1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "nodes.h"
17
18#include <cfloat>
19
20#include "art_method-inl.h"
21#include "base/bit_utils.h"
22#include "base/bit_vector-inl.h"
23#include "base/stl_util.h"
24#include "class_linker-inl.h"
25#include "code_generator.h"
26#include "common_dominator.h"
27#include "intrinsics.h"
28#include "mirror/class-inl.h"
29#include "scoped_thread_state_change-inl.h"
30#include "ssa_builder.h"
31
32namespace art {
33
34// Enable floating-point static evaluation during constant folding
35// only if all floating-point operations and constants evaluate in the
36// range and precision of the type used (i.e., 32-bit float, 64-bit
37// double).
38static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
39
40void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
41  ScopedObjectAccess soa(Thread::Current());
42  // Create the inexact Object reference type and store it in the HGraph.
43  ClassLinker* linker = Runtime::Current()->GetClassLinker();
44  inexact_object_rti_ = ReferenceTypeInfo::Create(
45      handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
46      /* is_exact */ false);
47}
48
49void HGraph::AddBlock(HBasicBlock* block) {
50  block->SetBlockId(blocks_.size());
51  blocks_.push_back(block);
52}
53
54void HGraph::FindBackEdges(ArenaBitVector* visited) {
55  // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
56  DCHECK_EQ(visited->GetHighestBitSet(), -1);
57
58  // Allocate memory from local ScopedArenaAllocator.
59  ScopedArenaAllocator allocator(GetArenaStack());
60  // Nodes that we're currently visiting, indexed by block id.
61  ArenaBitVector visiting(
62      &allocator, blocks_.size(), /* expandable */ false, kArenaAllocGraphBuilder);
63  visiting.ClearAllBits();
64  // Number of successors visited from a given node, indexed by block id.
65  ScopedArenaVector<size_t> successors_visited(blocks_.size(),
66                                               0u,
67                                               allocator.Adapter(kArenaAllocGraphBuilder));
68  // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
69  ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
70  constexpr size_t kDefaultWorklistSize = 8;
71  worklist.reserve(kDefaultWorklistSize);
72  visited->SetBit(entry_block_->GetBlockId());
73  visiting.SetBit(entry_block_->GetBlockId());
74  worklist.push_back(entry_block_);
75
76  while (!worklist.empty()) {
77    HBasicBlock* current = worklist.back();
78    uint32_t current_id = current->GetBlockId();
79    if (successors_visited[current_id] == current->GetSuccessors().size()) {
80      visiting.ClearBit(current_id);
81      worklist.pop_back();
82    } else {
83      HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
84      uint32_t successor_id = successor->GetBlockId();
85      if (visiting.IsBitSet(successor_id)) {
86        DCHECK(ContainsElement(worklist, successor));
87        successor->AddBackEdge(current);
88      } else if (!visited->IsBitSet(successor_id)) {
89        visited->SetBit(successor_id);
90        visiting.SetBit(successor_id);
91        worklist.push_back(successor);
92      }
93    }
94  }
95}
96
97// Remove the environment use records of the instruction for users.
98void RemoveEnvironmentUses(HInstruction* instruction) {
99  for (HEnvironment* environment = instruction->GetEnvironment();
100       environment != nullptr;
101       environment = environment->GetParent()) {
102    for (size_t i = 0, e = environment->Size(); i < e; ++i) {
103      if (environment->GetInstructionAt(i) != nullptr) {
104        environment->RemoveAsUserOfInput(i);
105      }
106    }
107  }
108}
109
110// Return whether the instruction has an environment and it's used by others.
111bool HasEnvironmentUsedByOthers(HInstruction* instruction) {
112  for (HEnvironment* environment = instruction->GetEnvironment();
113       environment != nullptr;
114       environment = environment->GetParent()) {
115    for (size_t i = 0, e = environment->Size(); i < e; ++i) {
116      HInstruction* user = environment->GetInstructionAt(i);
117      if (user != nullptr) {
118        return true;
119      }
120    }
121  }
122  return false;
123}
124
125// Reset environment records of the instruction itself.
126void ResetEnvironmentInputRecords(HInstruction* instruction) {
127  for (HEnvironment* environment = instruction->GetEnvironment();
128       environment != nullptr;
129       environment = environment->GetParent()) {
130    for (size_t i = 0, e = environment->Size(); i < e; ++i) {
131      DCHECK(environment->GetHolder() == instruction);
132      if (environment->GetInstructionAt(i) != nullptr) {
133        environment->SetRawEnvAt(i, nullptr);
134      }
135    }
136  }
137}
138
139static void RemoveAsUser(HInstruction* instruction) {
140  instruction->RemoveAsUserOfAllInputs();
141  RemoveEnvironmentUses(instruction);
142}
143
144void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
145  for (size_t i = 0; i < blocks_.size(); ++i) {
146    if (!visited.IsBitSet(i)) {
147      HBasicBlock* block = blocks_[i];
148      if (block == nullptr) continue;
149      DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
150      for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
151        RemoveAsUser(it.Current());
152      }
153    }
154  }
155}
156
157void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
158  for (size_t i = 0; i < blocks_.size(); ++i) {
159    if (!visited.IsBitSet(i)) {
160      HBasicBlock* block = blocks_[i];
161      if (block == nullptr) continue;
162      // We only need to update the successor, which might be live.
163      for (HBasicBlock* successor : block->GetSuccessors()) {
164        successor->RemovePredecessor(block);
165      }
166      // Remove the block from the list of blocks, so that further analyses
167      // never see it.
168      blocks_[i] = nullptr;
169      if (block->IsExitBlock()) {
170        SetExitBlock(nullptr);
171      }
172      // Mark the block as removed. This is used by the HGraphBuilder to discard
173      // the block as a branch target.
174      block->SetGraph(nullptr);
175    }
176  }
177}
178
179GraphAnalysisResult HGraph::BuildDominatorTree() {
180  // Allocate memory from local ScopedArenaAllocator.
181  ScopedArenaAllocator allocator(GetArenaStack());
182
183  ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder);
184  visited.ClearAllBits();
185
186  // (1) Find the back edges in the graph doing a DFS traversal.
187  FindBackEdges(&visited);
188
189  // (2) Remove instructions and phis from blocks not visited during
190  //     the initial DFS as users from other instructions, so that
191  //     users can be safely removed before uses later.
192  RemoveInstructionsAsUsersFromDeadBlocks(visited);
193
194  // (3) Remove blocks not visited during the initial DFS.
195  //     Step (5) requires dead blocks to be removed from the
196  //     predecessors list of live blocks.
197  RemoveDeadBlocks(visited);
198
199  // (4) Simplify the CFG now, so that we don't need to recompute
200  //     dominators and the reverse post order.
201  SimplifyCFG();
202
203  // (5) Compute the dominance information and the reverse post order.
204  ComputeDominanceInformation();
205
206  // (6) Analyze loops discovered through back edge analysis, and
207  //     set the loop information on each block.
208  GraphAnalysisResult result = AnalyzeLoops();
209  if (result != kAnalysisSuccess) {
210    return result;
211  }
212
213  // (7) Precompute per-block try membership before entering the SSA builder,
214  //     which needs the information to build catch block phis from values of
215  //     locals at throwing instructions inside try blocks.
216  ComputeTryBlockInformation();
217
218  return kAnalysisSuccess;
219}
220
221void HGraph::ClearDominanceInformation() {
222  for (HBasicBlock* block : GetReversePostOrder()) {
223    block->ClearDominanceInformation();
224  }
225  reverse_post_order_.clear();
226}
227
228void HGraph::ClearLoopInformation() {
229  SetHasIrreducibleLoops(false);
230  for (HBasicBlock* block : GetReversePostOrder()) {
231    block->SetLoopInformation(nullptr);
232  }
233}
234
235void HBasicBlock::ClearDominanceInformation() {
236  dominated_blocks_.clear();
237  dominator_ = nullptr;
238}
239
240HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
241  HInstruction* instruction = GetFirstInstruction();
242  while (instruction->IsParallelMove()) {
243    instruction = instruction->GetNext();
244  }
245  return instruction;
246}
247
248static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
249  DCHECK(ContainsElement(block->GetSuccessors(), successor));
250
251  HBasicBlock* old_dominator = successor->GetDominator();
252  HBasicBlock* new_dominator =
253      (old_dominator == nullptr) ? block
254                                 : CommonDominator::ForPair(old_dominator, block);
255
256  if (old_dominator == new_dominator) {
257    return false;
258  } else {
259    successor->SetDominator(new_dominator);
260    return true;
261  }
262}
263
264void HGraph::ComputeDominanceInformation() {
265  DCHECK(reverse_post_order_.empty());
266  reverse_post_order_.reserve(blocks_.size());
267  reverse_post_order_.push_back(entry_block_);
268
269  // Allocate memory from local ScopedArenaAllocator.
270  ScopedArenaAllocator allocator(GetArenaStack());
271  // Number of visits of a given node, indexed by block id.
272  ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder));
273  // Number of successors visited from a given node, indexed by block id.
274  ScopedArenaVector<size_t> successors_visited(blocks_.size(),
275                                               0u,
276                                               allocator.Adapter(kArenaAllocGraphBuilder));
277  // Nodes for which we need to visit successors.
278  ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
279  constexpr size_t kDefaultWorklistSize = 8;
280  worklist.reserve(kDefaultWorklistSize);
281  worklist.push_back(entry_block_);
282
283  while (!worklist.empty()) {
284    HBasicBlock* current = worklist.back();
285    uint32_t current_id = current->GetBlockId();
286    if (successors_visited[current_id] == current->GetSuccessors().size()) {
287      worklist.pop_back();
288    } else {
289      HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
290      UpdateDominatorOfSuccessor(current, successor);
291
292      // Once all the forward edges have been visited, we know the immediate
293      // dominator of the block. We can then start visiting its successors.
294      if (++visits[successor->GetBlockId()] ==
295          successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
296        reverse_post_order_.push_back(successor);
297        worklist.push_back(successor);
298      }
299    }
300  }
301
302  // Check if the graph has back edges not dominated by their respective headers.
303  // If so, we need to update the dominators of those headers and recursively of
304  // their successors. We do that with a fix-point iteration over all blocks.
305  // The algorithm is guaranteed to terminate because it loops only if the sum
306  // of all dominator chains has decreased in the current iteration.
307  bool must_run_fix_point = false;
308  for (HBasicBlock* block : blocks_) {
309    if (block != nullptr &&
310        block->IsLoopHeader() &&
311        block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
312      must_run_fix_point = true;
313      break;
314    }
315  }
316  if (must_run_fix_point) {
317    bool update_occurred = true;
318    while (update_occurred) {
319      update_occurred = false;
320      for (HBasicBlock* block : GetReversePostOrder()) {
321        for (HBasicBlock* successor : block->GetSuccessors()) {
322          update_occurred |= UpdateDominatorOfSuccessor(block, successor);
323        }
324      }
325    }
326  }
327
328  // Make sure that there are no remaining blocks whose dominator information
329  // needs to be updated.
330  if (kIsDebugBuild) {
331    for (HBasicBlock* block : GetReversePostOrder()) {
332      for (HBasicBlock* successor : block->GetSuccessors()) {
333        DCHECK(!UpdateDominatorOfSuccessor(block, successor));
334      }
335    }
336  }
337
338  // Populate `dominated_blocks_` information after computing all dominators.
339  // The potential presence of irreducible loops requires to do it after.
340  for (HBasicBlock* block : GetReversePostOrder()) {
341    if (!block->IsEntryBlock()) {
342      block->GetDominator()->AddDominatedBlock(block);
343    }
344  }
345}
346
347HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
348  HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc());
349  AddBlock(new_block);
350  // Use `InsertBetween` to ensure the predecessor index and successor index of
351  // `block` and `successor` are preserved.
352  new_block->InsertBetween(block, successor);
353  return new_block;
354}
355
356void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
357  // Insert a new node between `block` and `successor` to split the
358  // critical edge.
359  HBasicBlock* new_block = SplitEdge(block, successor);
360  new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc()));
361  if (successor->IsLoopHeader()) {
362    // If we split at a back edge boundary, make the new block the back edge.
363    HLoopInformation* info = successor->GetLoopInformation();
364    if (info->IsBackEdge(*block)) {
365      info->RemoveBackEdge(block);
366      info->AddBackEdge(new_block);
367    }
368  }
369}
370
371// Reorder phi inputs to match reordering of the block's predecessors.
372static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) {
373  for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
374    HPhi* phi = it.Current()->AsPhi();
375    HInstruction* first_instr = phi->InputAt(first);
376    HInstruction* second_instr = phi->InputAt(second);
377    phi->ReplaceInput(first_instr, second);
378    phi->ReplaceInput(second_instr, first);
379  }
380}
381
382// Make sure that the first predecessor of a loop header is the incoming block.
383void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) {
384  DCHECK(header->IsLoopHeader());
385  HLoopInformation* info = header->GetLoopInformation();
386  if (info->IsBackEdge(*header->GetPredecessors()[0])) {
387    HBasicBlock* to_swap = header->GetPredecessors()[0];
388    for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
389      HBasicBlock* predecessor = header->GetPredecessors()[pred];
390      if (!info->IsBackEdge(*predecessor)) {
391        header->predecessors_[pred] = to_swap;
392        header->predecessors_[0] = predecessor;
393        FixPhisAfterPredecessorsReodering(header, 0, pred);
394        break;
395      }
396    }
397  }
398}
399
400// Transform control flow of the loop to a single preheader format (don't touch the data flow).
401// New_preheader can be already among the header predecessors - this situation will be correctly
402// processed.
