1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/callee_save_type.h"
19#include "base/enums.h"
20#include "callee_save_frame.h"
21#include "common_throws.h"
22#include "debug_print.h"
23#include "debugger.h"
24#include "dex/dex_file-inl.h"
25#include "dex/dex_file_types.h"
26#include "dex/dex_instruction-inl.h"
27#include "dex/method_reference.h"
28#include "entrypoints/entrypoint_utils-inl.h"
29#include "entrypoints/runtime_asm_entrypoints.h"
30#include "gc/accounting/card_table-inl.h"
31#include "imt_conflict_table.h"
32#include "imtable-inl.h"
33#include "index_bss_mapping.h"
34#include "instrumentation.h"
35#include "interpreter/interpreter.h"
36#include "jit/jit.h"
37#include "linear_alloc.h"
38#include "method_handles.h"
39#include "mirror/class-inl.h"
40#include "mirror/dex_cache-inl.h"
41#include "mirror/method.h"
42#include "mirror/method_handle_impl.h"
43#include "mirror/object-inl.h"
44#include "mirror/object_array-inl.h"
45#include "oat_file.h"
46#include "oat_quick_method_header.h"
47#include "quick_exception_handler.h"
48#include "runtime.h"
49#include "scoped_thread_state_change-inl.h"
50#include "stack.h"
51#include "thread-inl.h"
52#include "well_known_classes.h"
53
54namespace art {
55
56// Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
57class QuickArgumentVisitor {
58  // Number of bytes for each out register in the caller method's frame.
59  static constexpr size_t kBytesStackArgLocation = 4;
60  // Frame size in bytes of a callee-save frame for RefsAndArgs.
61  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
62      GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
63#if defined(__arm__)
64  // The callee save frame is pointed to by SP.
65  // | argN       |  |
66  // | ...        |  |
67  // | arg4       |  |
68  // | arg3 spill |  |  Caller's frame
69  // | arg2 spill |  |
70  // | arg1 spill |  |
71  // | Method*    | ---
72  // | LR         |
73  // | ...        |    4x6 bytes callee saves
74  // | R3         |
75  // | R2         |
76  // | R1         |
77  // | S15        |
78  // | :          |
79  // | S0         |
80  // |            |    4x2 bytes padding
81  // | Method*    |  <- sp
82  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
83  static constexpr bool kAlignPairRegister = true;
84  static constexpr bool kQuickSoftFloatAbi = false;
85  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
86  static constexpr bool kQuickSkipOddFpRegisters = false;
87  static constexpr size_t kNumQuickGprArgs = 3;
88  static constexpr size_t kNumQuickFprArgs = 16;
89  static constexpr bool kGprFprLockstep = false;
90  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
91      arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
92  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
93      arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
94  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
95      arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
96  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
97    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
98  }
99#elif defined(__aarch64__)
100  // The callee save frame is pointed to by SP.
101  // | argN       |  |
102  // | ...        |  |
103  // | arg4       |  |
104  // | arg3 spill |  |  Caller's frame
105  // | arg2 spill |  |
106  // | arg1 spill |  |
107  // | Method*    | ---
108  // | LR         |
109  // | X29        |
110  // |  :         |
111  // | X20        |
112  // | X7         |
113  // | :          |
114  // | X1         |
115  // | D7         |
116  // |  :         |
117  // | D0         |
118  // |            |    padding
119  // | Method*    |  <- sp
120  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
121  static constexpr bool kAlignPairRegister = false;
122  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
123  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
124  static constexpr bool kQuickSkipOddFpRegisters = false;
125  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
126  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
127  static constexpr bool kGprFprLockstep = false;
128  // Offset of first FPR arg.
129  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
130      arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
131  // Offset of first GPR arg.
132  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
133      arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
134  // Offset of return address.
135  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
136      arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
137  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
138    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
139  }
140#elif defined(__mips__) && !defined(__LP64__)
141  // The callee save frame is pointed to by SP.
142  // | argN       |  |
143  // | ...        |  |
144  // | arg4       |  |
145  // | arg3 spill |  |  Caller's frame
146  // | arg2 spill |  |
147  // | arg1 spill |  |
148  // | Method*    | ---
149  // | RA         |
150  // | ...        |    callee saves
151  // | T1         |    arg5
152  // | T0         |    arg4
153  // | A3         |    arg3
154  // | A2         |    arg2
155  // | A1         |    arg1
156  // | F19        |
157  // | F18        |    f_arg5
158  // | F17        |
159  // | F16        |    f_arg4
160  // | F15        |
161  // | F14        |    f_arg3
162  // | F13        |
163  // | F12        |    f_arg2
164  // | F11        |
165  // | F10        |    f_arg1
166  // | F9         |
167  // | F8         |    f_arg0
168  // |            |    padding
169  // | A0/Method* |  <- sp
170  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
171  static constexpr bool kAlignPairRegister = true;
172  static constexpr bool kQuickSoftFloatAbi = false;
173  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
174  static constexpr bool kQuickSkipOddFpRegisters = true;
175  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
176  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
177                                                  // passed only in even numbered registers and each
178                                                  // double occupies two registers.
179  static constexpr bool kGprFprLockstep = false;
180  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
181  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
182  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
183  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
184    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
185  }
186#elif defined(__mips__) && defined(__LP64__)
187  // The callee save frame is pointed to by SP.
188  // | argN       |  |
189  // | ...        |  |
190  // | arg4       |  |
191  // | arg3 spill |  |  Caller's frame
192  // | arg2 spill |  |
193  // | arg1 spill |  |
194  // | Method*    | ---
195  // | RA         |
196  // | ...        |    callee saves
197  // | A7         |    arg7
198  // | A6         |    arg6
199  // | A5         |    arg5
200  // | A4         |    arg4
201  // | A3         |    arg3
202  // | A2         |    arg2
203  // | A1         |    arg1
204  // | F19        |    f_arg7
205  // | F18        |    f_arg6
206  // | F17        |    f_arg5
207  // | F16        |    f_arg4
208  // | F15        |    f_arg3
209  // | F14        |    f_arg2
210  // | F13        |    f_arg1
211  // | F12        |    f_arg0
212  // |            |    padding
213  // | A0/Method* |  <- sp
214  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
215  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
216  static constexpr bool kAlignPairRegister = false;
217  static constexpr bool kQuickSoftFloatAbi = false;
218  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
219  static constexpr bool kQuickSkipOddFpRegisters = false;
220  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
221  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
222  static constexpr bool kGprFprLockstep = true;
223
224  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
225  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
226  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
227  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
228    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
229  }
230#elif defined(__i386__)
231  // The callee save frame is pointed to by SP.
232  // | argN        |  |
233  // | ...         |  |
234  // | arg4        |  |
235  // | arg3 spill  |  |  Caller's frame
236  // | arg2 spill  |  |
237  // | arg1 spill  |  |
238  // | Method*     | ---
239  // | Return      |
240  // | EBP,ESI,EDI |    callee saves
241  // | EBX         |    arg3
242  // | EDX         |    arg2
243  // | ECX         |    arg1
244  // | XMM3        |    float arg 4
245  // | XMM2        |    float arg 3
246  // | XMM1        |    float arg 2
247  // | XMM0        |    float arg 1
248  // | EAX/Method* |  <- sp
249  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
250  static constexpr bool kAlignPairRegister = false;
251  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
252  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
253  static constexpr bool kQuickSkipOddFpRegisters = false;
254  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
255  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
256  static constexpr bool kGprFprLockstep = false;
257  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
258  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
259  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
260  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
261    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
262  }
263#elif defined(__x86_64__)
264  // The callee save frame is pointed to by SP.
