBufferProvider = NULL;
129        t++;
130    }
131
132}
133
134AudioMixer::~AudioMixer()
135{
136    track_t* t = mState.tracks;
137    for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
138        delete t->resampler;
139        delete t->downmixerBufferProvider;
140        delete t->mReformatBufferProvider;
141        delete t->mTimestretchBufferProvider;
142        t++;
143    }
144    delete [] mState.outputTemp;
145    delete [] mState.resampleTemp;
146}
147
148void AudioMixer::setNBLogWriter(NBLog::Writer *logWriter)
149{
150    mState.mNBLogWriter = logWriter;
151}
152
153static inline audio_format_t selectMixerInFormat(audio_format_t inputFormat __unused) {
154    return kUseFloat && kUseNewMixer ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
155}
156
157int AudioMixer::getTrackName(audio_channel_mask_t channelMask,
158        audio_format_t format, int sessionId)
159{
160    if (!isValidPcmTrackFormat(format)) {
161        ALOGE("AudioMixer::getTrackName invalid format (%#x)", format);
162        return -1;
163    }
164    uint32_t names = (~mTrackNames) & mConfiguredNames;
165    if (names != 0) {
166        int n = __builtin_ctz(names);
167        ALOGV("add track (%d)", n);
168        // assume default parameters for the track, except where noted below
169        track_t* t = &mState.tracks[n];
170        t->needs = 0;
171
172        // Integer volume.
173        // Currently integer volume is kept for the legacy integer mixer.
174        // Will be removed when the legacy mixer path is removed.
175        t->volume[0] = UNITY_GAIN_INT;
176        t->volume[1] = UNITY_GAIN_INT;
177        t->prevVolume[0] = UNITY_GAIN_INT << 16;
178        t->prevVolume[1] = UNITY_GAIN_INT << 16;
179        t->volumeInc[0] = 0;
180        t->volumeInc[1] = 0;
181        t->auxLevel = 0;
182        t->auxInc = 0;
183        t->prevAuxLevel = 0;
184
185        // Floating point volume.
186        t->mVolume[0] = UNITY_GAIN_FLOAT;
187        t->mVolume[1] = UNITY_GAIN_FLOAT;
188        t->mPrevVolume[0] = UNITY_GAIN_FLOAT;
189        t->mPrevVolume[1] = UNITY_GAIN_FLOAT;
190        t->mVolumeInc[0] = 0.;
191        t->mVolumeInc[1] = 0.;
192        t->mAuxLevel = 0.;
193        t->mAuxInc = 0.;
194        t->mPrevAuxLevel = 0.;
195
196        // no initialization needed
197        // t->frameCount
198        t->channelCount = audio_channel_count_from_out_mask(channelMask);
199        t->enabled = false;
200        ALOGV_IF(audio_channel_mask_get_bits(channelMask) != AUDIO_CHANNEL_OUT_STEREO,
201                "Non-stereo channel mask: %d\n", channelMask);
202        t->channelMask = channelMask;
203        t->sessionId = sessionId;
204        // setBufferProvider(name, AudioBufferProvider *) is required before enable(name)
205        t->bufferProvider = NULL;
206        t->buffer.raw = NULL;
207        // no initialization needed
208        // t->buffer.frameCount
209        t->hook = NULL;
210        t->in = NULL;
211        t->resampler = NULL;
212        t->sampleRate = mSampleRate;
213        // setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name)
214        t->mainBuffer = NULL;
215        t->auxBuffer = NULL;
216        t->mInputBufferProvider = NULL;
217        t->mReformatBufferProvider = NULL;
218        t->downmixerBufferProvider = NULL;
219        t->mPostDownmixReformatBufferProvider = NULL;
220        t->mTimestretchBufferProvider = NULL;
221        t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
222        t->mFormat = format;
223        t->mMixerInFormat = selectMixerInFormat(format);
224        t->mDownmixRequiresFormat = AUDIO_FORMAT_INVALID; // no format required
225        t->mMixerChannelMask = audio_channel_mask_from_representation_and_bits(
226                AUDIO_CHANNEL_REPRESENTATION_POSITION, AUDIO_CHANNEL_OUT_STEREO);
227        t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask);
228        t->mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
229        // Check the downmixing (or upmixing) requirements.
230        status_t status = t->prepareForDownmix();
231        if (status != OK) {
232            ALOGE("AudioMixer::getTrackName invalid channelMask (%#x)", channelMask);
233            return -1;
234        }
235        // prepareForDownmix() may change mDownmixRequiresFormat
236        ALOGVV("mMixerFormat:%#x  mMixerInFormat:%#x\n", t->mMixerFormat, t->mMixerInFormat);
237        t->prepareForReformat();
238        mTrackNames |= 1 << n;
239        return TRACK0 + n;
240    }
241    ALOGE("AudioMixer::getTrackName out of available tracks");
242    return -1;
243}
244
245void AudioMixer::invalidateState(uint32_t mask)
246{
247    if (mask != 0) {
248        mState.needsChanged |= mask;
249        mState.hook = process__validate;
250    }
251 }
252
253// Called when channel masks have changed for a track name
254// TODO: Fix DownmixerBufferProvider not to (possibly) change mixer input format,
255// which will simplify this logic.
256bool AudioMixer::setChannelMasks(int name,
257        audio_channel_mask_t trackChannelMask, audio_channel_mask_t mixerChannelMask) {
258    track_t &track = mState.tracks[name];
259
260    if (trackChannelMask == track.channelMask
261            && mixerChannelMask == track.mMixerChannelMask) {
262        return false;  // no need to change
263    }
264    // always recompute for both channel masks even if only one has changed.
265    const uint32_t trackChannelCount = audio_channel_count_from_out_mask(trackChannelMask);
266    const uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mixerChannelMask);
267    const bool mixerChannelCountChanged = track.mMixerChannelCount != mixerChannelCount;
268
269    ALOG_ASSERT((trackChannelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX)
270            && trackChannelCount
271            && mixerChannelCount);
272    track.channelMask = trackChannelMask;
273    track.channelCount = trackChannelCount;
274    track.mMixerChannelMask = mixerChannelMask;
275    track.mMixerChannelCount = mixerChannelCount;
276
277    // channel masks have changed, does this track need a downmixer?
278    // update to try using our desired format (if we aren't already using it)
279    const audio_format_t prevDownmixerFormat = track.mDownmixRequiresFormat;
280    const status_t status = mState.tracks[name].prepareForDownmix();
281    ALOGE_IF(status != OK,
282            "prepareForDownmix error %d, track channel mask %#x, mixer channel mask %#x",
283            status, track.channelMask, track.mMixerChannelMask);
284
285    if (prevDownmixerFormat != track.mDownmixRequiresFormat) {
286        track.prepareForReformat(); // because of downmixer, track format may change!
287    }
288
289    if (track.resampler && mixerChannelCountChanged) {
290        // resampler channels may have changed.
291        const uint32_t resetToSampleRate = track.sampleRate;
292        delete track.resampler;
293        track.resampler = NULL;
294        track.sampleRate = mSampleRate; // without resampler, track rate is device sample rate.
295        // recreate the resampler with updated format, channels, saved sampleRate.
296        track.setResampler(resetToSampleRate /*trackSampleRate*/, mSampleRate /*devSampleRate*/);
297    }
298    return true;
299}
300
301void AudioMixer::track_t::unprepareForDownmix() {
302    ALOGV("AudioMixer::unprepareForDownmix(%p)", this);
303
304    if (mPostDownmixReformatBufferProvider != nullptr) {
305        // release any buffers held by the mPostDownmixReformatBufferProvider
306        // before deallocating the downmixerBufferProvider.
307        mPostDownmixReformatBufferProvider->reset();
308    }
309
310    mDownmixRequiresFormat = AUDIO_FORMAT_INVALID;
311    if (downmixerBufferProvider != NULL) {
312        // this track had previously been configured with a downmixer, delete it
313        ALOGV(" deleting old downmixer");
314        delete downmixerBufferProvider;
315        downmixerBufferProvider = NULL;
316        reconfigureBufferProviders();
317    } else {
318        ALOGV(" nothing to do, no downmixer to delete");
319    }
320}
321
322status_t AudioMixer::track_t::prepareForDownmix()
323{
324    ALOGV("AudioMixer::prepareForDownmix(%p) with mask 0x%x",
325            this, channelMask);
326
327    // discard the previous downmixer if there was one
328    unprepareForDownmix();
329    // MONO_HACK Only remix (upmix or downmix) if the track and mixer/device channel masks
330    // are not the same and not handled internally, as mono -> stereo currently is.
331    if (channelMask == mMixerChannelMask
332            || (channelMask == AUDIO_CHANNEL_OUT_MONO
333                    && mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO)) {
334        return NO_ERROR;
335    }
336    // DownmixerBufferProvider is only used for position masks.
337    if (audio_channel_mask_get_representation(channelMask)
338                == AUDIO_CHANNEL_REPRESENTATION_POSITION
339            && DownmixerBufferProvider::isMultichannelCapable()) {
340        DownmixerBufferProvider* pDbp = new DownmixerBufferProvider(channelMask,
341                mMixerChannelMask,
342                AUDIO_FORMAT_PCM_16_BIT /* TODO: use mMixerInFormat, now only PCM 16 */,
343                sampleRate, sessionId, kCopyBufferFrameCount);
344
345        if (pDbp->isValid()) { // if constructor completed properly
346            mDownmixRequiresFormat = AUDIO_FORMAT_PCM_16_BIT; // PCM 16 bit required for downmix
347            downmixerBufferProvider = pDbp;
348            reconfigureBufferProviders();
349            return NO_ERROR;
350        }
351        delete pDbp;
352    }
353
354    // Effect downmixer does not accept the channel conversion.  Let's use our remixer.