403static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) {
404  HLoopInformation* loop_info = header->GetLoopInformation();
405  for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
406    HBasicBlock* predecessor = header->GetPredecessors()[pred];
407    if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) {
408      predecessor->ReplaceSuccessor(header, new_preheader);
409      pred--;
410    }
411  }
412}
413
414//             == Before ==                                               == After ==
415//      _________         _________                               _________         _________
416//     | B0      |       | B1      |      (old preheaders)       | B0      |       | B1      |
417//     |=========|       |=========|                             |=========|       |=========|
418//     | i0 = .. |       | i1 = .. |                             | i0 = .. |       | i1 = .. |
419//     |_________|       |_________|                             |_________|       |_________|
420//           \               /                                         \              /
421//            \             /                                        ___v____________v___
422//             \           /               (new preheader)          | B20 <- B0, B1      |
423//              |         |                                         |====================|
424//              |         |                                         | i20 = phi(i0, i1)  |
425//              |         |                                         |____________________|
426//              |         |                                                   |
427//    /\        |         |        /\                           /\            |              /\
428//   /  v_______v_________v_______v  \                         /  v___________v_____________v  \
429//  |  | B10 <- B0, B1, B2, B3     |  |                       |  | B10 <- B20, B2, B3        |  |
430//  |  |===========================|  |       (header)        |  |===========================|  |
431//  |  | i10 = phi(i0, i1, i2, i3) |  |                       |  | i10 = phi(i20, i2, i3)    |  |
432//  |  |___________________________|  |                       |  |___________________________|  |
433//  |        /               \        |                       |        /               \        |
434//  |      ...              ...       |                       |      ...              ...       |
435//  |   _________         _________   |                       |   _________         _________   |
436//  |  | B2      |       | B3      |  |                       |  | B2      |       | B3      |  |
437//  |  |=========|       |=========|  |     (back edges)      |  |=========|       |=========|  |
438//  |  | i2 = .. |       | i3 = .. |  |                       |  | i2 = .. |       | i3 = .. |  |
439//  |  |_________|       |_________|  |                       |  |_________|       |_________|  |
440//   \     /                   \     /                         \     /                   \     /
441//    \___/                     \___/                           \___/                     \___/
442//
443void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) {
444  HLoopInformation* loop_info = header->GetLoopInformation();
445
446  HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc());
447  AddBlock(preheader);
448  preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc()));
449
450  // If the old header has no Phis then we only need to fix the control flow.
451  if (header->GetPhis().IsEmpty()) {
452    FixControlForNewSinglePreheader(header, preheader);
453    preheader->AddSuccessor(header);
454    return;
455  }
456
457  // Find the first non-back edge block in the header's predecessors list.
458  size_t first_nonbackedge_pred_pos = 0;
459  bool found = false;
460  for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
461    HBasicBlock* predecessor = header->GetPredecessors()[pred];
462    if (!loop_info->IsBackEdge(*predecessor)) {
463      first_nonbackedge_pred_pos = pred;
464      found = true;
465      break;
466    }
467  }
468
469  DCHECK(found);
470
471  // Fix the data-flow.
472  for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
473    HPhi* header_phi = it.Current()->AsPhi();
474
475    HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(),
476                                                    header_phi->GetRegNumber(),
477                                                    0,
478                                                    header_phi->GetType());
479    if (header_phi->GetType() == DataType::Type::kReference) {
480      preheader_phi->SetReferenceTypeInfo(header_phi->GetReferenceTypeInfo());
481    }
482    preheader->AddPhi(preheader_phi);
483
484    HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos);
485    header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos);
486    preheader_phi->AddInput(orig_input);
487
488    for (size_t input_pos = first_nonbackedge_pred_pos + 1;
489         input_pos < header_phi->InputCount();
490         input_pos++) {
491      HInstruction* input = header_phi->InputAt(input_pos);
492      HBasicBlock* pred_block = header->GetPredecessors()[input_pos];
493
494      if (loop_info->Contains(*pred_block)) {
495        DCHECK(loop_info->IsBackEdge(*pred_block));
496      } else {
497        preheader_phi->AddInput(input);
498        header_phi->RemoveInputAt(input_pos);
499        input_pos--;
500      }
501    }
502  }
503
504  // Fix the control-flow.
505  HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos];
506  preheader->InsertBetween(first_pred, header);
507
508  FixControlForNewSinglePreheader(header, preheader);
509}
510
511void HGraph::SimplifyLoop(HBasicBlock* header) {
512  HLoopInformation* info = header->GetLoopInformation();
513
514  // Make sure the loop has only one pre header. This simplifies SSA building by having
515  // to just look at the pre header to know which locals are initialized at entry of the
516  // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
517  // this graph.
518  size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
519  if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
520    TransformLoopToSinglePreheaderFormat(header);
521  }
522
523  OrderLoopHeaderPredecessors(header);
524
525  HInstruction* first_instruction = header->GetFirstInstruction();
526  if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
527    // Called from DeadBlockElimination. Update SuspendCheck pointer.
528    info->SetSuspendCheck(first_instruction->AsSuspendCheck());
529  }
530}
531
532void HGraph::ComputeTryBlockInformation() {
533  // Iterate in reverse post order to propagate try membership information from
534  // predecessors to their successors.
535  for (HBasicBlock* block : GetReversePostOrder()) {
536    if (block->IsEntryBlock() || block->IsCatchBlock()) {
537      // Catch blocks after simplification have only exceptional predecessors
538      // and hence are never in tries.
539      continue;
540    }
541
542    // Infer try membership from the first predecessor. Having simplified loops,
543    // the first predecessor can never be a back edge and therefore it must have
544    // been visited already and had its try membership set.
545    HBasicBlock* first_predecessor = block->GetPredecessors()[0];
546    DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
547    const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
548    if (try_entry != nullptr &&
549        (block->GetTryCatchInformation() == nullptr ||
550         try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
551      // We are either setting try block membership for the first time or it
552      // has changed.
553      block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry));
554    }
555  }
556}
557
558void HGraph::SimplifyCFG() {
559// Simplify the CFG for future analysis, and code generation:
560  // (1): Split critical edges.
561  // (2): Simplify loops by having only one preheader.
562  // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
563  // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
564  for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
565    HBasicBlock* block = blocks_[block_id];
566    if (block == nullptr) continue;
567    if (block->GetSuccessors().size() > 1) {
568      // Only split normal-flow edges. We cannot split exceptional edges as they
569      // are synthesized (approximate real control flow), and we do not need to
570      // anyway. Moves that would be inserted there are performed by the runtime.
571      ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
572      for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
573        HBasicBlock* successor = normal_successors[j];
574        DCHECK(!successor->IsCatchBlock());
575        if (successor == exit_block_) {
576          // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
577          // do not want to split because Goto->Exit is not allowed.
578          DCHECK(block->IsSingleTryBoundary());
579        } else if (successor->GetPredecessors().size() > 1) {
580          SplitCriticalEdge(block, successor);
581          // SplitCriticalEdge could have invalidated the `normal_successors`
582          // ArrayRef. We must re-acquire it.
583          normal_successors = block->GetNormalSuccessors();
584          DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
585          DCHECK_EQ(e, normal_successors.size());
586        }
587      }
588    }
589    if (block->IsLoopHeader()) {
590      SimplifyLoop(block);
591    } else if (!block->IsEntryBlock() &&
592               block->GetFirstInstruction() != nullptr &&
593               block->GetFirstInstruction()->IsSuspendCheck()) {
594      // We are being called by the dead code elimiation pass, and what used to be
595      // a loop got dismantled. Just remove the suspend check.
596      block->RemoveInstruction(block->GetFirstInstruction());
597    }
598  }
599}
600
601GraphAnalysisResult HGraph::AnalyzeLoops() const {
602  // We iterate post order to ensure we visit inner loops before outer loops.
603  // `PopulateRecursive` needs this guarantee to know whether a natural loop
604  // contains an irreducible loop.
605  for (HBasicBlock* block : GetPostOrder()) {
606    if (block->IsLoopHeader()) {
607      if (block->IsCatchBlock()) {
608        // TODO: Dealing with exceptional back edges could be tricky because
609        //       they only approximate the real control flow. Bail out for now.
610        VLOG(compiler) << "Not compiled: Exceptional back edges";
611        return kAnalysisFailThrowCatchLoop;
612      }
613      block->GetLoopInformation()->Populate();
614    }
615  }
616  return kAnalysisSuccess;
617}
618
619void HLoopInformation::Dump(std::ostream& os) {
620  os << "header: " << header_->GetBlockId() << std::endl;
621  os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
622  for (HBasicBlock* block : back_edges_) {
623    os << "back edge: " << block->GetBlockId() << std::endl;
624  }
625  for (HBasicBlock* block : header_->GetPredecessors()) {
626    os << "predecessor: " << block->GetBlockId() << std::endl;
627  }
628  for (uint32_t idx : blocks_.Indexes()) {
629    os << "  in loop: " << idx << std::endl;
630  }
631}
632
633void HGraph::InsertConstant(HConstant* constant) {
634  // New constants are inserted before the SuspendCheck at the bottom of the
635  // entry block. Note that this method can be called from the graph builder and
636  // the entry block therefore may not end with SuspendCheck->Goto yet.
637  HInstruction* insert_before = nullptr;
638
639  HInstruction* gota = entry_block_->GetLastInstruction();
640  if (gota != nullptr && gota->IsGoto()) {
641    HInstruction* suspend_check = gota->GetPrevious();
642    if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
643      insert_before = suspend_check;
644    } else {
645      insert_before = gota;
646    }
647  }
648
649  if (insert_before == nullptr) {
650    entry_block_->AddInstruction(constant);
651  } else {
652    entry_block_->InsertInstructionBefore(constant, insert_before);
653  }
654}
655
656HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
657  // For simplicity, don't bother reviving the cached null constant if it is
658  // not null and not in a block. Otherwise, we need to clear the instruction
659  // id and/or any invariants the graph is assuming when adding new instructions.
660  if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
661    cached_null_constant_ = new (allocator_) HNullConstant(dex_pc);
662    cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
663    InsertConstant(cached_null_constant_);
664  }
665  if (kIsDebugBuild) {
666    ScopedObjectAccess soa(Thread::Current());
667    DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
668  }
669  return cached_null_constant_;
670}
671
672HCurrentMethod* HGraph::GetCurrentMethod() {
673  // For simplicity, don't bother reviving the cached current method if it is
674  // not null and not in a block. Otherwise, we need to clear the instruction
675  // id and/or any invariants the graph is assuming when adding new instructions.
676  if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
677    cached_current_method_ = new (allocator_) HCurrentMethod(
678        Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32,
679        entry_block_->GetDexPc());
680    if (entry_block_->GetFirstInstruction() == nullptr) {
681      entry_block_->AddInstruction(cached_current_method_);
682    } else {
683      entry_block_->InsertInstructionBefore(
684          cached_current_method_, entry_block_->GetFirstInstruction());
685    }
686  }
687  return cached_current_method_;
688}
689
690const char* HGraph::GetMethodName() const {
691  const DexFile::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
692  return dex_file_.GetMethodName(method_id);
693}
694
695std::string HGraph::PrettyMethod(bool with_signature) const {
696  return dex_file_.PrettyMethod(method_idx_, with_signature);
697}
698
699HConstant* HGraph::GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc) {
700  switch (type) {
701    case DataType::Type::kBool:
702      DCHECK(IsUint<1>(value));
703      FALLTHROUGH_INTENDED;
704    case DataType::Type::kUint8:
705    case DataType::Type::kInt8:
706    case DataType::Type::kUint16:
707    case DataType::Type::kInt16:
708    case DataType::Type::kInt32:
709      DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value));
710      return GetIntConstant(static_cast<int32_t>(value), dex_pc);
711
712    case DataType::Type::kInt64:
713      return GetLongConstant(value, dex_pc);
714
715    default:
716      LOG(FATAL) << "Unsupported constant type";
717      UNREACHABLE();
718  }
719}
720
721void HGraph::CacheFloatConstant(HFloatConstant* constant) {
722  int32_t value = bit_cast<int32_t, float>(constant->GetValue());
723  DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
724  cached_float_constants_.Overwrite(value, constant);
725}
726
727void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
728  int64_t value = bit_cast<int64_t, double>(constant->GetValue());
729  DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
730  cached_double_constants_.Overwrite(value, constant);
731}
732
733void HLoopInformation::Add(HBasicBlock* block) {
734  blocks_.SetBit(block->GetBlockId());
735}
736
737void HLoopInformation::Remove(HBasicBlock* block) {
738  blocks_.ClearBit(block->GetBlockId());
739}
740
741void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
742  if (blocks_.IsBitSet(block->GetBlockId())) {
743    return;
744  }
745
746  blocks_.SetBit(block->GetBlockId());
747  block->SetInLoop(this);
748  if (block->IsLoopHeader()) {
749    // We're visiting loops in post-order, so inner loops must have been
750    // populated already.
751    DCHECK(block->GetLoopInformation()->IsPopulated());
752    if (block->GetLoopInformation()->IsIrreducible()) {
753      contains_irreducible_loop_ = true;
754    }
755  }
756  for (HBasicBlock* predecessor : block->GetPredecessors()) {
757    PopulateRecursive(predecessor);
758  }
759}
760
761void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
762  size_t block_id = block->GetBlockId();
763
764  // If `block` is in `finalized`, we know its membership in the loop has been
765  // decided and it does not need to be revisited.
766  if (finalized->IsBitSet(block_id)) {
767    return;
768  }
769
770  bool is_finalized = false;
771  if (block->IsLoopHeader()) {
772    // If we hit a loop header in an irreducible loop, we first check if the
773    // pre header of that loop belongs to the currently analyzed loop. If it does,
774    // then we visit the back edges.
