Searched defs:absolute (Results 1 - 25 of 43) sorted by relevance

12

/external/conscrypt/openjdk/src/main/java/org/conscrypt/
H A DNativeLibraryUtil.java48 * @param absolute - Whether the native library will be loaded by path or by name
50 public static void loadLibrary(String libName, boolean absolute) { argument
51 if (absolute) {
H A DNativeLibraryLoader.java94 // Good to have an absolute path, but it's OK.
119 final boolean absolute; field in class:NativeLibraryLoader.LoadResult
125 String name, boolean absolute, boolean usingHelperClassloader) {
126 return new LoadResult(name, absolute, true, usingHelperClassloader, null);
130 String name, boolean absolute, boolean usingHelperClassloader, Throwable error) {
131 return new LoadResult(name, absolute, false, usingHelperClassloader, error);
134 private LoadResult(String name, boolean absolute, boolean loaded, argument
137 this.absolute = absolute;
161 // loading the non-absolute librar
124 newSuccessResult( String name, boolean absolute, boolean usingHelperClassloader) argument
129 newFailureResult( String name, boolean absolute, boolean usingHelperClassloader, Throwable error) argument
257 loadLibrary(final ClassLoader loader, final String name, final boolean absolute, List<LoadResult> results) argument
287 loadLibraryFromHelperClassloader( final Class<?> helper, final String name, final boolean absolute) argument
316 loadLibraryFromCurrentClassloader(String name, boolean absolute) argument
[all...]
/external/webrtc/webrtc/common_audio/signal_processing/
H A Dmin_max_operations.c36 // Maximum absolute value of word16 vector. C version for generic platforms.
39 int absolute = 0, maximum = 0; local
44 absolute = abs((int)vector[i]);
46 if (absolute > maximum) {
47 maximum = absolute;
59 // Maximum absolute value of word32 vector. C version for generic platforms.
64 uint32_t absolute = 0, maximum = 0; local
70 absolute = abs((int)vector[i]);
71 if (absolute > maximum) {
72 maximum = absolute;
142 int absolute = 0, maximum = 0; local
[all...]
H A Dmin_max_operations_mips.c23 // Maximum absolute value of word16 vector.
225 // Maximum absolute value of word32 vector. Version for MIPS platform.
230 uint32_t absolute = 0, maximum = 0; local
240 "lw %[absolute], 0(%[vector]) \n\t"
241 "absq_s.w %[absolute], %[absolute] \n\t"
243 "slt %[tmp1], %[maximum], %[absolute] \n\t"
244 "movn %[maximum], %[absolute], %[tmp1] \n\t"
252 : [tmp1] "=&r" (tmp1), [maximum] "+r" (maximum), [absolute] "+r" (absolute)
[all...]
H A Dmin_max_operations_neon.c17 // Maximum absolute value of word16 vector. C version for generic platforms.
19 int absolute = 0, maximum = 0; local
53 absolute = abs((int)(*p_start));
55 if (absolute > maximum) {
56 maximum = absolute;
69 // Maximum absolute value of word32 vector. NEON intrinsics version for
75 uint32_t absolute = 0, maximum = 0; local
111 absolute = abs((int)(*p_start));
112 if (absolute > maximum) {
113 maximum = absolute;
[all...]
/external/mesa3d/src/gallium/drivers/ilo/shader/
H A Dtoy_compiler_asm.c65 bool absolute; member in struct:codegen::codegen_src
446 assert(!cg->src[0].absolute && !cg->src[0].negate);
466 assert(!cg->src[1].absolute && !cg->src[1].negate);
490 src->absolute << 13 |
512 src->absolute << 13;
552 src->absolute << 13 |
568 src->absolute << 13 |
845 cg->src[2].absolute << 9 |
847 cg->src[1].absolute << 7 |
849 cg->src[0].absolute <<
[all...]
H A Dtoy_compiler_reg.h146 unsigned absolute:1; /* true or false */ member in struct:toy_src
592 * Set absolute and unset negate of the source operand.
597 src.absolute = true;
630 bool absolute, bool negate,
644 src.absolute = absolute;
669 .absolute = false,
714 * rectangle is TOY_RECT_LINEAR, and no swizzles/absolute/negate.
626 tsrc_full(enum toy_file file, enum toy_type type, enum toy_rect rect, bool indirect, unsigned indirect_subreg, enum toy_swizzle swizzle_x, enum toy_swizzle swizzle_y, enum toy_swizzle swizzle_z, enum toy_swizzle swizzle_w, bool absolute, bool negate, uint32_t val32) argument
H A Dtoy_compiler_disasm.c69 unsigned absolute:1; member in struct:disasm_src_operand
518 src->absolute = (bool) (dw & GEN6_INST_SRC_ABSOLUTE);
569 inst->src0.absolute = (bool) (dw1 & GEN6_3SRC_SRC0_ABSOLUTE);
572 inst->src1.absolute = (bool) (dw1 & GEN6_3SRC_SRC1_ABSOLUTE);
575 inst->u.src2.absolute = (bool) (dw1 & GEN6_3SRC_SRC2_ABSOLUTE);
598 inst->src0.absolute = (bool) (dw1 & GEN8_3SRC_SRC0_ABSOLUTE);
601 inst->src1.absolute = (bool) (dw1 & GEN8_3SRC_SRC1_ABSOLUTE);
603 inst->u.src2.absolute = (bool) (dw1 & GEN8_3SRC_SRC2_ABSOLUTE);
1104 disasm_inst_absolute(const struct disasm_inst *inst, bool absolute) argument
1106 return (absolute)
[all...]
/external/libxkbcommon/xkbcommon/src/xkbcomp/
H A Daction.c363 /* +n, -n are relative, n is absolute. */
410 const bool absolute = (value->expr.op != EXPR_NEGATE && local
429 if (absolute)
434 if (absolute)
/external/mesa3d/src/amd/vulkan/winsys/amdgpu/
H A Dradv_amdgpu_cs.c106 bool absolute,
110 unsigned flags = absolute ? AMDGPU_QUERY_FENCE_TIMEOUT_IS_ABSOLUTE : 0;
104 radv_amdgpu_fence_wait(struct radeon_winsys *_ws, struct radeon_winsys_fence *_fence, bool absolute, uint64_t timeout) argument
/external/mesa3d/src/gallium/winsys/amdgpu/drm/
H A Damdgpu_cs.c81 bool absolute)
92 if (absolute)
112 if (!absolute && !timeout)
80 amdgpu_fence_wait(struct pipe_fence_handle *fence, uint64_t timeout, bool absolute) argument
/external/libcxx/src/experimental/filesystem/
H A Doperations.cpp192 path p = absolute(orig_p, base);
793 return absolute(p, current_path());
820 // An absolute path is composed according to the table in [fs.op.absolute].
821 path absolute(const path& p, const path& base) { function
828 auto abs_base = base.is_absolute() ? base : absolute(base);
845 // else p is absolute, return outside of block
/external/mesa3d/src/gallium/auxiliary/tgsi/
H A Dtgsi_build.c890 unsigned absolute,
913 src_register.Absolute = absolute;
883 tgsi_build_src_register( unsigned file, unsigned swizzle_x, unsigned swizzle_y, unsigned swizzle_z, unsigned swizzle_w, unsigned negate, unsigned absolute, unsigned indirect, unsigned dimension, int index, struct tgsi_instruction *instruction, struct tgsi_header *header ) argument
/external/mesa3d/src/gallium/drivers/r300/compiler/
H A Dradeon_program_alu.c148 static struct rc_src_register absolute(struct rc_src_register reg) function
334 emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dst, absolute(inst->U.I.SrcReg[0]));
335 emit2(c, inst->Prev, RC_OPCODE_ADD, 0, dst, absolute(inst->U.I.SrcReg[0]),
495 inst->U.I.SrcReg[0] = absolute(inst->U.I.SrcReg[0]);
505 negate(absolute(srcreg(RC_FILE_TEMPORARY, dst.Index))), builtin_zero, builtin_one);
572 negate(absolute(srcreg(RC_FILE_TEMPORARY, dst.Index))), builtin_one, builtin_zero);
655 * absolute value.
698 /* Note: r500 can take absolute values, but r300 cannot. */
985 absolute(swizzle_xxxx(src)),
989 absolute(swizzle_xxx
[all...]
/external/apache-harmony/sql/src/test/java/org/apache/harmony/sql/tests/javax/sql/
H A DImpl_RowSet.java251 public boolean absolute(int row) throws SQLException { method in class:Impl_RowSet
/external/mesa3d/src/gallium/drivers/etnaviv/
H A Detnaviv_compiler.c682 * absolute modifiers. */
798 absolute(struct etna_inst_src src) function
1570 ins[3].src[1] = absolute(ins[3].src[0]);
1584 ins[5].src[1] = absolute(ins[5].src[0]);
1593 p->src[1] = absolute(p->src[0]);
/external/mesa3d/src/gallium/drivers/svga/
H A Dsvga_tgsi_insn.c414 * Apply the absolute value modifier to the given src_register, returning
418 absolute(struct src_register src) function
2657 abs_src0 = absolute( scalar( abs_src0, TGSI_SWIZZLE_X ) );
2748 absolute(src0), half))
2764 if (!submit_op1(emit, inst_token(SVGA3DOP_FRC), t1, absolute(src0)))
2768 if (!submit_op2(emit, inst_token(SVGA3DOP_ADD), t1, absolute(src0),
H A Dsvga_tgsi_vgpu10.c979 const unsigned absolute = reg->Register.Absolute; local
1061 if (absolute || negate) {
1064 if (absolute && !negate)
1066 if (!absolute && negate)
1068 if (absolute && negate)
1457 * Create absolute value of a tgsi_full_src_register.
1462 struct tgsi_full_src_register absolute = *reg; local
1463 absolute.Register.Absolute = 1;
1464 return absolute;
/external/python/cpython3/Lib/
H A Dpathlib.py133 # - extended paths are always absolute; "relative" extended paths will
203 # Means fallback on absolute
919 """True if the path is absolute (has both a root and, if applicable,
1096 def absolute(self): member in class:Path
1097 """Return an absolute version of this path. This function works
1116 Make the path absolute, resolving all symlinks on the way and also
1127 s = str(self.absolute())
/external/toybox/toys/pending/
H A Dfdisk.c741 int absolute = 0; local
752 absolute = ONE_K;
755 absolute = 1000;
759 absolute = 1000000;
763 absolute = 1000000000;
768 if (absolute) {
769 unsigned long long bytes = (unsigned long long) val * absolute;
/external/python/cpython2/Python/
H A Dcompile.c1019 compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute) argument
1032 if (absolute)
/external/swiftshader/src/Shader/
H A DShaderCore.cpp143 Float4 logarithm2(RValue<Float4> x, bool absolute, bool pp) argument
174 Float4 logarithm(RValue<Float4> x, bool absolute, bool pp) argument
177 return Float4(6.93147181e-1f) * logarithm2(x, absolute, pp); // ln(2)
214 Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) argument
218 if(absolute)
/external/google-breakpad/src/third_party/libdisasm/
H A Dlibdis.h267 x86_absolute_t absolute; member in union:__anon7650::__anon7651
667 * a segment:offset absolute address */
/external/python/cpython2/Lib/pydoc_data/
H A Dtopics.py10 'binary': u'\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types. Apart from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe "*" (multiplication) operator yields the product of its arguments.\nThe arguments must either both be numbers, or one argument must be an\ninteger (plain or long) and the other must be a sequence. In the\nformer case, the numbers are converted to a common type and then\nmultiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe "/" (division) and "//" (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the "ZeroDivisionError" exception.\n\nThe "%" (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n"ZeroDivisionError" exception. The arguments may be floating point\nnumbers, e.g., "3.14%0.7" equals "0.34" (since "3.14" equals "4*0.7 +\n0.34".) The modulo operator always yields a result with the same sign\nas its second operand (or zero); the absolute value of the result is\nstrictly smaller than the absolute value of the second operand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: "x == (x/y)*y + (x%y)". Integer division and\nmodulo are also connected with the built-in function "divmod()":\n"divmod(x, y) == (x/y, x%y)". These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere "x/y" is replaced by "floor(x/y)" or "floor(x/y) - 1" [3].\n\nIn addition to performing the modulo operation on numbers, the "%"\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\nString Formatting Operations.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the "divmod()" function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe "abs()" function if appropriate.\n\nThe "+" (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe "-" (subtraction) operator yields the difference of its arguments.\nThe numeric arguments are first converted to a common type.\n',
14 'bltin-file-objects': u'\nFile Objects\n************\n\nFile objects are implemented using C\'s "stdio" package and can be\ncreated with the built-in "open()" function. File objects are also\nreturned by some other built-in functions and methods, such as\n"os.popen()" and "os.fdopen()" and the "makefile()" method of socket\nobjects. Temporary files can be created using the "tempfile" module,\nand high-level file operations such as copying, moving, and deleting\nfiles and directories can be achieved with the "shutil" module.\n\nWhen a file operation fails for an I/O-related reason, the exception\n"IOError" is raised. This includes situations where the operation is\nnot defined for some reason, like "seek()" on a tty device or writing\na file opened for reading.\n\nFiles have the following methods:\n\nfile.close()\n\n Close the file. A closed file cannot be read or written any more.\n Any operation which requires that the file be open will raise a\n "ValueError" after the file has been closed. Calling "close()"\n more than once is allowed.\n\n As of Python 2.5, you can avoid having to call this method\n explicitly if you use the "with" statement. For example, the\n following code will automatically close *f* when the "with" block\n is exited:\n\n from __future__ import with_statement # This isn\'t required in Python 2.6\n\n with open("hello.txt") as f:\n for line in f:\n print line,\n\n In older versions of Python, you would have needed to do this to\n get the same effect:\n\n f = open("hello.txt")\n try:\n for line in f:\n print line,\n finally:\n f.close()\n\n Note: Not all "file-like" types in Python support use as a\n context manager for the "with" statement. If your code is\n intended to work with any file-like object, you can use the\n function "contextlib.closing()" instead of using the object\n directly.\n\nfile.flush()\n\n Flush the internal buffer, like "stdio"\'s "fflush()". This may be\n a no-op on some file-like objects.\n\n Note: "flush()" does not necessarily write the file\'s data to\n disk. Use "flush()" followed by "os.fsync()" to ensure this\n behavior.\n\nfile.fileno()\n\n Return the integer "file descriptor" that is used by the underlying\n implementation to request I/O operations from the operating system.\n This can be useful for other, lower level interfaces that use file\n descriptors, such as the "fcntl" module or "os.read()" and friends.\n\n Note: File-like objects which do not have a real file descriptor\n should *not* provide this method!\n\nfile.isatty()\n\n Return "True" if the file is connected to a tty(-like) device, else\n "False".\n\n Note: If a file-like object is not associated with a real file,\n this method should *not* be implemented.\n\nfile.next()\n\n A file object is its own iterator, for example "iter(f)" returns\n *f* (unless *f* is closed). When a file is used as an iterator,\n typically in a "for" loop (for example, "for line in f: print\n line.strip()"), the "next()" method is called repeatedly. This\n method returns the next input line, or raises "StopIteration" when\n EOF is hit when the file is open for reading (behavior is undefined\n when the file is open for writing). In order to make a "for" loop\n the most efficient way of looping over the lines of a file (a very\n common operation), the "next()" method uses a hidden read-ahead\n buffer. As a consequence of using a read-ahead buffer, combining\n "next()" with other file methods (like "readline()") does not work\n right. However, using "seek()" to reposition the file to an\n absolute position will flush the read-ahead buffer.\n\n New in version 2.3.\n\nfile.read([size])\n\n Read at most *size* bytes from the file (less if the read hits EOF\n before obtaining *size* bytes). If the *size* argument is negative\n or omitted, read all data until EOF is reached. The bytes are\n returned as a string object. An empty string is returned when EOF\n is encountered immediately. (For certain files, like ttys, it\n makes sense to continue reading after an EOF is hit.) Note that\n this method may call the underlying C function "fread()" more than\n once in an effort to acquire as close to *size* bytes as possible.\n Also note that when in non-blocking mode, less data than was\n requested may be returned, even if no *size* parameter was given.\n\n Note: This function is simply a wrapper for the underlying\n "fread()" C function, and will behave the same in corner cases,\n such as whether the EOF value is cached.