265  // | argN            |  |
266  // | ...             |  |
267  // | reg. arg spills |  |  Caller's frame
268  // | Method*         | ---
269  // | Return          |
270  // | R15             |    callee save
271  // | R14             |    callee save
272  // | R13             |    callee save
273  // | R12             |    callee save
274  // | R9              |    arg5
275  // | R8              |    arg4
276  // | RSI/R6          |    arg1
277  // | RBP/R5          |    callee save
278  // | RBX/R3          |    callee save
279  // | RDX/R2          |    arg2
280  // | RCX/R1          |    arg3
281  // | XMM7            |    float arg 8
282  // | XMM6            |    float arg 7
283  // | XMM5            |    float arg 6
284  // | XMM4            |    float arg 5
285  // | XMM3            |    float arg 4
286  // | XMM2            |    float arg 3
287  // | XMM1            |    float arg 2
288  // | XMM0            |    float arg 1
289  // | Padding         |
290  // | RDI/Method*     |  <- sp
291  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
292  static constexpr bool kAlignPairRegister = false;
293  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
294  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
295  static constexpr bool kQuickSkipOddFpRegisters = false;
296  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
297  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
298  static constexpr bool kGprFprLockstep = false;
299  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
300  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
301  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
302  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
303    switch (gpr_index) {
304      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
305      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
306      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
307      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
308      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
309      default:
310      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
311      return 0;
312    }
313  }
314#else
315#error "Unsupported architecture"
316#endif
317
318 public:
319  // Special handling for proxy methods. Proxy methods are instance methods so the
320  // 'this' object is the 1st argument. They also have the same frame layout as the
321  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
322  // 1st GPR.
323  static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
324      REQUIRES_SHARED(Locks::mutator_lock_) {
325    CHECK((*sp)->IsProxyMethod());
326    CHECK_GT(kNumQuickGprArgs, 0u);
327    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
328    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
329        GprIndexToGprOffset(kThisGprIndex);
330    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
331    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
332  }
333
334  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
335    DCHECK((*sp)->IsCalleeSaveMethod());
336    return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
337  }
338
339  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
340    DCHECK((*sp)->IsCalleeSaveMethod());
341    uint8_t* previous_sp =
342        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
343    return *reinterpret_cast<ArtMethod**>(previous_sp);
344  }
345
346  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
347    DCHECK((*sp)->IsCalleeSaveMethod());
348    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
349                                                            CalleeSaveType::kSaveRefsAndArgs);
350    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
351        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
352    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
353    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
354    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
355
356    if (current_code->IsOptimized()) {
357      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
358      CodeInfoEncoding encoding = code_info.ExtractEncoding();
359      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
360      DCHECK(stack_map.IsValid());
361      if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
362        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
363        return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
364                                           inline_info.GetDepth(encoding.inline_info.encoding)-1);
365      } else {
366        return stack_map.GetDexPc(encoding.stack_map.encoding);
367      }
368    } else {
369      return current_code->ToDexPc(*caller_sp, outer_pc);
370    }
371  }
372
373  static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
374      REQUIRES_SHARED(Locks::mutator_lock_) {
375    DCHECK((*sp)->IsCalleeSaveMethod());
376    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
377                                                            CalleeSaveType::kSaveRefsAndArgs);
378    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
379        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
380    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
381    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
382    if (!current_code->IsOptimized()) {
383      return false;
384    }
385    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
386    CodeInfo code_info = current_code->GetOptimizedCodeInfo();
387    CodeInfoEncoding encoding = code_info.ExtractEncoding();
388    MethodInfo method_info = current_code->GetOptimizedMethodInfo();
389    InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
390    if (invoke.IsValid()) {
391      *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
392      *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
393      return true;
394    }
395    return false;
396  }
397
398  // For the given quick ref and args quick frame, return the caller's PC.
399  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
400    DCHECK((*sp)->IsCalleeSaveMethod());
401    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
402    return *reinterpret_cast<uintptr_t*>(lr);
403  }
404
405  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
406                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
407          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
408          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
409          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
410          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
411              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
412          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
413          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
414    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
415                  "Number of Quick FPR arguments unexpected");
416    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
417                  "Double alignment unexpected");
418    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
419    // next register is even.
420    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
421                  "Number of Quick FPR arguments not even");
422    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
423  }
424
425  virtual ~QuickArgumentVisitor() {}
426
427  virtual void Visit() = 0;
428
429  Primitive::Type GetParamPrimitiveType() const {
430    return cur_type_;
431  }
432
433  uint8_t* GetParamAddress() const {
434    if (!kQuickSoftFloatAbi) {
435      Primitive::Type type = GetParamPrimitiveType();
436      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
437        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
438          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
439            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
440          }
441        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
442          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
443        }
444        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
445      }
446    }
447    if (gpr_index_ < kNumQuickGprArgs) {
448      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
449    }
450    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
451  }
452
453  bool IsSplitLongOrDouble() const {
454    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
455        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
456      return is_split_long_or_double_;
457    } else {
458      return false;  // An optimization for when GPR and FPRs are 64bit.
459    }
460  }
461
462  bool IsParamAReference() const {
463    return GetParamPrimitiveType() == Primitive::kPrimNot;
464  }
465
466  bool IsParamALongOrDouble() const {
467    Primitive::Type type = GetParamPrimitiveType();
468    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
469  }
470
471  uint64_t ReadSplitLongParam() const {
472    // The splitted long is always available through the stack.
473    return *reinterpret_cast<uint64_t*>(stack_args_
474        + stack_index_ * kBytesStackArgLocation);
475  }
476
477  void IncGprIndex() {
478    gpr_index_++;
479    if (kGprFprLockstep) {
480      fpr_index_++;
481    }
482  }
483
484  void IncFprIndex() {
485    fpr_index_++;
486    if (kGprFprLockstep) {
487      gpr_index_++;
488    }
489  }
490
491  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
492    // (a) 'stack_args_' should point to the first method's argument
493    // (b) whatever the argument type it is, the 'stack_index_' should
494    //     be moved forward along with every visiting.
495    gpr_index_ = 0;
496    fpr_index_ = 0;
497    if (kQuickDoubleRegAlignedFloatBackFilled) {
498      fpr_double_index_ = 0;
499    }
500    stack_index_ = 0;
501    if (!is_static_) {  // Handle this.
502      cur_type_ = Primitive::kPrimNot;
503      is_split_long_or_double_ = false;
504      Visit();
505      stack_index_++;
506      if (kNumQuickGprArgs > 0) {
507        IncGprIndex();
508      }
509    }
510    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
511      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
512      switch (cur_type_) {
513        case Primitive::kPrimNot:
514        case Primitive::kPrimBoolean:
515        case Primitive::kPrimByte:
516        case Primitive::kPrimChar:
517        case Primitive::kPrimShort:
518        case Primitive::kPrimInt:
519          is_split_long_or_double_ = false;
520          Visit();
521          stack_index_++;
522          if (gpr_index_ < kNumQuickGprArgs) {
523            IncGprIndex();
524          }
525          break;
526        case Primitive::kPrimFloat:
527          is_split_long_or_double_ = false;
528          Visit();
529          stack_index_++;
530          if (kQuickSoftFloatAbi) {
531            if (gpr_index_ < kNumQuickGprArgs) {
532              IncGprIndex();
533            }
534          } else {
535            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
536              IncFprIndex();
537              if (kQuickDoubleRegAlignedFloatBackFilled) {
538                // Double should not overlap with float.