775    // Note that we cannot use GetPreHeader, as the loop may have not been populated
776    // yet.
777    HBasicBlock* pre_header = block->GetPredecessors()[0];
778    PopulateIrreducibleRecursive(pre_header, finalized);
779    if (blocks_.IsBitSet(pre_header->GetBlockId())) {
780      block->SetInLoop(this);
781      blocks_.SetBit(block_id);
782      finalized->SetBit(block_id);
783      is_finalized = true;
784
785      HLoopInformation* info = block->GetLoopInformation();
786      for (HBasicBlock* back_edge : info->GetBackEdges()) {
787        PopulateIrreducibleRecursive(back_edge, finalized);
788      }
789    }
790  } else {
791    // Visit all predecessors. If one predecessor is part of the loop, this
792    // block is also part of this loop.
793    for (HBasicBlock* predecessor : block->GetPredecessors()) {
794      PopulateIrreducibleRecursive(predecessor, finalized);
795      if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
796        block->SetInLoop(this);
797        blocks_.SetBit(block_id);
798        finalized->SetBit(block_id);
799        is_finalized = true;
800      }
801    }
802  }
803
804  // All predecessors have been recursively visited. Mark finalized if not marked yet.
805  if (!is_finalized) {
806    finalized->SetBit(block_id);
807  }
808}
809
810void HLoopInformation::Populate() {
811  DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
812  // Populate this loop: starting with the back edge, recursively add predecessors
813  // that are not already part of that loop. Set the header as part of the loop
814  // to end the recursion.
815  // This is a recursive implementation of the algorithm described in
816  // "Advanced Compiler Design & Implementation" (Muchnick) p192.
817  HGraph* graph = header_->GetGraph();
818  blocks_.SetBit(header_->GetBlockId());
819  header_->SetInLoop(this);
820
821  bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
822
823  if (is_irreducible_loop) {
824    // Allocate memory from local ScopedArenaAllocator.
825    ScopedArenaAllocator allocator(graph->GetArenaStack());
826    ArenaBitVector visited(&allocator,
827                           graph->GetBlocks().size(),
828                           /* expandable */ false,
829                           kArenaAllocGraphBuilder);
830    visited.ClearAllBits();
831    // Stop marking blocks at the loop header.
832    visited.SetBit(header_->GetBlockId());
833
834    for (HBasicBlock* back_edge : GetBackEdges()) {
835      PopulateIrreducibleRecursive(back_edge, &visited);
836    }
837  } else {
838    for (HBasicBlock* back_edge : GetBackEdges()) {
839      PopulateRecursive(back_edge);
840    }
841  }
842
843  if (!is_irreducible_loop && graph->IsCompilingOsr()) {
844    // When compiling in OSR mode, all loops in the compiled method may be entered
845    // from the interpreter. We treat this OSR entry point just like an extra entry
846    // to an irreducible loop, so we need to mark the method's loops as irreducible.
847    // This does not apply to inlined loops which do not act as OSR entry points.
848    if (suspend_check_ == nullptr) {
849      // Just building the graph in OSR mode, this loop is not inlined. We never build an
850      // inner graph in OSR mode as we can do OSR transition only from the outer method.
851      is_irreducible_loop = true;
852    } else {
853      // Look at the suspend check's environment to determine if the loop was inlined.
854      DCHECK(suspend_check_->HasEnvironment());
855      if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
856        is_irreducible_loop = true;
857      }
858    }
859  }
860  if (is_irreducible_loop) {
861    irreducible_ = true;
862    contains_irreducible_loop_ = true;
863    graph->SetHasIrreducibleLoops(true);
864  }
865  graph->SetHasLoops(true);
866}
867
868void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) {
869  DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this);
870  blocks_.Union(&inner_loop->blocks_);
871  HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation();
872  if (outer_loop != nullptr) {
873    outer_loop->PopulateInnerLoopUpwards(this);
874  }
875}
876
877HBasicBlock* HLoopInformation::GetPreHeader() const {
878  HBasicBlock* block = header_->GetPredecessors()[0];
879  DCHECK(irreducible_ || (block == header_->GetDominator()));
880  return block;
881}
882
883bool HLoopInformation::Contains(const HBasicBlock& block) const {
884  return blocks_.IsBitSet(block.GetBlockId());
885}
886
887bool HLoopInformation::IsIn(const HLoopInformation& other) const {
888  return other.blocks_.IsBitSet(header_->GetBlockId());
889}
890
891bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
892  return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
893}
894
895size_t HLoopInformation::GetLifetimeEnd() const {
896  size_t last_position = 0;
897  for (HBasicBlock* back_edge : GetBackEdges()) {
898    last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
899  }
900  return last_position;
901}
902
903bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
904  for (HBasicBlock* back_edge : GetBackEdges()) {
905    DCHECK(back_edge->GetDominator() != nullptr);
906    if (!header_->Dominates(back_edge)) {
907      return true;
908    }
909  }
910  return false;
911}
912
913bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
914  for (HBasicBlock* back_edge : GetBackEdges()) {
915    if (!block->Dominates(back_edge)) {
916      return false;
917    }
918  }
919  return true;
920}
921
922
923bool HLoopInformation::HasExitEdge() const {
924  // Determine if this loop has at least one exit edge.
925  HBlocksInLoopReversePostOrderIterator it_loop(*this);
926  for (; !it_loop.Done(); it_loop.Advance()) {
927    for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
928      if (!Contains(*successor)) {
929        return true;
930      }
931    }
932  }
933  return false;
934}
935
936bool HBasicBlock::Dominates(HBasicBlock* other) const {
937  // Walk up the dominator tree from `other`, to find out if `this`
938  // is an ancestor.
939  HBasicBlock* current = other;
940  while (current != nullptr) {
941    if (current == this) {
942      return true;
943    }
944    current = current->GetDominator();
945  }
946  return false;
947}
948
949static void UpdateInputsUsers(HInstruction* instruction) {
950  HInputsRef inputs = instruction->GetInputs();
951  for (size_t i = 0; i < inputs.size(); ++i) {
952    inputs[i]->AddUseAt(instruction, i);
953  }
954  // Environment should be created later.
955  DCHECK(!instruction->HasEnvironment());
956}
957
958void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) {
959  DCHECK(initial->GetBlock() == this);
960  InsertPhiAfter(replacement, initial);
961  initial->ReplaceWith(replacement);
962  RemovePhi(initial);
963}
964
965void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
966                                                  HInstruction* replacement) {
967  DCHECK(initial->GetBlock() == this);
968  if (initial->IsControlFlow()) {
969    // We can only replace a control flow instruction with another control flow instruction.
970    DCHECK(replacement->IsControlFlow());
971    DCHECK_EQ(replacement->GetId(), -1);
972    DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid);
973    DCHECK_EQ(initial->GetBlock(), this);
974    DCHECK_EQ(initial->GetType(), DataType::Type::kVoid);
975    DCHECK(initial->GetUses().empty());
976    DCHECK(initial->GetEnvUses().empty());
977    replacement->SetBlock(this);
978    replacement->SetId(GetGraph()->GetNextInstructionId());
979    instructions_.InsertInstructionBefore(replacement, initial);
980    UpdateInputsUsers(replacement);
981  } else {
982    InsertInstructionBefore(replacement, initial);
983    initial->ReplaceWith(replacement);
984  }
985  RemoveInstruction(initial);
986}
987
988static void Add(HInstructionList* instruction_list,
989                HBasicBlock* block,
990                HInstruction* instruction) {
991  DCHECK(instruction->GetBlock() == nullptr);
992  DCHECK_EQ(instruction->GetId(), -1);
993  instruction->SetBlock(block);
994  instruction->SetId(block->GetGraph()->GetNextInstructionId());
995  UpdateInputsUsers(instruction);
996  instruction_list->AddInstruction(instruction);
997}
998
999void HBasicBlock::AddInstruction(HInstruction* instruction) {
1000  Add(&instructions_, this, instruction);
1001}
1002
1003void HBasicBlock::AddPhi(HPhi* phi) {
1004  Add(&phis_, this, phi);
1005}
1006
1007void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1008  DCHECK(!cursor->IsPhi());
1009  DCHECK(!instruction->IsPhi());
1010  DCHECK_EQ(instruction->GetId(), -1);
1011  DCHECK_NE(cursor->GetId(), -1);
1012  DCHECK_EQ(cursor->GetBlock(), this);
1013  DCHECK(!instruction->IsControlFlow());
1014  instruction->SetBlock(this);
1015  instruction->SetId(GetGraph()->GetNextInstructionId());
1016  UpdateInputsUsers(instruction);
1017  instructions_.InsertInstructionBefore(instruction, cursor);
1018}
1019
1020void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1021  DCHECK(!cursor->IsPhi());
1022  DCHECK(!instruction->IsPhi());
1023  DCHECK_EQ(instruction->GetId(), -1);
1024  DCHECK_NE(cursor->GetId(), -1);
1025  DCHECK_EQ(cursor->GetBlock(), this);
1026  DCHECK(!instruction->IsControlFlow());
1027  DCHECK(!cursor->IsControlFlow());
1028  instruction->SetBlock(this);
1029  instruction->SetId(GetGraph()->GetNextInstructionId());
1030  UpdateInputsUsers(instruction);
1031  instructions_.InsertInstructionAfter(instruction, cursor);
1032}
1033
1034void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
1035  DCHECK_EQ(phi->GetId(), -1);
1036  DCHECK_NE(cursor->GetId(), -1);
1037  DCHECK_EQ(cursor->GetBlock(), this);
1038  phi->SetBlock(this);
1039  phi->SetId(GetGraph()->GetNextInstructionId());
1040  UpdateInputsUsers(phi);
1041  phis_.InsertInstructionAfter(phi, cursor);
1042}
1043
1044static void Remove(HInstructionList* instruction_list,
1045                   HBasicBlock* block,
1046                   HInstruction* instruction,
1047                   bool ensure_safety) {
1048  DCHECK_EQ(block, instruction->GetBlock());
1049  instruction->SetBlock(nullptr);
1050  instruction_list->RemoveInstruction(instruction);
1051  if (ensure_safety) {
1052    DCHECK(instruction->GetUses().empty());
1053    DCHECK(instruction->GetEnvUses().empty());
1054    RemoveAsUser(instruction);
1055  }
1056}
1057
1058void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
1059  DCHECK(!instruction->IsPhi());
1060  Remove(&instructions_, this, instruction, ensure_safety);
1061}
1062
1063void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
1064  Remove(&phis_, this, phi, ensure_safety);
1065}
1066
1067void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
1068  if (instruction->IsPhi()) {
1069    RemovePhi(instruction->AsPhi(), ensure_safety);
1070  } else {
1071    RemoveInstruction(instruction, ensure_safety);
1072  }
1073}
1074
1075void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) {
1076  for (size_t i = 0; i < locals.size(); i++) {
1077    HInstruction* instruction = locals[i];
1078    SetRawEnvAt(i, instruction);
1079    if (instruction != nullptr) {
1080      instruction->AddEnvUseAt(this, i);
1081    }
1082  }
1083}
1084
1085void HEnvironment::CopyFrom(HEnvironment* env) {
1086  for (size_t i = 0; i < env->Size(); i++) {
1087    HInstruction* instruction = env->GetInstructionAt(i);
1088    SetRawEnvAt(i, instruction);
1089    if (instruction != nullptr) {
1090      instruction->AddEnvUseAt(this, i);
1091    }
1092  }
1093}
1094
1095void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
1096                                                 HBasicBlock* loop_header) {
1097  DCHECK(loop_header->IsLoopHeader());
1098  for (size_t i = 0; i < env->Size(); i++) {
1099    HInstruction* instruction = env->GetInstructionAt(i);
1100    SetRawEnvAt(i, instruction);
1101    if (instruction == nullptr) {
1102      continue;
1103    }
1104    if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
1105      // At the end of the loop pre-header, the corresponding value for instruction
1106      // is the first input of the phi.