\n\nfile.readline([size])\n\n Read one entire line from the file. A trailing newline character\n is kept in the string (but may be absent when a file ends with an\n incomplete line). [6] If the *size* argument is present and non-\n negative, it is a maximum byte count (including the trailing\n newline) and an incomplete line may be returned. When *size* is not\n 0, an empty string is returned *only* when EOF is encountered\n immediately.\n\n Note: Unlike "stdio"\'s "fgets()", the returned string contains\n null characters ("\'\\0\'") if they occurred in the input.\n\nfile.readlines([sizehint])\n\n Read until EOF using "readline()" and return a list containing the\n lines thus read. If the optional *sizehint* argument is present,\n instead of reading up to EOF, whole lines totalling approximately\n *sizehint* bytes (possibly after rounding up to an internal buffer\n size) are read. Objects implementing a file-like interface may\n choose to ignore *sizehint* if it cannot be implemented, or cannot\n be implemented efficiently.\n\nfile.xreadlines()\n\n This method returns the same thing as "iter(f)".\n\n New in version 2.1.\n\n Deprecated since version 2.3: Use "for line in file" instead.\n\nfile.seek(offset[, whence])\n\n Set the file\'s current position, like "stdio"\'s "fseek()". The\n *whence* argument is optional and defaults to "os.SEEK_SET" or "0"\n (absolute file positioning); other values are "os.SEEK_CUR" or "1"\n (seek relative to the current position) and "os.SEEK_END" or "2"\n (seek relative to the file\'s end). There is no return value.\n\n For example, "f.seek(2, os.SEEK_CUR)" advances the position by two\n and "f.seek(-3, os.SEEK_END)" sets the position to the third to\n last.\n\n Note that if the file is opened for appending (mode "\'a\'" or\n "\'a+\'"), any "seek()" operations will be undone at the next write.\n If the file is only opened for writing in append mode (mode "\'a\'"),\n this method is essentially a no-op, but it remains useful for files\n opened in append mode with reading enabled (mode "\'a+\'"). If the\n file is opened in text mode (without "\'b\'"), only offsets returned\n by "tell()" are legal. Use of other offsets causes undefined\n behavior.\n\n Note that not all file objects are seekable.\n\n Changed in version 2.6: Passing float values as offset has been\n deprecated.\n\nfile.tell()\n\n Return the file\'s current position, like "stdio"\'s "ftell()".\n\n Note: On Windows, "tell()" can return illegal values (after an\n "fgets()") when reading files with Unix-style line-endings. Use\n binary mode ("\'rb\'") to circumvent this problem.\n\nfile.truncate([size])\n\n Truncate the file\'s size. If the optional *size* argument is\n present, the file is truncated to (at most) that size. The size\n defaults to the current position. The current file position is not\n changed. Note that if a specified size exceeds the file\'s current\n size, the result is platform-dependent: possibilities include that\n the file may remain unchanged, increase to the specified size as if\n zero-filled, or increase to the specified size with undefined new\n content. Availability: Windows, many Unix variants.\n\nfile.write(str)\n\n Write a string to the file. There is no return value. Due to\n buffering, the string may not actually show up in the file until\n the "flush()" or "close()" method is called.\n\nfile.writelines(sequence)\n\n Write a sequence of strings to the file. The sequence can be any\n iterable object producing strings, typically a list of strings.\n There is no return value. (The name is intended to match\n "readlines()"; "writelines()" does not add line separators.)\n\nFiles support the iterator protocol. Each iteration returns the same\nresult as "readline()", and iteration ends when the "readline()"\nmethod returns an empty string.\n\nFile objects also offer a number of other interesting attributes.\nThese are not required for file-like objects, but should be\nimplemented if they make sense for the particular object.\n\nfile.closed\n\n bool indicating the current state of the file object. This is a\n read-only attribute; the "close()" method changes the value. It may\n not be available on all file-like objects.\n\nfile.encoding\n\n The encoding that this file uses. When Unicode strings are written\n to a file, they will be converted to byte strings using this\n encoding. In addition, when the file is connected to a terminal,\n the attribute gives the encoding that the terminal is likely to use\n (that information might be incorrect if the user has misconfigured\n the terminal). The attribute is read-only and may not be present\n on all file-like objects. It may also be "None", in which case the\n file uses the system default encoding for converting Unicode\n strings.\n\n New in version 2.3.\n\nfile.errors\n\n The Unicode error handler used along with the encoding.\n\n New in version 2.6.\n\nfile.mode\n\n The I/O mode for the file. If the file was created using the\n "open()" built-in function, this will be the value of the *mode*\n parameter. This is a read-only attribute and may not be present on\n all file-like objects.\n\nfile.name\n\n If the file object was created using "open()", the name of the\n file. Otherwise, some string that indicates the source of the file\n object, of the form "<...>". This is a read-only attribute and may\n not be present on all file-like objects.\n\nfile.newlines\n\n If Python was built with *universal newlines* enabled (the default)\n this read-only attribute exists, and for files opened in universal\n newline read mode it keeps track of the types of newlines\n encountered while reading the file. The values it can take are\n "\'\\r\'", "\'\\n\'", "\'\\r\\n\'", "None" (unknown, no newlines read yet) or\n a tuple containing all the newline types seen, to indicate that\n multiple newline conventions were encountered. For files not opened\n in universal newlines read mode the value of this attribute will be\n "None".\n\nfile.softspace\n\n Boolean that indicates whether a space character needs to be\n printed before another value when using the "print" statement.\n Classes that are trying to simulate a file object should also have\n a writable "softspace" attribute, which should be initialized to\n zero. This will be automatic for most classes implemented in\n Python (care may be needed for objects that override attribute\n access); types implemented in C will have to provide a writable\n "softspace" attribute.\n\n Note: This attribute is not used to control the "print"\n statement, but to allow the implementation of "print" to keep\n track of its internal state.\n',
27 'customization': u'\nBasic customization\n*******************\n\nobject.__new__(cls[, ...])\n\n Called to create a new instance of class *cls*. "__new__()" is a\n static method (special-cased so you need not declare it as such)\n that takes the class of which an instance was requested as its\n first argument. The remaining arguments are those passed to the\n object constructor expression (the call to the class). The return\n value of "__new__()" should be the new object instance (usually an\n instance of *cls*).\n\n Typical implementations create a new instance of the class by\n invoking the superclass\'s "__new__()" method using\n "super(currentclass, cls).__new__(cls[, ...])" with appropriate\n arguments and then modifying the newly-created instance as\n necessary before returning it.\n\n If "__new__()" returns an instance of *cls*, then the new\n instance\'s "__init__()" method will be invoked like\n "__init__(self[, ...])", where *self* is the new instance and the\n remaining arguments are the same as were passed to "__new__()".\n\n If "__new__()" does not return an instance of *cls*, then the new\n instance\'s "__init__()" method will not be invoked.\n\n "__new__()" is intended mainly to allow subclasses of immutable\n types (like int, str, or tuple) to customize instance creation. It\n is also commonly overridden in custom metaclasses in order to\n customize class creation.\n\nobject.__init__(self[, ...])\n\n Called after the instance has been created (by "__new__()"), but\n before it is returned to the caller. The arguments are those\n passed to the class constructor expression. If a base class has an\n "__init__()" method, the derived class\'s "__init__()" method, if\n any, must explicitly call it to ensure proper initialization of the\n base class part of the instance; for example:\n "BaseClass.__init__(self, [args...])".\n\n Because "__new__()" and "__init__()" work together in constructing\n objects ("__new__()" to create it, and "__init__()" to customise\n it), no non-"None" value may be returned by "__init__()"; doing so\n will cause a "TypeError" to be raised at runtime.\n\nobject.__del__(self)\n\n Called when the instance is about to be destroyed. This is also\n called a destructor. If a base class has a "__del__()" method, the\n derived class\'s "__del__()" method, if any, must explicitly call it\n to ensure proper deletion of the base class part of the instance.\n Note that it is possible (though not recommended!) for the\n "__del__()" method to postpone destruction of the instance by\n creating a new reference to it. It may then be called at a later\n time when this new reference is deleted. It is not guaranteed that\n "__del__()" methods are called for objects that still exist when\n the interpreter exits.\n\n Note: "del x" doesn\'t directly call "x.__del__()" --- the former\n decrements the reference count for "x" by one, and the latter is\n only called when "x"\'s reference count reaches zero. Some common\n situations that may prevent the reference count of an object from\n going to zero include: circular references between objects (e.g.,\n a doubly-linked list or a tree data structure with parent and\n child pointers); a reference to the object on the stack frame of\n a function that caught an exception (the traceback stored in\n "sys.exc_traceback" keeps the stack frame alive); or a reference\n to the object on the stack frame that raised an unhandled\n exception in interactive mode (the traceback stored in\n "sys.last_traceback" keeps the stack frame alive). The first\n situation can only be remedied by explicitly breaking the cycles;\n the latter two situations can be resolved by storing "None" in\n "sys.exc_traceback" or "sys.last_traceback". Circular references\n which are garbage are detected when the option cycle detector is\n enabled (it\'s on by default), but can only be cleaned up if there\n are no Python-level "__del__()" methods involved. Refer to the\n documentation for the "gc" module for more information about how\n "__del__()" methods are handled by the cycle detector,\n particularly the description of the "garbage" value.\n\n Warning: Due to the precarious circumstances under which\n "__del__()" methods are invoked, exceptions that occur during\n their execution are ignored, and a warning is printed to\n "sys.stderr" instead. Also, when "__del__()" is invoked in\n response to a module being deleted (e.g., when execution of the\n program is done), other globals referenced by the "__del__()"\n method may already have been deleted or in the process of being\n torn down (e.g. the import machinery shutting down). For this\n reason, "__del__()" methods should do the absolute minimum needed\n to maintain external invariants. Starting with version 1.5,\n Python guarantees that globals whose name begins with a single\n underscore are deleted from their module before other globals are\n deleted; if no other references to such globals exist, this may\n help in assuring that imported modules are still available at the\n time when the "__del__()" method is called.\n\n See also the "-R" command-line option.\n\nobject.__repr__(self)\n\n Called by the "repr()" built-in function and by string conversions\n (reverse quotes) to compute the "official" string representation of\n an object. If at all possible, this should look like a valid\n Python expression that could be used to recreate an object with the\n same value (given an appropriate environment). If this is not\n possible, a string of the form "<...some useful description...>"\n should be returned. The return value must be a string object. If a\n class defines "__repr__()" but not "__str__()", then "__repr__()"\n is also used when an "informal" string representation of instances\n of that class is required.\n\n This is typically used for debugging, so it is important that the\n representation is information-rich and unambiguous.\n\nobject.__str__(self)\n\n Called by the "str()" built-in function and by the "print"\n statement to compute the "informal" string representation of an\n object. This differs from "__repr__()" in that it does not have to\n be a valid Python expression: a more convenient or concise\n representation may be used instead. The return value must be a\n string object.\n\nobject.__lt__(self, other)\nobject.__le__(self, other)\nobject.__eq__(self, other)\nobject.__ne__(self, other)\nobject.__gt__(self, other)\nobject.__ge__(self, other)\n\n New in version 2.1.\n\n These are the so-called "rich comparison" methods, and are called\n for comparison operators in preference to "__cmp__()" below. The\n correspondence between operator symbols and method names is as\n follows: "x<y" calls "x.__lt__(y)", "x<=y" calls "x.__le__(y)",\n "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call "x.__ne__(y)",\n "x>y" calls "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n\n A rich comparison method may return the singleton "NotImplemented"\n if it does not implement the operation for a given pair of\n arguments. By convention, "False" and "True" are returned for a\n successful comparison. However, these methods can return any value,\n so if the comparison operator is used in a Boolean context (e.g.,\n in the condition of an "if" statement), Python will call "bool()"\n on the value to determine if the result is true or false.\n\n There are no implied relationships among the comparison operators.\n The truth of "x==y" does not imply that "x!=y" is false.\n Accordingly, when defining "__eq__()", one should also define\n "__ne__()" so that the operators will behave as expected. See the\n paragraph on "__hash__()" for some important notes on creating\n *hashable* objects which support custom comparison operations and\n are usable as dictionary keys.\n\n There are no swapped-argument versions of these methods (to be used\n when the left argument does not support the operation but the right\n argument does); rather, "__lt__()" and "__gt__()" are each other\'s\n reflection, "__le__()" and "__ge__()" are each other\'s reflection,\n and "__eq__()" and "__ne__()" are their own reflection.\n\n Arguments to rich comparison methods are never coerced.\n\n To automatically generate ordering operations from a single root\n operation, see "functools.total_ordering()".\n\nobject.__cmp__(self, other)\n\n Called by comparison operations if rich comparison (see above) is\n not defined. Should return a negative integer if "self < other",\n zero if "self == other", a positive integer if "self > other". If\n no "__cmp__()", "__eq__()" or "__ne__()" operation is defined,\n class instances are compared by object identity ("address"). See\n also the description of "__hash__()" for some important notes on\n creating *hashable* objects which support custom comparison\n operations and are usable as dictionary keys. (Note: the\n restriction that exceptions are not propagated by "__cmp__()" has\n been removed since Python 1.5.)\n\nobject.__rcmp__(self, other)\n\n Changed in version 2.1: No longer supported.\n\nobject.__hash__(self)\n\n Called by built-in function "hash()" and for operations on members\n of hashed collections including "set", "frozenset", and "dict".\n "__hash__()" should return an integer. The only required property\n is that objects which compare equal have the same hash value; it is\n advised to somehow mix together (e.g. using exclusive or) the hash\n values for the components of the object that also play a part in\n comparison of objects.