539                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
540                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
541                // Float should not overlap with double.
542                if (fpr_index_ % 2 == 0) {
543                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
544                }
545              } else if (kQuickSkipOddFpRegisters) {
546                IncFprIndex();
547              }
548            }
549          }
550          break;
551        case Primitive::kPrimDouble:
552        case Primitive::kPrimLong:
553          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
554            if (cur_type_ == Primitive::kPrimLong &&
555#if defined(__mips__) && !defined(__LP64__)
556                (gpr_index_ == 0 || gpr_index_ == 2) &&
557#else
558                gpr_index_ == 0 &&
559#endif
560                kAlignPairRegister) {
561              // Currently, this is only for ARM and MIPS, where we align long parameters with
562              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
563              // R2 (on ARM) or A2(T0) (on MIPS) instead.
564              IncGprIndex();
565            }
566            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
567                ((gpr_index_ + 1) == kNumQuickGprArgs);
568            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
569              // We don't want to split this. Pass over this register.
570              gpr_index_++;
571              is_split_long_or_double_ = false;
572            }
573            Visit();
574            if (kBytesStackArgLocation == 4) {
575              stack_index_+= 2;
576            } else {
577              CHECK_EQ(kBytesStackArgLocation, 8U);
578              stack_index_++;
579            }
580            if (gpr_index_ < kNumQuickGprArgs) {
581              IncGprIndex();
582              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
583                if (gpr_index_ < kNumQuickGprArgs) {
584                  IncGprIndex();
585                }
586              }
587            }
588          } else {
589            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
590                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
591            Visit();
592            if (kBytesStackArgLocation == 4) {
593              stack_index_+= 2;
594            } else {
595              CHECK_EQ(kBytesStackArgLocation, 8U);
596              stack_index_++;
597            }
598            if (kQuickDoubleRegAlignedFloatBackFilled) {
599              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
600                fpr_double_index_ += 2;
601                // Float should not overlap with double.
602                if (fpr_index_ % 2 == 0) {
603                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
604                }
605              }
606            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
607              IncFprIndex();
608              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
609                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
610                  IncFprIndex();
611                }
612              }
613            }
614          }
615          break;
616        default:
617          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
618      }
619    }
620  }
621
622 protected:
623  const bool is_static_;
624  const char* const shorty_;
625  const uint32_t shorty_len_;
626
627 private:
628  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
629  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
630  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
631  uint32_t gpr_index_;  // Index into spilled GPRs.
632  // Index into spilled FPRs.
633  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
634  // holds a higher register number.
635  uint32_t fpr_index_;
636  // Index into spilled FPRs for aligned double.
637  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
638  // terms of singles, may be behind fpr_index.
639  uint32_t fpr_double_index_;
640  uint32_t stack_index_;  // Index into arguments on the stack.
641  // The current type of argument during VisitArguments.
642  Primitive::Type cur_type_;
643  // Does a 64bit parameter straddle the register and stack arguments?
644  bool is_split_long_or_double_;
645};
646
647// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
648// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
649extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
650    REQUIRES_SHARED(Locks::mutator_lock_) {
651  return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
652}
653
654// Visits arguments on the stack placing them into the shadow frame.
655class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
656 public:
657  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
658                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
659      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
660
661  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
662
663 private:
664  ShadowFrame* const sf_;
665  uint32_t cur_reg_;
666
667  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
668};
669
670void BuildQuickShadowFrameVisitor::Visit() {
671  Primitive::Type type = GetParamPrimitiveType();
672  switch (type) {
673    case Primitive::kPrimLong:  // Fall-through.
674    case Primitive::kPrimDouble:
675      if (IsSplitLongOrDouble()) {
676        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
677      } else {
678        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
679      }
680      ++cur_reg_;
681      break;
682    case Primitive::kPrimNot: {
683        StackReference<mirror::Object>* stack_ref =
684            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
685        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
686      }
687      break;
688    case Primitive::kPrimBoolean:  // Fall-through.
689    case Primitive::kPrimByte:     // Fall-through.
690    case Primitive::kPrimChar:     // Fall-through.
691    case Primitive::kPrimShort:    // Fall-through.
692    case Primitive::kPrimInt:      // Fall-through.
693    case Primitive::kPrimFloat:
694      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
695      break;
696    case Primitive::kPrimVoid:
697      LOG(FATAL) << "UNREACHABLE";
698      UNREACHABLE();
699  }
700  ++cur_reg_;
701}
702
703// Don't inline. See b/65159206.
704NO_INLINE
705static void HandleDeoptimization(JValue* result,
706                                 ArtMethod* method,
707                                 ShadowFrame* deopt_frame,
708                                 ManagedStack* fragment)
709    REQUIRES_SHARED(Locks::mutator_lock_) {
710  // Coming from partial-fragment deopt.
711  Thread* self = Thread::Current();
712  if (kIsDebugBuild) {
713    // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
714    // of the call-stack) corresponds to the called method.
715    ShadowFrame* linked = deopt_frame;
716    while (linked->GetLink() != nullptr) {
717      linked = linked->GetLink();
718    }
719    CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
720        << ArtMethod::PrettyMethod(linked->GetMethod());
721  }
722
723  if (VLOG_IS_ON(deopt)) {
724    // Print out the stack to verify that it was a partial-fragment deopt.
725    LOG(INFO) << "Continue-ing from deopt. Stack is:";
726    QuickExceptionHandler::DumpFramesWithType(self, true);
727  }
728
729  ObjPtr<mirror::Throwable> pending_exception;
730  bool from_code = false;
731  DeoptimizationMethodType method_type;
732  self->PopDeoptimizationContext(/* out */ result,
733                                 /* out */ &pending_exception,
734                                 /* out */ &from_code,
735                                 /* out */ &method_type);
736
737  // Push a transition back into managed code onto the linked list in thread.
738  self->PushManagedStackFragment(fragment);
739
740  // Ensure that the stack is still in order.
741  if (kIsDebugBuild) {
742    class DummyStackVisitor : public StackVisitor {
743     public:
744      explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
745          : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
746
747      bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
748        // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
749        // logic. Just always say we want to continue.
750        return true;
751      }
752    };
753    DummyStackVisitor dsv(self);
754    dsv.WalkStack();
755  }
756
757  // Restore the exception that was pending before deoptimization then interpret the
758  // deoptimized frames.
759  if (pending_exception != nullptr) {
760    self->SetException(pending_exception);
761  }
762  interpreter::EnterInterpreterFromDeoptimize(self,
763                                              deopt_frame,
764                                              result,
765                                              from_code,
766                                              DeoptimizationMethodType::kDefault);
767}
768
769extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
770    REQUIRES_SHARED(Locks::mutator_lock_) {
771  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
772  // frame.
773  ScopedQuickEntrypointChecks sqec(self);
774
775  if (UNLIKELY(!method->IsInvokable())) {
776    method->ThrowInvocationTimeError();
777    return 0;
778  }
779
780  JValue tmp_value;
781  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
782      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
783  ManagedStack fragment;
784
785  DCHECK(!method->IsNative()) << method->PrettyMethod();
786  uint32_t shorty_len = 0;
787  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
788  DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
789  CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
790  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
791
792  JValue result;
793
794  if (UNLIKELY(deopt_frame != nullptr)) {
795    HandleDeoptimization(&result, method, deopt_frame, &fragment);
796  } else {
797    const char* old_cause = self->StartAssertNoThreadSuspension(
798        "Building interpreter shadow frame");
799    uint16_t num_regs = accessor.RegistersSize();
800    // No last shadow coming from quick.