1107      HInstruction* initial = instruction->AsPhi()->InputAt(0);
1108      SetRawEnvAt(i, initial);
1109      initial->AddEnvUseAt(this, i);
1110    } else {
1111      instruction->AddEnvUseAt(this, i);
1112    }
1113  }
1114}
1115
1116void HEnvironment::RemoveAsUserOfInput(size_t index) const {
1117  const HUserRecord<HEnvironment*>& env_use = vregs_[index];
1118  HInstruction* user = env_use.GetInstruction();
1119  auto before_env_use_node = env_use.GetBeforeUseNode();
1120  user->env_uses_.erase_after(before_env_use_node);
1121  user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
1122}
1123
1124HInstruction* HInstruction::GetNextDisregardingMoves() const {
1125  HInstruction* next = GetNext();
1126  while (next != nullptr && next->IsParallelMove()) {
1127    next = next->GetNext();
1128  }
1129  return next;
1130}
1131
1132HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
1133  HInstruction* previous = GetPrevious();
1134  while (previous != nullptr && previous->IsParallelMove()) {
1135    previous = previous->GetPrevious();
1136  }
1137  return previous;
1138}
1139
1140void HInstructionList::AddInstruction(HInstruction* instruction) {
1141  if (first_instruction_ == nullptr) {
1142    DCHECK(last_instruction_ == nullptr);
1143    first_instruction_ = last_instruction_ = instruction;
1144  } else {
1145    DCHECK(last_instruction_ != nullptr);
1146    last_instruction_->next_ = instruction;
1147    instruction->previous_ = last_instruction_;
1148    last_instruction_ = instruction;
1149  }
1150}
1151
1152void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1153  DCHECK(Contains(cursor));
1154  if (cursor == first_instruction_) {
1155    cursor->previous_ = instruction;
1156    instruction->next_ = cursor;
1157    first_instruction_ = instruction;
1158  } else {
1159    instruction->previous_ = cursor->previous_;
1160    instruction->next_ = cursor;
1161    cursor->previous_ = instruction;
1162    instruction->previous_->next_ = instruction;
1163  }
1164}
1165
1166void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1167  DCHECK(Contains(cursor));
1168  if (cursor == last_instruction_) {
1169    cursor->next_ = instruction;
1170    instruction->previous_ = cursor;
1171    last_instruction_ = instruction;
1172  } else {
1173    instruction->next_ = cursor->next_;
1174    instruction->previous_ = cursor;
1175    cursor->next_ = instruction;
1176    instruction->next_->previous_ = instruction;
1177  }
1178}
1179
1180void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1181  if (instruction->previous_ != nullptr) {
1182    instruction->previous_->next_ = instruction->next_;
1183  }
1184  if (instruction->next_ != nullptr) {
1185    instruction->next_->previous_ = instruction->previous_;
1186  }
1187  if (instruction == first_instruction_) {
1188    first_instruction_ = instruction->next_;
1189  }
1190  if (instruction == last_instruction_) {
1191    last_instruction_ = instruction->previous_;
1192  }
1193}
1194
1195bool HInstructionList::Contains(HInstruction* instruction) const {
1196  for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1197    if (it.Current() == instruction) {
1198      return true;
1199    }
1200  }
1201  return false;
1202}
1203
1204bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1205                                   const HInstruction* instruction2) const {
1206  DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1207  for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1208    if (it.Current() == instruction1) {
1209      return true;
1210    }
1211    if (it.Current() == instruction2) {
1212      return false;
1213    }
1214  }
1215  LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1216  return true;
1217}
1218
1219bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1220  if (other_instruction == this) {
1221    // An instruction does not strictly dominate itself.
1222    return false;
1223  }
1224  HBasicBlock* block = GetBlock();
1225  HBasicBlock* other_block = other_instruction->GetBlock();
1226  if (block != other_block) {
1227    return GetBlock()->Dominates(other_instruction->GetBlock());
1228  } else {
1229    // If both instructions are in the same block, ensure this
1230    // instruction comes before `other_instruction`.
1231    if (IsPhi()) {
1232      if (!other_instruction->IsPhi()) {
1233        // Phis appear before non phi-instructions so this instruction
1234        // dominates `other_instruction`.
1235        return true;
1236      } else {
1237        // There is no order among phis.
1238        LOG(FATAL) << "There is no dominance between phis of a same block.";
1239        return false;
1240      }
1241    } else {
1242      // `this` is not a phi.
1243      if (other_instruction->IsPhi()) {
1244        // Phis appear before non phi-instructions so this instruction
1245        // does not dominate `other_instruction`.
1246        return false;
1247      } else {
1248        // Check whether this instruction comes before
1249        // `other_instruction` in the instruction list.
1250        return block->GetInstructions().FoundBefore(this, other_instruction);
1251      }
1252    }
1253  }
1254}
1255
1256void HInstruction::RemoveEnvironment() {
1257  RemoveEnvironmentUses(this);
1258  environment_ = nullptr;
1259}
1260
1261void HInstruction::ReplaceWith(HInstruction* other) {
1262  DCHECK(other != nullptr);
1263  // Note: fixup_end remains valid across splice_after().
1264  auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1265  other->uses_.splice_after(other->uses_.before_begin(), uses_);
1266  other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1267
1268  // Note: env_fixup_end remains valid across splice_after().
1269  auto env_fixup_end =
1270      other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1271  other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1272  other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1273
1274  DCHECK(uses_.empty());
1275  DCHECK(env_uses_.empty());
1276}
1277
1278void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1279  const HUseList<HInstruction*>& uses = GetUses();
1280  for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1281    HInstruction* user = it->GetUser();
1282    size_t index = it->GetIndex();
1283    // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1284    ++it;
1285    if (dominator->StrictlyDominates(user)) {
1286      user->ReplaceInput(replacement, index);
1287    }
1288  }
1289}
1290
1291void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1292  HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1293  if (input_use.GetInstruction() == replacement) {
1294    // Nothing to do.
1295    return;
1296  }
1297  HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1298  // Note: fixup_end remains valid across splice_after().
1299  auto fixup_end =
1300      replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1301  replacement->uses_.splice_after(replacement->uses_.before_begin(),
1302                                  input_use.GetInstruction()->uses_,
1303                                  before_use_node);
1304  replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1305  input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1306}
1307
1308size_t HInstruction::EnvironmentSize() const {
1309  return HasEnvironment() ? environment_->Size() : 0;
1310}
1311
1312void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1313  DCHECK(input->GetBlock() != nullptr);
1314  inputs_.push_back(HUserRecord<HInstruction*>(input));
1315  input->AddUseAt(this, inputs_.size() - 1);
1316}
1317
1318void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1319  inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1320  input->AddUseAt(this, index);
1321  // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1322  for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1323    DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1324    inputs_[i].GetUseNode()->SetIndex(i);
1325  }
1326}
1327
1328void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1329  RemoveAsUserOfInput(index);
1330  inputs_.erase(inputs_.begin() + index);
1331  // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1332  for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1333    DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1334    inputs_[i].GetUseNode()->SetIndex(i);
1335  }
1336}
1337
1338void HVariableInputSizeInstruction::RemoveAllInputs() {
1339  RemoveAsUserOfAllInputs();
1340  DCHECK(!HasNonEnvironmentUses());
1341
1342  inputs_.clear();
1343  DCHECK_EQ(0u, InputCount());
1344}
1345
1346size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1347  DCHECK(instruction->GetBlock() != nullptr);
1348  // Removing constructor fences only makes sense for instructions with an object return type.
1349  DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
1350
1351  // Return how many instructions were removed for statistic purposes.
1352  size_t remove_count = 0;
1353
1354  // Efficient implementation that simultaneously (in one pass):
1355  // * Scans the uses list for all constructor fences.
1356  // * Deletes that constructor fence from the uses list of `instruction`.
1357  // * Deletes `instruction` from the constructor fence's inputs.
1358  // * Deletes the constructor fence if it now has 0 inputs.
1359
1360  const HUseList<HInstruction*>& uses = instruction->GetUses();
1361  // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1362  for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1363    const HUseListNode<HInstruction*>& use_node = *it;
1364    HInstruction* const use_instruction = use_node.GetUser();
1365
1366    // Advance the iterator immediately once we fetch the use_node.
1367    // Warning: If the input is removed, the current iterator becomes invalid.
1368    ++it;
1369
1370    if (use_instruction->IsConstructorFence()) {
1371      HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1372      size_t input_index = use_node.GetIndex();
1373
1374      // Process the candidate instruction for removal
1375      // from the graph.
1376
1377      // Constructor fence instructions are never
1378      // used by other instructions.
1379      //
1380      // If we wanted to make this more generic, it
1381      // could be a runtime if statement.
1382      DCHECK(!ctor_fence->HasUses());
1383
1384      // A constructor fence's return type is "kPrimVoid"
1385      // and therefore it can't have any environment uses.
1386      DCHECK(!ctor_fence->HasEnvironmentUses());
1387
1388      // Remove the inputs first, otherwise removing the instruction
1389      // will try to remove its uses while we are already removing uses
1390      // and this operation will fail.
1391      DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1392
1393      // Removing the input will also remove the `use_node`.
1394      // (Do not look at `use_node` after this, it will be a dangling reference).
1395      ctor_fence->RemoveInputAt(input_index);
1396
1397      // Once all inputs are removed, the fence is considered dead and
1398      // is removed.
1399      if (ctor_fence->InputCount() == 0u) {
1400        ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1401        ++remove_count;
1402      }
1403    }
1404  }
1405
1406  if (kIsDebugBuild) {
1407    // Post-condition checks:
1408    // * None of the uses of `instruction` are a constructor fence.
1409    // * The `instruction` itself did not get removed from a block.
1410    for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1411      CHECK(!use_node.GetUser()->IsConstructorFence());
1412    }
1413    CHECK(instruction->GetBlock() != nullptr);
1414  }
1415
1416  return remove_count;
1417}
1418
1419void HConstructorFence::Merge(HConstructorFence* other) {
1420  // Do not delete yourself from the graph.
1421  DCHECK(this != other);
1422  // Don't try to merge with an instruction not associated with a block.
1423  DCHECK(other->GetBlock() != nullptr);
1424  // A constructor fence's return type is "kPrimVoid"
1425  // and therefore it cannot have any environment uses.
1426  DCHECK(!other->HasEnvironmentUses());
1427
1428  auto has_input = [](HInstruction* haystack, HInstruction* needle) {
1429    // Check if `haystack` has `needle` as any of its inputs.
1430    for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) {
1431      if (haystack->InputAt(input_count) == needle) {
1432        return true;
1433      }
1434    }
1435    return false;
1436  };
1437
1438  // Add any inputs from `other` into `this` if it wasn't already an input.
1439  for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) {
1440    HInstruction* other_input = other->InputAt(input_count);
1441    if (!has_input(this, other_input)) {
1442      AddInput(other_input);
1443    }
1444  }
1445
1446  other->GetBlock()->RemoveInstruction(other);
1447}
1448
1449HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) {
1450  HInstruction* new_instance_inst = GetPrevious();
1451  // Check if the immediately preceding instruction is a new-instance/new-array.
1452  // Otherwise this fence is for protecting final fields.
1453  if (new_instance_inst != nullptr &&
1454      (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1455    if (ignore_inputs) {
1456      // If inputs are ignored, simply check if the predecessor is
1457      // *any* HNewInstance/HNewArray.
1458      //
1459      // Inputs are normally only ignored for prepare_for_register_allocation,
1460      // at which point *any* prior HNewInstance/Array can be considered
1461      // associated.
1462      return new_instance_inst;
1463    } else {
1464      // Normal case: There must be exactly 1 input and the previous instruction
1465      // must be that input.
1466      if (InputCount() == 1u && InputAt(0) == new_instance_inst) {
1467        return new_instance_inst;
1468      }
1469    }
1470  }
1471  return nullptr;
1472}
1473
1474#define DEFINE_ACCEPT(name, super)                                             \
1475void H##name::Accept(HGraphVisitor* visitor) {                                 \
1476  visitor->Visit##name(this);                                                  \
1477}
1478
1479FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1480
1481#undef DEFINE_ACCEPT
1482
1483void HGraphVisitor::VisitInsertionOrder() {
1484  const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1485  for (HBasicBlock* block : blocks) {
1486    if (block != nullptr) {
1487      VisitBasicBlock(block);
1488    }
1489  }
1490}
1491
1492void HGraphVisitor::VisitReversePostOrder() {
1493  for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1494    VisitBasicBlock(block);
1495  }
1496}
1497
1498void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1499  for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1500    it.Current()->Accept(this);
1501  }
1502  for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1503    it.Current()->Accept(this);
1504  }
1505}
1506
1507HConstant* HTypeConversion::TryStaticEvaluation() const {
1508  HGraph* graph = GetBlock()->GetGraph();
1509  if (GetInput()->IsIntConstant()) {
1510    int32_t value = GetInput()->AsIntConstant()->GetValue();
1511    switch (GetResultType()) {
1512      case DataType::Type::kInt8:
1513        return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1514      case DataType::Type::kUint8:
1515        return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1516      case DataType::Type::kInt16:
1517        return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1518      case DataType::Type::kUint16:
1519        return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1520      case DataType::Type::kInt64:
1521        return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1522      case DataType::Type::kFloat32:
1523        return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1524      case DataType::Type::kFloat64:
1525        return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1526      default:
1527        return nullptr;
1528    }
1529  } else if (GetInput()->IsLongConstant()) {
1530    int64_t value = GetInput()->AsLongConstant()->GetValue();
1531    switch (GetResultType()) {
1532      case DataType::Type::kInt8:
1533        return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1534      case DataType::Type::kUint8:
1535        return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1536      case DataType::Type::kInt16:
1537        return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1538      case DataType::Type::kUint16:
1539        return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1540      case DataType::Type::kInt32:
1541        return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1542      case DataType::Type::kFloat32:
1543        return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1544      case DataType::Type::kFloat64:
1545        return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1546      default:
1547        return nullptr;
1548    }
1549  } else if (GetInput()->IsFloatConstant()) {
1550    float value = GetInput()->AsFloatConstant()->GetValue();
1551    switch (GetResultType()) {
1552      case DataType::Type::kInt32:
1553        if (std::isnan(value))
1554          return graph->GetIntConstant(0, GetDexPc());
1555        if (value >= kPrimIntMax)
1556          return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1557        if (value <= kPrimIntMin)
1558          return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1559        return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1560      case DataType::Type::kInt64:
1561        if (std::isnan(value))
1562          return graph->GetLongConstant(0, GetDexPc());
1563        if (value >= kPrimLongMax)
1564          return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1565        if (value <= kPrimLongMin)
1566          return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1567        return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1568      case DataType::Type::kFloat64:
1569        return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1570      default:
1571        return nullptr;
1572    }
1573  } else if (GetInput()->IsDoubleConstant()) {
1574    double value = GetInput()->AsDoubleConstant()->GetValue();
1575    switch (GetResultType()) {
1576      case DataType::Type::kInt32:
1577        if (std::isnan(value))
1578          return graph->GetIntConstant(0, GetDexPc());
1579        if (value >= kPrimIntMax)
1580          return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1581        if (value <= kPrimLongMin)
1582          return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1583        return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1584      case DataType::Type::kInt64:
1585        if (std::isnan(value))
1586          return graph->GetLongConstant(0, GetDexPc());
1587        if (value >= kPrimLongMax)
1588          return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1589        if (value <= kPrimLongMin)
1590          return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1591        return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1592      case DataType::Type::kFloat32:
1593        return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1594      default:
1595        return nullptr;
1596    }
1597  }
1598  return nullptr;
1599}
1600
1601HConstant* HUnaryOperation::TryStaticEvaluation() const {
1602  if (GetInput()->IsIntConstant()) {
1603    return Evaluate(GetInput()->AsIntConstant());
1604  } else if (GetInput()->IsLongConstant()) {
1605    return Evaluate(GetInput()->AsLongConstant());
1606  } else if (kEnableFloatingPointStaticEvaluation) {
1607    if (GetInput()->IsFloatConstant()) {
1608      return Evaluate(GetInput()->AsFloatConstant());
1609    } else if (GetInput()->IsDoubleConstant()) {
1610      return Evaluate(GetInput()->AsDoubleConstant());
1611    }
1612  }
1613  return nullptr;
1614}
1615
1616HConstant* HBinaryOperation::TryStaticEvaluation() const {
1617  if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1618    return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1619  } else if (GetLeft()->IsLongConstant()) {
1620    if (GetRight()->IsIntConstant()) {
1621      // The binop(long, int) case is only valid for shifts and rotations.