\n\n If a class does not define a "__cmp__()" or "__eq__()" method it\n should not define a "__hash__()" operation either; if it defines\n "__cmp__()" or "__eq__()" but not "__hash__()", its instances will\n not be usable in hashed collections. If a class defines mutable\n objects and implements a "__cmp__()" or "__eq__()" method, it\n should not implement "__hash__()", since hashable collection\n implementations require that an object\'s hash value is immutable\n (if the object\'s hash value changes, it will be in the wrong hash\n bucket).\n\n User-defined classes have "__cmp__()" and "__hash__()" methods by\n default; with them, all objects compare unequal (except with\n themselves) and "x.__hash__()" returns a result derived from\n "id(x)".\n\n Classes which inherit a "__hash__()" method from a parent class but\n change the meaning of "__cmp__()" or "__eq__()" such that the hash\n value returned is no longer appropriate (e.g. by switching to a\n value-based concept of equality instead of the default identity\n based equality) can explicitly flag themselves as being unhashable\n by setting "__hash__ = None" in the class definition. Doing so\n means that not only will instances of the class raise an\n appropriate "TypeError" when a program attempts to retrieve their\n hash value, but they will also be correctly identified as\n unhashable when checking "isinstance(obj, collections.Hashable)"\n (unlike classes which define their own "__hash__()" to explicitly\n raise "TypeError").\n\n Changed in version 2.5: "__hash__()" may now also return a long\n integer object; the 32-bit integer is then derived from the hash of\n that object.\n\n Changed in version 2.6: "__hash__" may now be set to "None" to\n explicitly flag instances of a class as unhashable.\n\nobject.__nonzero__(self)\n\n Called to implement truth value testing and the built-in operation\n "bool()"; should return "False" or "True", or their integer\n equivalents "0" or "1". When this method is not defined,\n "__len__()" is called, if it is defined, and the object is\n considered true if its result is nonzero. If a class defines\n neither "__len__()" nor "__nonzero__()", all its instances are\n considered true.\n\nobject.__unicode__(self)\n\n Called to implement "unicode()" built-in; should return a Unicode\n object. When this method is not defined, string conversion is\n attempted, and the result of string conversion is converted to\n Unicode using the system default encoding.\n', namespace
65 'specialnames': u'\nSpecial method names\n********************\n\nA class can implement certain operations that are invoked by special\nsyntax (such as arithmetic operations or subscripting and slicing) by\ndefining methods with special names. This is Python\'s approach to\n*operator overloading*, allowing classes to define their own behavior\nwith respect to language operators. For instance, if a class defines\na method named "__getitem__()", and "x" is an instance of this class,\nthen "x[i]" is roughly equivalent to "x.__getitem__(i)" for old-style\nclasses and "type(x).__getitem__(x, i)" for new-style classes. Except\nwhere mentioned, attempts to execute an operation raise an exception\nwhen no appropriate method is defined (typically "AttributeError" or\n"TypeError").\n\nWhen implementing a class that emulates any built-in type, it is\nimportant that the emulation only be implemented to the degree that it\nmakes sense for the object being modelled. For example, some\nsequences may work well with retrieval of individual elements, but\nextracting a slice may not make sense. (One example of this is the\n"NodeList" interface in the W3C\'s Document Object Model.)\n\n\nBasic customization\n===================\n\nobject.__new__(cls[, ...])\n\n Called to create a new instance of class *cls*. "__new__()" is a\n static method (special-cased so you need not declare it as such)\n that takes the class of which an instance was requested as its\n first argument. The remaining arguments are those passed to the\n object constructor expression (the call to the class). The return\n value of "__new__()" should be the new object instance (usually an\n instance of *cls*).\n\n Typical implementations create a new instance of the class by\n invoking the superclass\'s "__new__()" method using\n "super(currentclass, cls).__new__(cls[, ...])" with appropriate\n arguments and then modifying the newly-created instance as\n necessary before returning it.\n\n If "__new__()" returns an instance of *cls*, then the new\n instance\'s "__init__()" method will be invoked like\n "__init__(self[, ...])", where *self* is the new instance and the\n remaining arguments are the same as were passed to "__new__()".\n\n If "__new__()" does not return an instance of *cls*, then the new\n instance\'s "__init__()" method will not be invoked.\n\n "__new__()" is intended mainly to allow subclasses of immutable\n types (like int, str, or tuple) to customize instance creation. It\n is also commonly overridden in custom metaclasses in order to\n customize class creation.\n\nobject.__init__(self[, ...])\n\n Called after the instance has been created (by "__new__()"), but\n before it is returned to the caller. The arguments are those\n passed to the class constructor expression. If a base class has an\n "__init__()" method, the derived class\'s "__init__()" method, if\n any, must explicitly call it to ensure proper initialization of the\n base class part of the instance; for example:\n "BaseClass.__init__(self, [args...])".\n\n Because "__new__()" and "__init__()" work together in constructing\n objects ("__new__()" to create it, and "__init__()" to customise\n it), no non-"None" value may be returned by "__init__()"; doing so\n will cause a "TypeError" to be raised at runtime.\n\nobject.__del__(self)\n\n Called when the instance is about to be destroyed. This is also\n called a destructor. If a base class has a "__del__()" method, the\n derived class\'s "__del__()" method, if any, must explicitly call it\n to ensure proper deletion of the base class part of the instance.\n Note that it is possible (though not recommended!) for the\n "__del__()" method to postpone destruction of the instance by\n creating a new reference to it. It may then be called at a later\n time when this new reference is deleted. It is not guaranteed that\n "__del__()" methods are called for objects that still exist when\n the interpreter exits.\n\n Note: "del x" doesn\'t directly call "x.__del__()" --- the former\n decrements the reference count for "x" by one, and the latter is\n only called when "x"\'s reference count reaches zero. Some common\n situations that may prevent the reference count of an object from\n going to zero include: circular references between objects (e.g.,\n a doubly-linked list or a tree data structure with parent and\n child pointers); a reference to the object on the stack frame of\n a function that caught an exception (the traceback stored in\n "sys.exc_traceback" keeps the stack frame alive); or a reference\n to the object on the stack frame that raised an unhandled\n exception in interactive mode (the traceback stored in\n "sys.last_traceback" keeps the stack frame alive). The first\n situation can only be remedied by explicitly breaking the cycles;\n the latter two situations can be resolved by storing "None" in\n "sys.exc_traceback" or "sys.last_traceback". Circular references\n which are garbage are detected when the option cycle detector is\n enabled (it\'s on by default), but can only be cleaned up if there\n are no Python-level "__del__()" methods involved. Refer to the\n documentation for the "gc" module for more information about how\n "__del__()" methods are handled by the cycle detector,\n particularly the description of the "garbage" value.\n\n Warning: Due to the precarious circumstances under which\n "__del__()" methods are invoked, exceptions that occur during\n their execution are ignored, and a warning is printed to\n "sys.stderr" instead. Also, when "__del__()" is invoked in\n response to a module being deleted (e.g., when execution of the\n program is done), other globals referenced by the "__del__()"\n method may already have been deleted or in the process of being\n torn down (e.g. the import machinery shutting down). For this\n reason, "__del__()" methods should do the absolute minimum needed\n to maintain external invariants. Starting with version 1.5,\n Python guarantees that globals whose name begins with a single\n underscore are deleted from their module before other globals are\n deleted; if no other references to such globals exist, this may\n help in assuring that imported modules are still available at the\n time when the "__del__()" method is called.\n\n See also the "-R" command-line option.\n\nobject.__repr__(self)\n\n Called by the "repr()" built-in function and by string conversions\n (reverse quotes) to compute the "official" string representation of\n an object. If at all possible, this should look like a valid\n Python expression that could be used to recreate an object with the\n same value (given an appropriate environment). If this is not\n possible, a string of the form "<...some useful description...>"\n should be returned. The return value must be a string object. If a\n class defines "__repr__()" but not "__str__()", then "__repr__()"\n is also used when an "informal" string representation of instances\n of that class is required.\n\n This is typically used for debugging, so it is important that the\n representation is information-rich and unambiguous.\n\nobject.__str__(self)\n\n Called by the "str()" built-in function and by the "print"\n statement to compute the "informal" string representation of an\n object. This differs from "__repr__()" in that it does not have to\n be a valid Python expression: a more convenient or concise\n representation may be used instead. The return value must be a\n string object.\n\nobject.__lt__(self, other)\nobject.__le__(self, other)\nobject.__eq__(self, other)\nobject.__ne__(self, other)\nobject.__gt__(self, other)\nobject.__ge__(self, other)\n\n New in version 2.1.\n\n These are the so-called "rich comparison" methods, and are called\n for comparison operators in preference to "__cmp__()" below. The\n correspondence between operator symbols and method names is as\n follows: "x<y" calls "x.__lt__(y)", "x<=y" calls "x.__le__(y)",\n "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call "x.__ne__(y)",\n "x>y" calls "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n\n A rich comparison method may return the singleton "NotImplemented"\n if it does not implement the operation for a given pair of\n arguments. By convention, "False" and "True" are returned for a\n successful comparison. However, these methods can return any value,\n so if the comparison operator is used in a Boolean context (e.g.,\n in the condition of an "if" statement), Python will call "bool()"\n on the value to determine if the result is true or false.\n\n There are no implied relationships among the comparison operators.\n The truth of "x==y" does not imply that "x!=y" is false.\n Accordingly, when defining "__eq__()", one should also define\n "__ne__()" so that the operators will behave as expected. See the\n paragraph on "__hash__()" for some important notes on creating\n *hashable* objects which support custom comparison operations and\n are usable as dictionary keys.\n\n There are no swapped-argument versions of these methods (to be used\n when the left argument does not support the operation but the right\n argument does); rather, "__lt__()" and "__gt__()" are each other\'s\n reflection, "__le__()" and "__ge__()" are each other\'s reflection,\n and "__eq__()" and "__ne__()" are their own reflection.\n\n Arguments to rich comparison methods are never coerced.\n\n To automatically generate ordering operations from a single root\n operation, see "functools.total_ordering()".\n\nobject.__cmp__(self, other)\n\n Called by comparison operations if rich comparison (see above) is\n not defined. Should return a negative integer if "self < other",\n zero if "self == other", a positive integer if "self > other". If\n no "__cmp__()", "__eq__()" or "__ne__()" operation is defined,\n class instances are compared by object identity ("address"). See\n also the description of "__hash__()" for some important notes on\n creating *hashable* objects which support custom comparison\n operations and are usable as dictionary keys. (Note: the\n restriction that exceptions are not propagated by "__cmp__()" has\n been removed since Python 1.5.)\n\nobject.__rcmp__(self, other)\n\n Changed in version 2.1: No longer supported.\n\nobject.__hash__(self)\n\n Called by built-in function "hash()" and for operations on members\n of hashed collections including "set", "frozenset", and "dict".\n "__hash__()" should return an integer. The only required property\n is that objects which compare equal have the same hash value; it is\n advised to somehow mix together (e.g. using exclusive or) the hash\n values for the components of the object that also play a part in\n comparison of objects.\n\n If a class does not define a "__cmp__()" or "__eq__()" method it\n should not define a "__hash__()" operation either; if it defines\n "__cmp__()" or "__eq__()" but not "__hash__()", its instances will\n not be usable in hashed collections. If a class defines mutable\n objects and implements a "__cmp__()" or "__eq__()" method, it\n should not implement "__hash__()", since hashable collection\n implementations require that an object\'s hash value is immutable\n (if the object\'s hash value changes, it will be in the wrong hash\n bucket).\n\n User-defined classes have "__cmp__()" and "__hash__()" methods by\n default; with them, all objects compare unequal (except with\n themselves) and "x.__hash__()" returns a result derived from\n "id(x)".\n\n Classes which inherit a "__hash__()" method from a parent class but\n change the meaning of "__cmp__()" or "__eq__()" such that the hash\n value returned is no longer appropriate (e.g. by switching to a\n value-based concept of equality instead of the default identity\n based equality) can explicitly flag themselves as being unhashable\n by setting "__hash__ = None" in the class definition. Doing so\n means that not only will instances of the class raise an\n appropriate "TypeError" when a program attempts to retrieve their\n hash value, but they will also be correctly identified as\n unhashable when checking "isinstance(obj, collections.Hashable)"\n (unlike classes which define their own "__hash__()" to explicitly\n raise "TypeError").\n\n Changed in version 2.5: "__hash__()" may now also return a long\n integer object; the 32-bit integer is then derived from the hash of\n that object.\n\n Changed in version 2.6: "__hash__" may now be set to "None" to\n explicitly flag instances of a class as unhashable.\n\nobject.__nonzero__(self)\n\n Called to implement truth value testing and the built-in operation\n "bool()"; should return "False" or "True", or their integer\n equivalents "0" or "1". When this method is not defined,\n "__len__()" is called, if it is defined, and the object is\n considered true if its result is nonzero. If a class defines\n neither "__len__()" nor "__nonzero__()", all its instances are\n considered true.\n\nobject.__unicode__(self)\n\n Called to implement "unicode()" built-in; should return a Unicode\n object. When this method is not defined, string conversion is\n attempted, and the result of string conversion is converted to\n Unicode using the system default encoding.\n\n\nCustomizing attribute access\n============================\n\nThe following methods can be defined to customize the meaning of\nattribute access (use of, assignment to, or deletion of "x.name") for\nclass instances.\n\nobject.