801    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
802        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
803    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
804    size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
805    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
806                                                      shadow_frame, first_arg_reg);
807    shadow_frame_builder.VisitArguments();
808    const bool needs_initialization =
809        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
810    // Push a transition back into managed code onto the linked list in thread.
811    self->PushManagedStackFragment(&fragment);
812    self->PushShadowFrame(shadow_frame);
813    self->EndAssertNoThreadSuspension(old_cause);
814
815    if (needs_initialization) {
816      // Ensure static method's class is initialized.
817      StackHandleScope<1> hs(self);
818      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
819      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
820        DCHECK(Thread::Current()->IsExceptionPending())
821            << shadow_frame->GetMethod()->PrettyMethod();
822        self->PopManagedStackFragment(fragment);
823        return 0;
824      }
825    }
826
827    result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
828  }
829
830  // Pop transition.
831  self->PopManagedStackFragment(fragment);
832
833  // Request a stack deoptimization if needed
834  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
835  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
836  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
837  // should be done and it knows the real return pc.
838  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
839               Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
840    if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
841      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
842                   << caller->PrettyMethod();
843    } else {
844      // Push the context of the deoptimization stack so we can restore the return value and the
845      // exception before executing the deoptimized frames.
846      self->PushDeoptimizationContext(
847          result,
848          shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
849          self->GetException(),
850          false /* from_code */,
851          DeoptimizationMethodType::kDefault);
852
853      // Set special exception to cause deoptimization.
854      self->SetException(Thread::GetDeoptimizationException());
855    }
856  }
857
858  // No need to restore the args since the method has already been run by the interpreter.
859  return result.GetJ();
860}
861
862// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
863// to jobjects.
864class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
865 public:
866  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
867                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
868      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
869
870  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
871
872 private:
873  ScopedObjectAccessUnchecked* const soa_;
874  std::vector<jvalue>* const args_;
875
876  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
877};
878
879void BuildQuickArgumentVisitor::Visit() {
880  jvalue val;
881  Primitive::Type type = GetParamPrimitiveType();
882  switch (type) {
883    case Primitive::kPrimNot: {
884      StackReference<mirror::Object>* stack_ref =
885          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
886      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
887      break;
888    }
889    case Primitive::kPrimLong:  // Fall-through.
890    case Primitive::kPrimDouble:
891      if (IsSplitLongOrDouble()) {
892        val.j = ReadSplitLongParam();
893      } else {
894        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
895      }
896      break;
897    case Primitive::kPrimBoolean:  // Fall-through.
898    case Primitive::kPrimByte:     // Fall-through.
899    case Primitive::kPrimChar:     // Fall-through.
900    case Primitive::kPrimShort:    // Fall-through.
901    case Primitive::kPrimInt:      // Fall-through.
902    case Primitive::kPrimFloat:
903      val.i = *reinterpret_cast<jint*>(GetParamAddress());
904      break;
905    case Primitive::kPrimVoid:
906      LOG(FATAL) << "UNREACHABLE";
907      UNREACHABLE();
908  }
909  args_->push_back(val);
910}
911
912// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
913// which is responsible for recording callee save registers. We explicitly place into jobjects the
914// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
915// field within the proxy object, which will box the primitive arguments and deal with error cases.
916extern "C" uint64_t artQuickProxyInvokeHandler(
917    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
918    REQUIRES_SHARED(Locks::mutator_lock_) {
919  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
920  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
921  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
922  const char* old_cause =
923      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
924  // Register the top of the managed stack, making stack crawlable.
925  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
926  self->VerifyStack();
927  // Start new JNI local reference state.
928  JNIEnvExt* env = self->GetJniEnv();
929  ScopedObjectAccessUnchecked soa(env);
930  ScopedJniEnvLocalRefState env_state(env);
931  // Create local ref. copies of proxy method and the receiver.
932  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
933
934  // Placing arguments into args vector and remove the receiver.
935  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
936  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
937                                       << non_proxy_method->PrettyMethod();
938  std::vector<jvalue> args;
939  uint32_t shorty_len = 0;
940  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
941  BuildQuickArgumentVisitor local_ref_visitor(
942      sp, /* is_static */ false, shorty, shorty_len, &soa, &args);
943
944  local_ref_visitor.VisitArguments();
945  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
946  args.erase(args.begin());
947
948  // Convert proxy method into expected interface method.
949  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
950  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
951  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
952  self->EndAssertNoThreadSuspension(old_cause);
953  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
954  DCHECK(!Runtime::Current()->IsActiveTransaction());
955  ObjPtr<mirror::Method> interface_reflect_method =
956      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
957  if (interface_reflect_method == nullptr) {
958    soa.Self()->AssertPendingOOMException();
959    return 0;
960  }
961  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
962
963  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
964  // that performs allocations.
965  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
966  return result.GetJ();
967}
968
969// Visitor returning a reference argument at a given position in a Quick stack frame.
970// NOTE: Only used for testing purposes.
971class GetQuickReferenceArgumentAtVisitor FINAL : public QuickArgumentVisitor {
972 public:
973  GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
974                                     const char* shorty,
975                                     uint32_t shorty_len,
976                                     size_t arg_pos)
977      : QuickArgumentVisitor(sp, /* is_static */ false, shorty, shorty_len),
978        cur_pos_(0u),
979        arg_pos_(arg_pos),
980        ref_arg_(nullptr) {
981          CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
982        }
983
984  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
985    if (cur_pos_ == arg_pos_) {
986      Primitive::Type type = GetParamPrimitiveType();
987      CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
988      ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
989    }
990    ++cur_pos_;
991  }
992
993  StackReference<mirror::Object>* GetReferenceArgument() {
994    return ref_arg_;
995  }
996
997 private:
998  // The position of the currently visited argument.
999  size_t cur_pos_;
1000  // The position of the searched argument.
1001  const size_t arg_pos_;
1002  // The reference argument, if found.
1003  StackReference<mirror::Object>* ref_arg_;
1004
1005  DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
1006};
1007
1008// Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
1009// NOTE: Only used for testing purposes.
1010extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
1011                                                                               ArtMethod** sp)
1012    REQUIRES_SHARED(Locks::mutator_lock_) {
1013  ArtMethod* proxy_method = *sp;
1014  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1015  CHECK(!non_proxy_method->IsStatic())
1016      << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1017  uint32_t shorty_len = 0;
1018  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1019  GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
1020  ref_arg_visitor.VisitArguments();
1021  StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
1022  return ref_arg;
1023}
1024
1025// Visitor returning all the reference arguments in a Quick stack frame.
1026class GetQuickReferenceArgumentsVisitor FINAL : public QuickArgumentVisitor {
1027 public:
1028  GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
1029                                    bool is_static,
1030                                    const char* shorty,
1031                                    uint32_t shorty_len)
1032      : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
1033
1034  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
1035    Primitive::Type type = GetParamPrimitiveType();
1036    if (type == Primitive::kPrimNot) {
1037      StackReference<mirror::Object>* ref_arg =
1038          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1039      ref_args_.push_back(ref_arg);
1040    }
1041  }
1042
1043  std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
1044    return ref_args_;
1045  }
1046
1047 private:
1048  // The reference arguments.
1049  std::vector<StackReference<mirror::Object>*> ref_args_;
1050
1051  DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
1052};
1053
1054// Returning all reference arguments in Quick stack frame at address `sp`.