1622      DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1623      return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1624    } else if (GetRight()->IsLongConstant()) {
1625      return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1626    }
1627  } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1628    // The binop(null, null) case is only valid for equal and not-equal conditions.
1629    DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1630    return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1631  } else if (kEnableFloatingPointStaticEvaluation) {
1632    if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1633      return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1634    } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1635      return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1636    }
1637  }
1638  return nullptr;
1639}
1640
1641HConstant* HBinaryOperation::GetConstantRight() const {
1642  if (GetRight()->IsConstant()) {
1643    return GetRight()->AsConstant();
1644  } else if (IsCommutative() && GetLeft()->IsConstant()) {
1645    return GetLeft()->AsConstant();
1646  } else {
1647    return nullptr;
1648  }
1649}
1650
1651// If `GetConstantRight()` returns one of the input, this returns the other
1652// one. Otherwise it returns null.
1653HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1654  HInstruction* most_constant_right = GetConstantRight();
1655  if (most_constant_right == nullptr) {
1656    return nullptr;
1657  } else if (most_constant_right == GetLeft()) {
1658    return GetRight();
1659  } else {
1660    return GetLeft();
1661  }
1662}
1663
1664std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1665  switch (rhs) {
1666    case ComparisonBias::kNoBias:
1667      return os << "no_bias";
1668    case ComparisonBias::kGtBias:
1669      return os << "gt_bias";
1670    case ComparisonBias::kLtBias:
1671      return os << "lt_bias";
1672    default:
1673      LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1674      UNREACHABLE();
1675  }
1676}
1677
1678bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1679  return this == instruction->GetPreviousDisregardingMoves();
1680}
1681
1682bool HInstruction::Equals(const HInstruction* other) const {
1683  if (!InstructionTypeEquals(other)) return false;
1684  DCHECK_EQ(GetKind(), other->GetKind());
1685  if (!InstructionDataEquals(other)) return false;
1686  if (GetType() != other->GetType()) return false;
1687  HConstInputsRef inputs = GetInputs();
1688  HConstInputsRef other_inputs = other->GetInputs();
1689  if (inputs.size() != other_inputs.size()) return false;
1690  for (size_t i = 0; i != inputs.size(); ++i) {
1691    if (inputs[i] != other_inputs[i]) return false;
1692  }
1693
1694  DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1695  return true;
1696}
1697
1698std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1699#define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1700  switch (rhs) {
1701    FOR_EACH_INSTRUCTION(DECLARE_CASE)
1702    default:
1703      os << "Unknown instruction kind " << static_cast<int>(rhs);
1704      break;
1705  }
1706#undef DECLARE_CASE
1707  return os;
1708}
1709
1710void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1711  if (do_checks) {
1712    DCHECK(!IsPhi());
1713    DCHECK(!IsControlFlow());
1714    DCHECK(CanBeMoved() ||
1715           // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1716           IsShouldDeoptimizeFlag());
1717    DCHECK(!cursor->IsPhi());
1718  }
1719
1720  next_->previous_ = previous_;
1721  if (previous_ != nullptr) {
1722    previous_->next_ = next_;
1723  }
1724  if (block_->instructions_.first_instruction_ == this) {
1725    block_->instructions_.first_instruction_ = next_;
1726  }
1727  DCHECK_NE(block_->instructions_.last_instruction_, this);
1728
1729  previous_ = cursor->previous_;
1730  if (previous_ != nullptr) {
1731    previous_->next_ = this;
1732  }
1733  next_ = cursor;
1734  cursor->previous_ = this;
1735  block_ = cursor->block_;
1736
1737  if (block_->instructions_.first_instruction_ == cursor) {
1738    block_->instructions_.first_instruction_ = this;
1739  }
1740}
1741
1742void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1743  DCHECK(!CanThrow());
1744  DCHECK(!HasSideEffects());
1745  DCHECK(!HasEnvironmentUses());
1746  DCHECK(HasNonEnvironmentUses());
1747  DCHECK(!IsPhi());  // Makes no sense for Phi.
1748  DCHECK_EQ(InputCount(), 0u);
1749
1750  // Find the target block.
1751  auto uses_it = GetUses().begin();
1752  auto uses_end = GetUses().end();
1753  HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1754  ++uses_it;
1755  while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1756    ++uses_it;
1757  }
1758  if (uses_it != uses_end) {
1759    // This instruction has uses in two or more blocks. Find the common dominator.
1760    CommonDominator finder(target_block);
1761    for (; uses_it != uses_end; ++uses_it) {
1762      finder.Update(uses_it->GetUser()->GetBlock());
1763    }
1764    target_block = finder.Get();
1765    DCHECK(target_block != nullptr);
1766  }
1767  // Move to the first dominator not in a loop.
1768  while (target_block->IsInLoop()) {
1769    target_block = target_block->GetDominator();
1770    DCHECK(target_block != nullptr);
1771  }
1772
1773  // Find insertion position.
1774  HInstruction* insert_pos = nullptr;
1775  for (const HUseListNode<HInstruction*>& use : GetUses()) {
1776    if (use.GetUser()->GetBlock() == target_block &&
1777        (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1778      insert_pos = use.GetUser();
1779    }
1780  }
1781  if (insert_pos == nullptr) {
1782    // No user in `target_block`, insert before the control flow instruction.
1783    insert_pos = target_block->GetLastInstruction();
1784    DCHECK(insert_pos->IsControlFlow());
1785    // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1786    if (insert_pos->IsIf()) {
1787      HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1788      if (if_input == insert_pos->GetPrevious()) {
1789        insert_pos = if_input;
1790      }
1791    }
1792  }
1793  MoveBefore(insert_pos);
1794}
1795
1796HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1797  DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1798  DCHECK_EQ(cursor->GetBlock(), this);
1799
1800  HBasicBlock* new_block =
1801      new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
1802  new_block->instructions_.first_instruction_ = cursor;
1803  new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1804  instructions_.last_instruction_ = cursor->previous_;
1805  if (cursor->previous_ == nullptr) {
1806    instructions_.first_instruction_ = nullptr;
1807  } else {
1808    cursor->previous_->next_ = nullptr;
1809    cursor->previous_ = nullptr;
1810  }
1811
1812  new_block->instructions_.SetBlockOfInstructions(new_block);
1813  AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc()));
1814
1815  for (HBasicBlock* successor : GetSuccessors()) {
1816    successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1817  }
1818  new_block->successors_.swap(successors_);
1819  DCHECK(successors_.empty());
1820  AddSuccessor(new_block);
1821
1822  GetGraph()->AddBlock(new_block);
1823  return new_block;
1824}
1825
1826HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1827  DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1828  DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1829
1830  HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
1831
1832  for (HBasicBlock* predecessor : GetPredecessors()) {
1833    predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1834  }
1835  new_block->predecessors_.swap(predecessors_);
1836  DCHECK(predecessors_.empty());
1837  AddPredecessor(new_block);
1838
1839  GetGraph()->AddBlock(new_block);
1840  return new_block;
1841}
1842
1843HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1844  DCHECK_EQ(cursor->GetBlock(), this);
1845
1846  HBasicBlock* new_block =
1847      new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
1848  new_block->instructions_.first_instruction_ = cursor;
1849  new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1850  instructions_.last_instruction_ = cursor->previous_;
1851  if (cursor->previous_ == nullptr) {
1852    instructions_.first_instruction_ = nullptr;
1853  } else {
1854    cursor->previous_->next_ = nullptr;
1855    cursor->previous_ = nullptr;
1856  }
1857
1858  new_block->instructions_.SetBlockOfInstructions(new_block);
1859
1860  for (HBasicBlock* successor : GetSuccessors()) {
1861    successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1862  }
1863  new_block->successors_.swap(successors_);
1864  DCHECK(successors_.empty());
1865
1866  for (HBasicBlock* dominated : GetDominatedBlocks()) {
1867    dominated->dominator_ = new_block;
1868  }
1869  new_block->dominated_blocks_.swap(dominated_blocks_);
1870  DCHECK(dominated_blocks_.empty());
1871  return new_block;
1872}
1873
1874HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1875  DCHECK(!cursor->IsControlFlow());
1876  DCHECK_NE(instructions_.last_instruction_, cursor);
1877  DCHECK_EQ(cursor->GetBlock(), this);
1878
1879  HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
1880  new_block->instructions_.first_instruction_ = cursor->GetNext();
1881  new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1882  cursor->next_->previous_ = nullptr;
1883  cursor->next_ = nullptr;
1884  instructions_.last_instruction_ = cursor;
1885
1886  new_block->instructions_.SetBlockOfInstructions(new_block);
1887  for (HBasicBlock* successor : GetSuccessors()) {
1888    successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1889  }
1890  new_block->successors_.swap(successors_);
1891  DCHECK(successors_.empty());
1892
1893  for (HBasicBlock* dominated : GetDominatedBlocks()) {
1894    dominated->dominator_ = new_block;
1895  }
1896  new_block->dominated_blocks_.swap(dominated_blocks_);
1897  DCHECK(dominated_blocks_.empty());
1898  return new_block;
1899}
1900
1901const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1902  if (EndsWithTryBoundary()) {
1903    HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1904    if (try_boundary->IsEntry()) {
1905      DCHECK(!IsTryBlock());
1906      return try_boundary;
1907    } else {
1908      DCHECK(IsTryBlock());
1909      DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1910      return nullptr;
1911    }
1912  } else if (IsTryBlock()) {
1913    return &try_catch_information_->GetTryEntry();
1914  } else {
1915    return nullptr;
1916  }
1917}
1918
1919bool HBasicBlock::HasThrowingInstructions() const {
1920  for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1921    if (it.Current()->CanThrow()) {
1922      return true;
1923    }
1924  }
1925  return false;
1926}
1927
1928static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1929  return block.GetPhis().IsEmpty()
1930      && !block.GetInstructions().IsEmpty()
1931      && block.GetFirstInstruction() == block.GetLastInstruction();
1932}
1933
1934bool HBasicBlock::IsSingleGoto() const {
1935  return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1936}
1937
1938bool HBasicBlock::IsSingleReturn() const {
1939  return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn();
1940}
1941
1942bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const {
1943  return (GetFirstInstruction() == GetLastInstruction()) &&
1944         (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
1945}
1946
1947bool HBasicBlock::IsSingleTryBoundary() const {
1948  return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1949}
1950
1951bool HBasicBlock::EndsWithControlFlowInstruction() const {
1952  return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1953}
1954
1955bool HBasicBlock::EndsWithIf() const {
1956  return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1957}
1958
1959bool HBasicBlock::EndsWithTryBoundary() const {
1960  return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1961}
1962
1963bool HBasicBlock::HasSinglePhi() const {
1964  return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1965}
1966
1967ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1968  if (EndsWithTryBoundary()) {
1969    // The normal-flow successor of HTryBoundary is always stored at index zero.
1970    DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1971    return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1972  } else {
1973    // All successors of blocks not ending with TryBoundary are normal.
1974    return ArrayRef<HBasicBlock* const>(successors_);
1975  }
1976}
1977
1978ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1979  if (EndsWithTryBoundary()) {
1980    return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1981  } else {
1982    // Blocks not ending with TryBoundary do not have exceptional successors.
1983    return ArrayRef<HBasicBlock* const>();
1984  }
1985}
1986
1987bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1988  ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1989  ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1990
1991  size_t length = handlers1.size();
1992  if (length != handlers2.size()) {
1993    return false;
1994  }
1995
1996  // Exception handlers need to be stored in the same order.