355    RemixBufferProvider* pRbp = new RemixBufferProvider(channelMask,
356            mMixerChannelMask, mMixerInFormat, kCopyBufferFrameCount);
357    // Remix always finds a conversion whereas Downmixer effect above may fail.
358    downmixerBufferProvider = pRbp;
359    reconfigureBufferProviders();
360    return NO_ERROR;
361}
362
363void AudioMixer::track_t::unprepareForReformat() {
364    ALOGV("AudioMixer::unprepareForReformat(%p)", this);
365    bool requiresReconfigure = false;
366    if (mReformatBufferProvider != NULL) {
367        delete mReformatBufferProvider;
368        mReformatBufferProvider = NULL;
369        requiresReconfigure = true;
370    }
371    if (mPostDownmixReformatBufferProvider != NULL) {
372        delete mPostDownmixReformatBufferProvider;
373        mPostDownmixReformatBufferProvider = NULL;
374        requiresReconfigure = true;
375    }
376    if (requiresReconfigure) {
377        reconfigureBufferProviders();
378    }
379}
380
381status_t AudioMixer::track_t::prepareForReformat()
382{
383    ALOGV("AudioMixer::prepareForReformat(%p) with format %#x", this, mFormat);
384    // discard previous reformatters
385    unprepareForReformat();
386    // only configure reformatters as needed
387    const audio_format_t targetFormat = mDownmixRequiresFormat != AUDIO_FORMAT_INVALID
388            ? mDownmixRequiresFormat : mMixerInFormat;
389    bool requiresReconfigure = false;
390    if (mFormat != targetFormat) {
391        mReformatBufferProvider = new ReformatBufferProvider(
392                audio_channel_count_from_out_mask(channelMask),
393                mFormat,
394                targetFormat,
395                kCopyBufferFrameCount);
396        requiresReconfigure = true;
397    }
398    if (targetFormat != mMixerInFormat) {
399        mPostDownmixReformatBufferProvider = new ReformatBufferProvider(
400                audio_channel_count_from_out_mask(mMixerChannelMask),
401                targetFormat,
402                mMixerInFormat,
403                kCopyBufferFrameCount);
404        requiresReconfigure = true;
405    }
406    if (requiresReconfigure) {
407        reconfigureBufferProviders();
408    }
409    return NO_ERROR;
410}
411
412void AudioMixer::track_t::reconfigureBufferProviders()
413{
414    bufferProvider = mInputBufferProvider;
415    if (mReformatBufferProvider) {
416        mReformatBufferProvider->setBufferProvider(bufferProvider);
417        bufferProvider = mReformatBufferProvider;
418    }
419    if (downmixerBufferProvider) {
420        downmixerBufferProvider->setBufferProvider(bufferProvider);
421        bufferProvider = downmixerBufferProvider;
422    }
423    if (mPostDownmixReformatBufferProvider) {
424        mPostDownmixReformatBufferProvider->setBufferProvider(bufferProvider);
425        bufferProvider = mPostDownmixReformatBufferProvider;
426    }
427    if (mTimestretchBufferProvider) {
428        mTimestretchBufferProvider->setBufferProvider(bufferProvider);
429        bufferProvider = mTimestretchBufferProvider;
430    }
431}
432
433void AudioMixer::deleteTrackName(int name)
434{
435    ALOGV("AudioMixer::deleteTrackName(%d)", name);
436    name -= TRACK0;
437    LOG_ALWAYS_FATAL_IF(name < 0 || name >= (int)MAX_NUM_TRACKS, "bad track name %d", name);
438    ALOGV("deleteTrackName(%d)", name);
439    track_t& track(mState.tracks[ name ]);
440    if (track.enabled) {
441        track.enabled = false;
442        invalidateState(1<<name);
443    }
444    // delete the resampler
445    delete track.resampler;
446    track.resampler = NULL;
447    // delete the downmixer
448    mState.tracks[name].unprepareForDownmix();
449    // delete the reformatter
450    mState.tracks[name].unprepareForReformat();
451    // delete the timestretch provider
452    delete track.mTimestretchBufferProvider;
453    track.mTimestretchBufferProvider = NULL;
454    mTrackNames &= ~(1<<name);
455}
456
457void AudioMixer::enable(int name)
458{
459    name -= TRACK0;
460    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
461    track_t& track = mState.tracks[name];
462
463    if (!track.enabled) {
464        track.enabled = true;
465        ALOGV("enable(%d)", name);
466        invalidateState(1 << name);
467    }
468}
469
470void AudioMixer::disable(int name)
471{
472    name -= TRACK0;
473    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
474    track_t& track = mState.tracks[name];
475
476    if (track.enabled) {
477        track.enabled = false;
478        ALOGV("disable(%d)", name);
479        invalidateState(1 << name);
480    }
481}
482
483/* Sets the volume ramp variables for the AudioMixer.
484 *
485 * The volume ramp variables are used to transition from the previous
486 * volume to the set volume.  ramp controls the duration of the transition.
487 * Its value is typically one state framecount period, but may also be 0,
488 * meaning "immediate."
489 *
490 * FIXME: 1) Volume ramp is enabled only if there is a nonzero integer increment
491 * even if there is a nonzero floating point increment (in that case, the volume
492 * change is immediate).  This restriction should be changed when the legacy mixer
493 * is removed (see #2).
494 * FIXME: 2) Integer volume variables are used for Legacy mixing and should be removed
495 * when no longer needed.
496 *
497 * @param newVolume set volume target in floating point [0.0, 1.0].
498 * @param ramp number of frames to increment over. if ramp is 0, the volume
499 * should be set immediately.  Currently ramp should not exceed 65535 (frames).
500 * @param pIntSetVolume pointer to the U4.12 integer target volume, set on return.
501 * @param pIntPrevVolume pointer to the U4.28 integer previous volume, set on return.
502 * @param pIntVolumeInc pointer to the U4.28 increment per output audio frame, set on return.
503 * @param pSetVolume pointer to the float target volume, set on return.
504 * @param pPrevVolume pointer to the float previous volume, set on return.
505 * @param pVolumeInc pointer to the float increment per output audio frame, set on return.
506 * @return true if the volume has changed, false if volume is same.
507 */
508static inline bool setVolumeRampVariables(float newVolume, int32_t ramp,
509        int16_t *pIntSetVolume, int32_t *pIntPrevVolume, int32_t *pIntVolumeInc,
510        float *pSetVolume, float *pPrevVolume, float *pVolumeInc) {
511    // check floating point volume to see if it is identical to the previously
512    // set volume.
513    // We do not use a tolerance here (and reject changes too small)
514    // as it may be confusing to use a different value than the one set.
515    // If the resulting volume is too small to ramp, it is a direct set of the volume.
516    if (newVolume == *pSetVolume) {
517        return false;
518    }
519    if (newVolume < 0) {
520        newVolume = 0; // should not have negative volumes
521    } else {
522        switch (fpclassify(newVolume)) {
523        case FP_SUBNORMAL:
524        case FP_NAN:
525            newVolume = 0;
526            break;
527        case FP_ZERO:
528            break; // zero volume is fine
529        case FP_INFINITE:
530            // Infinite volume could be handled consistently since
531            // floating point math saturates at infinities,
532            // but we limit volume to unity gain float.
533            // ramp = 0; break;
534            //
535            newVolume = AudioMixer::UNITY_GAIN_FLOAT;
536            break;
537        case FP_NORMAL:
538        default:
539            // Floating point does not have problems with overflow wrap
540            // that integer has.  However, we limit the volume to
541            // unity gain here.
542            // TODO: Revisit the volume limitation and perhaps parameterize.
543            if (newVolume > AudioMixer::UNITY_GAIN_FLOAT) {
544                newVolume = AudioMixer::UNITY_GAIN_FLOAT;
545            }
546            break;
547        }
548    }
549
550    // set floating point volume ramp
551    if (ramp != 0) {
552        // when the ramp completes, *pPrevVolume is set to *pSetVolume, so there
553        // is no computational mismatch; hence equality is checked here.
554        ALOGD_IF(*pPrevVolume != *pSetVolume, "previous float ramp hasn't finished,"
555                " prev:%f  set_to:%f", *pPrevVolume, *pSetVolume);
556        const float inc = (newVolume - *pPrevVolume) / ramp; // could be inf, nan, subnormal
557        const float maxv = max(newVolume, *pPrevVolume); // could be inf, cannot be nan, subnormal
558
559        if (isnormal(inc) // inc must be a normal number (no subnormals, infinite, nan)
560                && maxv + inc != maxv) { // inc must make forward progress
561            *pVolumeInc = inc;
562            // ramp is set now.
563            // Note: if newVolume is 0, then near the end of the ramp,
564            // it may be possible that the ramped volume may be subnormal or
565            // temporarily negative by a small amount or subnormal due to floating
566            // point inaccuracies.
567        } else {
568            ramp = 0; // ramp not allowed
569        }
570    }
571
572    // compute and check integer volume, no need to check negative values
573    // The integer volume is limited to "unity_gain" to avoid wrapping and other
574    // audio artifacts, so it never reaches the range limit of U4.28.
575    // We safely use signed 16 and 32 bit integers here.
576    const float scaledVolume = newVolume * AudioMixer::UNITY_GAIN_INT; // not neg, subnormal, nan
577    const int32_t intVolume = (scaledVolume >= (float)AudioMixer::UNITY_GAIN_INT) ?