1055std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
1056    REQUIRES_SHARED(Locks::mutator_lock_) {
1057  ArtMethod* proxy_method = *sp;
1058  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1059  CHECK(!non_proxy_method->IsStatic())
1060      << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1061  uint32_t shorty_len = 0;
1062  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1063  GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /* is_static */ false, shorty, shorty_len);
1064  ref_args_visitor.VisitArguments();
1065  std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
1066  return ref_args;
1067}
1068
1069// Read object references held in arguments from quick frames and place in a JNI local references,
1070// so they don't get garbage collected.
1071class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
1072 public:
1073  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
1074                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
1075      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
1076
1077  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1078
1079  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1080
1081 private:
1082  ScopedObjectAccessUnchecked* const soa_;
1083  // References which we must update when exiting in case the GC moved the objects.
1084  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1085
1086  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1087};
1088
1089void RememberForGcArgumentVisitor::Visit() {
1090  if (IsParamAReference()) {
1091    StackReference<mirror::Object>* stack_ref =
1092        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1093    jobject reference =
1094        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1095    references_.push_back(std::make_pair(reference, stack_ref));
1096  }
1097}
1098
1099void RememberForGcArgumentVisitor::FixupReferences() {
1100  // Fixup any references which may have changed.
1101  for (const auto& pair : references_) {
1102    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1103    soa_->Env()->DeleteLocalRef(pair.first);
1104  }
1105}
1106
1107extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1108                                                             mirror::Object* this_object,
1109                                                             Thread* self,
1110                                                             ArtMethod** sp)
1111    REQUIRES_SHARED(Locks::mutator_lock_) {
1112  const void* result;
1113  // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1114  // that part.
1115  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1116  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1117  if (instrumentation->IsDeoptimized(method)) {
1118    result = GetQuickToInterpreterBridge();
1119  } else {
1120    result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1121    DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1122  }
1123
1124  bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1125  bool is_static = method->IsStatic();
1126  uint32_t shorty_len;
1127  const char* shorty =
1128      method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1129
1130  ScopedObjectAccessUnchecked soa(self);
1131  RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1132  visitor.VisitArguments();
1133
1134  instrumentation->PushInstrumentationStackFrame(self,
1135                                                 is_static ? nullptr : this_object,
1136                                                 method,
1137                                                 QuickArgumentVisitor::GetCallingPc(sp),
1138                                                 interpreter_entry);
1139
1140  visitor.FixupReferences();
1141  if (UNLIKELY(self->IsExceptionPending())) {
1142    return nullptr;
1143  }
1144  CHECK(result != nullptr) << method->PrettyMethod();
1145  return result;
1146}
1147
1148extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1149                                                              ArtMethod** sp,
1150                                                              uint64_t* gpr_result,
1151                                                              uint64_t* fpr_result)
1152    REQUIRES_SHARED(Locks::mutator_lock_) {
1153  DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1154  CHECK(gpr_result != nullptr);
1155  CHECK(fpr_result != nullptr);
1156  // Instrumentation exit stub must not be entered with a pending exception.
1157  CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1158                                     << self->GetException()->Dump();
1159  // Compute address of return PC and sanity check that it currently holds 0.
1160  size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA,
1161                                                        CalleeSaveType::kSaveEverything);
1162  uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1163                                                      return_pc_offset);
1164  CHECK_EQ(*return_pc, 0U);
1165
1166  // Pop the frame filling in the return pc. The low half of the return value is 0 when
1167  // deoptimization shouldn't be performed with the high-half having the return address. When
1168  // deoptimization should be performed the low half is zero and the high-half the address of the
1169  // deoptimization entry point.
1170  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1171  TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1172      self, return_pc, gpr_result, fpr_result);
1173  if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1174    return GetTwoWordFailureValue();
1175  }
1176  return return_or_deoptimize_pc;
1177}
1178
1179static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1180    REQUIRES_SHARED(Locks::mutator_lock_) {
1181  if (dex_pc == static_cast<uint32_t>(-1)) {
1182    CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1183    return "<native>";
1184  } else {
1185    CodeItemInstructionAccessor accessor = method->DexInstructions();
1186    CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1187    return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1188  }
1189}
1190
1191static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1192    REQUIRES_SHARED(Locks::mutator_lock_) {
1193  std::string storage;
1194  const char* descriptor = klass->GetDescriptor(&storage);
1195  LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1196  const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1197  if (oat_dex_file != nullptr) {
1198    const OatFile* oat_file = oat_dex_file->GetOatFile();
1199    const char* dex2oat_cmdline =
1200        oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1201    LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
1202        << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1203  }
1204}
1205
1206static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1207  // Mimick the search for the caller and dump some data while doing so.
1208  LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1209
1210  constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1211  CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1212
1213  const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, type);
1214  auto** caller_sp = reinterpret_cast<ArtMethod**>(
1215      reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1216  const size_t callee_return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, type);
1217  uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1218      (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1219  ArtMethod* outer_method = *caller_sp;
1220
1221  if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1222    LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1223        << " native pc: " << caller_pc << " Instrumented!";
1224    return;
1225  }
1226
1227  const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1228  CHECK(current_code != nullptr);
1229  CHECK(current_code->IsOptimized());
1230  uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1231  CodeInfo code_info = current_code->GetOptimizedCodeInfo();
1232  MethodInfo method_info = current_code->GetOptimizedMethodInfo();
1233  CodeInfoEncoding encoding = code_info.ExtractEncoding();
1234  StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
1235  CHECK(stack_map.IsValid());
1236  uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map.encoding);
1237
1238  // Log the outer method and its associated dex file and class table pointer which can be used
1239  // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1240  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1241  LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1242      << " native pc: " << caller_pc
1243      << " dex pc: " << dex_pc
1244      << " dex file: " << outer_method->GetDexFile()->GetLocation()
1245      << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1246  DumpB74410240ClassData(outer_method->GetDeclaringClass());
1247  LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
1248
1249  ArtMethod* caller = outer_method;
1250  if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
1251    InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
1252    const InlineInfoEncoding& inline_info_encoding = encoding.inline_info.encoding;
1253    size_t depth = inline_info.GetDepth(inline_info_encoding);
1254    for (size_t d = 0; d < depth; ++d) {
1255      const char* tag = "";
1256      dex_pc = inline_info.GetDexPcAtDepth(inline_info_encoding, d);
1257      if (inline_info.EncodesArtMethodAtDepth(inline_info_encoding, d)) {
1258        tag = "encoded ";
1259        caller = inline_info.GetArtMethodAtDepth(inline_info_encoding, d);
1260      } else {
1261        uint32_t method_index = inline_info.GetMethodIndexAtDepth(inline_info_encoding,
1262                                                                  method_info,
1263                                                                  d);
1264        if (dex_pc == static_cast<uint32_t>(-1)) {
1265          tag = "special ";
1266          CHECK_EQ(d + 1u, depth);
1267          caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1268          CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1269        } else {
1270          ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1271          ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1272          caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1273          CHECK(caller != nullptr);
1274        }
1275      }
1276      LOG(FATAL_WITHOUT_ABORT) << "Inlined method #" << d << ": " << tag << caller->PrettyMethod()
1277          << " dex pc: " << dex_pc
1278          << " dex file: " << caller->GetDexFile()->GetLocation()
1279          << " class table: "
1280          << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1281      DumpB74410240ClassData(caller->GetDeclaringClass());
1282      LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
1283    }
1284  }
1285}
1286
1287// Lazily resolve a method for quick. Called by stub code.