__getattr__(self, name)\n\n Called when an attribute lookup has not found the attribute in the\n usual places (i.e. it is not an instance attribute nor is it found\n in the class tree for "self"). "name" is the attribute name. This\n method should return the (computed) attribute value or raise an\n "AttributeError" exception.\n\n Note that if the attribute is found through the normal mechanism,\n "__getattr__()" is not called. (This is an intentional asymmetry\n between "__getattr__()" and "__setattr__()".) This is done both for\n efficiency reasons and because otherwise "__getattr__()" would have\n no way to access other attributes of the instance. Note that at\n least for instance variables, you can fake total control by not\n inserting any values in the instance attribute dictionary (but\n instead inserting them in another object). See the\n "__getattribute__()" method below for a way to actually get total\n control in new-style classes.\n\nobject.__setattr__(self, name, value)\n\n Called when an attribute assignment is attempted. This is called\n instead of the normal mechanism (i.e. store the value in the\n instance dictionary). *name* is the attribute name, *value* is the\n value to be assigned to it.\n\n If "__setattr__()" wants to assign to an instance attribute, it\n should not simply execute "self.name = value" --- this would cause\n a recursive call to itself. Instead, it should insert the value in\n the dictionary of instance attributes, e.g., "self.__dict__[name] =\n value". For new-style classes, rather than accessing the instance\n dictionary, it should call the base class method with the same\n name, for example, "object.__setattr__(self, name, value)".\n\nobject.__delattr__(self, name)\n\n Like "__setattr__()" but for attribute deletion instead of\n assignment. This should only be implemented if "del obj.name" is\n meaningful for the object.\n\n\nMore attribute access for new-style classes\n-------------------------------------------\n\nThe following methods only apply to new-style classes.\n\nobject.__getattribute__(self, name)\n\n Called unconditionally to implement attribute accesses for\n instances of the class. If the class also defines "__getattr__()",\n the latter will not be called unless "__getattribute__()" either\n calls it explicitly or raises an "AttributeError". This method\n should return the (computed) attribute value or raise an\n "AttributeError" exception. In order to avoid infinite recursion in\n this method, its implementation should always call the base class\n method with the same name to access any attributes it needs, for\n example, "object.__getattribute__(self, name)".\n\n Note: This method may still be bypassed when looking up special\n methods as the result of implicit invocation via language syntax\n or built-in functions. See Special method lookup for new-style\n classes.\n\n\nImplementing Descriptors\n------------------------\n\nThe following methods only apply when an instance of the class\ncontaining the method (a so-called *descriptor* class) appears in an\n*owner* class (the descriptor must be in either the owner\'s class\ndictionary or in the class dictionary for one of its parents). In the\nexamples below, "the attribute" refers to the attribute whose name is\nthe key of the property in the owner class\' "__dict__".\n\nobject.__get__(self, instance, owner)\n\n Called to get the attribute of the owner class (class attribute\n access) or of an instance of that class (instance attribute\n access). *owner* is always the owner class, while *instance* is the\n instance that the attribute was accessed through, or "None" when\n the attribute is accessed through the *owner*. This method should\n return the (computed) attribute value or raise an "AttributeError"\n exception.\n\nobject.__set__(self, instance, value)\n\n Called to set the attribute on an instance *instance* of the owner\n class to a new value, *value*.\n\nobject.__delete__(self, instance)\n\n Called to delete the attribute on an instance *instance* of the\n owner class.\n\n\nInvoking Descriptors\n--------------------\n\nIn general, a descriptor is an object attribute with "binding\nbehavior", one whose attribute access has been overridden by methods\nin the descriptor protocol: "__get__()", "__set__()", and\n"__delete__()". If any of those methods are defined for an object, it\nis said to be a descriptor.\n\nThe default behavior for attribute access is to get, set, or delete\nthe attribute from an object\'s dictionary. For instance, "a.x" has a\nlookup chain starting with "a.__dict__[\'x\']", then\n"type(a).__dict__[\'x\']", and continuing through the base classes of\n"type(a)" excluding metaclasses.\n\nHowever, if the looked-up value is an object defining one of the\ndescriptor methods, then Python may override the default behavior and\ninvoke the descriptor method instead. Where this occurs in the\nprecedence chain depends on which descriptor methods were defined and\nhow they were called. Note that descriptors are only invoked for new\nstyle objects or classes (ones that subclass "object()" or "type()").\n\nThe starting point for descriptor invocation is a binding, "a.x". How\nthe arguments are assembled depends on "a":\n\nDirect Call\n The simplest and least common call is when user code directly\n invokes a descriptor method: "x.__get__(a)".\n\nInstance Binding\n If binding to a new-style object instance, "a.x" is transformed\n into the call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n\nClass Binding\n If binding to a new-style class, "A.x" is transformed into the\n call: "A.__dict__[\'x\'].__get__(None, A)".\n\nSuper Binding\n If "a" is an instance of "super", then the binding "super(B,\n obj).m()" searches "obj.__class__.__mro__" for the base class "A"\n immediately preceding "B" and then invokes the descriptor with the\n call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n\nFor instance bindings, the precedence of descriptor invocation depends\non the which descriptor methods are defined. A descriptor can define\nany combination of "__get__()", "__set__()" and "__delete__()". If it\ndoes not define "__get__()", then accessing the attribute will return\nthe descriptor object itself unless there is a value in the object\'s\ninstance dictionary. If the descriptor defines "__set__()" and/or\n"__delete__()", it is a data descriptor; if it defines neither, it is\na non-data descriptor. Normally, data descriptors define both\n"__get__()" and "__set__()", while non-data descriptors have just the\n"__get__()" method. Data descriptors with "__set__()" and "__get__()"\ndefined always override a redefinition in an instance dictionary. In\ncontrast, non-data descriptors can be overridden by instances.\n\nPython methods (including "staticmethod()" and "classmethod()") are\nimplemented as non-data descriptors. Accordingly, instances can\nredefine and override methods. This allows individual instances to\nacquire behaviors that differ from other instances of the same class.\n\nThe "property()" function is implemented as a data descriptor.\nAccordingly, instances cannot override the behavior of a property.\n\n\n__slots__\n---------\n\nBy default, instances of both old and new-style classes have a\ndictionary for attribute storage. This wastes space for objects\nhaving very few instance variables. The space consumption can become\nacute when creating large numbers of instances.\n\nThe default can be overridden by defining *__slots__* in a new-style\nclass definition. The *__slots__* declaration takes a sequence of\ninstance variables and reserves just enough space in each instance to\nhold a value for each variable. Space is saved because *__dict__* is\nnot created for each instance.\n\n__slots__\n\n This class variable can be assigned a string, iterable, or sequence\n of strings with variable names used by instances. If defined in a\n new-style class, *__slots__* reserves space for the declared\n variables and prevents the automatic creation of *__dict__* and\n *__weakref__* for each instance.\n\n New in version 2.2.\n\nNotes on using *__slots__*\n\n* When inheriting from a class without *__slots__*, the *__dict__*\n attribute of that class will always be accessible, so a *__slots__*\n definition in the subclass is meaningless.\n\n* Without a *__dict__* variable, instances cannot be assigned new\n variables not listed in the *__slots__* definition. Attempts to\n assign to an unlisted variable name raises "AttributeError". If\n dynamic assignment of new variables is desired, then add\n "\'__dict__\'" to the sequence of strings in the *__slots__*\n declaration.\n\n Changed in version 2.3: Previously, adding "\'__dict__\'" to the\n *__slots__* declaration would not enable the assignment of new\n attributes not specifically listed in the sequence of instance\n variable names.\n\n* Without a *__weakref__* variable for each instance, classes\n defining *__slots__* do not support weak references to its\n instances. If weak reference support is needed, then add\n "\'__weakref__\'" to the sequence of strings in the *__slots__*\n declaration.\n\n Changed in version 2.3: Previously, adding "\'__weakref__\'" to the\n *__slots__* declaration would not enable support for weak\n references.\n\n* *__slots__* are implemented at the class level by creating\n descriptors (Implementing Descriptors) for each variable name. As a\n result, class attributes cannot be used to set default values for\n instance variables defined by *__slots__*; otherwise, the class\n attribute would overwrite the descriptor assignment.\n\n* The action of a *__slots__* declaration is limited to the class\n where it is defined. As a result, subclasses will have a *__dict__*\n unless they also define *__slots__* (which must only contain names\n of any *additional* slots).\n\n* If a class defines a slot also defined in a base class, the\n instance variable defined by the base class slot is inaccessible\n (except by retrieving its descriptor directly from the base class).\n This renders the meaning of the program undefined. In the future, a\n check may be added to prevent this.\n\n* Nonempty *__slots__* does not work for classes derived from\n "variable-length" built-in types such as "long", "str" and "tuple".\n\n* Any non-string iterable may be assigned to *__slots__*. Mappings\n may also be used; however, in the future, special meaning may be\n assigned to the values corresponding to each key.\n\n* *__class__* assignment works only if both classes have the same\n *__slots__*.\n\n Changed in version 2.6: Previously, *__class__* assignment raised an\n error if either new or old class had *__slots__*.\n\n\nCustomizing class creation\n==========================\n\nBy default, new-style classes are constructed using "type()". A class\ndefinition is read into a separate namespace and the value of class\nname is bound to the result of "type(name, bases, dict)".\n\nWhen the class definition is read, if *__metaclass__* is defined then\nthe callable assigned to it will be called instead of "type()". This\nallows classes or functions to be written which monitor or alter the\nclass creation process:\n\n* Modifying the class dictionary prior to the class being created.\n\n* Returning an instance of another class -- essentially performing\n the role of a factory function.\n\nThese steps will have to be performed in the metaclass\'s "__new__()"\nmethod -- "type.__new__()" can then be called from this method to\ncreate a class with different properties. This example adds a new\nelement to the class dictionary before creating the class:\n\n class metacls(type):\n def __new__(mcs, name, bases, dict):\n dict[\'foo\'] = \'metacls was here\'\n return type.__new__(mcs, name, bases, dict)\n\nYou can of course also override other class methods (or add new\nmethods); for example defining a custom "__call__()" method in the\nmetaclass allows custom behavior when the class is called, e.g. not\nalways creating a new instance.\n\n__metaclass__\n\n This variable can be any callable accepting arguments for "name",\n "bases", and "dict". Upon class creation, the callable is used\n instead of the built-in "type()".\n\n New in version 2.2.\n\nThe appropriate metaclass is determined by the following precedence\nrules:\n\n* If "dict[\'__metaclass__\']" exists, it is used.\n\n* Otherwise, if there is at least one base class, its metaclass is\n used (this looks for a *__class__* attribute first and if not found,\n uses its type).\n\n* Otherwise, if a global variable named __metaclass__ exists, it is\n used.\n\n* Otherwise, the old-style, classic metaclass (types.ClassType) is\n used.\n\nThe potential uses for metaclasses are boundless. Some ideas that have\nbeen explored including logging, interface checking, automatic\ndelegation, automatic property creation, proxies, frameworks, and\nautomatic resource locking/synchronization.\n\n\nCustomizing instance and subclass checks\n========================================\n\nNew in version 2.6.\n\nThe following methods are used to override the default behavior of the\n"isinstance()" and "issubclass()" built-in functions.\n\nIn particular, the metaclass "abc.ABCMeta" implements these methods in\norder to allow the addition of Abstract Base Classes (ABCs) as\n"virtual base classes" to any class or type (including built-in\ntypes), including other ABCs.\n\nclass.__instancecheck__(self, instance)\n\n Return true if *instance* should be considered a (direct or\n indirect) instance of *class*. If defined, called to implement\n "isinstance(instance, class)".\n\nclass.__subclasscheck__(self, subclass)\n\n Return true if *subclass* should be considered a (direct or\n indirect) subclass of *class*. If defined, called to implement\n "issubclass(subclass, class)".\n\nNote that these methods are looked up on the type (metaclass) of a\nclass. They cannot be defined as class methods in the actual class.\nThis is consistent with the lookup of special methods that are called\non instances, only in this case the instance is itself a class.\n\nSee also:\n\n **PEP 3119** - Introducing Abstract Base Classes\n Includes the specification for customizing "isinstance()" and\n "issubclass()" behavior through "__instancecheck__()" and\n "__subclasscheck__()", with motivation for this functionality in\n the context of adding Abstract Base Classes (see the "abc"\n module) to the language.\n\n\nEmulating callable objects\n==========================\n\nobject.__call__(self[, args...])\n\n Called when the instance is "called" as a function; if this method\n is defined, "x(arg1, arg2, ...)" is a shorthand for\n "x.__call__(arg1, arg2, ...)".\n\n\nEmulating container types\n=========================\n\nThe following methods can be defined to implement container objects.\nContainers usually are sequences (such as lists or tuples) or mappings\n(like dictionaries), but can represent other containers as well. The\nfirst set of methods is used either to emulate a sequence or to\nemulate a mapping; the difference is that for a sequence, the\nallowable keys should be the integers *k* for which "0 <= k < N" where\n*N* is the length of the sequence, or slice objects, which define a\nrange of items. (For backwards compatibility, the method\n"__getslice__()" (see below) can also be defined to handle simple, but\nnot extended slices.) It is also recommended that mappings provide the\nmethods "keys()", "values()", "items()", "has_key()", "get()",\n"clear()", "setdefault()", "iterkeys()", "itervalues()",\n"iteritems()", "pop()", "popitem()", "copy()", and "update()" behaving\nsimilar to those for Python\'s standard dictionary objects. The\n"UserDict" module provides a "DictMixin" class to help create those\nmethods from a base set of "__getitem__()", "__setitem__()",\n"__delitem__()", and "keys()". Mutable sequences should provide\nmethods "append()", "count()", "index()", "extend()", "insert()",\n"pop()", "remove()", "reverse()" and "sort()", like Python standard\nlist objects. Finally, sequence types should implement addition\n(meaning concatenation) and multiplication (meaning repetition) by\ndefining the methods "__add__()", "__radd__()", "__iadd__()",\n"__mul__()", "__rmul__()" and "__imul__()" described below; they\nshould not define "__coerce__()" or other numerical operators. It is\nrecommended that both mappings and sequences implement the\n"__contains__()" method to allow efficient use of the "in" operator;\nfor mappings, "in" should be equivalent of "has_key()"; for sequences,\nit should search through the values. It is further recommended that\nboth mappings and sequences implement the "__iter__()" method to allow\nefficient iteration through the container; for mappings, "__iter__()"\nshould be the same as "iterkeys()"; for sequences, it should iterate\nthrough the values.