1997  for (size_t i = 0; i < length; ++i) {
1998    if (handlers1[i] != handlers2[i]) {
1999      return false;
2000    }
2001  }
2002  return true;
2003}
2004
2005size_t HInstructionList::CountSize() const {
2006  size_t size = 0;
2007  HInstruction* current = first_instruction_;
2008  for (; current != nullptr; current = current->GetNext()) {
2009    size++;
2010  }
2011  return size;
2012}
2013
2014void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
2015  for (HInstruction* current = first_instruction_;
2016       current != nullptr;
2017       current = current->GetNext()) {
2018    current->SetBlock(block);
2019  }
2020}
2021
2022void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
2023  DCHECK(Contains(cursor));
2024  if (!instruction_list.IsEmpty()) {
2025    if (cursor == last_instruction_) {
2026      last_instruction_ = instruction_list.last_instruction_;
2027    } else {
2028      cursor->next_->previous_ = instruction_list.last_instruction_;
2029    }
2030    instruction_list.last_instruction_->next_ = cursor->next_;
2031    cursor->next_ = instruction_list.first_instruction_;
2032    instruction_list.first_instruction_->previous_ = cursor;
2033  }
2034}
2035
2036void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
2037  DCHECK(Contains(cursor));
2038  if (!instruction_list.IsEmpty()) {
2039    if (cursor == first_instruction_) {
2040      first_instruction_ = instruction_list.first_instruction_;
2041    } else {
2042      cursor->previous_->next_ = instruction_list.first_instruction_;
2043    }
2044    instruction_list.last_instruction_->next_ = cursor;
2045    instruction_list.first_instruction_->previous_ = cursor->previous_;
2046    cursor->previous_ = instruction_list.last_instruction_;
2047  }
2048}
2049
2050void HInstructionList::Add(const HInstructionList& instruction_list) {
2051  if (IsEmpty()) {
2052    first_instruction_ = instruction_list.first_instruction_;
2053    last_instruction_ = instruction_list.last_instruction_;
2054  } else {
2055    AddAfter(last_instruction_, instruction_list);
2056  }
2057}
2058
2059// Should be called on instructions in a dead block in post order. This method
2060// assumes `insn` has been removed from all users with the exception of catch
2061// phis because of missing exceptional edges in the graph. It removes the
2062// instruction from catch phi uses, together with inputs of other catch phis in
2063// the catch block at the same index, as these must be dead too.
2064static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
2065  DCHECK(!insn->HasEnvironmentUses());
2066  while (insn->HasNonEnvironmentUses()) {
2067    const HUseListNode<HInstruction*>& use = insn->GetUses().front();
2068    size_t use_index = use.GetIndex();
2069    HBasicBlock* user_block =  use.GetUser()->GetBlock();
2070    DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
2071    for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2072      phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
2073    }
2074  }
2075}
2076
2077void HBasicBlock::DisconnectAndDelete() {
2078  // Dominators must be removed after all the blocks they dominate. This way
2079  // a loop header is removed last, a requirement for correct loop information
2080  // iteration.
2081  DCHECK(dominated_blocks_.empty());
2082
2083  // The following steps gradually remove the block from all its dependants in
2084  // post order (b/27683071).
2085
2086  // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
2087  //     We need to do this before step (4) which destroys the predecessor list.
2088  HBasicBlock* loop_update_start = this;
2089  if (IsLoopHeader()) {
2090    HLoopInformation* loop_info = GetLoopInformation();
2091    // All other blocks in this loop should have been removed because the header
2092    // was their dominator.
2093    // Note that we do not remove `this` from `loop_info` as it is unreachable.
2094    DCHECK(!loop_info->IsIrreducible());
2095    DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
2096    DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
2097    loop_update_start = loop_info->GetPreHeader();
2098  }
2099
2100  // (2) Disconnect the block from its successors and update their phis.
2101  for (HBasicBlock* successor : successors_) {
2102    // Delete this block from the list of predecessors.
2103    size_t this_index = successor->GetPredecessorIndexOf(this);
2104    successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
2105
2106    // Check that `successor` has other predecessors, otherwise `this` is the
2107    // dominator of `successor` which violates the order DCHECKed at the top.
2108    DCHECK(!successor->predecessors_.empty());
2109
2110    // Remove this block's entries in the successor's phis. Skip exceptional
2111    // successors because catch phi inputs do not correspond to predecessor
2112    // blocks but throwing instructions. The inputs of the catch phis will be
2113    // updated in step (3).
2114    if (!successor->IsCatchBlock()) {
2115      if (successor->predecessors_.size() == 1u) {
2116        // The successor has just one predecessor left. Replace phis with the only
2117        // remaining input.
2118        for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2119          HPhi* phi = phi_it.Current()->AsPhi();
2120          phi->ReplaceWith(phi->InputAt(1 - this_index));
2121          successor->RemovePhi(phi);
2122        }
2123      } else {
2124        for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2125          phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
2126        }
2127      }
2128    }
2129  }
2130  successors_.clear();
2131
2132  // (3) Remove instructions and phis. Instructions should have no remaining uses
2133  //     except in catch phis. If an instruction is used by a catch phi at `index`,
2134  //     remove `index`-th input of all phis in the catch block since they are
2135  //     guaranteed dead. Note that we may miss dead inputs this way but the
2136  //     graph will always remain consistent.
2137  for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2138    HInstruction* insn = it.Current();
2139    RemoveUsesOfDeadInstruction(insn);
2140    RemoveInstruction(insn);
2141  }
2142  for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
2143    HPhi* insn = it.Current()->AsPhi();
2144    RemoveUsesOfDeadInstruction(insn);
2145    RemovePhi(insn);
2146  }
2147
2148  // (4) Disconnect the block from its predecessors and update their
2149  //     control-flow instructions.
2150  for (HBasicBlock* predecessor : predecessors_) {
2151    // We should not see any back edges as they would have been removed by step (3).
2152    DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
2153
2154    HInstruction* last_instruction = predecessor->GetLastInstruction();
2155    if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
2156      // This block is the only normal-flow successor of the TryBoundary which
2157      // makes `predecessor` dead. Since DCE removes blocks in post order,
2158      // exception handlers of this TryBoundary were already visited and any
2159      // remaining handlers therefore must be live. We remove `predecessor` from
2160      // their list of predecessors.
2161      DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
2162      while (predecessor->GetSuccessors().size() > 1) {
2163        HBasicBlock* handler = predecessor->GetSuccessors()[1];
2164        DCHECK(handler->IsCatchBlock());
2165        predecessor->RemoveSuccessor(handler);
2166        handler->RemovePredecessor(predecessor);
2167      }
2168    }
2169
2170    predecessor->RemoveSuccessor(this);
2171    uint32_t num_pred_successors = predecessor->GetSuccessors().size();
2172    if (num_pred_successors == 1u) {
2173      // If we have one successor after removing one, then we must have
2174      // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
2175      // successor. Replace those with a HGoto.
2176      DCHECK(last_instruction->IsIf() ||
2177             last_instruction->IsPackedSwitch() ||
2178             (last_instruction->IsTryBoundary() && IsCatchBlock()));
2179      predecessor->RemoveInstruction(last_instruction);
2180      predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc()));
2181    } else if (num_pred_successors == 0u) {
2182      // The predecessor has no remaining successors and therefore must be dead.
2183      // We deliberately leave it without a control-flow instruction so that the
2184      // GraphChecker fails unless it is not removed during the pass too.
2185      predecessor->RemoveInstruction(last_instruction);
2186    } else {
2187      // There are multiple successors left. The removed block might be a successor
2188      // of a PackedSwitch which will be completely removed (perhaps replaced with
2189      // a Goto), or we are deleting a catch block from a TryBoundary. In either
2190      // case, leave `last_instruction` as is for now.
2191      DCHECK(last_instruction->IsPackedSwitch() ||
2192             (last_instruction->IsTryBoundary() && IsCatchBlock()));
2193    }
2194  }
2195  predecessors_.clear();
2196
2197  // (5) Remove the block from all loops it is included in. Skip the inner-most
2198  //     loop if this is the loop header (see definition of `loop_update_start`)
2199  //     because the loop header's predecessor list has been destroyed in step (4).
2200  for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
2201    HLoopInformation* loop_info = it.Current();
2202    loop_info->Remove(this);
2203    if (loop_info->IsBackEdge(*this)) {
2204      // If this was the last back edge of the loop, we deliberately leave the
2205      // loop in an inconsistent state and will fail GraphChecker unless the
2206      // entire loop is removed during the pass.
2207      loop_info->RemoveBackEdge(this);
2208    }
2209  }
2210
2211  // (6) Disconnect from the dominator.
2212  dominator_->RemoveDominatedBlock(this);
2213  SetDominator(nullptr);
2214
2215  // (7) Delete from the graph, update reverse post order.
2216  graph_->DeleteDeadEmptyBlock(this);
2217  SetGraph(nullptr);
2218}
2219
2220void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
2221  DCHECK(EndsWithControlFlowInstruction());
2222  RemoveInstruction(GetLastInstruction());
2223  instructions_.Add(other->GetInstructions());
2224  other->instructions_.SetBlockOfInstructions(this);
2225  other->instructions_.Clear();
2226}
2227
2228void HBasicBlock::MergeWith(HBasicBlock* other) {
2229  DCHECK_EQ(GetGraph(), other->GetGraph());
2230  DCHECK(ContainsElement(dominated_blocks_, other));
2231  DCHECK_EQ(GetSingleSuccessor(), other);
2232  DCHECK_EQ(other->GetSinglePredecessor(), this);
2233  DCHECK(other->GetPhis().IsEmpty());
2234
2235  // Move instructions from `other` to `this`.
2236  MergeInstructionsWith(other);
2237
2238  // Remove `other` from the loops it is included in.
2239  for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
2240    HLoopInformation* loop_info = it.Current();
2241    loop_info->Remove(other);
2242    if (loop_info->IsBackEdge(*other)) {
2243      loop_info->ReplaceBackEdge(other, this);
2244    }
2245  }
2246
2247  // Update links to the successors of `other`.
2248  successors_.clear();
2249  for (HBasicBlock* successor : other->GetSuccessors()) {
2250    successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2251  }
2252  successors_.swap(other->successors_);
2253  DCHECK(other->successors_.empty());
2254
2255  // Update the dominator tree.
2256  RemoveDominatedBlock(other);
2257  for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2258    dominated->SetDominator(this);
2259  }
2260  dominated_blocks_.insert(
2261      dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2262  other->dominated_blocks_.clear();
2263  other->dominator_ = nullptr;
2264
2265  // Clear the list of predecessors of `other` in preparation of deleting it.
2266  other->predecessors_.clear();
2267
2268  // Delete `other` from the graph. The function updates reverse post order.
2269  graph_->DeleteDeadEmptyBlock(other);
2270  other->SetGraph(nullptr);
2271}
2272
2273void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2274  DCHECK_NE(GetGraph(), other->GetGraph());
2275  DCHECK(GetDominatedBlocks().empty());
2276  DCHECK(GetSuccessors().empty());
2277  DCHECK(!EndsWithControlFlowInstruction());
2278  DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2279  DCHECK(other->GetPhis().IsEmpty());
2280  DCHECK(!other->IsInLoop());
2281
2282  // Move instructions from `other` to `this`.
2283  instructions_.Add(other->GetInstructions());
2284  other->instructions_.SetBlockOfInstructions(this);
2285
2286  // Update links to the successors of `other`.
2287  successors_.clear();
2288  for (HBasicBlock* successor : other->GetSuccessors()) {
2289    successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2290  }
2291  successors_.swap(other->successors_);
2292  DCHECK(other->successors_.empty());
2293
2294  // Update the dominator tree.
2295  for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2296    dominated->SetDominator(this);
2297  }
2298  dominated_blocks_.insert(
2299      dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2300  other->dominated_blocks_.clear();
2301  other->dominator_ = nullptr;
2302  other->graph_ = nullptr;
2303}
2304
2305void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2306  while (!GetPredecessors().empty()) {
2307    HBasicBlock* predecessor = GetPredecessors()[0];
2308    predecessor->ReplaceSuccessor(this, other);
2309  }
2310  while (!GetSuccessors().empty()) {
2311    HBasicBlock* successor = GetSuccessors()[0];
2312    successor->ReplacePredecessor(this, other);
2313  }
2314  for (HBasicBlock* dominated : GetDominatedBlocks()) {
2315    other->AddDominatedBlock(dominated);
2316  }
2317  GetDominator()->ReplaceDominatedBlock(this, other);
2318  other->SetDominator(GetDominator());
2319  dominator_ = nullptr;
2320  graph_ = nullptr;
2321}
2322
2323void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2324  DCHECK_EQ(block->GetGraph(), this);
2325  DCHECK(block->GetSuccessors().empty());
2326  DCHECK(block->GetPredecessors().empty());
2327  DCHECK(block->GetDominatedBlocks().empty());
2328  DCHECK(block->GetDominator() == nullptr);
2329  DCHECK(block->GetInstructions().IsEmpty());
2330  DCHECK(block->GetPhis().IsEmpty());
2331
2332  if (block->IsExitBlock()) {
2333    SetExitBlock(nullptr);
2334  }
2335
2336  RemoveElement(reverse_post_order_, block);
2337  blocks_[block->GetBlockId()] = nullptr;
2338  block->SetGraph(nullptr);
2339}
2340
2341void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2342                                                   HBasicBlock* reference,
2343                                                   bool replace_if_back_edge) {
2344  if (block->IsLoopHeader()) {
2345    // Clear the information of which blocks are contained in that loop. Since the
2346    // information is stored as a bit vector based on block ids, we have to update
2347    // it, as those block ids were specific to the callee graph and we are now adding
2348    // these blocks to the caller graph.
2349    block->GetLoopInformation()->ClearAllBlocks();
2350  }
2351
2352  // If not already in a loop, update the loop information.
2353  if (!block->IsInLoop()) {
2354    block->SetLoopInformation(reference->GetLoopInformation());
2355  }
2356
2357  // If the block is in a loop, update all its outward loops.
2358  HLoopInformation* loop_info = block->GetLoopInformation();
2359  if (loop_info != nullptr) {
2360    for (HLoopInformationOutwardIterator loop_it(*block);
2361         !loop_it.Done();
2362         loop_it.Advance()) {
2363      loop_it.Current()->Add(block);
2364    }
2365    if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2366      loop_info->ReplaceBackEdge(reference, block);
2367    }
2368  }
2369
2370  // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2371  TryCatchInformation* try_catch_info = reference->IsTryBlock()
2372      ? reference->GetTryCatchInformation()
2373      : nullptr;
2374  block->SetTryCatchInformation(try_catch_info);
2375}
2376
2377HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2378  DCHECK(HasExitBlock()) << "Unimplemented scenario";
2379  // Update the environments in this graph to have the invoke's environment
2380  // as parent.