1288extern "C" const void* artQuickResolutionTrampoline(
1289    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1290    REQUIRES_SHARED(Locks::mutator_lock_) {
1291  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1292  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1293  // does not have the same stack layout as the callee-save method).
1294  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1295  // Start new JNI local reference state
1296  JNIEnvExt* env = self->GetJniEnv();
1297  ScopedObjectAccessUnchecked soa(env);
1298  ScopedJniEnvLocalRefState env_state(env);
1299  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1300
1301  // Compute details about the called method (avoid GCs)
1302  ClassLinker* linker = Runtime::Current()->GetClassLinker();
1303  InvokeType invoke_type;
1304  MethodReference called_method(nullptr, 0);
1305  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1306  ArtMethod* caller = nullptr;
1307  if (!called_method_known_on_entry) {
1308    caller = QuickArgumentVisitor::GetCallingMethod(sp);
1309    called_method.dex_file = caller->GetDexFile();
1310
1311    InvokeType stack_map_invoke_type;
1312    uint32_t stack_map_dex_method_idx;
1313    const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1314                                                                     &stack_map_invoke_type,
1315                                                                     &stack_map_dex_method_idx);
1316    // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1317    // code.
1318    if (!found_stack_map || kIsDebugBuild) {
1319      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1320      CodeItemInstructionAccessor accessor(caller->DexInstructions());
1321      CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1322      const Instruction& instr = accessor.InstructionAt(dex_pc);
1323      Instruction::Code instr_code = instr.Opcode();
1324      bool is_range;
1325      switch (instr_code) {
1326        case Instruction::INVOKE_DIRECT:
1327          invoke_type = kDirect;
1328          is_range = false;
1329          break;
1330        case Instruction::INVOKE_DIRECT_RANGE:
1331          invoke_type = kDirect;
1332          is_range = true;
1333          break;
1334        case Instruction::INVOKE_STATIC:
1335          invoke_type = kStatic;
1336          is_range = false;
1337          break;
1338        case Instruction::INVOKE_STATIC_RANGE:
1339          invoke_type = kStatic;
1340          is_range = true;
1341          break;
1342        case Instruction::INVOKE_SUPER:
1343          invoke_type = kSuper;
1344          is_range = false;
1345          break;
1346        case Instruction::INVOKE_SUPER_RANGE:
1347          invoke_type = kSuper;
1348          is_range = true;
1349          break;
1350        case Instruction::INVOKE_VIRTUAL:
1351          invoke_type = kVirtual;
1352          is_range = false;
1353          break;
1354        case Instruction::INVOKE_VIRTUAL_RANGE:
1355          invoke_type = kVirtual;
1356          is_range = true;
1357          break;
1358        case Instruction::INVOKE_INTERFACE:
1359          invoke_type = kInterface;
1360          is_range = false;
1361          break;
1362        case Instruction::INVOKE_INTERFACE_RANGE:
1363          invoke_type = kInterface;
1364          is_range = true;
1365          break;
1366        default:
1367          DumpB74410240DebugData(sp);
1368          LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1369          UNREACHABLE();
1370      }
1371      called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1372      // Check that the invoke matches what we expected, note that this path only happens for debug
1373      // builds.
1374      if (found_stack_map) {
1375        DCHECK_EQ(stack_map_invoke_type, invoke_type);
1376        if (invoke_type != kSuper) {
1377          // Super may be sharpened.
1378          DCHECK_EQ(stack_map_dex_method_idx, called_method.index)
1379              << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1380              << called_method.PrettyMethod();
1381        }
1382      } else {
1383        VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1384                  << called_method.index;
1385      }
1386    } else {
1387      invoke_type = stack_map_invoke_type;
1388      called_method.index = stack_map_dex_method_idx;
1389    }
1390  } else {
1391    invoke_type = kStatic;
1392    called_method.dex_file = called->GetDexFile();
1393    called_method.index = called->GetDexMethodIndex();
1394  }
1395  uint32_t shorty_len;
1396  const char* shorty =
1397      called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1398  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1399  visitor.VisitArguments();
1400  self->EndAssertNoThreadSuspension(old_cause);
1401  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1402  // Resolve method filling in dex cache.
1403  if (!called_method_known_on_entry) {
1404    StackHandleScope<1> hs(self);
1405    mirror::Object* dummy = nullptr;
1406    HandleWrapper<mirror::Object> h_receiver(
1407        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1408    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1409    called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1410        self, called_method.index, caller, invoke_type);
1411
1412    // Update .bss entry in oat file if any.
1413    if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1414      size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
1415          called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
1416          called_method.index,
1417          called_method.dex_file->NumMethodIds(),
1418          static_cast<size_t>(kRuntimePointerSize));
1419      if (bss_offset != IndexBssMappingLookup::npos) {
1420        DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1421        const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1422        ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1423            oat_file->BssBegin() + bss_offset));
1424        DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1425        DCHECK_LT(method_entry,
1426                  oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1427        *method_entry = called;
1428      }
1429    }
1430  }
1431  const void* code = nullptr;
1432  if (LIKELY(!self->IsExceptionPending())) {
1433    // Incompatible class change should have been handled in resolve method.
1434    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1435        << called->PrettyMethod() << " " << invoke_type;
1436    if (virtual_or_interface || invoke_type == kSuper) {
1437      // Refine called method based on receiver for kVirtual/kInterface, and
1438      // caller for kSuper.
1439      ArtMethod* orig_called = called;
1440      if (invoke_type == kVirtual) {
1441        CHECK(receiver != nullptr) << invoke_type;
1442        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1443      } else if (invoke_type == kInterface) {
1444        CHECK(receiver != nullptr) << invoke_type;
1445        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1446      } else {
1447        DCHECK_EQ(invoke_type, kSuper);
1448        CHECK(caller != nullptr) << invoke_type;
1449        ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1450            caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1451        if (ref_class->IsInterface()) {
1452          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1453        } else {
1454          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1455              called->GetMethodIndex(), kRuntimePointerSize);
1456        }
1457      }
1458
1459      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1460                               << mirror::Object::PrettyTypeOf(receiver) << " "
1461                               << invoke_type << " " << orig_called->GetVtableIndex();
1462    }
1463
1464    // Ensure that the called method's class is initialized.
1465    StackHandleScope<1> hs(soa.Self());
1466    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1467    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1468    if (LIKELY(called_class->IsInitialized())) {
1469      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1470        // If we are single-stepping or the called method is deoptimized (by a
1471        // breakpoint, for example), then we have to execute the called method
1472        // with the interpreter.
1473        code = GetQuickToInterpreterBridge();
1474      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1475        // If the caller is deoptimized (by a breakpoint, for example), we have to
1476        // continue its execution with interpreter when returning from the called
1477        // method. Because we do not want to execute the called method with the
1478        // interpreter, we wrap its execution into the instrumentation stubs.
1479        // When the called method returns, it will execute the instrumentation
1480        // exit hook that will determine the need of the interpreter with a call
1481        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1482        // it is needed.
1483        code = GetQuickInstrumentationEntryPoint();
1484      } else {
1485        code = called->GetEntryPointFromQuickCompiledCode();
1486      }
1487    } else if (called_class->IsInitializing()) {
1488      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1489        // If we are single-stepping or the called method is deoptimized (by a
1490        // breakpoint, for example), then we have to execute the called method
1491        // with the interpreter.
1492        code = GetQuickToInterpreterBridge();
1493      } else if (invoke_type == kStatic) {
1494        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1495        // until class is initialized to stop races between threads).