\n\nobject.__len__(self)\n\n Called to implement the built-in function "len()". Should return\n the length of the object, an integer ">=" 0. Also, an object that\n doesn\'t define a "__nonzero__()" method and whose "__len__()"\n method returns zero is considered to be false in a Boolean context.\n\nobject.__getitem__(self, key)\n\n Called to implement evaluation of "self[key]". For sequence types,\n the accepted keys should be integers and slice objects. Note that\n the special interpretation of negative indexes (if the class wishes\n to emulate a sequence type) is up to the "__getitem__()" method. If\n *key* is of an inappropriate type, "TypeError" may be raised; if of\n a value outside the set of indexes for the sequence (after any\n special interpretation of negative values), "IndexError" should be\n raised. For mapping types, if *key* is missing (not in the\n container), "KeyError" should be raised.\n\n Note: "for" loops expect that an "IndexError" will be raised for\n illegal indexes to allow proper detection of the end of the\n sequence.\n\nobject.__missing__(self, key)\n\n Called by "dict"."__getitem__()" to implement "self[key]" for dict\n subclasses when key is not in the dictionary.\n\nobject.__setitem__(self, key, value)\n\n Called to implement assignment to "self[key]". Same note as for\n "__getitem__()". This should only be implemented for mappings if\n the objects support changes to the values for keys, or if new keys\n can be added, or for sequences if elements can be replaced. The\n same exceptions should be raised for improper *key* values as for\n the "__getitem__()" method.\n\nobject.__delitem__(self, key)\n\n Called to implement deletion of "self[key]". Same note as for\n "__getitem__()". This should only be implemented for mappings if\n the objects support removal of keys, or for sequences if elements\n can be removed from the sequence. The same exceptions should be\n raised for improper *key* values as for the "__getitem__()" method.\n\nobject.__iter__(self)\n\n This method is called when an iterator is required for a container.\n This method should return a new iterator object that can iterate\n over all the objects in the container. For mappings, it should\n iterate over the keys of the container, and should also be made\n available as the method "iterkeys()".\n\n Iterator objects also need to implement this method; they are\n required to return themselves. For more information on iterator\n objects, see Iterator Types.\n\nobject.__reversed__(self)\n\n Called (if present) by the "reversed()" built-in to implement\n reverse iteration. It should return a new iterator object that\n iterates over all the objects in the container in reverse order.\n\n If the "__reversed__()" method is not provided, the "reversed()"\n built-in will fall back to using the sequence protocol ("__len__()"\n and "__getitem__()"). Objects that support the sequence protocol\n should only provide "__reversed__()" if they can provide an\n implementation that is more efficient than the one provided by\n "reversed()".\n\n New in version 2.6.\n\nThe membership test operators ("in" and "not in") are normally\nimplemented as an iteration through a sequence. However, container\nobjects can supply the following special method with a more efficient\nimplementation, which also does not require the object be a sequence.\n\nobject.__contains__(self, item)\n\n Called to implement membership test operators. Should return true\n if *item* is in *self*, false otherwise. For mapping objects, this\n should consider the keys of the mapping rather than the values or\n the key-item pairs.\n\n For objects that don\'t define "__contains__()", the membership test\n first tries iteration via "__iter__()", then the old sequence\n iteration protocol via "__getitem__()", see this section in the\n language reference.\n\n\nAdditional methods for emulation of sequence types\n==================================================\n\nThe following optional methods can be defined to further emulate\nsequence objects. Immutable sequences methods should at most only\ndefine "__getslice__()"; mutable sequences might define all three\nmethods.\n\nobject.__getslice__(self, i, j)\n\n Deprecated since version 2.0: Support slice objects as parameters\n to the "__getitem__()" method. (However, built-in types in CPython\n currently still implement "__getslice__()". Therefore, you have to\n override it in derived classes when implementing slicing.)\n\n Called to implement evaluation of "self[i:j]". The returned object\n should be of the same type as *self*. Note that missing *i* or *j*\n in the slice expression are replaced by zero or "sys.maxsize",\n respectively. If negative indexes are used in the slice, the\n length of the sequence is added to that index. If the instance does\n not implement the "__len__()" method, an "AttributeError" is\n raised. No guarantee is made that indexes adjusted this way are not\n still negative. Indexes which are greater than the length of the\n sequence are not modified. If no "__getslice__()" is found, a slice\n object is created instead, and passed to "__getitem__()" instead.\n\nobject.__setslice__(self, i, j, sequence)\n\n Called to implement assignment to "self[i:j]". Same notes for *i*\n and *j* as for "__getslice__()".\n\n This method is deprecated. If no "__setslice__()" is found, or for\n extended slicing of the form "self[i:j:k]", a slice object is\n created, and passed to "__setitem__()", instead of "__setslice__()"\n being called.\n\nobject.__delslice__(self, i, j)\n\n Called to implement deletion of "self[i:j]". Same notes for *i* and\n *j* as for "__getslice__()". This method is deprecated. If no\n "__delslice__()" is found, or for extended slicing of the form\n "self[i:j:k]", a slice object is created, and passed to\n "__delitem__()", instead of "__delslice__()" being called.\n\nNotice that these methods are only invoked when a single slice with a\nsingle colon is used, and the slice method is available. For slice\noperations involving extended slice notation, or in absence of the\nslice methods, "__getitem__()", "__setitem__()" or "__delitem__()" is\ncalled with a slice object as argument.\n\nThe following example demonstrate how to make your program or module\ncompatible with earlier versions of Python (assuming that methods\n"__getitem__()", "__setitem__()" and "__delitem__()" support slice\nobjects as arguments):\n\n class MyClass:\n ...\n def __getitem__(self, index):\n ...\n def __setitem__(self, index, value):\n ...\n def __delitem__(self, index):\n ...\n\n if sys.version_info < (2, 0):\n # They won\'t be defined if version is at least 2.0 final\n\n def __getslice__(self, i, j):\n return self[max(0, i):max(0, j):]\n def __setslice__(self, i, j, seq):\n self[max(0, i):max(0, j):] = seq\n def __delslice__(self, i, j):\n del self[max(0, i):max(0, j):]\n ...\n\nNote the calls to "max()"; these are necessary because of the handling\nof negative indices before the "__*slice__()" methods are called.\nWhen negative indexes are used, the "__*item__()" methods receive them\nas provided, but the "__*slice__()" methods get a "cooked" form of the\nindex values. For each negative index value, the length of the\nsequence is added to the index before calling the method (which may\nstill result in a negative index); this is the customary handling of\nnegative indexes by the built-in sequence types, and the "__*item__()"\nmethods are expected to do this as well. However, since they should\nalready be doing that, negative indexes cannot be passed in; they must\nbe constrained to the bounds of the sequence before being passed to\nthe "__*item__()" methods. Calling "max(0, i)" conveniently returns\nthe proper value.\n\n\nEmulating numeric types\n=======================\n\nThe following methods can be defined to emulate numeric objects.\nMethods corresponding to operations that are not supported by the\nparticular kind of number implemented (e.g., bitwise operations for\nnon-integral numbers) should be left undefined.\n\nobject.__add__(self, other)\nobject.__sub__(self, other)\nobject.__mul__(self, other)\nobject.__floordiv__(self, other)\nobject.__mod__(self, other)\nobject.__divmod__(self, other)\nobject.__pow__(self, other[, modulo])\nobject.__lshift__(self, other)\nobject.__rshift__(self, other)\nobject.__and__(self, other)\nobject.__xor__(self, other)\nobject.__or__(self, other)\n\n These methods are called to implement the binary arithmetic\n operations ("+", "-", "*", "//", "%", "divmod()", "pow()", "**",\n "<<", ">>", "&", "^", "|"). For instance, to evaluate the\n expression "x + y", where *x* is an instance of a class that has an\n "__add__()" method, "x.__add__(y)" is called. The "__divmod__()"\n method should be the equivalent to using "__floordiv__()" and\n "__mod__()"; it should not be related to "__truediv__()" (described\n below). Note that "__pow__()" should be defined to accept an\n optional third argument if the ternary version of the built-in\n "pow()" function is to be supported.\n\n If one of those methods does not support the operation with the\n supplied arguments, it should return "NotImplemented".\n\nobject.__div__(self, other)\nobject.__truediv__(self, other)\n\n The division operator ("/") is implemented by these methods. The\n "__truediv__()" method is used when "__future__.division" is in\n effect, otherwise "__div__()" is used. If only one of these two\n methods is defined, the object will not support division in the\n alternate context; "TypeError" will be raised instead.\n\nobject.__radd__(self, other)\nobject.__rsub__(self, other)\nobject.__rmul__(self, other)\nobject.__rdiv__(self, other)\nobject.__rtruediv__(self, other)\nobject.__rfloordiv__(self, other)\nobject.__rmod__(self, other)\nobject.__rdivmod__(self, other)\nobject.__rpow__(self, other)\nobject.__rlshift__(self, other)\nobject.__rrshift__(self, other)\nobject.__rand__(self, other)\nobject.__rxor__(self, other)\nobject.__ror__(self, other)\n\n These methods are called to implement the binary arithmetic\n operations ("+", "-", "*", "/", "%", "divmod()", "pow()", "**",\n "<<", ">>", "&", "^", "|") with reflected (swapped) operands.\n These functions are only called if the left operand does not\n support the corresponding operation and the operands are of\n different types. [2] For instance, to evaluate the expression "x -\n y", where *y* is an instance of a class that has an "__rsub__()"\n method, "y.__rsub__(x)" is called if "x.__sub__(y)" returns\n *NotImplemented*.\n\n Note that ternary "pow()" will not try calling "__rpow__()" (the\n coercion rules would become too complicated).\n\n Note: If the right operand\'s type is a subclass of the left\n operand\'s type and that subclass provides the reflected method\n for the operation, this method will be called before the left\n operand\'s non-reflected method. This behavior allows subclasses\n to override their ancestors\' operations.\n\nobject.__iadd__(self, other)\nobject.__isub__(self, other)\nobject.__imul__(self, other)\nobject.__idiv__(self, other)\nobject.__itruediv__(self, other)\nobject.__ifloordiv__(self, other)\nobject.__imod__(self, other)\nobject.__ipow__(self, other[, modulo])\nobject.__ilshift__(self, other)\nobject.__irshift__(self, other)\nobject.__iand__(self, other)\nobject.__ixor__(self, other)\nobject.__ior__(self, other)\n\n These methods are called to implement the augmented arithmetic\n assignments ("+=", "-=", "*=", "/=", "//=", "%=", "**=", "<<=",\n ">>=", "&=", "^=", "|="). These methods should attempt to do the\n operation in-place (modifying *self*) and return the result (which\n could be, but does not have to be, *self*). If a specific method\n is not defined, the augmented assignment falls back to the normal\n methods. For instance, to execute the statement "x += y", where\n *x* is an instance of a class that has an "__iadd__()" method,\n "x.__iadd__(y)" is called. If *x* is an instance of a class that\n does not define a "__iadd__()" method, "x.__add__(y)" and\n "y.__radd__(x)" are considered, as with the evaluation of "x + y".\n\nobject.__neg__(self)\nobject.__pos__(self)\nobject.__abs__(self)\nobject.__invert__(self)\n\n Called to implement the unary arithmetic operations ("-", "+",\n "abs()" and "~").\n\nobject.__complex__(self)\nobject.__int__(self)\nobject.__long__(self)\nobject.__float__(self)\n\n Called to implement the built-in functions "complex()", "int()",\n "long()", and "float()". Should return a value of the appropriate\n type.\n\nobject.__oct__(self)\nobject.__hex__(self)\n\n Called to implement the built-in functions "oct()" and "hex()".\n Should return a string value.\n\nobject.__index__(self)\n\n Called to implement "operator.index()". Also called whenever\n Python needs an integer object (such as in slicing). Must return\n an integer (int or long).\n\n New in version 2.5.\n\nobject.__coerce__(self, other)\n\n Called to implement "mixed-mode" numeric arithmetic. Should either\n return a 2-tuple containing *self* and *other* converted to a\n common numeric type, or "None" if conversion is impossible. When\n the common type would be the type of "other", it is sufficient to\n return "None", since the interpreter will also ask the other object\n to attempt a coercion (but sometimes, if the implementation of the\n other type cannot be changed, it is useful to do the conversion to\n the other type here). A return value of "NotImplemented" is\n equivalent to returning "None".\n\n\nCoercion rules\n==============\n\nThis section used to document the rules for coercion. As the language\nhas evolved, the coercion rules have become hard to document\nprecisely; documenting what one version of one particular\nimplementation does is undesirable. Instead, here are some informal\nguidelines regarding coercion. In Python 3, coercion will not be\nsupported.\n\n* If the left operand of a % operator is a string or Unicode object,\n no coercion takes place and the string formatting operation is\n invoked instead.\n\n* It is no longer recommended to define a coercion operation. Mixed-\n mode operations on types that don\'t define coercion pass the\n original arguments to the operation.\n\n* New-style classes (those derived from "object") never invoke the\n "__coerce__()" method in response to a binary operator; the only\n time "__coerce__()" is invoked is when the built-in function\n "coerce()" is called.\n\n* For most intents and purposes, an operator that returns\n "NotImplemented" is treated the same as one that is not implemented\n at all.\n\n* Below, "__op__()" and "__rop__()" are used to signify the generic\n method names corresponding to an operator; "__iop__()" is used for\n the corresponding in-place operator. For example, for the operator\n \'"+"\', "__add__()" and "__radd__()" are used for the left and right\n variant of the binary operator, and "__iadd__()" for the in-place\n variant.\n\n* For objects *x* and *y*, first "x.__op__(y)" is tried. If this is\n not implemented or returns "NotImplemented", "y.