578            AudioMixer::UNITY_GAIN_INT : (int32_t)scaledVolume;
579
580    // set integer volume ramp
581    if (ramp != 0) {
582        // integer volume is U4.12 (to use 16 bit multiplies), but ramping uses U4.28.
583        // when the ramp completes, *pIntPrevVolume is set to *pIntSetVolume << 16, so there
584        // is no computational mismatch; hence equality is checked here.
585        ALOGD_IF(*pIntPrevVolume != *pIntSetVolume << 16, "previous int ramp hasn't finished,"
586                " prev:%d  set_to:%d", *pIntPrevVolume, *pIntSetVolume << 16);
587        const int32_t inc = ((intVolume << 16) - *pIntPrevVolume) / ramp;
588
589        if (inc != 0) { // inc must make forward progress
590            *pIntVolumeInc = inc;
591        } else {
592            ramp = 0; // ramp not allowed
593        }
594    }
595
596    // if no ramp, or ramp not allowed, then clear float and integer increments
597    if (ramp == 0) {
598        *pVolumeInc = 0;
599        *pPrevVolume = newVolume;
600        *pIntVolumeInc = 0;
601        *pIntPrevVolume = intVolume << 16;
602    }
603    *pSetVolume = newVolume;
604    *pIntSetVolume = intVolume;
605    return true;
606}
607
608void AudioMixer::setParameter(int name, int target, int param, void *value)
609{
610    name -= TRACK0;
611    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
612    track_t& track = mState.tracks[name];
613
614    int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value));
615    int32_t *valueBuf = reinterpret_cast<int32_t*>(value);
616
617    switch (target) {
618
619    case TRACK:
620        switch (param) {
621        case CHANNEL_MASK: {
622            const audio_channel_mask_t trackChannelMask =
623                static_cast<audio_channel_mask_t>(valueInt);
624            if (setChannelMasks(name, trackChannelMask, track.mMixerChannelMask)) {
625                ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask);
626                invalidateState(1 << name);
627            }
628            } break;
629        case MAIN_BUFFER:
630            if (track.mainBuffer != valueBuf) {
631                track.mainBuffer = valueBuf;
632                ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf);
633                invalidateState(1 << name);
634            }
635            break;
636        case AUX_BUFFER:
637            if (track.auxBuffer != valueBuf) {
638                track.auxBuffer = valueBuf;
639                ALOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf);
640                invalidateState(1 << name);
641            }
642            break;
643        case FORMAT: {
644            audio_format_t format = static_cast<audio_format_t>(valueInt);
645            if (track.mFormat != format) {
646                ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format);
647                track.mFormat = format;
648                ALOGV("setParameter(TRACK, FORMAT, %#x)", format);
649                track.prepareForReformat();
650                invalidateState(1 << name);
651            }
652            } break;
653        // FIXME do we want to support setting the downmix type from AudioFlinger?
654        //         for a specific track? or per mixer?
655        /* case DOWNMIX_TYPE:
656            break          */
657        case MIXER_FORMAT: {
658            audio_format_t format = static_cast<audio_format_t>(valueInt);
659            if (track.mMixerFormat != format) {
660                track.mMixerFormat = format;
661                ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format);
662            }
663            } break;
664        case MIXER_CHANNEL_MASK: {
665            const audio_channel_mask_t mixerChannelMask =
666                    static_cast<audio_channel_mask_t>(valueInt);
667            if (setChannelMasks(name, track.channelMask, mixerChannelMask)) {
668                ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask);
669                invalidateState(1 << name);
670            }
671            } break;
672        default:
673            LOG_ALWAYS_FATAL("setParameter track: bad param %d", param);
674        }
675        break;
676
677    case RESAMPLE:
678        switch (param) {
679        case SAMPLE_RATE:
680            ALOG_ASSERT(valueInt > 0, "bad sample rate %d", valueInt);
681            if (track.setResampler(uint32_t(valueInt), mSampleRate)) {
682                ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)",
683                        uint32_t(valueInt));
684                invalidateState(1 << name);
685            }
686            break;
687        case RESET:
688            track.resetResampler();
689            invalidateState(1 << name);
690            break;
691        case REMOVE:
692            delete track.resampler;
693            track.resampler = NULL;
694            track.sampleRate = mSampleRate;
695            invalidateState(1 << name);
696            break;
697        default:
698            LOG_ALWAYS_FATAL("setParameter resample: bad param %d", param);
699        }
700        break;
701
702    case RAMP_VOLUME:
703    case VOLUME:
704        switch (param) {
705        case AUXLEVEL:
706            if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
707                    target == RAMP_VOLUME ? mState.frameCount : 0,
708                    &track.auxLevel, &track.prevAuxLevel, &track.auxInc,
709                    &track.mAuxLevel, &track.mPrevAuxLevel, &track.mAuxInc)) {
710                ALOGV("setParameter(%s, AUXLEVEL: %04x)",
711                        target == VOLUME ? "VOLUME" : "RAMP_VOLUME", track.auxLevel);
712                invalidateState(1 << name);
713            }
714            break;
715        default:
716            if ((unsigned)param >= VOLUME0 && (unsigned)param < VOLUME0 + MAX_NUM_VOLUMES) {
717                if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
718                        target == RAMP_VOLUME ? mState.frameCount : 0,
719                        &track.volume[param - VOLUME0], &track.prevVolume[param - VOLUME0],
720                        &track.volumeInc[param - VOLUME0],
721                        &track.mVolume[param - VOLUME0], &track.mPrevVolume[param - VOLUME0],
722                        &track.mVolumeInc[param - VOLUME0])) {
723                    ALOGV("setParameter(%s, VOLUME%d: %04x)",
724                            target == VOLUME ? "VOLUME" : "RAMP_VOLUME", param - VOLUME0,
725                                    track.volume[param - VOLUME0]);
726                    invalidateState(1 << name);
727                }
728            } else {
729                LOG_ALWAYS_FATAL("setParameter volume: bad param %d", param);
730            }
731        }
732        break;
733        case TIMESTRETCH:
734            switch (param) {
735            case PLAYBACK_RATE: {
736                const AudioPlaybackRate *playbackRate =
737                        reinterpret_cast<AudioPlaybackRate*>(value);
738                ALOGW_IF(!isAudioPlaybackRateValid(*playbackRate),
739                        "bad parameters speed %f, pitch %f",playbackRate->mSpeed,
740                        playbackRate->mPitch);
741                if (track.setPlaybackRate(*playbackRate)) {
742                    ALOGV("setParameter(TIMESTRETCH, PLAYBACK_RATE, STRETCH_MODE, FALLBACK_MODE "
743                            "%f %f %d %d",
744                            playbackRate->mSpeed,
745                            playbackRate->mPitch,
746                            playbackRate->mStretchMode,
747                            playbackRate->mFallbackMode);
748                    // invalidateState(1 << name);
749                }
750            } break;
751            default:
752                LOG_ALWAYS_FATAL("setParameter timestretch: bad param %d", param);
753            }
754            break;
755
756    default:
757        LOG_ALWAYS_FATAL("setParameter: bad target %d", target);
758    }
759}
760
761bool AudioMixer::track_t::setResampler(uint32_t trackSampleRate, uint32_t devSampleRate)
762{
763    if (trackSampleRate != devSampleRate || resampler != NULL) {
764        if (sampleRate != trackSampleRate) {
765            sampleRate = trackSampleRate;
766            if (resampler == NULL) {
767                ALOGV("Creating resampler from track %d Hz to device %d Hz",
768                        trackSampleRate, devSampleRate);
769                AudioResampler::src_quality quality;
770                // force lowest quality level resampler if use case isn't music or video
771                // FIXME this is flawed for dynamic sample rates, as we choose the resampler
772                // quality level based on the initial ratio, but that could change later.
773                // Should have a way to distinguish tracks with static ratios vs. dynamic ratios.
774                if (isMusicRate(trackSampleRate)) {
775                    quality = AudioResampler::DEFAULT_QUALITY;
776                } else {
777                    quality = AudioResampler::DYN_LOW_QUALITY;
778                }
779
780                // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
781                // but if none exists, it is the channel count (1 for mono).
782                const int resamplerChannelCount = downmixerBufferProvider != NULL
783                        ? mMixerChannelCount : channelCount;
784                ALOGVV("Creating resampler:"
785                        " format(%#x) channels(%d) devSampleRate(%u) quality(%d)\n",
786                        mMixerInFormat, resamplerChannelCount, devSampleRate, quality);
787                resampler = AudioResampler::create(
788                        mMixerInFormat,
789                        resamplerChannelCount,
790                        devSampleRate, quality);
791            }
792            return true;
793        }
794    }
795    return false;
796}
797
798bool AudioMixer::track_t::setPlaybackRate(const AudioPlaybackRate &playbackRate)
799{
800    if ((mTimestretchBufferProvider == NULL &&
801            fabs(playbackRate.mSpeed - mPlaybackRate.mSpeed) < AUDIO_TIMESTRETCH_SPEED_MIN_DELTA &&
802            fabs(playbackRate.mPitch - mPlaybackRate.mPitch) < AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) ||
803            isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
804        return false;
805    }
806    mPlaybackRate = playbackRate;
807    if (mTimestretchBufferProvider == NULL) {
808        // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
809        // but if none exists, it is the channel count (1 for mono).
810        const int timestretchChannelCount = downmixerBufferProvider != NULL
811                ? mMixerChannelCount : channelCount;
812        mTimestretchBufferProvider = new TimestretchBufferProvider(timestretchChannelCount,
813                mMixerInFormat, sampleRate, playbackRate);
814        reconfigureBufferProviders();
815    } else {
816        reinterpret_cast<TimestretchBufferProvider*>(mTimestretchBufferProvider)
817                ->setPlaybackRate(playbackRate);
818    }
819    return true;
820}
821
822/* Checks to see if the volume ramp has completed and clears the increment
823 * variables appropriately.