1496        code = linker->GetQuickOatCodeFor(called);
1497      } else {
1498        // No trampoline for non-static methods.
1499        code = called->GetEntryPointFromQuickCompiledCode();
1500      }
1501    } else {
1502      DCHECK(called_class->IsErroneous());
1503    }
1504  }
1505  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1506  // Fixup any locally saved objects may have moved during a GC.
1507  visitor.FixupReferences();
1508  // Place called method in callee-save frame to be placed as first argument to quick method.
1509  *sp = called;
1510
1511  return code;
1512}
1513
1514/*
1515 * This class uses a couple of observations to unite the different calling conventions through
1516 * a few constants.
1517 *
1518 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1519 *    possible alignment.
1520 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1521 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1522 *    when we have to split things
1523 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1524 *    and we can use Int handling directly.
1525 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1526 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1527 *    extension should be compatible with Aarch64, which mandates copying the available bits
1528 *    into LSB and leaving the rest unspecified.
1529 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1530 *    the stack.
1531 * 6) There is only little endian.
1532 *
1533 *
1534 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1535 * follows:
1536 *
1537 * void PushGpr(uintptr_t):   Add a value for the next GPR
1538 *
1539 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1540 *                            padding, that is, think the architecture is 32b and aligns 64b.
1541 *
1542 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1543 *                            split this if necessary. The current state will have aligned, if
1544 *                            necessary.
1545 *
1546 * void PushStack(uintptr_t): Push a value to the stack.
1547 *
1548 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1549 *                                          as this might be important for null initialization.
1550 *                                          Must return the jobject, that is, the reference to the
1551 *                                          entry in the HandleScope (nullptr if necessary).
1552 *
1553 */
1554template<class T> class BuildNativeCallFrameStateMachine {
1555 public:
1556#if defined(__arm__)
1557  // TODO: These are all dummy values!
1558  static constexpr bool kNativeSoftFloatAbi = true;
1559  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1560  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1561
1562  static constexpr size_t kRegistersNeededForLong = 2;
1563  static constexpr size_t kRegistersNeededForDouble = 2;
1564  static constexpr bool kMultiRegistersAligned = true;
1565  static constexpr bool kMultiFPRegistersWidened = false;
1566  static constexpr bool kMultiGPRegistersWidened = false;
1567  static constexpr bool kAlignLongOnStack = true;
1568  static constexpr bool kAlignDoubleOnStack = true;
1569#elif defined(__aarch64__)
1570  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1571  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1572  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1573
1574  static constexpr size_t kRegistersNeededForLong = 1;
1575  static constexpr size_t kRegistersNeededForDouble = 1;
1576  static constexpr bool kMultiRegistersAligned = false;
1577  static constexpr bool kMultiFPRegistersWidened = false;
1578  static constexpr bool kMultiGPRegistersWidened = false;
1579  static constexpr bool kAlignLongOnStack = false;
1580  static constexpr bool kAlignDoubleOnStack = false;
1581#elif defined(__mips__) && !defined(__LP64__)
1582  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1583  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1584  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1585
1586  static constexpr size_t kRegistersNeededForLong = 2;
1587  static constexpr size_t kRegistersNeededForDouble = 2;
1588  static constexpr bool kMultiRegistersAligned = true;
1589  static constexpr bool kMultiFPRegistersWidened = true;
1590  static constexpr bool kMultiGPRegistersWidened = false;
1591  static constexpr bool kAlignLongOnStack = true;
1592  static constexpr bool kAlignDoubleOnStack = true;
1593#elif defined(__mips__) && defined(__LP64__)
1594  // Let the code prepare GPRs only and we will load the FPRs with same data.
1595  static constexpr bool kNativeSoftFloatAbi = true;
1596  static constexpr size_t kNumNativeGprArgs = 8;
1597  static constexpr size_t kNumNativeFprArgs = 0;
1598
1599  static constexpr size_t kRegistersNeededForLong = 1;
1600  static constexpr size_t kRegistersNeededForDouble = 1;
1601  static constexpr bool kMultiRegistersAligned = false;
1602  static constexpr bool kMultiFPRegistersWidened = false;
1603  static constexpr bool kMultiGPRegistersWidened = true;
1604  static constexpr bool kAlignLongOnStack = false;
1605  static constexpr bool kAlignDoubleOnStack = false;
1606#elif defined(__i386__)
1607  // TODO: Check these!
1608  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1609  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1610  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1611
1612  static constexpr size_t kRegistersNeededForLong = 2;
1613  static constexpr size_t kRegistersNeededForDouble = 2;
1614  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1615  static constexpr bool kMultiFPRegistersWidened = false;
1616  static constexpr bool kMultiGPRegistersWidened = false;
1617  static constexpr bool kAlignLongOnStack = false;
1618  static constexpr bool kAlignDoubleOnStack = false;
1619#elif defined(__x86_64__)
1620  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1621  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1622  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1623
1624  static constexpr size_t kRegistersNeededForLong = 1;
1625  static constexpr size_t kRegistersNeededForDouble = 1;
1626  static constexpr bool kMultiRegistersAligned = false;
1627  static constexpr bool kMultiFPRegistersWidened = false;
1628  static constexpr bool kMultiGPRegistersWidened = false;
1629  static constexpr bool kAlignLongOnStack = false;
1630  static constexpr bool kAlignDoubleOnStack = false;
1631#else
1632#error "Unsupported architecture"
1633#endif
1634
1635 public:
1636  explicit BuildNativeCallFrameStateMachine(T* delegate)
1637      : gpr_index_(kNumNativeGprArgs),
1638        fpr_index_(kNumNativeFprArgs),
1639        stack_entries_(0),
1640        delegate_(delegate) {
1641    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1642    // the next register is even; counting down is just to make the compiler happy...