__rop__(x)" is\n tried. If this is also not implemented or returns "NotImplemented",\n a "TypeError" exception is raised. But see the following exception:\n\n* Exception to the previous item: if the left operand is an instance\n of a built-in type or a new-style class, and the right operand is an\n instance of a proper subclass of that type or class and overrides\n the base\'s "__rop__()" method, the right operand\'s "__rop__()"\n method is tried *before* the left operand\'s "__op__()" method.\n\n This is done so that a subclass can completely override binary\n operators. Otherwise, the left operand\'s "__op__()" method would\n always accept the right operand: when an instance of a given class\n is expected, an instance of a subclass of that class is always\n acceptable.\n\n* When either operand type defines a coercion, this coercion is\n called before that type\'s "__op__()" or "__rop__()" method is\n called, but no sooner. If the coercion returns an object of a\n different type for the operand whose coercion is invoked, part of\n the process is redone using the new object.\n\n* When an in-place operator (like \'"+="\') is used, if the left\n operand implements "__iop__()", it is invoked without any coercion.\n When the operation falls back to "__op__()" and/or "__rop__()", the\n normal coercion rules apply.\n\n* In "x + y", if *x* is a sequence that implements sequence\n concatenation, sequence concatenation is invoked.\n\n* In "x * y", if one operand is a sequence that implements sequence\n repetition, and the other is an integer ("int" or "long"), sequence\n repetition is invoked.\n\n* Rich comparisons (implemented by methods "__eq__()" and so on)\n never use coercion. Three-way comparison (implemented by\n "__cmp__()") does use coercion under the same conditions as other\n binary operations use it.\n\n* In the current implementation, the built-in numeric types "int",\n "long", "float", and "complex" do not use coercion. All these types\n implement a "__coerce__()" method, for use by the built-in\n "coerce()" function.\n\n Changed in version 2.7: The complex type no longer makes implicit\n calls to the "__coerce__()" method for mixed-type binary arithmetic\n operations.\n\n\nWith Statement Context Managers\n===============================\n\nNew in version 2.5.\n\nA *context manager* is an object that defines the runtime context to\nbe established when executing a "with" statement. The context manager\nhandles the entry into, and the exit from, the desired runtime context\nfor the execution of the block of code. Context managers are normally\ninvoked using the "with" statement (described in section The with\nstatement), but can also be used by directly invoking their methods.\n\nTypical uses of context managers include saving and restoring various\nkinds of global state, locking and unlocking resources, closing opened\nfiles, etc.\n\nFor more information on context managers, see Context Manager Types.\n\nobject.__enter__(self)\n\n Enter the runtime context related to this object. The "with"\n statement will bind this method\'s return value to the target(s)\n specified in the "as" clause of the statement, if any.\n\nobject.__exit__(self, exc_type, exc_value, traceback)\n\n Exit the runtime context related to this object. The parameters\n describe the exception that caused the context to be exited. If the\n context was exited without an exception, all three arguments will\n be "None".\n\n If an exception is supplied, and the method wishes to suppress the\n exception (i.e., prevent it from being propagated), it should\n return a true value. Otherwise, the exception will be processed\n normally upon exit from this method.\n\n Note that "__exit__()" methods should not reraise the passed-in\n exception; this is the caller\'s responsibility.\n\nSee also:\n\n **PEP 343** - The "with" statement\n The specification, background, and examples for the Python "with"\n statement.\n\n\nSpecial method lookup for old-style classes\n===========================================\n\nFor old-style classes, special methods are always looked up in exactly\nthe same way as any other method or attribute. This is the case\nregardless of whether the method is being looked up explicitly as in\n"x.__getitem__(i)" or implicitly as in "x[i]".\n\nThis behaviour means that special methods may exhibit different\nbehaviour for different instances of a single old-style class if the\nappropriate special attributes are set differently:\n\n >>> class C:\n ... pass\n ...\n >>> c1 = C()\n >>> c2 = C()\n >>> c1.__len__ = lambda: 5\n >>> c2.__len__ = lambda: 9\n >>> len(c1)\n 5\n >>> len(c2)\n 9\n\n\nSpecial method lookup for new-style classes\n===========================================\n\nFor new-style classes, implicit invocations of special methods are\nonly guaranteed to work correctly if defined on an object\'s type, not\nin the object\'s instance dictionary. That behaviour is the reason why\nthe following code raises an exception (unlike the equivalent example\nwith old-style classes):\n\n >>> class C(object):\n ... pass\n ...\n >>> c = C()\n >>> c.__len__ = lambda: 5\n >>> len(c)\n Traceback (most recent call last):\n File "<stdin>", line 1, in <module>\n TypeError: object of type \'C\' has no len()\n\nThe rationale behind this behaviour lies with a number of special\nmethods such as "__hash__()" and "__repr__()" that are implemented by\nall objects, including type objects. If the implicit lookup of these\nmethods used the conventional lookup process, they would fail when\ninvoked on the type object itself:\n\n >>> 1 .__hash__() == hash(1)\n True\n >>> int.__hash__() == hash(int)\n Traceback (most recent call last):\n File "<stdin>", line 1, in <module>\n TypeError: descriptor \'__hash__\' of \'int\' object needs an argument\n\nIncorrectly attempting to invoke an unbound method of a class in this\nway is sometimes referred to as \'metaclass confusion\', and is avoided\nby bypassing the instance when looking up special methods:\n\n >>> type(1).__hash__(1) == hash(1)\n True\n >>> type(int).__hash__(int) == hash(int)\n True\n\nIn addition to bypassing any instance attributes in the interest of\ncorrectness, implicit special method lookup generally also bypasses\nthe "__getattribute__()" method even of the object\'s metaclass:\n\n >>> class Meta(type):\n ... def __getattribute__(*args):\n ... print "Metaclass getattribute invoked"\n ... return type.__getattribute__(*args)\n ...\n >>> class C(object):\n ... __metaclass__ = Meta\n ... def __len__(self):\n ... return 10\n ... def __getattribute__(*args):\n ... print "Class getattribute invoked"\n ... return object.__getattribute__(*args)\n ...\n >>> c = C()\n >>> c.__len__() # Explicit lookup via instance\n Class getattribute invoked\n 10\n >>> type(c).__len__(c) # Explicit lookup via type\n Metaclass getattribute invoked\n 10\n >>> len(c) # Implicit lookup\n 10\n\nBypassing the "__getattribute__()" machinery in this fashion provides\nsignificant scope for speed optimisations within the interpreter, at\nthe cost of some flexibility in the handling of special methods (the\nspecial method *must* be set on the class object itself in order to be\nconsistently invoked by the interpreter).\n\n-[ Footnotes ]-\n\n[1] It *is* possible in some cases to change an object\'s type,\n under certain controlled conditions. It generally isn\'t a good\n idea though, since it can lead to some very strange behaviour if\n it is handled incorrectly.\n\n[2] For operands of the same type, it is assumed that if the non-\n reflected method (such as "__add__()") fails the operation is not\n supported, which is why the reflected method is not called.\n',
76 'typesseq': u'\nSequence Types --- "str", "unicode", "list", "tuple", "bytearray", "buffer", "xrange"\n*************************************************************************************\n\nThere are seven sequence types: strings, Unicode strings, lists,\ntuples, bytearrays, buffers, and xrange objects.\n\nFor other containers see the built in "dict" and "set" classes, and\nthe "collections" module.\n\nString literals are written in single or double quotes: "\'xyzzy\'",\n""frobozz"". See String literals for more about string literals.\nUnicode strings are much like strings, but are specified in the syntax\nusing a preceding "\'u\'" character: "u\'abc\'", "u"def"". In addition to\nthe functionality described here, there are also string-specific\nmethods described in the String Methods section. Lists are constructed\nwith square brackets, separating items with commas: "[a, b, c]".\nTuples are constructed by the comma operator (not within square\nbrackets), with or without enclosing parentheses, but an empty tuple\nmust have the enclosing parentheses, such as "a, b, c" or "()". A\nsingle item tuple must have a trailing comma, such as "(d,)".\n\nBytearray objects are created with the built-in function\n"bytearray()".\n\nBuffer objects are not directly supported by Python syntax, but can be\ncreated by calling the built-in function "buffer()". They don\'t\nsupport concatenation or repetition.\n\nObjects of type xrange are similar to buffers in that there is no\nspecific syntax to create them, but they are created using the\n"xrange()" function. They don\'t support slicing, concatenation or\nrepetition, and using "in", "not in", "min()" or "max()" on them is\ninefficient.\n\nMost sequence types support the following operations. The "in" and\n"not in" operations have the same priorities as the comparison\noperations. The "+" and "*" operations have the same priority as the\ncorresponding numeric operations. [3] Additional methods are provided\nfor Mutable Sequence Types.\n\nThis table lists the sequence operations sorted in ascending priority.\nIn the table, *s* and *t* are sequences of the same type; *n*, *i* and\n*j* are integers:\n\n+--------------------+----------------------------------+------------+\n| Operation | Result | Notes |\n+====================+==================================+============+\n| "x in s" | "True" if an item of *s* is | (1) |\n| | equal to *x*, else "False" | |\n+--------------------+----------------------------------+------------+\n| "x not in s" | "False" if an item of *s* is | (1) |\n| | equal to *x*, else "True" | |\n+--------------------+----------------------------------+------------+\n| "s + t" | the concatenation of *s* and *t* | (6) |\n+--------------------+----------------------------------+------------+\n| "s * n, n * s" | equivalent to adding *s* to | (2) |\n| | itself *n* times | |\n+--------------------+----------------------------------+------------+\n| "s[i]" | *i*th item of *s*, origin 0 | (3) |\n+--------------------+----------------------------------+------------+\n| "s[i:j]" | slice of *s* from *i* to *j* | (3)(4) |\n+--------------------+----------------------------------+------------+\n| "s[i:j:k]" | slice of *s* from *i* to *j* | (3)(5) |\n| | with step *k* | |\n+--------------------+----------------------------------+------------+\n| "len(s)" | length of *s* | |\n+--------------------+----------------------------------+------------+\n| "min(s)" | smallest item of *s* | |\n+--------------------+----------------------------------+------------+\n| "max(s)" | largest item of *s* | |\n+--------------------+----------------------------------+------------+\n| "s.index(x)" | index of the first occurrence of | |\n| | *x* in *s* | |\n+--------------------+----------------------------------+------------+\n| "s.count(x)" | total number of occurrences of | |\n| | *x* in *s* | |\n+--------------------+----------------------------------+------------+\n\nSequence types also support comparisons. In particular, tuples and\nlists are compared lexicographically by comparing corresponding\nelements. This means that to compare equal, every element must compare\nequal and the two sequences must be of the same type and have the same\nlength. (For full details see Comparisons in the language reference.)\n\nNotes:\n\n1. When *s* is a string or Unicode string object the "in" and "not\n in" operations act like a substring test. In Python versions\n before 2.3, *x* had to be a string of length 1. In Python 2.3 and\n beyond, *x* may be a string of any length.\n\n2. Values of *n* less than "0" are treated as "0" (which yields an\n empty sequence of the same type as *s*). Note that items in the\n sequence *s* are not copied; they are referenced multiple times.\n This often haunts new Python programmers; consider:\n\n >>> lists = [[]] * 3\n >>> lists\n [[], [], []]\n >>> lists[0].append(3)\n >>> lists\n [[3], [3], [3]]\n\n What has happened is that "[[]]" is a one-element list containing\n an empty list, so all three elements of "[[]] * 3" are references\n to this single empty list. Modifying any of the elements of\n "lists" modifies this single list. You can create a list of\n different lists this way:\n\n >>> lists = [[] for i in range(3)]\n >>> lists[0].append(3)\n >>> lists[1].append(5)\n >>> lists[2].append(7)\n >>> lists\n [[3], [5], [7]]\n\n Further explanation is available in the FAQ entry How do I create a\n multidimensional list?.\n\n3. If *i* or *j* is negative, the index is relative to the end of\n the string: "len(s) + i" or "len(s) + j" is substituted. But note\n that "-0" is still "0".\n\n4. The slice of *s* from *i* to *j* is defined as the sequence of\n items with index *k* such that "i <= k < j". If *i* or *j* is\n greater than "len(s)", use "len(s)". If *i* is omitted or "None",\n use "0". If *j* is omitted or "None", use "len(s)". If *i* is\n greater than or equal to *j*, the slice is empty.\n\n5. The slice of *s* from *i* to *j* with step *k* is defined as the\n sequence of items with index "x = i + n*k" such that "0 <= n <\n (j-i)/k". In other words, the indices are "i", "i+k", "i+2*k",\n "i+3*k" and so on, stopping when *j* is reached (but never\n including *j*). If *i* or *j* is greater than "len(s)", use\n "len(s)". If *i* or *j* are omitted or "None", they become "end"\n values (which end depends on the sign of *k*). Note, *k* cannot be\n zero. If *k* is "None", it is treated like "1".\n\n6. **CPython implementation detail:** If *s* and *t* are both\n strings, some Python implementations such as CPython can usually\n perform an in-place optimization for assignments of the form "s = s\n + t" or "s += t". When applicable, this optimization makes\n quadratic run-time much less likely. This optimization is both\n version and implementation dependent. For performance sensitive\n code, it is preferable to use the "str.join()" method which assures\n consistent linear concatenation performance across versions and\n implementations.\n\n Changed in version 2.4: Formerly, string concatenation never\n occurred in-place.\n\n\nString Methods\n==============\n\nBelow are listed the string methods which both 8-bit strings and\nUnicode objects support. Some of them are also available on\n"bytearray" objects.\n\nIn addition, Python\'s strings support the sequence type methods\ndescribed in the Sequence Types --- str, unicode, list, tuple,\nbytearray, buffer, xrange section. To output formatted strings use\ntemplate strings or the "%" operator described in the String\nFormatting Operations section. Also, see the "re" module for string\nfunctions based on regular expressions.\n\nstr.capitalize()\n\n Return a copy of the string with its first character capitalized\n and the rest lowercased.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.center(width[, fillchar])\n\n Return centered in a string of length *width*. Padding is done\n using the specified *fillchar* (default is a space).\n\n Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.count(sub[, start[, end]])\n\n Return the number of non-overlapping occurrences of substring *sub*\n in the range [*start*, *end*]. Optional arguments *start* and\n *end* are interpreted as in slice notation.\n\nstr.decode([encoding[, errors]])\n\n Decodes the string using the codec registered for *encoding*.\n *encoding* defaults to the default string encoding. *errors* may\n be given to set a different error handling scheme. The default is\n "\'strict\'", meaning that encoding errors raise "UnicodeError".