824 *
825 * FIXME: There is code to handle int/float ramp variable switchover should it not
826 * complete within a mixer buffer processing call, but it is preferred to avoid switchover
827 * due to precision issues.  The switchover code is included for legacy code purposes
828 * and can be removed once the integer volume is removed.
829 *
830 * It is not sufficient to clear only the volumeInc integer variable because
831 * if one channel requires ramping, all channels are ramped.
832 *
833 * There is a bit of duplicated code here, but it keeps backward compatibility.
834 */
835inline void AudioMixer::track_t::adjustVolumeRamp(bool aux, bool useFloat)
836{
837    if (useFloat) {
838        for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
839            if ((mVolumeInc[i] > 0 && mPrevVolume[i] + mVolumeInc[i] >= mVolume[i]) ||
840                     (mVolumeInc[i] < 0 && mPrevVolume[i] + mVolumeInc[i] <= mVolume[i])) {
841                volumeInc[i] = 0;
842                prevVolume[i] = volume[i] << 16;
843                mVolumeInc[i] = 0.;
844                mPrevVolume[i] = mVolume[i];
845            } else {
846                //ALOGV("ramp: %f %f %f", mVolume[i], mPrevVolume[i], mVolumeInc[i]);
847                prevVolume[i] = u4_28_from_float(mPrevVolume[i]);
848            }
849        }
850    } else {
851        for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
852            if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) ||
853                    ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) {
854                volumeInc[i] = 0;
855                prevVolume[i] = volume[i] << 16;
856                mVolumeInc[i] = 0.;
857                mPrevVolume[i] = mVolume[i];
858            } else {
859                //ALOGV("ramp: %d %d %d", volume[i] << 16, prevVolume[i], volumeInc[i]);
860                mPrevVolume[i]  = float_from_u4_28(prevVolume[i]);
861            }
862        }
863    }
864    /* TODO: aux is always integer regardless of output buffer type */
865    if (aux) {
866        if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) ||
867                ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) {
868            auxInc = 0;
869            prevAuxLevel = auxLevel << 16;
870            mAuxInc = 0.;
871            mPrevAuxLevel = mAuxLevel;
872        } else {
873            //ALOGV("aux ramp: %d %d %d", auxLevel << 16, prevAuxLevel, auxInc);
874        }
875    }
876}
877
878size_t AudioMixer::getUnreleasedFrames(int name) const
879{
880    name -= TRACK0;
881    if (uint32_t(name) < MAX_NUM_TRACKS) {
882        return mState.tracks[name].getUnreleasedFrames();
883    }
884    return 0;
885}
886
887void AudioMixer::setBufferProvider(int name, AudioBufferProvider* bufferProvider)
888{
889    name -= TRACK0;
890    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
891
892    if (mState.tracks[name].mInputBufferProvider == bufferProvider) {
893        return; // don't reset any buffer providers if identical.
894    }
895    if (mState.tracks[name].mReformatBufferProvider != NULL) {
896        mState.tracks[name].mReformatBufferProvider->reset();
897    } else if (mState.tracks[name].downmixerBufferProvider != NULL) {
898        mState.tracks[name].downmixerBufferProvider->reset();
899    } else if (mState.tracks[name].mPostDownmixReformatBufferProvider != NULL) {
900        mState.tracks[name].mPostDownmixReformatBufferProvider->reset();
901    } else if (mState.tracks[name].mTimestretchBufferProvider != NULL) {
902        mState.tracks[name].mTimestretchBufferProvider->reset();
903    }
904
905    mState.tracks[name].mInputBufferProvider = bufferProvider;
906    mState.tracks[name].reconfigureBufferProviders();
907}
908
909
910void AudioMixer::process()
911{
912    mState.hook(&mState);
913}
914
915
916void AudioMixer::process__validate(state_t* state)
917{
918    ALOGW_IF(!state->needsChanged,
919        "in process__validate() but nothing's invalid");
920
921    uint32_t changed = state->needsChanged;
922    state->needsChanged = 0; // clear the validation flag
923
924    // recompute which tracks are enabled / disabled
925    uint32_t enabled = 0;
926    uint32_t disabled = 0;
927    while (changed) {
928        const int i = 31 - __builtin_clz(changed);
929        const uint32_t mask = 1<<i;
930        changed &= ~mask;
931        track_t& t = state->tracks[i];
932        (t.enabled ? enabled : disabled) |= mask;
933    }
934    state->enabledTracks &= ~disabled;
935    state->enabledTracks |=  enabled;
936
937    // compute everything we need...
938    int countActiveTracks = 0;
939    // TODO: fix all16BitsStereNoResample logic to
940    // either properly handle muted tracks (it should ignore them)
941    // or remove altogether as an obsolete optimization.
942    bool all16BitsStereoNoResample = true;
943    bool resampling = false;
944    bool volumeRamp = false;
945    uint32_t en = state->enabledTracks;
946    while (en) {
947        const int i = 31 - __builtin_clz(en);
948        en &= ~(1<<i);
949
950        countActiveTracks++;
951        track_t& t = state->tracks[i];
952        uint32_t n = 0;
953        // FIXME can overflow (mask is only 3 bits)
954        n |= NEEDS_CHANNEL_1 + t.channelCount - 1;
955        if (t.doesResample()) {
956            n |= NEEDS_RESAMPLE;
957        }
958        if (t.auxLevel != 0 && t.auxBuffer != NULL) {
959            n |= NEEDS_AUX;
960        }
961
962        if (t.volumeInc[0]|t.volumeInc[1]) {
963            volumeRamp = true;
964        } else if (!t.doesResample() && t.volumeRL == 0) {
965            n |= NEEDS_MUTE;
966        }
967        t.needs = n;
968
969        if (n & NEEDS_MUTE) {
970            t.hook = track__nop;
971        } else {
972            if (n & NEEDS_AUX) {
973                all16BitsStereoNoResample = false;
974            }
975            if (n & NEEDS_RESAMPLE) {
976                all16BitsStereoNoResample = false;
977                resampling = true;
978                t.hook = getTrackHook(TRACKTYPE_RESAMPLE, t.mMixerChannelCount,
979                        t.mMixerInFormat, t.mMixerFormat);
980                ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
981                        "Track %d needs downmix + resample", i);
982            } else {
983                if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){
984                    t.hook = getTrackHook(
985                            (t.mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO  // TODO: MONO_HACK
986                                    && t.channelMask == AUDIO_CHANNEL_OUT_MONO)
987                                ? TRACKTYPE_NORESAMPLEMONO : TRACKTYPE_NORESAMPLE,
988                            t.mMixerChannelCount,
989                            t.mMixerInFormat, t.mMixerFormat);
990                    all16BitsStereoNoResample = false;
991                }
992                if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){
993                    t.hook = getTrackHook(TRACKTYPE_NORESAMPLE, t.mMixerChannelCount,
994                            t.mMixerInFormat, t.mMixerFormat);
995                    ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
996                            "Track %d needs downmix", i);
997                }
998            }
999        }
1000    }
1001
1002    // select the processing hooks
1003    state->hook = process__nop;
1004    if (countActiveTracks > 0) {
1005        if (resampling) {
1006            if (!state->outputTemp) {
1007                state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
1008            }
1009            if (!state->resampleTemp) {
1010                state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
1011            }
1012            state->hook = process__genericResampling;
1013        } else {
1014            if (state->outputTemp) {
1015                delete [] state->outputTemp;
1016                state->outputTemp = NULL;
1017            }
1018            if (state->resampleTemp) {
1019                delete [] state->resampleTemp;
1020                state->resampleTemp = NULL;
1021            }
1022            state->hook = process__genericNoResampling;
1023            if (all16BitsStereoNoResample && !volumeRamp) {
1024                if (countActiveTracks == 1) {
1025                    const int i = 31 - __builtin_clz(state->enabledTracks);
1026                    track_t& t = state->tracks[i];
1027                    if ((t.needs & NEEDS_MUTE) == 0) {
1028                        // The check prevents a muted track from acquiring a process hook.
1029                        //
1030                        // This is dangerous if the track is MONO as that requires
1031                        // special case handling due to implicit channel duplication.
1032                        // Stereo or Multichannel should actually be fine here.
1033                        state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
1034                                t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
1035                    }
1036                }
1037            }
1038        }
1039    }
1040
1041    ALOGV("mixer configuration change: %d activeTracks (%08x) "
1042        "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d",
1043        countActiveTracks, state->enabledTracks,
1044        all16BitsStereoNoResample, resampling, volumeRamp);
1045
1046   state->hook(state);
1047
1048    // Now that the volume ramp has been done, set optimal state and
1049    // track hooks for subsequent mixer process
1050    if (countActiveTracks > 0) {
1051        bool allMuted = true;
1052        uint32_t en = state->enabledTracks;
1053        while (en) {
1054            const int i = 31 - __builtin_clz(en);
1055            en &= ~(1<<i);
1056            track_t& t = state->tracks[i];
1057            if (!t.doesResample() && t.volumeRL == 0) {
1058                t.needs |= NEEDS_MUTE;
1059                t.hook = track__nop;
1060            } else {
1061                allMuted = false;
1062            }
1063        }
1064        if (allMuted) {
1065            state->hook = process__nop;
1066        } else if (all16BitsStereoNoResample) {
1067            if (countActiveTracks == 1) {
1068                const int i = 31 - __builtin_clz(state->enabledTracks);
1069                track_t& t = state->tracks[i];
1070                // Muted single tracks handled by allMuted above.