2381  {
2382    // Skip the entry block, we do not need to update the entry's suspend check.
2383    for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2384      for (HInstructionIterator instr_it(block->GetInstructions());
2385           !instr_it.Done();
2386           instr_it.Advance()) {
2387        HInstruction* current = instr_it.Current();
2388        if (current->NeedsEnvironment()) {
2389          DCHECK(current->HasEnvironment());
2390          current->GetEnvironment()->SetAndCopyParentChain(
2391              outer_graph->GetAllocator(), invoke->GetEnvironment());
2392        }
2393      }
2394    }
2395  }
2396  outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2397
2398  if (HasBoundsChecks()) {
2399    outer_graph->SetHasBoundsChecks(true);
2400  }
2401  if (HasLoops()) {
2402    outer_graph->SetHasLoops(true);
2403  }
2404  if (HasIrreducibleLoops()) {
2405    outer_graph->SetHasIrreducibleLoops(true);
2406  }
2407  if (HasTryCatch()) {
2408    outer_graph->SetHasTryCatch(true);
2409  }
2410  if (HasSIMD()) {
2411    outer_graph->SetHasSIMD(true);
2412  }
2413
2414  HInstruction* return_value = nullptr;
2415  if (GetBlocks().size() == 3) {
2416    // Inliner already made sure we don't inline methods that always throw.
2417    DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2418    // Simple case of an entry block, a body block, and an exit block.
2419    // Put the body block's instruction into `invoke`'s block.
2420    HBasicBlock* body = GetBlocks()[1];
2421    DCHECK(GetBlocks()[0]->IsEntryBlock());
2422    DCHECK(GetBlocks()[2]->IsExitBlock());
2423    DCHECK(!body->IsExitBlock());
2424    DCHECK(!body->IsInLoop());
2425    HInstruction* last = body->GetLastInstruction();
2426
2427    // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2428    invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2429    body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2430
2431    // Replace the invoke with the return value of the inlined graph.
2432    if (last->IsReturn()) {
2433      return_value = last->InputAt(0);
2434    } else {
2435      DCHECK(last->IsReturnVoid());
2436    }
2437
2438    invoke->GetBlock()->RemoveInstruction(last);
2439  } else {
2440    // Need to inline multiple blocks. We split `invoke`'s block
2441    // into two blocks, merge the first block of the inlined graph into
2442    // the first half, and replace the exit block of the inlined graph
2443    // with the second half.
2444    ArenaAllocator* allocator = outer_graph->GetAllocator();
2445    HBasicBlock* at = invoke->GetBlock();
2446    // Note that we split before the invoke only to simplify polymorphic inlining.
2447    HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2448
2449    HBasicBlock* first = entry_block_->GetSuccessors()[0];
2450    DCHECK(!first->IsInLoop());
2451    at->MergeWithInlined(first);
2452    exit_block_->ReplaceWith(to);
2453
2454    // Update the meta information surrounding blocks:
2455    // (1) the graph they are now in,
2456    // (2) the reverse post order of that graph,
2457    // (3) their potential loop information, inner and outer,
2458    // (4) try block membership.
2459    // Note that we do not need to update catch phi inputs because they
2460    // correspond to the register file of the outer method which the inlinee
2461    // cannot modify.
2462
2463    // We don't add the entry block, the exit block, and the first block, which
2464    // has been merged with `at`.
2465    static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2466
2467    // We add the `to` block.
2468    static constexpr int kNumberOfNewBlocksInCaller = 1;
2469    size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2470        + kNumberOfNewBlocksInCaller;
2471
2472    // Find the location of `at` in the outer graph's reverse post order. The new
2473    // blocks will be added after it.
2474    size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2475    MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2476
2477    // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2478    // and (4) to the blocks that apply.
2479    for (HBasicBlock* current : GetReversePostOrder()) {
2480      if (current != exit_block_ && current != entry_block_ && current != first) {
2481        DCHECK(current->GetTryCatchInformation() == nullptr);
2482        DCHECK(current->GetGraph() == this);
2483        current->SetGraph(outer_graph);
2484        outer_graph->AddBlock(current);
2485        outer_graph->reverse_post_order_[++index_of_at] = current;
2486        UpdateLoopAndTryInformationOfNewBlock(current, at,  /* replace_if_back_edge */ false);
2487      }
2488    }
2489
2490    // Do (1), (2), (3) and (4) to `to`.
2491    to->SetGraph(outer_graph);
2492    outer_graph->AddBlock(to);
2493    outer_graph->reverse_post_order_[++index_of_at] = to;
2494    // Only `to` can become a back edge, as the inlined blocks
2495    // are predecessors of `to`.
2496    UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2497
2498    // Update all predecessors of the exit block (now the `to` block)
2499    // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2500    // to now get the outer graph exit block as successor. Note that the inliner
2501    // currently doesn't support inlining methods with try/catch.
2502    HPhi* return_value_phi = nullptr;
2503    bool rerun_dominance = false;
2504    bool rerun_loop_analysis = false;
2505    for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2506      HBasicBlock* predecessor = to->GetPredecessors()[pred];
2507      HInstruction* last = predecessor->GetLastInstruction();
2508      if (last->IsThrow()) {
2509        DCHECK(!at->IsTryBlock());
2510        predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2511        --pred;
2512        // We need to re-run dominance information, as the exit block now has
2513        // a new dominator.
2514        rerun_dominance = true;
2515        if (predecessor->GetLoopInformation() != nullptr) {
2516          // The exit block and blocks post dominated by the exit block do not belong
2517          // to any loop. Because we do not compute the post dominators, we need to re-run
2518          // loop analysis to get the loop information correct.
2519          rerun_loop_analysis = true;
2520        }
2521      } else {
2522        if (last->IsReturnVoid()) {
2523          DCHECK(return_value == nullptr);
2524          DCHECK(return_value_phi == nullptr);
2525        } else {
2526          DCHECK(last->IsReturn());
2527          if (return_value_phi != nullptr) {
2528            return_value_phi->AddInput(last->InputAt(0));
2529          } else if (return_value == nullptr) {
2530            return_value = last->InputAt(0);
2531          } else {
2532            // There will be multiple returns.
2533            return_value_phi = new (allocator) HPhi(
2534                allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2535            to->AddPhi(return_value_phi);
2536            return_value_phi->AddInput(return_value);
2537            return_value_phi->AddInput(last->InputAt(0));
2538            return_value = return_value_phi;
2539          }
2540        }
2541        predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2542        predecessor->RemoveInstruction(last);
2543      }
2544    }
2545    if (rerun_loop_analysis) {
2546      DCHECK(!outer_graph->HasIrreducibleLoops())
2547          << "Recomputing loop information in graphs with irreducible loops "
2548          << "is unsupported, as it could lead to loop header changes";
2549      outer_graph->ClearLoopInformation();
2550      outer_graph->ClearDominanceInformation();
2551      outer_graph->BuildDominatorTree();
2552    } else if (rerun_dominance) {
2553      outer_graph->ClearDominanceInformation();
2554      outer_graph->ComputeDominanceInformation();
2555    }
2556  }
2557
2558  // Walk over the entry block and:
2559  // - Move constants from the entry block to the outer_graph's entry block,
2560  // - Replace HParameterValue instructions with their real value.
2561  // - Remove suspend checks, that hold an environment.
2562  // We must do this after the other blocks have been inlined, otherwise ids of
2563  // constants could overlap with the inner graph.
2564  size_t parameter_index = 0;
2565  for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2566    HInstruction* current = it.Current();
2567    HInstruction* replacement = nullptr;
2568    if (current->IsNullConstant()) {
2569      replacement = outer_graph->GetNullConstant(current->GetDexPc());
2570    } else if (current->IsIntConstant()) {
2571      replacement = outer_graph->GetIntConstant(
2572          current->AsIntConstant()->GetValue(), current->GetDexPc());
2573    } else if (current->IsLongConstant()) {
2574      replacement = outer_graph->GetLongConstant(
2575          current->AsLongConstant()->GetValue(), current->GetDexPc());
2576    } else if (current->IsFloatConstant()) {
2577      replacement = outer_graph->GetFloatConstant(
2578          current->AsFloatConstant()->GetValue(), current->GetDexPc());
2579    } else if (current->IsDoubleConstant()) {
2580      replacement = outer_graph->GetDoubleConstant(
2581          current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2582    } else if (current->IsParameterValue()) {
2583      if (kIsDebugBuild
2584          && invoke->IsInvokeStaticOrDirect()
2585          && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2586        // Ensure we do not use the last input of `invoke`, as it
2587        // contains a clinit check which is not an actual argument.
2588        size_t last_input_index = invoke->InputCount() - 1;
2589        DCHECK(parameter_index != last_input_index);
2590      }
2591      replacement = invoke->InputAt(parameter_index++);
2592    } else if (current->IsCurrentMethod()) {
2593      replacement = outer_graph->GetCurrentMethod();
2594    } else {
2595      DCHECK(current->IsGoto() || current->IsSuspendCheck());
2596      entry_block_->RemoveInstruction(current);
2597    }
2598    if (replacement != nullptr) {
2599      current->ReplaceWith(replacement);
2600      // If the current is the return value then we need to update the latter.
2601      if (current == return_value) {
2602        DCHECK_EQ(entry_block_, return_value->GetBlock());
2603        return_value = replacement;
2604      }
2605    }
2606  }
2607
2608  return return_value;
2609}
2610
2611/*
2612 * Loop will be transformed to:
2613 *       old_pre_header
2614 *             |
2615 *          if_block
2616 *           /    \
2617 *  true_block   false_block
2618 *           \    /
2619 *       new_pre_header
2620 *             |
2621 *           header
2622 */
2623void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2624  DCHECK(header->IsLoopHeader());
2625  HBasicBlock* old_pre_header = header->GetDominator();
2626
2627  // Need extra block to avoid critical edge.
2628  HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2629  HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2630  HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2631  HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2632  AddBlock(if_block);
2633  AddBlock(true_block);
2634  AddBlock(false_block);
2635  AddBlock(new_pre_header);
2636
2637  header->ReplacePredecessor(old_pre_header, new_pre_header);
2638  old_pre_header->successors_.clear();
2639  old_pre_header->dominated_blocks_.clear();
2640
2641  old_pre_header->AddSuccessor(if_block);
2642  if_block->AddSuccessor(true_block);  // True successor
2643  if_block->AddSuccessor(false_block);  // False successor
2644  true_block->AddSuccessor(new_pre_header);
2645  false_block->AddSuccessor(new_pre_header);
2646
2647  old_pre_header->dominated_blocks_.push_back(if_block);
2648  if_block->SetDominator(old_pre_header);
2649  if_block->dominated_blocks_.push_back(true_block);
2650  true_block->SetDominator(if_block);
2651  if_block->dominated_blocks_.push_back(false_block);
2652  false_block->SetDominator(if_block);
2653  if_block->dominated_blocks_.push_back(new_pre_header);
2654  new_pre_header->SetDominator(if_block);
2655  new_pre_header->dominated_blocks_.push_back(header);
2656  header->SetDominator(new_pre_header);
2657
2658  // Fix reverse post order.
2659  size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2660  MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2661  reverse_post_order_[index_of_header++] = if_block;
2662  reverse_post_order_[index_of_header++] = true_block;
2663  reverse_post_order_[index_of_header++] = false_block;
2664  reverse_post_order_[index_of_header++] = new_pre_header;
2665
2666  // The pre_header can never be a back edge of a loop.
2667  DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2668         !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2669  UpdateLoopAndTryInformationOfNewBlock(
2670      if_block, old_pre_header, /* replace_if_back_edge */ false);
2671  UpdateLoopAndTryInformationOfNewBlock(
2672      true_block, old_pre_header, /* replace_if_back_edge */ false);
2673  UpdateLoopAndTryInformationOfNewBlock(
2674      false_block, old_pre_header, /* replace_if_back_edge */ false);
2675  UpdateLoopAndTryInformationOfNewBlock(
2676      new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2677}
2678
2679HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2680                                                   HBasicBlock* body,
2681                                                   HBasicBlock* exit) {
2682  DCHECK(header->IsLoopHeader());
2683  HLoopInformation* loop = header->GetLoopInformation();
2684
2685  // Add new loop blocks.
2686  HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2687  HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2688  HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc());
2689  AddBlock(new_pre_header);
2690  AddBlock(new_header);
2691  AddBlock(new_body);
2692
2693  // Set up control flow.
2694  header->ReplaceSuccessor(exit, new_pre_header);
2695  new_pre_header->AddSuccessor(new_header);
2696  new_header->AddSuccessor(exit);
2697  new_header->AddSuccessor(new_body);
2698  new_body->AddSuccessor(new_header);
2699
2700  // Set up dominators.
2701  header->ReplaceDominatedBlock(exit, new_pre_header);
2702  new_pre_header->SetDominator(header);
2703  new_pre_header->dominated_blocks_.push_back(new_header);
2704  new_header->SetDominator(new_pre_header);
2705  new_header->dominated_blocks_.push_back(new_body);
2706  new_body->SetDominator(new_header);
2707  new_header->dominated_blocks_.push_back(exit);
2708  exit->SetDominator(new_header);
2709
2710  // Fix reverse post order.