\n Other possible values are "\'ignore\'", "\'replace\'" and any other\n name registered via "codecs.register_error()", see section Codec\n Base Classes.\n\n New in version 2.2.\n\n Changed in version 2.3: Support for other error handling schemes\n added.\n\n Changed in version 2.7: Support for keyword arguments added.\n\nstr.encode([encoding[, errors]])\n\n Return an encoded version of the string. Default encoding is the\n current default string encoding. *errors* may be given to set a\n different error handling scheme. The default for *errors* is\n "\'strict\'", meaning that encoding errors raise a "UnicodeError".\n Other possible values are "\'ignore\'", "\'replace\'",\n "\'xmlcharrefreplace\'", "\'backslashreplace\'" and any other name\n registered via "codecs.register_error()", see section Codec Base\n Classes. For a list of possible encodings, see section Standard\n Encodings.\n\n New in version 2.0.\n\n Changed in version 2.3: Support for "\'xmlcharrefreplace\'" and\n "\'backslashreplace\'" and other error handling schemes added.\n\n Changed in version 2.7: Support for keyword arguments added.\n\nstr.endswith(suffix[, start[, end]])\n\n Return "True" if the string ends with the specified *suffix*,\n otherwise return "False". *suffix* can also be a tuple of suffixes\n to look for. With optional *start*, test beginning at that\n position. With optional *end*, stop comparing at that position.\n\n Changed in version 2.5: Accept tuples as *suffix*.\n\nstr.expandtabs([tabsize])\n\n Return a copy of the string where all tab characters are replaced\n by one or more spaces, depending on the current column and the\n given tab size. Tab positions occur every *tabsize* characters\n (default is 8, giving tab positions at columns 0, 8, 16 and so on).\n To expand the string, the current column is set to zero and the\n string is examined character by character. If the character is a\n tab ("\\t"), one or more space characters are inserted in the result\n until the current column is equal to the next tab position. (The\n tab character itself is not copied.) If the character is a newline\n ("\\n") or return ("\\r"), it is copied and the current column is\n reset to zero. Any other character is copied unchanged and the\n current column is incremented by one regardless of how the\n character is represented when printed.\n\n >>> \'01\\t012\\t0123\\t01234\'.expandtabs()\n \'01 012 0123 01234\'\n >>> \'01\\t012\\t0123\\t01234\'.expandtabs(4)\n \'01 012 0123 01234\'\n\nstr.find(sub[, start[, end]])\n\n Return the lowest index in the string where substring *sub* is\n found within the slice "s[start:end]". Optional arguments *start*\n and *end* are interpreted as in slice notation. Return "-1" if\n *sub* is not found.\n\n Note: The "find()" method should be used only if you need to know\n the position of *sub*. To check if *sub* is a substring or not,\n use the "in" operator:\n\n >>> \'Py\' in \'Python\'\n True\n\nstr.format(*args, **kwargs)\n\n Perform a string formatting operation. The string on which this\n method is called can contain literal text or replacement fields\n delimited by braces "{}". Each replacement field contains either\n the numeric index of a positional argument, or the name of a\n keyword argument. Returns a copy of the string where each\n replacement field is replaced with the string value of the\n corresponding argument.\n\n >>> "The sum of 1 + 2 is {0}".format(1+2)\n \'The sum of 1 + 2 is 3\'\n\n See Format String Syntax for a description of the various\n formatting options that can be specified in format strings.\n\n This method of string formatting is the new standard in Python 3,\n and should be preferred to the "%" formatting described in String\n Formatting Operations in new code.\n\n New in version 2.6.\n\nstr.index(sub[, start[, end]])\n\n Like "find()", but raise "ValueError" when the substring is not\n found.\n\nstr.isalnum()\n\n Return true if all characters in the string are alphanumeric and\n there is at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isalpha()\n\n Return true if all characters in the string are alphabetic and\n there is at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isdigit()\n\n Return true if all characters in the string are digits and there is\n at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.islower()\n\n Return true if all cased characters [4] in the string are lowercase\n and there is at least one cased character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isspace()\n\n Return true if there are only whitespace characters in the string\n and there is at least one character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.istitle()\n\n Return true if the string is a titlecased string and there is at\n least one character, for example uppercase characters may only\n follow uncased characters and lowercase characters only cased ones.\n Return false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.isupper()\n\n Return true if all cased characters [4] in the string are uppercase\n and there is at least one cased character, false otherwise.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.join(iterable)\n\n Return a string which is the concatenation of the strings in the\n *iterable* *iterable*. The separator between elements is the\n string providing this method.\n\nstr.ljust(width[, fillchar])\n\n Return the string left justified in a string of length *width*.\n Padding is done using the specified *fillchar* (default is a\n space). The original string is returned if *width* is less than or\n equal to "len(s)".\n\n Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.lower()\n\n Return a copy of the string with all the cased characters [4]\n converted to lowercase.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.lstrip([chars])\n\n Return a copy of the string with leading characters removed. The\n *chars* argument is a string specifying the set of characters to be\n removed. If omitted or "None", the *chars* argument defaults to\n removing whitespace. The *chars* argument is not a prefix; rather,\n all combinations of its values are stripped:\n\n >>> \' spacious \'.lstrip()\n \'spacious \'\n >>> \'www.example.com\'.lstrip(\'cmowz.\')\n \'example.com\'\n\n Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.partition(sep)\n\n Split the string at the first occurrence of *sep*, and return a\n 3-tuple containing the part before the separator, the separator\n itself, and the part after the separator. If the separator is not\n found, return a 3-tuple containing the string itself, followed by\n two empty strings.\n\n New in version 2.5.\n\nstr.replace(old, new[, count])\n\n Return a copy of the string with all occurrences of substring *old*\n replaced by *new*. If the optional argument *count* is given, only\n the first *count* occurrences are replaced.\n\nstr.rfind(sub[, start[, end]])\n\n Return the highest index in the string where substring *sub* is\n found, such that *sub* is contained within "s[start:end]".\n Optional arguments *start* and *end* are interpreted as in slice\n notation. Return "-1" on failure.\n\nstr.rindex(sub[, start[, end]])\n\n Like "rfind()" but raises "ValueError" when the substring *sub* is\n not found.\n\nstr.rjust(width[, fillchar])\n\n Return the string right justified in a string of length *width*.\n Padding is done using the specified *fillchar* (default is a\n space). The original string is returned if *width* is less than or\n equal to "len(s)".\n\n Changed in version 2.4: Support for the *fillchar* argument.\n\nstr.rpartition(sep)\n\n Split the string at the last occurrence of *sep*, and return a\n 3-tuple containing the part before the separator, the separator\n itself, and the part after the separator. If the separator is not\n found, return a 3-tuple containing two empty strings, followed by\n the string itself.\n\n New in version 2.5.\n\nstr.rsplit([sep[, maxsplit]])\n\n Return a list of the words in the string, using *sep* as the\n delimiter string. If *maxsplit* is given, at most *maxsplit* splits\n are done, the *rightmost* ones. If *sep* is not specified or\n "None", any whitespace string is a separator. Except for splitting\n from the right, "rsplit()" behaves like "split()" which is\n described in detail below.\n\n New in version 2.4.\n\nstr.rstrip([chars])\n\n Return a copy of the string with trailing characters removed. The\n *chars* argument is a string specifying the set of characters to be\n removed. If omitted or "None", the *chars* argument defaults to\n removing whitespace. The *chars* argument is not a suffix; rather,\n all combinations of its values are stripped:\n\n >>> \' spacious \'.rstrip()\n \' spacious\'\n >>> \'mississippi\'.rstrip(\'ipz\')\n \'mississ\'\n\n Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.split([sep[, maxsplit]])\n\n Return a list of the words in the string, using *sep* as the\n delimiter string. If *maxsplit* is given, at most *maxsplit*\n splits are done (thus, the list will have at most "maxsplit+1"\n elements). If *maxsplit* is not specified or "-1", then there is\n no limit on the number of splits (all possible splits are made).\n\n If *sep* is given, consecutive delimiters are not grouped together\n and are deemed to delimit empty strings (for example,\n "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', \'2\']"). The *sep* argument\n may consist of multiple characters (for example,\n "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', \'3\']"). Splitting an\n empty string with a specified separator returns "[\'\']".\n\n If *sep* is not specified or is "None", a different splitting\n algorithm is applied: runs of consecutive whitespace are regarded\n as a single separator, and the result will contain no empty strings\n at the start or end if the string has leading or trailing\n whitespace. Consequently, splitting an empty string or a string\n consisting of just whitespace with a "None" separator returns "[]".\n\n For example, "\' 1 2 3 \'.split()" returns "[\'1\', \'2\', \'3\']", and\n "\' 1 2 3 \'.split(None, 1)" returns "[\'1\', \'2 3 \']".\n\nstr.splitlines([keepends])\n\n Return a list of the lines in the string, breaking at line\n boundaries. This method uses the *universal newlines* approach to\n splitting lines. Line breaks are not included in the resulting list\n unless *keepends* is given and true.\n\n Python recognizes ""\\r"", ""\\n"", and ""\\r\\n"" as line boundaries\n for 8-bit strings.\n\n For example:\n\n >>> \'ab c\\n\\nde fg\\rkl\\r\\n\'.splitlines()\n [\'ab c\', \'\', \'de fg\', \'kl\']\n >>> \'ab c\\n\\nde fg\\rkl\\r\\n\'.splitlines(True)\n [\'ab c\\n\', \'\\n\', \'de fg\\r\', \'kl\\r\\n\']\n\n Unlike "split()" when a delimiter string *sep* is given, this\n method returns an empty list for the empty string, and a terminal\n line break does not result in an extra line:\n\n >>> "".splitlines()\n []\n >>> "One line\\n".splitlines()\n [\'One line\']\n\n For comparison, "split(\'\\n\')" gives:\n\n >>> \'\'.split(\'\\n\')\n [\'\']\n >>> \'Two lines\\n\'.split(\'\\n\')\n [\'Two lines\', \'\']\n\nunicode.splitlines([keepends])\n\n Return a list of the lines in the string, like "str.splitlines()".\n However, the Unicode method splits on the following line\n boundaries, which are a superset of the *universal newlines*\n recognized for 8-bit strings.\n\n +-------------------------+-------------------------------+\n | Representation | Description |\n +=========================+===============================+\n | "\\n" | Line Feed |\n +-------------------------+-------------------------------+\n | "\\r" | Carriage Return |\n +-------------------------+-------------------------------+\n | "\\r\\n" | Carriage Return + Line Feed |\n +-------------------------+-------------------------------+\n | "\\v" or "\\x0b" | Line Tabulation |\n +-------------------------+-------------------------------+\n | "\\f" or "\\x0c" | Form Feed |\n +-------------------------+-------------------------------+\n | "\\x1c" | File Separator |\n +-------------------------+-------------------------------+\n | "\\x1d" | Group Separator |\n +-------------------------+-------------------------------+\n | "\\x1e" | Record Separator |\n +-------------------------+-------------------------------+\n | "\\x85" | Next Line (C1 Control Code) |\n +-------------------------+-------------------------------+\n | "\\u2028" | Line Separator |\n +-------------------------+-------------------------------+\n | "\\u2029" | Paragraph Separator |\n +-------------------------+-------------------------------+\n\n Changed in version 2.7: "\\v" and "\\f" added to list of line\n boundaries.\n\nstr.startswith(prefix[, start[, end]])\n\n Return "True" if string starts with the *prefix*, otherwise return\n "False". *prefix* can also be a tuple of prefixes to look for.\n With optional *start*, test string beginning at that position.\n With optional *end*, stop comparing string at that position.\n\n Changed in version 2.5: Accept tuples as *prefix*.\n\nstr.strip([chars])\n\n Return a copy of the string with the leading and trailing\n characters removed. The *chars* argument is a string specifying the\n set of characters to be removed. If omitted or "None", the *chars*\n argument defaults to removing whitespace. The *chars* argument is\n not a prefix or suffix; rather, all combinations of its values are\n stripped:\n\n >>> \' spacious \'.strip()\n \'spacious\'\n >>> \'www.example.com\'.strip(\'cmowz.\')\n \'example\'\n\n Changed in version 2.2.2: Support for the *chars* argument.\n\nstr.swapcase()\n\n Return a copy of the string with uppercase characters converted to\n lowercase and vice versa.\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.title()\n\n Return a titlecased version of the string where words start with an\n uppercase character and the remaining characters are lowercase.\n\n The algorithm uses a simple language-independent definition of a\n word as groups of consecutive letters. The definition works in\n many contexts but it means that apostrophes in contractions and\n possessives form word boundaries, which may not be the desired\n result:\n\n >>> "they\'re bill\'s friends from the UK".title()\n "They\'Re Bill\'S Friends From The Uk"\n\n A workaround for apostrophes can be constructed using regular\n expressions:\n\n >>> import re\n >>> def titlecase(s):\n ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n ... lambda mo: mo.group(0)[0].upper() +\n ... mo.group(0)[1:].lower(),\n ... s)\n ...\n >>> titlecase("they\'re bill\'s friends.")\n "They\'re Bill\'s Friends."\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.translate(table[, deletechars])\n\n Return a copy of the string where all characters occurring in the\n optional argument *deletechars* are removed, and the remaining\n characters have been mapped through the given translation table,\n which must be a string of length 256.\n\n You can use the "maketrans()" helper function in the "string"\n module to create a translation table. For string objects, set the\n *table* argument to "None" for translations that only delete\n characters:\n\n >>> \'read this short text\'.translate(None, \'aeiou\')\n \'rd ths shrt txt\'\n\n New in version 2.6: Support for a "None" *table* argument.\n\n For Unicode objects, the "translate()" method does not accept the\n optional *deletechars* argument. Instead, it returns a copy of the\n *s* where all characters have been mapped through the given\n translation table which must be a mapping of Unicode ordinals to\n Unicode ordinals, Unicode strings or "None". Unmapped characters\n are left untouched. Characters mapped to "None" are deleted. Note,\n a more flexible approach is to create a custom character mapping\n codec using the "codecs" module (see "encodings.cp1251" for an\n example).\n\nstr.upper()\n\n Return a copy of the string with all the cased characters [4]\n converted to uppercase. Note that "str.upper().isupper()" might be\n "False" if "s" contains uncased characters or if the Unicode\n category of the resulting character(s) is not "Lu" (Letter,\n uppercase), but e.g. "Lt" (Letter, titlecase).