1071                state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
1072                        t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
1073            }
1074        }
1075    }
1076}
1077
1078
1079void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount,
1080        int32_t* temp, int32_t* aux)
1081{
1082    ALOGVV("track__genericResample\n");
1083    t->resampler->setSampleRate(t->sampleRate);
1084
1085    // ramp gain - resample to temp buffer and scale/mix in 2nd step
1086    if (aux != NULL) {
1087        // always resample with unity gain when sending to auxiliary buffer to be able
1088        // to apply send level after resampling
1089        t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1090        memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(int32_t));
1091        t->resampler->resample(temp, outFrameCount, t->bufferProvider);
1092        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1093            volumeRampStereo(t, out, outFrameCount, temp, aux);
1094        } else {
1095            volumeStereo(t, out, outFrameCount, temp, aux);
1096        }
1097    } else {
1098        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1099            t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1100            memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t));
1101            t->resampler->resample(temp, outFrameCount, t->bufferProvider);
1102            volumeRampStereo(t, out, outFrameCount, temp, aux);
1103        }
1104
1105        // constant gain
1106        else {
1107            t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
1108            t->resampler->resample(out, outFrameCount, t->bufferProvider);
1109        }
1110    }
1111}
1112
1113void AudioMixer::track__nop(track_t* t __unused, int32_t* out __unused,
1114        size_t outFrameCount __unused, int32_t* temp __unused, int32_t* aux __unused)
1115{
1116}
1117
1118void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
1119        int32_t* aux)
1120{
1121    int32_t vl = t->prevVolume[0];
1122    int32_t vr = t->prevVolume[1];
1123    const int32_t vlInc = t->volumeInc[0];
1124    const int32_t vrInc = t->volumeInc[1];
1125
1126    //ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1127    //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1128    //       (vl + vlInc*frameCount)/65536.0f, frameCount);
1129
1130    // ramp volume
1131    if (CC_UNLIKELY(aux != NULL)) {
1132        int32_t va = t->prevAuxLevel;
1133        const int32_t vaInc = t->auxInc;
1134        int32_t l;
1135        int32_t r;
1136
1137        do {
1138            l = (*temp++ >> 12);
1139            r = (*temp++ >> 12);
1140            *out++ += (vl >> 16) * l;
1141            *out++ += (vr >> 16) * r;
1142            *aux++ += (va >> 17) * (l + r);
1143            vl += vlInc;
1144            vr += vrInc;
1145            va += vaInc;
1146        } while (--frameCount);
1147        t->prevAuxLevel = va;
1148    } else {
1149        do {
1150            *out++ += (vl >> 16) * (*temp++ >> 12);
1151            *out++ += (vr >> 16) * (*temp++ >> 12);
1152            vl += vlInc;
1153            vr += vrInc;
1154        } while (--frameCount);
1155    }
1156    t->prevVolume[0] = vl;
1157    t->prevVolume[1] = vr;
1158    t->adjustVolumeRamp(aux != NULL);
1159}
1160
1161void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
1162        int32_t* aux)
1163{
1164    const int16_t vl = t->volume[0];
1165    const int16_t vr = t->volume[1];
1166
1167    if (CC_UNLIKELY(aux != NULL)) {
1168        const int16_t va = t->auxLevel;
1169        do {
1170            int16_t l = (int16_t)(*temp++ >> 12);
1171            int16_t r = (int16_t)(*temp++ >> 12);
1172            out[0] = mulAdd(l, vl, out[0]);
1173            int16_t a = (int16_t)(((int32_t)l + r) >> 1);
1174            out[1] = mulAdd(r, vr, out[1]);
1175            out += 2;
1176            aux[0] = mulAdd(a, va, aux[0]);
1177            aux++;
1178        } while (--frameCount);
1179    } else {
1180        do {
1181            int16_t l = (int16_t)(*temp++ >> 12);
1182            int16_t r = (int16_t)(*temp++ >> 12);
1183            out[0] = mulAdd(l, vl, out[0]);
1184            out[1] = mulAdd(r, vr, out[1]);
1185            out += 2;
1186        } while (--frameCount);
1187    }
1188}
1189
1190void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount,
1191        int32_t* temp __unused, int32_t* aux)
1192{
1193    ALOGVV("track__16BitsStereo\n");
1194    const int16_t *in = static_cast<const int16_t *>(t->in);
1195
1196    if (CC_UNLIKELY(aux != NULL)) {
1197        int32_t l;
1198        int32_t r;
1199        // ramp gain
1200        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1201            int32_t vl = t->prevVolume[0];
1202            int32_t vr = t->prevVolume[1];
1203            int32_t va = t->prevAuxLevel;
1204            const int32_t vlInc = t->volumeInc[0];
1205            const int32_t vrInc = t->volumeInc[1];
1206            const int32_t vaInc = t->auxInc;
1207            // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1208            //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1209            //        (vl + vlInc*frameCount)/65536.0f, frameCount);
1210
1211            do {
1212                l = (int32_t)*in++;
1213                r = (int32_t)*in++;
1214                *out++ += (vl >> 16) * l;
1215                *out++ += (vr >> 16) * r;
1216                *aux++ += (va >> 17) * (l + r);
1217                vl += vlInc;
1218                vr += vrInc;
1219                va += vaInc;
1220            } while (--frameCount);
1221
1222            t->prevVolume[0] = vl;
1223            t->prevVolume[1] = vr;
1224            t->prevAuxLevel = va;
1225            t->adjustVolumeRamp(true);
1226        }
1227
1228        // constant gain
1229        else {
1230            const uint32_t vrl = t->volumeRL;
1231            const int16_t va = (int16_t)t->auxLevel;
1232            do {
1233                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1234                int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1);
1235                in += 2;
1236                out[0] = mulAddRL(1, rl, vrl, out[0]);
1237                out[1] = mulAddRL(0, rl, vrl, out[1]);
1238                out += 2;
1239                aux[0] = mulAdd(a, va, aux[0]);
1240                aux++;
1241            } while (--frameCount);
1242        }
1243    } else {
1244        // ramp gain
1245        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1246            int32_t vl = t->prevVolume[0];
1247            int32_t vr = t->prevVolume[1];
1248            const int32_t vlInc = t->volumeInc[0];
1249            const int32_t vrInc = t->volumeInc[1];
1250
1251            // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1252            //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1253            //        (vl + vlInc*frameCount)/65536.0f, frameCount);
1254
1255            do {
1256                *out++ += (vl >> 16) * (int32_t) *in++;
1257                *out++ += (vr >> 16) * (int32_t) *in++;
1258                vl += vlInc;
1259                vr += vrInc;
1260            } while (--frameCount);
1261
1262            t->prevVolume[0] = vl;
1263            t->prevVolume[1] = vr;
1264            t->adjustVolumeRamp(false);
1265        }
1266
1267        // constant gain
1268        else {
1269            const uint32_t vrl = t->volumeRL;
1270            do {
1271                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1272                in += 2;
1273                out[0] = mulAddRL(1, rl, vrl, out[0]);
1274                out[1] = mulAddRL(0, rl, vrl, out[1]);
1275                out += 2;
1276            } while (--frameCount);
1277        }
1278    }
1279    t->in = in;
1280}
1281
1282void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount,
1283        int32_t* temp __unused, int32_t* aux)
1284{
1285    ALOGVV("track__16BitsMono\n");
1286    const int16_t *in = static_cast<int16_t const *>(t->in);
1287
1288    if (CC_UNLIKELY(aux != NULL)) {
1289        // ramp gain
1290        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1291            int32_t vl = t->prevVolume[0];
1292            int32_t vr = t->prevVolume[1];
1293            int32_t va = t->prevAuxLevel;
1294            const int32_t vlInc = t->volumeInc[0];
1295            const int32_t vrInc = t->volumeInc[1];
1296            const int32_t vaInc = t->auxInc;
1297
1298            // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1299            //         t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1300            //         (vl + vlInc*frameCount)/65536.0f, frameCount);
1301
1302            do {
1303                int32_t l = *in++;
1304                *out++ += (vl >> 16) * l;
1305                *out++ += (vr >> 16) * l;
1306                *aux++ += (va >> 16) * l;
1307                vl += vlInc;
1308                vr += vrInc;
1309                va += vaInc;
1310            } while (--frameCount);
1311
1312            t->prevVolume[0] = vl;
1313            t->prevVolume[1] = vr;
1314            t->prevAuxLevel = va;
1315            t->adjustVolumeRamp(true);
1316        }
1317        // constant gain
1318        else {
1319            const int16_t vl = t->volume[0];
1320            const int16_t vr = t->volume[1];
1321            const int16_t va = (int16_t)t->auxLevel;
1322            do {
1323                int16_t l = *in++;
1324                out[0] = mulAdd(l, vl, out[0]);
1325                out[1] = mulAdd(l, vr, out[1]);
1326                out += 2;
1327                aux[0] = mulAdd(l, va, aux[0]);
1328                aux++;
1329            } while (--frameCount);
1330        }
1331    } else {
1332        // ramp gain
1333        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1334            int32_t vl = t->prevVolume[0];
1335            int32_t vr = t->prevVolume[1];
1336            const int32_t vlInc = t->volumeInc[0];
1337            const int32_t vrInc = t->volumeInc[1];
1338
1339            // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1340            //         t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1341            //         (vl + vlInc*frameCount)/65536.0f, frameCount);