2711  size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2712  MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2713  reverse_post_order_[++index_of_header] = new_pre_header;
2714  reverse_post_order_[++index_of_header] = new_header;
2715  size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2716  MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2717  reverse_post_order_[index_of_body] = new_body;
2718
2719  // Add gotos and suspend check (client must add conditional in header).
2720  new_pre_header->AddInstruction(new (allocator_) HGoto());
2721  HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc());
2722  new_header->AddInstruction(suspend_check);
2723  new_body->AddInstruction(new (allocator_) HGoto());
2724  suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2725      loop->GetSuspendCheck()->GetEnvironment(), header);
2726
2727  // Update loop information.
2728  new_header->AddBackEdge(new_body);
2729  new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2730  new_header->GetLoopInformation()->Populate();
2731  new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation());  // outward
2732  HLoopInformationOutwardIterator it(*new_header);
2733  for (it.Advance(); !it.Done(); it.Advance()) {
2734    it.Current()->Add(new_pre_header);
2735    it.Current()->Add(new_header);
2736    it.Current()->Add(new_body);
2737  }
2738  return new_pre_header;
2739}
2740
2741static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2742    REQUIRES_SHARED(Locks::mutator_lock_) {
2743  if (rti.IsValid()) {
2744    DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2745        << " upper_bound_rti: " << upper_bound_rti
2746        << " rti: " << rti;
2747    DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2748        << " upper_bound_rti: " << upper_bound_rti
2749        << " rti: " << rti;
2750  }
2751}
2752
2753void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2754  if (kIsDebugBuild) {
2755    DCHECK_EQ(GetType(), DataType::Type::kReference);
2756    ScopedObjectAccess soa(Thread::Current());
2757    DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2758    if (IsBoundType()) {
2759      // Having the test here spares us from making the method virtual just for
2760      // the sake of a DCHECK.
2761      CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2762    }
2763  }
2764  reference_type_handle_ = rti.GetTypeHandle();
2765  SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2766}
2767
2768void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2769  if (kIsDebugBuild) {
2770    ScopedObjectAccess soa(Thread::Current());
2771    DCHECK(upper_bound.IsValid());
2772    DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2773    CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2774  }
2775  upper_bound_ = upper_bound;
2776  SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2777}
2778
2779ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2780  if (kIsDebugBuild) {
2781    ScopedObjectAccess soa(Thread::Current());
2782    DCHECK(IsValidHandle(type_handle));
2783    if (!is_exact) {
2784      DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2785          << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2786    }
2787  }
2788  return ReferenceTypeInfo(type_handle, is_exact);
2789}
2790
2791std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2792  ScopedObjectAccess soa(Thread::Current());
2793  os << "["
2794     << " is_valid=" << rhs.IsValid()
2795     << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2796     << " is_exact=" << rhs.IsExact()
2797     << " ]";
2798  return os;
2799}
2800
2801bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2802  // For now, assume that instructions in different blocks may use the
2803  // environment.
2804  // TODO: Use the control flow to decide if this is true.
2805  if (GetBlock() != other->GetBlock()) {
2806    return true;
2807  }
2808
2809  // We know that we are in the same block. Walk from 'this' to 'other',
2810  // checking to see if there is any instruction with an environment.
2811  HInstruction* current = this;
2812  for (; current != other && current != nullptr; current = current->GetNext()) {
2813    // This is a conservative check, as the instruction result may not be in
2814    // the referenced environment.
2815    if (current->HasEnvironment()) {
2816      return true;
2817    }
2818  }
2819
2820  // We should have been called with 'this' before 'other' in the block.
2821  // Just confirm this.
2822  DCHECK(current != nullptr);
2823  return false;
2824}
2825
2826void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2827                           IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2828                           IntrinsicSideEffects side_effects,
2829                           IntrinsicExceptions exceptions) {
2830  intrinsic_ = intrinsic;
2831  IntrinsicOptimizations opt(this);
2832
2833  // Adjust method's side effects from intrinsic table.
2834  switch (side_effects) {
2835    case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2836    case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2837    case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2838    case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2839  }
2840
2841  if (needs_env_or_cache == kNoEnvironmentOrCache) {
2842    opt.SetDoesNotNeedDexCache();
2843    opt.SetDoesNotNeedEnvironment();
2844  } else {
2845    // If we need an environment, that means there will be a call, which can trigger GC.
2846    SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2847  }
2848  // Adjust method's exception status from intrinsic table.
2849  SetCanThrow(exceptions == kCanThrow);
2850}
2851
2852bool HNewInstance::IsStringAlloc() const {
2853  ScopedObjectAccess soa(Thread::Current());
2854  return GetReferenceTypeInfo().IsStringClass();
2855}
2856
2857bool HInvoke::NeedsEnvironment() const {
2858  if (!IsIntrinsic()) {
2859    return true;
2860  }
2861  IntrinsicOptimizations opt(*this);
2862  return !opt.GetDoesNotNeedEnvironment();
2863}
2864
2865const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2866  ArtMethod* caller = GetEnvironment()->GetMethod();
2867  ScopedObjectAccess soa(Thread::Current());
2868  // `caller` is null for a top-level graph representing a method whose declaring
2869  // class was not resolved.
2870  return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2871}
2872
2873bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2874  if (GetMethodLoadKind() != MethodLoadKind::kRuntimeCall) {
2875    return false;
2876  }
2877  if (!IsIntrinsic()) {
2878    return true;
2879  }
2880  IntrinsicOptimizations opt(*this);
2881  return !opt.GetDoesNotNeedDexCache();
2882}
2883
2884std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2885  switch (rhs) {
2886    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2887      return os << "StringInit";
2888    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2889      return os << "Recursive";
2890    case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
2891      return os << "BootImageLinkTimePcRelative";
2892    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2893      return os << "DirectAddress";
2894    case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
2895      return os << "BssEntry";
2896    case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
2897      return os << "RuntimeCall";
2898    default:
2899      LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2900      UNREACHABLE();
2901  }
2902}
2903
2904std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2905  switch (rhs) {
2906    case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2907      return os << "explicit";
2908    case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2909      return os << "implicit";
2910    case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2911      return os << "none";
2912    default:
2913      LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2914      UNREACHABLE();
2915  }
2916}
2917
2918bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2919  const HLoadClass* other_load_class = other->AsLoadClass();
2920  // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2921  // names rather than type indexes. However, we shall also have to re-think the hash code.
2922  if (type_index_ != other_load_class->type_index_ ||
2923      GetPackedFields() != other_load_class->GetPackedFields()) {
2924    return false;
2925  }
2926  switch (GetLoadKind()) {
2927    case LoadKind::kBootImageAddress:
2928    case LoadKind::kBootImageClassTable:
2929    case LoadKind::kJitTableAddress: {
2930      ScopedObjectAccess soa(Thread::Current());
2931      return GetClass().Get() == other_load_class->GetClass().Get();
2932    }
2933    default:
2934      DCHECK(HasTypeReference(GetLoadKind()));
2935      return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2936  }
2937}
2938
2939std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2940  switch (rhs) {
2941    case HLoadClass::LoadKind::kReferrersClass:
2942      return os << "ReferrersClass";
2943    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2944      return os << "BootImageLinkTimePcRelative";
2945    case HLoadClass::LoadKind::kBootImageAddress:
2946      return os << "BootImageAddress";
2947    case HLoadClass::LoadKind::kBootImageClassTable:
2948      return os << "BootImageClassTable";
2949    case HLoadClass::LoadKind::kBssEntry:
2950      return os << "BssEntry";
2951    case HLoadClass::LoadKind::kJitTableAddress:
2952      return os << "JitTableAddress";
2953    case HLoadClass::LoadKind::kRuntimeCall:
2954      return os << "RuntimeCall";
2955    default:
2956      LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
2957      UNREACHABLE();
2958  }
2959}
2960
2961bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
2962  const HLoadString* other_load_string = other->AsLoadString();
2963  // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
2964  // rather than their indexes. However, we shall also have to re-think the hash code.
2965  if (string_index_ != other_load_string->string_index_ ||
2966      GetPackedFields() != other_load_string->GetPackedFields()) {
2967    return false;
2968  }
2969  switch (GetLoadKind()) {
2970    case LoadKind::kBootImageAddress:
2971    case LoadKind::kBootImageInternTable:
2972    case LoadKind::kJitTableAddress: {
2973      ScopedObjectAccess soa(Thread::Current());
2974      return GetString().Get() == other_load_string->GetString().Get();
2975    }
2976    default:
2977      return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2978  }
2979}
2980
2981std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2982  switch (rhs) {
2983    case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2984      return os << "BootImageLinkTimePcRelative";
2985    case HLoadString::LoadKind::kBootImageAddress:
2986      return os << "BootImageAddress";
2987    case HLoadString::LoadKind::kBootImageInternTable:
2988      return os << "BootImageInternTable";
2989    case HLoadString::LoadKind::kBssEntry:
2990      return os << "BssEntry";
2991    case HLoadString::LoadKind::kJitTableAddress:
2992      return os << "JitTableAddress";
2993    case HLoadString::LoadKind::kRuntimeCall:
2994      return os << "RuntimeCall";
2995    default:
2996      LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2997      UNREACHABLE();
2998  }
2999}
3000
3001void HInstruction::RemoveEnvironmentUsers() {
3002  for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
3003    HEnvironment* user = use.GetUser();
3004    user->SetRawEnvAt(use.GetIndex(), nullptr);
3005  }
3006  env_uses_.clear();
3007}
3008
3009HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) {
3010  HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator());
3011  HBasicBlock* block = instr->GetBlock();
3012
3013  if (instr->IsPhi()) {
3014    HPhi* phi = instr->AsPhi();
3015    DCHECK(!phi->HasEnvironment());
3016    HPhi* phi_clone = clone->AsPhi();
3017    block->ReplaceAndRemovePhiWith(phi, phi_clone);
3018  } else {
3019    block->ReplaceAndRemoveInstructionWith(instr, clone);
3020    if (instr->HasEnvironment()) {
3021      clone->CopyEnvironmentFrom(instr->GetEnvironment());
3022      HLoopInformation* loop_info = block->GetLoopInformation();
3023      if (instr->IsSuspendCheck() && loop_info != nullptr) {
3024        loop_info->SetSuspendCheck(clone->AsSuspendCheck());
3025      }
3026    }
3027  }
3028  return clone;
3029}
3030
3031// Returns an instruction with the opposite Boolean value from 'cond'.
3032HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
3033  ArenaAllocator* allocator = GetAllocator();
3034
3035  if (cond->IsCondition() &&
3036      !DataType::IsFloatingPointType(cond->InputAt(0)->GetType())) {
3037    // Can't reverse floating point conditions.  We have to use HBooleanNot in that case.
3038    HInstruction* lhs = cond->InputAt(0);
3039    HInstruction* rhs = cond->InputAt(1);
3040    HInstruction* replacement = nullptr;
3041    switch (cond->AsCondition()->GetOppositeCondition()) {  // get *opposite*
3042      case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
3043      case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
3044      case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
3045      case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
3046      case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
3047      case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
3048      case kCondB:  replacement = new (allocator) HBelow(lhs, rhs); break;
3049      case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
3050      case kCondA:  replacement = new (allocator) HAbove(lhs, rhs); break;
3051      case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
3052      default:
3053        LOG(FATAL) << "Unexpected condition";
3054        UNREACHABLE();
3055    }
3056    cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3057    return replacement;
3058  } else if (cond->IsIntConstant()) {
3059    HIntConstant* int_const = cond->AsIntConstant();
3060    if (int_const->IsFalse()) {
3061      return GetIntConstant(1);
3062    } else {
3063      DCHECK(int_const->IsTrue()) << int_const->GetValue();
3064      return GetIntConstant(0);
3065    }
3066  } else {
3067    HInstruction* replacement = new (allocator) HBooleanNot(cond);
3068    cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3069    return replacement;
3070  }
3071}
3072
3073std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
3074  os << "["
3075     << " source=" << rhs.GetSource()
3076     << " destination=" << rhs.GetDestination()
3077     << " type=" << rhs.GetType()
3078     << " instruction=";
3079  if (rhs.GetInstruction() != nullptr) {
3080    os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
3081  } else {
3082    os << "null";
3083  }
3084  os << " ]";
3085  return os;
3086}
3087
3088std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
3089  switch (rhs) {
3090    case TypeCheckKind::kUnresolvedCheck:
3091      return os << "unresolved_check";
3092    case TypeCheckKind::kExactCheck:
3093      return os << "exact_check";
3094    case TypeCheckKind::kClassHierarchyCheck:
3095      return os << "class_hierarchy_check";
3096    case TypeCheckKind::kAbstractClassCheck:
3097      return os << "abstract_class_check";
3098    case TypeCheckKind::kInterfaceCheck:
3099      return os << "interface_check";
3100    case TypeCheckKind::kArrayObjectCheck:
3101      return os << "array_object_check";
3102    case TypeCheckKind::kArrayCheck:
3103      return os << "array_check";
3104    default:
3105      LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
3106      UNREACHABLE();
3107  }
3108}
3109
3110std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
3111  switch (kind) {
3112    case MemBarrierKind::kAnyStore:
3113      return os << "AnyStore";
3114    case MemBarrierKind::kLoadAny:
3115      return os << "LoadAny";
3116    case MemBarrierKind::kStoreStore:
3117      return os << "StoreStore";
3118    case MemBarrierKind::kAnyAny:
3119      return os << "AnyAny";
3120    case MemBarrierKind::kNTStoreStore:
3121      return os << "NTStoreStore";
3122
3123    default:
3124      LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
3125      UNREACHABLE();
3126  }
3127}
3128
3129}  // namespace art
3130