\n\n For 8-bit strings, this method is locale-dependent.\n\nstr.zfill(width)\n\n Return the numeric string left filled with zeros in a string of\n length *width*. A sign prefix is handled correctly. The original\n string is returned if *width* is less than or equal to "len(s)".\n\n New in version 2.2.2.\n\nThe following methods are present only on unicode objects:\n\nunicode.isnumeric()\n\n Return "True" if there are only numeric characters in S, "False"\n otherwise. Numeric characters include digit characters, and all\n characters that have the Unicode numeric value property, e.g.\n U+2155, VULGAR FRACTION ONE FIFTH.\n\nunicode.isdecimal()\n\n Return "True" if there are only decimal characters in S, "False"\n otherwise. Decimal characters include digit characters, and all\n characters that can be used to form decimal-radix numbers, e.g.\n U+0660, ARABIC-INDIC DIGIT ZERO.\n\n\nString Formatting Operations\n============================\n\nString and Unicode objects have one unique built-in operation: the "%"\noperator (modulo). This is also known as the string *formatting* or\n*interpolation* operator. Given "format % values" (where *format* is\na string or Unicode object), "%" conversion specifications in *format*\nare replaced with zero or more elements of *values*. The effect is\nsimilar to the using "sprintf()" in the C language. If *format* is a\nUnicode object, or if any of the objects being converted using the\n"%s" conversion are Unicode objects, the result will also be a Unicode\nobject.\n\nIf *format* requires a single argument, *values* may be a single non-\ntuple object. [5] Otherwise, *values* must be a tuple with exactly\nthe number of items specified by the format string, or a single\nmapping object (for example, a dictionary).\n\nA conversion specifier contains two or more characters and has the\nfollowing components, which must occur in this order:\n\n1. The "\'%\'" character, which marks the start of the specifier.\n\n2. Mapping key (optional), consisting of a parenthesised sequence\n of characters (for example, "(somename)").\n\n3. Conversion flags (optional), which affect the result of some\n conversion types.\n\n4. Minimum field width (optional). If specified as an "\'*\'"\n (asterisk), the actual width is read from the next element of the\n tuple in *values*, and the object to convert comes after the\n minimum field width and optional precision.\n\n5. Precision (optional), given as a "\'.\'" (dot) followed by the\n precision. If specified as "\'*\'" (an asterisk), the actual width\n is read from the next element of the tuple in *values*, and the\n value to convert comes after the precision.\n\n6. Length modifier (optional).\n\n7. Conversion type.\n\nWhen the right argument is a dictionary (or other mapping type), then\nthe formats in the string *must* include a parenthesised mapping key\ninto that dictionary inserted immediately after the "\'%\'" character.\nThe mapping key selects the value to be formatted from the mapping.\nFor example:\n\n>>> print \'%(language)s has %(number)03d quote types.\' % \\\n... {"language": "Python", "number": 2}\nPython has 002 quote types.\n\nIn this case no "*" specifiers may occur in a format (since they\nrequire a sequential parameter list).\n\nThe conversion flag characters are:\n\n+-----------+-----------------------------------------------------------------------+\n| Flag | Meaning |\n+===========+=======================================================================+\n| "\'#\'" | The value conversion will use the "alternate form" (where defined |\n| | below). |\n+-----------+-----------------------------------------------------------------------+\n| "\'0\'" | The conversion will be zero padded for numeric values. |\n+-----------+-----------------------------------------------------------------------+\n| "\'-\'" | The converted value is left adjusted (overrides the "\'0\'" conversion |\n| | if both are given). |\n+-----------+-----------------------------------------------------------------------+\n| "\' \'" | (a space) A blank should be left before a positive number (or empty |\n| | string) produced by a signed conversion. |\n+-----------+-----------------------------------------------------------------------+\n| "\'+\'" | A sign character ("\'+\'" or "\'-\'") will precede the conversion |\n| | (overrides a "space" flag). |\n+-----------+-----------------------------------------------------------------------+\n\nA length modifier ("h", "l", or "L") may be present, but is ignored as\nit is not necessary for Python -- so e.g. "%ld" is identical to "%d".\n\nThe conversion types are:\n\n+--------------+-------------------------------------------------------+---------+\n| Conversion | Meaning | Notes |\n+==============+=======================================================+=========+\n| "\'d\'" | Signed integer decimal. | |\n+--------------+-------------------------------------------------------+---------+\n| "\'i\'" | Signed integer decimal. | |\n+--------------+-------------------------------------------------------+---------+\n| "\'o\'" | Signed octal value. | (1) |\n+--------------+-------------------------------------------------------+---------+\n| "\'u\'" | Obsolete type -- it is identical to "\'d\'". | (7) |\n+--------------+-------------------------------------------------------+---------+\n| "\'x\'" | Signed hexadecimal (lowercase). | (2) |\n+--------------+-------------------------------------------------------+---------+\n| "\'X\'" | Signed hexadecimal (uppercase). | (2) |\n+--------------+-------------------------------------------------------+---------+\n| "\'e\'" | Floating point exponential format (lowercase). | (3) |\n+--------------+-------------------------------------------------------+---------+\n| "\'E\'" | Floating point exponential format (uppercase). | (3) |\n+--------------+-------------------------------------------------------+---------+\n| "\'f\'" | Floating point decimal format. | (3) |\n+--------------+-------------------------------------------------------+---------+\n| "\'F\'" | Floating point decimal format. | (3) |\n+--------------+-------------------------------------------------------+---------+\n| "\'g\'" | Floating point format. Uses lowercase exponential | (4) |\n| | format if exponent is less than -4 or not less than | |\n| | precision, decimal format otherwise. | |\n+--------------+-------------------------------------------------------+---------+\n| "\'G\'" | Floating point format. Uses uppercase exponential | (4) |\n| | format if exponent is less than -4 or not less than | |\n| | precision, decimal format otherwise. | |\n+--------------+-------------------------------------------------------+---------+\n| "\'c\'" | Single character (accepts integer or single character | |\n| | string). | |\n+--------------+-------------------------------------------------------+---------+\n| "\'r\'" | String (converts any Python object using repr()). | (5) |\n+--------------+-------------------------------------------------------+---------+\n| "\'s\'" | String (converts any Python object using "str()"). | (6) |\n+--------------+-------------------------------------------------------+---------+\n| "\'%\'" | No argument is converted, results in a "\'%\'" | |\n| | character in the result. | |\n+--------------+-------------------------------------------------------+---------+\n\nNotes:\n\n1. The alternate form causes a leading zero ("\'0\'") to be inserted\n between left-hand padding and the formatting of the number if the\n leading character of the result is not already a zero.\n\n2. The alternate form causes a leading "\'0x\'" or "\'0X\'" (depending\n on whether the "\'x\'" or "\'X\'" format was used) to be inserted\n between left-hand padding and the formatting of the number if the\n leading character of the result is not already a zero.\n\n3. The alternate form causes the result to always contain a decimal\n point, even if no digits follow it.\n\n The precision determines the number of digits after the decimal\n point and defaults to 6.\n\n4. The alternate form causes the result to always contain a decimal\n point, and trailing zeroes are not removed as they would otherwise\n be.\n\n The precision determines the number of significant digits before\n and after the decimal point and defaults to 6.\n\n5. The "%r" conversion was added in Python 2.0.\n\n The precision determines the maximal number of characters used.\n\n6. If the object or format provided is a "unicode" string, the\n resulting string will also be "unicode".\n\n The precision determines the maximal number of characters used.\n\n7. See **PEP 237**.\n\nSince Python strings have an explicit length, "%s" conversions do not\nassume that "\'\\0\'" is the end of the string.\n\nChanged in version 2.7: "%f" conversions for numbers whose absolute\nvalue is over 1e50 are no longer replaced by "%g" conversions.\n\nAdditional string operations are defined in standard modules "string"\nand "re".\n\n\nXRange Type\n===========\n\nThe "xrange" type is an immutable sequence which is commonly used for\nlooping. The advantage of the "xrange" type is that an "xrange"\nobject will always take the same amount of memory, no matter the size\nof the range it represents. There are no consistent performance\nadvantages.\n\nXRange objects have very little behavior: they only support indexing,\niteration, and the "len()" function.\n\n\nMutable Sequence Types\n======================\n\nList and "bytearray" objects support additional operations that allow\nin-place modification of the object. Other mutable sequence types\n(when added to the language) should also support these operations.\nStrings and tuples are immutable sequence types: such objects cannot\nbe modified once created. The following operations are defined on\nmutable sequence types (where *x* is an arbitrary object):\n\n+--------------------------------+----------------------------------+-----------------------+\n| Operation | Result | Notes |\n+================================+==================================+=======================+\n| "s[i] = x" | item *i* of *s* is replaced by | |\n| | *x* | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s[i:j] = t" | slice of *s* from *i* to *j* is | |\n| | replaced by the contents of the | |\n| | iterable *t* | |\n+--------------------------------+----------------------------------+-----------------------+\n| "del s[i:j]" | same as "s[i:j] = []" | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s[i:j:k] = t" | the elements of "s[i:j:k]" are | (1) |\n| | replaced by those of *t* | |\n+--------------------------------+----------------------------------+-----------------------+\n| "del s[i:j:k]" | removes the elements of | |\n| | "s[i:j:k]" from the list | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.append(x)" | same as "s[len(s):len(s)] = [x]" | (2) |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.extend(t)" or "s += t" | for the most part the same as | (3) |\n| | "s[len(s):len(s)] = t" | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s *= n" | updates *s* with its contents | (11) |\n| | repeated *n* times | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.count(x)" | return number of *i*\'s for which | |\n| | "s[i] == x" | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.index(x[, i[, j]])" | return smallest *k* such that | (4) |\n| | "s[k] == x" and "i <= k < j" | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.insert(i, x)" | same as "s[i:i] = [x]" | (5) |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.pop([i])" | same as "x = s[i]; del s[i]; | (6) |\n| | return x" | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.remove(x)" | same as "del s[s.index(x)]" | (4) |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.reverse()" | reverses the items of *s* in | (7) |\n| | place | |\n+--------------------------------+----------------------------------+-----------------------+\n| "s.sort([cmp[, key[, | sort the items of *s* in place | (7)(8)(9)(10) |\n| reverse]]])" | | |\n+--------------------------------+----------------------------------+-----------------------+\n\nNotes:\n\n1. *t* must have the same length as the slice it is replacing.\n\n2. The C implementation of Python has historically accepted\n multiple parameters and implicitly joined them into a tuple; this\n no longer works in Python 2.0. Use of this misfeature has been\n deprecated since Python 1.4.\n\n3. *t* can be any iterable object.\n\n4. Raises "ValueError" when *x* is not found in *s*. When a\n negative index is passed as the second or third parameter to the\n "index()" method, the list length is added, as for slice indices.\n If it is still negative, it is truncated to zero, as for slice\n indices.\n\n Changed in version 2.3: Previously, "index()" didn\'t have arguments\n for specifying start and stop positions.\n\n5. When a negative index is passed as the first parameter to the\n "insert()" method, the list length is added, as for slice indices.\n If it is still negative, it is truncated to zero, as for slice\n indices.\n\n Changed in version 2.3: Previously, all negative indices were\n truncated to zero.\n\n6. The "pop()" method\'s optional argument *i* defaults to "-1", so\n that by default the last item is removed and returned.\n\n7. The "sort()" and "reverse()" methods modify the list in place\n for economy of space when sorting or reversing a large list. To\n remind you that they operate by side effect, they don\'t return the\n sorted or reversed list.\n\n8. The "sort()" method takes optional arguments for controlling the\n comparisons.\n\n *cmp* specifies a custom comparison function of two arguments (list\n items) which should return a negative, zero or positive number\n depending on whether the first argument is considered smaller than,\n equal to, or larger than the second argument: "cmp=lambda x,y:\n cmp(x.lower(), y.lower())". The default value is "None".\n\n *key* specifies a function of one argument that is used to extract\n a comparison key from each list element: "key=str.lower". The\n default value is "None".\n\n *reverse* is a boolean value. If set to "True", then the list\n elements are sorted as if each comparison were reversed.\n\n In general, the *key* and *reverse* conversion processes are much\n faster than specifying an equivalent *cmp* function. This is\n because *cmp* is called multiple times for each list element while\n *key* and *reverse* touch each element only once. Use\n "functools.cmp_to_key()" to convert an old-style *cmp* function to\n a *key* function.\n\n Changed in version 2.3: Support for "None" as an equivalent to\n omitting *cmp* was added.\n\n Changed in version 2.4: Support for *key* and *reverse* was added.\n\n9. Starting with Python 2.3, the "sort()" method is guaranteed to\n be stable. A sort is stable if it guarantees not to change the\n relative order of elements that compare equal --- this is helpful\n for sorting in multiple passes (for example, sort by department,\n then by salary grade).\n\n10. **CPython implementation detail:** While a list is being\n sorted, the effect of attempting to mutate, or even inspect, the\n list is undefined. The C implementation of Python 2.3 and newer\n makes the list appear empty for the duration, and raises\n "ValueError" if it can detect that the list has been mutated\n during a sort.\n\n11. The value *n* is an integer, or an object implementing\n "__index__()". Zero and negative values of *n* clear the\n sequence. Items in the sequence are not copied; they are\n referenced multiple times, as explained for "s * n" under Sequence\n Types --- str, unicode, list, tuple, bytearray, buffer, xrange.\n',
/external/python/cpython3/Python/
H A Dcompile.c1202 compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute) argument
1215 if (absolute)

Completed in 1138 milliseconds

12