1342
1343            do {
1344                int32_t l = *in++;
1345                *out++ += (vl >> 16) * l;
1346                *out++ += (vr >> 16) * l;
1347                vl += vlInc;
1348                vr += vrInc;
1349            } while (--frameCount);
1350
1351            t->prevVolume[0] = vl;
1352            t->prevVolume[1] = vr;
1353            t->adjustVolumeRamp(false);
1354        }
1355        // constant gain
1356        else {
1357            const int16_t vl = t->volume[0];
1358            const int16_t vr = t->volume[1];
1359            do {
1360                int16_t l = *in++;
1361                out[0] = mulAdd(l, vl, out[0]);
1362                out[1] = mulAdd(l, vr, out[1]);
1363                out += 2;
1364            } while (--frameCount);
1365        }
1366    }
1367    t->in = in;
1368}
1369
1370// no-op case
1371void AudioMixer::process__nop(state_t* state)
1372{
1373    ALOGVV("process__nop\n");
1374    uint32_t e0 = state->enabledTracks;
1375    while (e0) {
1376        // process by group of tracks with same output buffer to
1377        // avoid multiple memset() on same buffer
1378        uint32_t e1 = e0, e2 = e0;
1379        int i = 31 - __builtin_clz(e1);
1380        {
1381            track_t& t1 = state->tracks[i];
1382            e2 &= ~(1<<i);
1383            while (e2) {
1384                i = 31 - __builtin_clz(e2);
1385                e2 &= ~(1<<i);
1386                track_t& t2 = state->tracks[i];
1387                if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1388                    e1 &= ~(1<<i);
1389                }
1390            }
1391            e0 &= ~(e1);
1392
1393            memset(t1.mainBuffer, 0, state->frameCount * t1.mMixerChannelCount
1394                    * audio_bytes_per_sample(t1.mMixerFormat));
1395        }
1396
1397        while (e1) {
1398            i = 31 - __builtin_clz(e1);
1399            e1 &= ~(1<<i);
1400            {
1401                track_t& t3 = state->tracks[i];
1402                size_t outFrames = state->frameCount;
1403                while (outFrames) {
1404                    t3.buffer.frameCount = outFrames;
1405                    t3.bufferProvider->getNextBuffer(&t3.buffer);
1406                    if (t3.buffer.raw == NULL) break;
1407                    outFrames -= t3.buffer.frameCount;
1408                    t3.bufferProvider->releaseBuffer(&t3.buffer);
1409                }
1410            }
1411        }
1412    }
1413}
1414
1415// generic code without resampling
1416void AudioMixer::process__genericNoResampling(state_t* state)
1417{
1418    ALOGVV("process__genericNoResampling\n");
1419    int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32)));
1420
1421    // acquire each track's buffer
1422    uint32_t enabledTracks = state->enabledTracks;
1423    uint32_t e0 = enabledTracks;
1424    while (e0) {
1425        const int i = 31 - __builtin_clz(e0);
1426        e0 &= ~(1<<i);
1427        track_t& t = state->tracks[i];
1428        t.buffer.frameCount = state->frameCount;
1429        t.bufferProvider->getNextBuffer(&t.buffer);
1430        t.frameCount = t.buffer.frameCount;
1431        t.in = t.buffer.raw;
1432    }
1433
1434    e0 = enabledTracks;
1435    while (e0) {
1436        // process by group of tracks with same output buffer to
1437        // optimize cache use
1438        uint32_t e1 = e0, e2 = e0;
1439        int j = 31 - __builtin_clz(e1);
1440        track_t& t1 = state->tracks[j];
1441        e2 &= ~(1<<j);
1442        while (e2) {
1443            j = 31 - __builtin_clz(e2);
1444            e2 &= ~(1<<j);
1445            track_t& t2 = state->tracks[j];
1446            if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1447                e1 &= ~(1<<j);
1448            }
1449        }
1450        e0 &= ~(e1);
1451        // this assumes output 16 bits stereo, no resampling
1452        int32_t *out = t1.mainBuffer;
1453        size_t numFrames = 0;
1454        do {
1455            memset(outTemp, 0, sizeof(outTemp));
1456            e2 = e1;
1457            while (e2) {
1458                const int i = 31 - __builtin_clz(e2);
1459                e2 &= ~(1<<i);
1460                track_t& t = state->tracks[i];
1461                size_t outFrames = BLOCKSIZE;
1462                int32_t *aux = NULL;
1463                if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
1464                    aux = t.auxBuffer + numFrames;
1465                }
1466                while (outFrames) {
1467                    // t.in == NULL can happen if the track was flushed just after having
1468                    // been enabled for mixing.
1469                   if (t.in == NULL) {
1470                        enabledTracks &= ~(1<<i);
1471                        e1 &= ~(1<<i);
1472                        break;
1473                    }
1474                    size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount;
1475                    if (inFrames > 0) {
1476                        t.hook(&t, outTemp + (BLOCKSIZE - outFrames) * t.mMixerChannelCount,
1477                                inFrames, state->resampleTemp, aux);
1478                        t.frameCount -= inFrames;
1479                        outFrames -= inFrames;
1480                        if (CC_UNLIKELY(aux != NULL)) {
1481                            aux += inFrames;
1482                        }
1483                    }
1484                    if (t.frameCount == 0 && outFrames) {
1485                        t.bufferProvider->releaseBuffer(&t.buffer);
1486                        t.buffer.frameCount = (state->frameCount - numFrames) -
1487                                (BLOCKSIZE - outFrames);
1488                        t.bufferProvider->getNextBuffer(&t.buffer);
1489                        t.in = t.buffer.raw;
1490                        if (t.in == NULL) {
1491                            enabledTracks &= ~(1<<i);
1492                            e1 &= ~(1<<i);
1493                            break;
1494                        }
1495                        t.frameCount = t.buffer.frameCount;
1496                    }
1497                }
1498            }
1499
1500            convertMixerFormat(out, t1.mMixerFormat, outTemp, t1.mMixerInFormat,
1501                    BLOCKSIZE * t1.mMixerChannelCount);
1502            // TODO: fix ugly casting due to choice of out pointer type
1503            out = reinterpret_cast<int32_t*>((uint8_t*)out
1504                    + BLOCKSIZE * t1.mMixerChannelCount
1505                        * audio_bytes_per_sample(t1.mMixerFormat));
1506            numFrames += BLOCKSIZE;
1507        } while (numFrames < state->frameCount);
1508    }
1509
1510    // release each track's buffer
1511    e0 = enabledTracks;
1512    while (e0) {
1513        const int i = 31 - __builtin_clz(e0);
1514        e0 &= ~(1<<i);
1515        track_t& t = state->tracks[i];
1516        t.bufferProvider->releaseBuffer(&t.buffer);
1517    }
1518}
1519
1520
1521// generic code with resampling
1522void AudioMixer::process__genericResampling(state_t* state)
1523{
1524    ALOGVV("process__genericResampling\n");
1525    // this const just means that local variable outTemp doesn't change
1526    int32_t* const outTemp = state->outputTemp;
1527    size_t numFrames = state->frameCount;
1528
1529    uint32_t e0 = state->enabledTracks;
1530    while (e0) {
1531        // process by group of tracks with same output buffer
1532        // to optimize cache use
1533        uint32_t e1 = e0, e2 = e0;
1534        int j = 31 - __builtin_clz(e1);
1535        track_t& t1 = state->tracks[j];
1536        e2 &= ~(1<<j);
1537        while (e2) {
1538            j = 31 - __builtin_clz(e2);
1539            e2 &= ~(1<<j);
1540            track_t& t2 = state->tracks[j];
1541            if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1542                e1 &= ~(1<<j);
1543            }
1544        }
1545        e0 &= ~(e1);
1546        int32_t *out = t1.mainBuffer;
1547        memset(outTemp, 0, sizeof(*outTemp) * t1.mMixerChannelCount * state->frameCount);
1548        while (e1) {
1549            const int i = 31 - __builtin_clz(e1);
1550            e1 &= ~(1<<i);
1551            track_t& t = state->tracks[i];
1552            int32_t *aux = NULL;
1553            if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
1554                aux = t.auxBuffer;
1555            }
1556
1557            // this is a little goofy, on the resampling case we don't
1558            // acquire/release the buffers because it's done by
1559            // the resampler.
1560            if (t.needs & NEEDS_RESAMPLE) {
1561                t.hook(&t, outTemp, numFrames, state->resampleTemp, aux);
1562            } else {
1563
1564                size_t outFrames = 0;
1565
1566                while (outFrames < numFrames) {
1567                    t.buffer.frameCount = numFrames - outFrames;
1568                    t.bufferProvider->getNextBuffer(&t.buffer);
1569                    t.in = t.buffer.raw;
1570                    // t.in == NULL can happen if the track was flushed just after having
1571                    // been enabled for mixing.
1572                    if (t.in == NULL) break;
1573
1574                    if (CC_UNLIKELY(aux != NULL)) {
1575                        aux += outFrames;
1576                    }
1577                    t.hook(&t, outTemp + outFrames * t.mMixerChannelCount, t.buffer.frameCount,
1578                            state->resampleTemp, aux);
1579                    outFrames += t.buffer.frameCount;
1580                    t.bufferProvider->releaseBuffer(&t.buffer);
1581                }
1582            }
1583        }
1584        convertMixerFormat(out, t1.mMixerFormat,
1585                outTemp, t1.mMixerInFormat, numFrames * t1.mMixerChannelCount);
1586    }
1587}
1588
1589// one track, 16 bits stereo without resampling is the most common case
1590void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state)
1591{
1592    ALOGVV("process__OneTrack16BitsStereoNoResampling\n");
1593    // This method is only called when state->enabledTracks has exactly
1594    // one bit set.  The asserts below would verify this, but are commented out
1595    // since the whole point of this method is to optimize performance.
1596    //ALOG_ASSERT(0 != state->enabledTracks, "no tracks enabled");
1597    const int i = 31 - __builtin_clz(state->enabledTracks);
1598    //ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
1599    const track_t& t = state->tracks[i];
1600
1601    AudioBufferProvider::Buffer& b(t.buffer);
1602
1603    int32_t* out = t.mainBuffer;
1604    float *fout = reinterpret_cast<float*>(out);
1605    size_t numFrames = state->frameCount;
1606
1607    const int16_t vl = t.volume[0];
1608    const int16_t vr = t.volume[1];
1609    const uint32_t vrl = t.volumeRL;
1610    while (numFrames) {
1611        b.frameCount = numFrames;
1612        t.bufferProvider->getNextBuffer(&b);
1613        const int16_t *in = b.i16;
1614
1615        // in == NULL can happen if the track was flushed just after having
1616        // been enabled for mixing.
1617        if (in == NULL || (((uintptr_t)in) & 3)) {
1618            if ( AUDIO_FORMAT_PCM_FLOAT == t.mMixerFormat ) {
1619                 memset((char*)fout, 0, numFrames
1620                         * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat));
1621            } else {
1622                 memset((char*)out, 0, numFrames
1623                         * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat));
1624            }
1625            ALOGE_IF((((uintptr_t)in) & 3),
1626                    "process__OneTrack16BitsStereoNoResampling: misaligned buffer"
1627                    " %p track %d, channels %d, needs %08x, volume %08x vfl %f vfr %f",
1628                    in, i, t.channelCount, t.needs, vrl, t.mVolume[0], t.mVolume[1]);
1629            return;
1630        }
1631        size_t outFrames = b.frameCount;
1632
1633        switch (t.mMixerFormat) {
1634        case AUDIO_FORMAT_PCM_FLOAT:
1635            do {
1636                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1637                in += 2;
1638                int32_t l = mulRL(1, rl, vrl);
1639                int32_t r = mulRL(0, rl, vrl);
1640                *fout++ = float_from_q4_27(l);
1641                *fout++ = float_from_q4_27(r);
1642                // Note: In case of later int16_t sink output,
1643                // conversion and clamping is done by memcpy_to_i16_from_float().
1644            } while (--outFrames);
1645            break;
1646        case AUDIO_FORMAT_PCM_16_BIT:
1647            if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN_INT || uint32_t(vr) > UNITY_GAIN_INT)) {
1648                // volume is boosted, so we might need to clamp even though
1649                // we process only one track.
1650                do {
1651                    uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1652                    in += 2;
1653                    int32_t l = mulRL(1, rl, vrl) >> 12;
1654                    int32_t r = mulRL(0, rl, vrl) >> 12;
1655                    // clamping...
1656                    l = clamp16(l);
1657                    r = clamp16(r);
1658                    *out++ = (r<<16) | (l & 0xFFFF);
1659                } while (--outFrames);
1660            } else {
1661                do {
1662                    uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1663                    in += 2;
1664                    int32_t l = mulRL(1, rl, vrl) >> 12;
1665                    int32_t r = mulRL(0, rl, vrl) >> 12;
1666                    *out++ = (r<<16) | (l & 0xFFFF);
1667                } while (--outFrames);
1668            }
1669            break;
1670        default:
1671            LOG_ALWAYS_FATAL("bad mixer format: %d", t.mMixerFormat);
1672        }
1673        numFrames -= b.frameCount;
1674        t.bufferProvider->releaseBuffer(&b);
1675    }
1676}
1677
1678/*static*/ pthread_once_t AudioMixer::sOnceControl = PTHREAD_ONCE_INIT;
1679
1680/*static*/ void AudioMixer::sInitRoutine()
1681{
1682    DownmixerBufferProvider::init(); // for the downmixer
1683}
1684
1685/* TODO: consider whether this level of optimization is necessary.
1686 * Perhaps just stick with a single for loop.
1687 */
1688
1689// Needs to derive a compile time constant (constexpr).  Could be targeted to go
1690// to a MONOVOL mixtype based on MAX_NUM_VOLUMES, but that's an unnecessary complication.
1691#define MIXTYPE_MONOVOL(mixtype) ((mixtype) == MIXTYPE_MULTI ? MIXTYPE_MULTI_MONOVOL : \
1692        (mixtype) == MIXTYPE_MULTI_SAVEONLY ? MIXTYPE_MULTI_SAVEONLY_MONOVOL : (mixtype))
1693
1694/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1695 * TO: int32_t (Q4.27) or float
1696 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1697 * TA: int32_t (Q4.27)
1698 */
1699template <int MIXTYPE,
1700        typename TO, typename TI, typename TV, typename TA, typename TAV>
1701static void volumeRampMulti(uint32_t channels, TO* out, size_t frameCount,
1702        const TI* in, TA* aux, TV *vol, const TV *volinc, TAV *vola, TAV volainc)
1703{
1704    switch (channels) {
1705    case 1:
1706        volumeRampMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, volinc, vola, volainc);
1707        break;
1708    case 2:
1709        volumeRampMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, volinc, vola, volainc);
1710        break;
1711    case 3:
1712        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out,
1713                frameCount, in, aux, vol, volinc, vola, volainc);
1714        break;
1715    case 4:
1716        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out,
1717                frameCount, in, aux, vol, volinc, vola, volainc);
1718        break;
1719    case 5:
1720        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out,
1721                frameCount, in, aux, vol, volinc, vola, volainc);
1722        break;
1723    case 6:
1724        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out,
1725                frameCount, in, aux, vol, volinc, vola, volainc);
1726        break;
1727    case 7:
1728        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out,
1729                frameCount, in, aux, vol, volinc, vola, volainc);
1730        break;
1731    case 8:
1732        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out,
1733                frameCount, in, aux, vol, volinc, vola, volainc);
1734        break;
1735    }
1736}
1737
1738/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1739 * TO: int32_t (Q4.27) or float
1740 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1741 * TA: int32_t (Q4.27)
1742 */
1743template <int MIXTYPE,
1744        typename TO, typename TI, typename TV, typename TA, typename TAV>
1745static void volumeMulti(uint32_t channels, TO* out, size_t frameCount,
1746        const TI* in, TA* aux, const TV *vol, TAV vola)
1747{
1748    switch (channels) {
1749    case 1:
1750        volumeMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, vola);
1751        break;
1752    case 2:
1753        volumeMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, vola);
1754        break;
1755    case 3:
1756        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out, frameCount, in, aux, vol, vola);
1757        break;
1758    case 4:
1759        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out, frameCount, in, aux, vol, vola);
1760        break;
1761    case 5:
1762        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out, frameCount, in, aux, vol, vola);
1763        break;
1764    case 6:
1765        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out, frameCount, in, aux, vol, vola);
1766        break;
1767    case 7:
1768        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out, frameCount, in, aux, vol, vola);
1769        break;
1770    case 8:
1771        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out, frameCount, in, aux, vol, vola);
1772        break;
1773    }
1774}
1775
1776/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1777 * USEFLOATVOL (set to true if float volume is used)
1778 * ADJUSTVOL   (set to true if volume ramp parameters needs adjustment afterwards)
1779 * TO: int32_t (Q4.27) or float
1780 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1781 * TA: int32_t (Q4.27)
1782 */
1783template <int MIXTYPE, bool USEFLOATVOL, bool ADJUSTVOL,
1784    typename TO, typename TI, typename TA>
1785void AudioMixer::volumeMix(TO *out, size_t outFrames,
1786        const TI *in, TA *aux, bool ramp, AudioMixer::track_t *t)
1787{
1788    if (USEFLOATVOL) {
1789        if (ramp) {
1790            volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1791                    t->mPrevVolume, t->mVolumeInc, &t->prevAuxLevel, t->auxInc);
1792            if (ADJUSTVOL) {
1793                t->adjustVolumeRamp(aux != NULL, true);
1794            }
1795        } else {
1796            volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1797                    t->mVolume, t->auxLevel);
1798        }
1799    } else {
1800        if (ramp) {
1801            volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1802                    t->prevVolume, t->volumeInc, &t->prevAuxLevel, t->auxInc);
1803            if (ADJUSTVOL) {
1804                t->adjustVolumeRamp(aux != NULL);
1805            }
1806        } else {
1807            volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1808                    t->volume, t->auxLevel);
1809        }
1810    }
1811}
1812
1813/* This process hook is called when there is a single track without
1814 * aux buffer, volume ramp, or resampling.
1815 * TODO: Update the hook selection: this can properly handle aux and ramp.
1816 *
1817 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1818 * TO: int32_t (Q4.27) or float
1819 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1820 * TA: int32_t (Q4.27)
1821 */
1822template <int MIXTYPE, typename TO, typename TI, typename TA>
1823void AudioMixer::process_NoResampleOneTrack(state_t* state)
1824{
1825    ALOGVV("process_NoResampleOneTrack\n");
1826    // CLZ is faster than CTZ on ARM, though really not sure if true after 31 - clz.
1827    const int i = 31 - __builtin_clz(state->enabledTracks);
1828    ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
1829    track_t *t = &state->tracks[i];
1830    const uint32_t channels = t->mMixerChannelCount;
1831    TO* out = reinterpret_cast<TO*>(t->mainBuffer);
1832    TA* aux = reinterpret_cast<TA*>(t->auxBuffer);
1833    const bool ramp = t->needsRamp();
1834
1835    for (size_t numFrames = state->frameCount; numFrames; ) {
1836        AudioBufferProvider::Buffer& b(t->buffer);
1837        // get input buffer
1838        b.frameCount = numFrames;
1839        t->bufferProvider->getNextBuffer(&b);
1840        const TI *in = reinterpret_cast<TI*>(b.raw);
1841
1842        // in == NULL can happen if the track was flushed just after having
1843        // been enabled for mixing.
1844        if (in == NULL || (((uintptr_t)in) & 3)) {
1845            memset(out, 0, numFrames
1846                    * channels * audio_bytes_per_sample(t->mMixerFormat));
1847            ALOGE_IF((((uintptr_t)in) & 3), "process_NoResampleOneTrack: bus error: "
1848                    "buffer %p track %p, channels %d, needs %#x",
1849                    in, t, t->channelCount, t->needs);
1850            return;
1851        }
1852
1853        const size_t outFrames = b.frameCount;
1854        volumeMix<MIXTYPE, is_same<TI, float>::value, false> (
1855                out, outFrames, in, aux, ramp, t);
1856
1857        out += outFrames * channels;
1858        if (aux != NULL) {
1859            aux += channels;
1860        }
1861        numFrames -= b.frameCount;
1862
1863        // release buffer
1864        t->bufferProvider->releaseBuffer(&b);
1865    }
1866    if (ramp) {
1867        t->adjustVolumeRamp(aux != NULL, is_same<TI, float>::value);
1868    }
1869}
1870
1871/* This track hook is called to do resampling then mixing,
1872 * pulling from the track's upstream AudioBufferProvider.
1873 *
1874 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1875 * TO: int32_t (Q4.27) or float
1876 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1877 * TA: int32_t (Q4.27)
1878 */
1879template <int MIXTYPE, typename TO, typename TI, typename TA>
1880void AudioMixer::track__Resample(track_t* t, TO* out, size_t outFrameCount, TO* temp, TA* aux)
1881{
1882    ALOGVV("track__Resample\n");
1883    t->resampler->setSampleRate(t->sampleRate);
1884    const bool ramp = t->needsRamp();
1885    if (ramp || aux != NULL) {
1886        // if ramp:        resample with unity gain to temp buffer and scale/mix in 2nd step.
1887        // if aux != NULL: resample with unity gain to temp buffer then apply send level.
1888
1889        t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1890        memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(TO));
1891        t->resampler->resample((int32_t*)temp, outFrameCount, t->bufferProvider);
1892
1893        volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
1894                out, outFrameCount, temp, aux, ramp, t);
1895
1896    } else { // constant volume gain
1897        t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
1898        t->resampler->resample((int32_t*)out, outFrameCount, t->bufferProvider);
1899    }
1900}
1901
1902/* This track hook is called to mix a track, when no resampling is required.
1903 * The input buffer should be present in t->in.
1904 *
1905 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1906 * TO: int32_t (Q4.27) or float
1907 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1908 * TA: int32_t (Q4.27)
1909 */
1910template <int MIXTYPE, typename TO, typename TI, typename TA>
1911void AudioMixer::track__NoResample(track_t* t, TO* out, size_t frameCount,
1912        TO* temp __unused, TA* aux)
1913{
1914    ALOGVV("track__NoResample\n");
1915    const TI *in = static_cast<const TI *>(t->in);
1916
1917    volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
1918            out, frameCount, in, aux, t->needsRamp(), t);
1919
1920    // MIXTYPE_MONOEXPAND reads a single input channel and expands to NCHAN output channels.
1921    // MIXTYPE_MULTI reads NCHAN input channels and places to NCHAN output channels.
1922    in += (MIXTYPE == MIXTYPE_MONOEXPAND) ? frameCount : frameCount * t->mMixerChannelCount;
1923    t->in = in;
1924}
1925
1926/* The Mixer engine generates either int32_t (Q4_27) or float data.
1927 * We use this function to convert the engine buffers
1928 * to the desired mixer output format, either int16_t (Q.15) or float.
1929 */
1930void AudioMixer::convertMixerFormat(void *out, audio_format_t mixerOutFormat,
1931        void *in, audio_format_t mixerInFormat, size_t sampleCount)
1932{
1933    switch (mixerInFormat) {
1934    case AUDIO_FORMAT_PCM_FLOAT:
1935        switch (mixerOutFormat) {
1936        case AUDIO_FORMAT_PCM_FLOAT:
1937            memcpy(out, in, sampleCount * sizeof(float)); // MEMCPY. TODO optimize out
1938            break;
1939        case AUDIO_FORMAT_PCM_16_BIT:
1940            memcpy_to_i16_from_float((int16_t*)out, (float*)in, sampleCount);
1941            break;
1942        default:
1943            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
1944            break;
1945        }
1946        break;
1947    case AUDIO_FORMAT_PCM_16_BIT:
1948        switch (mixerOutFormat) {
1949        case AUDIO_FORMAT_PCM_FLOAT:
1950            memcpy_to_float_from_q4_27((float*)out, (int32_t*)in, sampleCount);
1951            break;
1952        case AUDIO_FORMAT_PCM_16_BIT:
1953            // two int16_t are produced per iteration
1954            ditherAndClamp((int32_t*)out, (int32_t*)in, sampleCount >> 1);
1955            break;
1956        default:
1957            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
1958            break;
1959        }
1960        break;
1961    default:
1962        LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
1963        break;
1964    }
1965}
1966
1967/* Returns the proper track hook to use for mixing the track into the output buffer.
1968 */
1969AudioMixer::hook_t AudioMixer::getTrackHook(int trackType, uint32_t channelCount,
1970        audio_format_t mixerInFormat, audio_format_t mixerOutFormat __unused)
1971{
1972    if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
1973        switch (trackType) {
1974        case TRACKTYPE_NOP:
1975            return track__nop;
1976        case TRACKTYPE_RESAMPLE:
1977            return track__genericResample;
1978        case TRACKTYPE_NORESAMPLEMONO:
1979            return track__16BitsMono;
1980        case TRACKTYPE_NORESAMPLE:
1981            return track__16BitsStereo;
1982        default:
1983            LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
1984            break;
1985        }
1986    }
1987    LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
1988    switch (trackType) {
1989    case TRACKTYPE_NOP:
1990        return track__nop;
1991    case TRACKTYPE_RESAMPLE:
1992        switch (mixerInFormat) {
1993        case AUDIO_FORMAT_PCM_FLOAT:
1994            return (AudioMixer::hook_t)
1995                    track__Resample<MIXTYPE_MULTI, float /*TO*/, float /*TI*/, int32_t /*TA*/>;
1996        case AUDIO_FORMAT_PCM_16_BIT:
1997            return (AudioMixer::hook_t)\
1998                    track__Resample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
1999        default:
2000            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2001            break;
2002        }
2003        break;
2004    case TRACKTYPE_NORESAMPLEMONO:
2005        switch (mixerInFormat) {
2006        case AUDIO_FORMAT_PCM_FLOAT:
2007            return (AudioMixer::hook_t)
2008                    track__NoResample<MIXTYPE_MONOEXPAND, float, float, int32_t>;
2009        case AUDIO_FORMAT_PCM_16_BIT:
2010            return (AudioMixer::hook_t)
2011                    track__NoResample<MIXTYPE_MONOEXPAND, int32_t, int16_t, int32_t>;
2012        default:
2013            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2014            break;
2015        }
2016        break;
2017    case TRACKTYPE_NORESAMPLE:
2018        switch (mixerInFormat) {
2019        case AUDIO_FORMAT_PCM_FLOAT:
2020            return (AudioMixer::hook_t)
2021                    track__NoResample<MIXTYPE_MULTI, float, float, int32_t>;
2022        case AUDIO_FORMAT_PCM_16_BIT:
2023            return (AudioMixer::hook_t)
2024                    track__NoResample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
2025        default:
2026            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2027            break;
2028        }
2029        break;
2030    default:
2031        LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
2032        break;
2033    }
2034    return NULL;
2035}
2036
2037/* Returns the proper process hook for mixing tracks. Currently works only for
2038 * PROCESSTYPE_NORESAMPLEONETRACK, a mix involving one track, no resampling.
2039 *
2040 * TODO: Due to the special mixing considerations of duplicating to
2041 * a stereo output track, the input track cannot be MONO.  This should be
2042 * prevented by the caller.
2043 */
2044AudioMixer::process_hook_t AudioMixer::getProcessHook(int processType, uint32_t channelCount,
2045        audio_format_t mixerInFormat, audio_format_t mixerOutFormat)
2046{
2047    if (processType != PROCESSTYPE_NORESAMPLEONETRACK) { // Only NORESAMPLEONETRACK
2048        LOG_ALWAYS_FATAL("bad processType: %d", processType);
2049        return NULL;
2050    }
2051    if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
2052        return process__OneTrack16BitsStereoNoResampling;
2053    }
2054    LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
2055    switch (mixerInFormat) {
2056    case AUDIO_FORMAT_PCM_FLOAT:
2057        switch (mixerOutFormat) {
2058        case AUDIO_FORMAT_PCM_FLOAT:
2059            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2060                    float /*TO*/, float /*TI*/, int32_t /*TA*/>;
2061        case AUDIO_FORMAT_PCM_16_BIT:
2062            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2063                    int16_t, float, int32_t>;
2064        default:
2065            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
2066            break;
2067        }
2068        break;
2069    case AUDIO_FORMAT_PCM_16_BIT:
2070        switch (mixerOutFormat) {
2071        case AUDIO_FORMAT_PCM_FLOAT:
2072            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2073                    float, int16_t, int32_t>;
2074        case AUDIO_FORMAT_PCM_16_BIT:
2075            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2076                    int16_t, int16_t, int32_t>;
2077        default:
2078            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
2079            break;
2080        }
2081        break;
2082    default:
2083        LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2084        break;
2085    }
2086    return NULL;
2087}
2088
2089// ----------------------------------------------------------------------------
2090} // namespace android
2091