1643    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1644    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1645  }
1646
1647  virtual ~BuildNativeCallFrameStateMachine() {}
1648
1649  bool HavePointerGpr() const {
1650    return gpr_index_ > 0;
1651  }
1652
1653  void AdvancePointer(const void* val) {
1654    if (HavePointerGpr()) {
1655      gpr_index_--;
1656      PushGpr(reinterpret_cast<uintptr_t>(val));
1657    } else {
1658      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1659      PushStack(reinterpret_cast<uintptr_t>(val));
1660      gpr_index_ = 0;
1661    }
1662  }
1663
1664  bool HaveHandleScopeGpr() const {
1665    return gpr_index_ > 0;
1666  }
1667
1668  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1669    uintptr_t handle = PushHandle(ptr);
1670    if (HaveHandleScopeGpr()) {
1671      gpr_index_--;
1672      PushGpr(handle);
1673    } else {
1674      stack_entries_++;
1675      PushStack(handle);
1676      gpr_index_ = 0;
1677    }
1678  }
1679
1680  bool HaveIntGpr() const {
1681    return gpr_index_ > 0;
1682  }
1683
1684  void AdvanceInt(uint32_t val) {
1685    if (HaveIntGpr()) {
1686      gpr_index_--;
1687      if (kMultiGPRegistersWidened) {
1688        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1689        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1690      } else {
1691        PushGpr(val);
1692      }
1693    } else {
1694      stack_entries_++;
1695      if (kMultiGPRegistersWidened) {
1696        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1697        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1698      } else {
1699        PushStack(val);
1700      }
1701      gpr_index_ = 0;
1702    }
1703  }
1704
1705  bool HaveLongGpr() const {
1706    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1707  }
1708
1709  bool LongGprNeedsPadding() const {
1710    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1711        kAlignLongOnStack &&                  // and when it needs alignment
1712        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1713  }
1714
1715  bool LongStackNeedsPadding() const {
1716    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1717        kAlignLongOnStack &&                  // and when it needs 8B alignment
1718        (stack_entries_ & 1) == 1;            // counter is odd
1719  }
1720
1721  void AdvanceLong(uint64_t val) {
1722    if (HaveLongGpr()) {
1723      if (LongGprNeedsPadding()) {
1724        PushGpr(0);
1725        gpr_index_--;
1726      }
1727      if (kRegistersNeededForLong == 1) {
1728        PushGpr(static_cast<uintptr_t>(val));
1729      } else {
1730        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1731        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1732      }
1733      gpr_index_ -= kRegistersNeededForLong;
1734    } else {
1735      if (LongStackNeedsPadding()) {
1736        PushStack(0);
1737        stack_entries_++;
1738      }
1739      if (kRegistersNeededForLong == 1) {
1740        PushStack(static_cast<uintptr_t>(val));
1741        stack_entries_++;
1742      } else {
1743        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1744        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1745        stack_entries_ += 2;
1746      }
1747      gpr_index_ = 0;
1748    }
1749  }
1750
1751  bool HaveFloatFpr() const {
1752    return fpr_index_ > 0;
1753  }
1754
1755  void AdvanceFloat(float val) {
1756    if (kNativeSoftFloatAbi) {
1757      AdvanceInt(bit_cast<uint32_t, float>(val));
1758    } else {
1759      if (HaveFloatFpr()) {
1760        fpr_index_--;
1761        if (kRegistersNeededForDouble == 1) {
1762          if (kMultiFPRegistersWidened) {
1763            PushFpr8(bit_cast<uint64_t, double>(val));
1764          } else {
1765            // No widening, just use the bits.
1766            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1767          }
1768        } else {
1769          PushFpr4(val);
1770        }
1771      } else {
1772        stack_entries_++;
1773        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1774          // Need to widen before storing: Note the "double" in the template instantiation.
1775          // Note: We need to jump through those hoops to make the compiler happy.
1776          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1777          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1778        } else {
1779          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1780        }
1781        fpr_index_ = 0;
1782      }
1783    }
1784  }
1785
1786  bool HaveDoubleFpr() const {
1787    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1788  }
1789
1790  bool DoubleFprNeedsPadding() const {
1791    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1792        kAlignDoubleOnStack &&                  // and when it needs alignment
1793        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1794  }
1795
1796  bool DoubleStackNeedsPadding() const {
1797    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1798        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1799        (stack_entries_ & 1) == 1;              // counter is odd
1800  }
1801
1802  void AdvanceDouble(uint64_t val) {
1803    if (kNativeSoftFloatAbi) {
1804      AdvanceLong(val);
1805    } else {
1806      if (HaveDoubleFpr()) {
1807        if (DoubleFprNeedsPadding()) {
1808          PushFpr4(0);
1809          fpr_index_--;
1810        }
1811        PushFpr8(val);
1812        fpr_index_ -= kRegistersNeededForDouble;
1813      } else {
1814        if (DoubleStackNeedsPadding()) {
1815          PushStack(0);
1816          stack_entries_++;
1817        }
1818        if (kRegistersNeededForDouble == 1) {
1819          PushStack(static_cast<uintptr_t>(val));
1820          stack_entries_++;
1821        } else {
1822          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1823          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1824          stack_entries_ += 2;
1825        }
1826        fpr_index_ = 0;
1827      }
1828    }
1829  }
1830
1831  uint32_t GetStackEntries() const {
1832    return stack_entries_;
1833  }
1834
1835  uint32_t GetNumberOfUsedGprs() const {
1836    return kNumNativeGprArgs - gpr_index_;
1837  }
1838
1839  uint32_t GetNumberOfUsedFprs() const {
1840    return kNumNativeFprArgs - fpr_index_;
1841  }
1842
1843 private:
1844  void PushGpr(uintptr_t val) {
1845    delegate_->PushGpr(val);
1846  }
1847  void PushFpr4(float val) {
1848    delegate_->PushFpr4(val);
1849  }
1850  void PushFpr8(uint64_t val) {
1851    delegate_->PushFpr8(val);
1852  }
1853  void PushStack(uintptr_t val) {
1854    delegate_->PushStack(val);
1855  }
1856  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1857    return delegate_->PushHandle(ref);
1858  }
1859
1860  uint32_t gpr_index_;      // Number of free GPRs
1861  uint32_t fpr_index_;      // Number of free FPRs
1862  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1863                            // extended
1864  T* const delegate_;             // What Push implementation gets called
1865};
1866
1867// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1868// in subclasses.
1869//
1870// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1871// them with handles.
1872class ComputeNativeCallFrameSize {
1873 public:
1874  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1875
1876  virtual ~ComputeNativeCallFrameSize() {}
1877
1878  uint32_t GetStackSize() const {
1879    return num_stack_entries_ * sizeof(uintptr_t);
1880  }
1881
1882  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1883    sp8 -= GetStackSize();
1884    // Align by kStackAlignment.
1885    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1886    return sp8;
1887  }
1888
1889  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1890      const {
1891    // Assumption is OK right now, as we have soft-float arm
1892    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1893    sp8 -= fregs * sizeof(uintptr_t);
1894    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1895    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1896    sp8 -= iregs * sizeof(uintptr_t);
1897    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1898    return sp8;
1899  }
1900
1901  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1902                            uint32_t** start_fpr) const {
1903    // Native call stack.
1904    sp8 = LayoutCallStack(sp8);
1905    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1906
1907    // Put fprs and gprs below.
1908    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1909
1910    // Return the new bottom.
1911    return sp8;
1912  }
1913
1914  virtual void WalkHeader(
1915      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1916      REQUIRES_SHARED(Locks::mutator_lock_) {
1917  }
1918
1919  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1920    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1921
1922    WalkHeader(&sm);
1923
1924    for (uint32_t i = 1; i < shorty_len; ++i) {
1925      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1926      switch (cur_type_) {
1927        case Primitive::kPrimNot:
1928          // TODO: fix abuse of mirror types.
1929          sm.AdvanceHandleScope(
1930              reinterpret_cast<mirror::Object*>(0x12345678));
1931          break;
1932
1933        case Primitive::kPrimBoolean:
1934        case Primitive::kPrimByte:
1935        case Primitive::kPrimChar:
1936        case Primitive::kPrimShort:
1937        case Primitive::kPrimInt:
1938          sm.AdvanceInt(0);
1939          break;
1940        case Primitive::kPrimFloat:
1941          sm.AdvanceFloat(0);
1942          break;
1943        case Primitive::kPrimDouble:
1944          sm.AdvanceDouble(0);
1945          break;
1946        case Primitive::kPrimLong:
1947          sm.AdvanceLong(0);
1948          break;
1949        default:
1950          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1951          UNREACHABLE();
1952      }
1953    }
1954
1955    num_stack_entries_ = sm.GetStackEntries();
1956  }
1957
1958  void PushGpr(uintptr_t /* val */) {
1959    // not optimizing registers, yet
1960  }
1961
1962  void PushFpr4(float /* val */) {
1963    // not optimizing registers, yet
1964  }
1965
1966  void PushFpr8(uint64_t /* val */) {
1967    // not optimizing registers, yet
1968  }
1969
1970  void PushStack(uintptr_t /* val */) {
1971    // counting is already done in the superclass
1972  }
1973
1974  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1975    return reinterpret_cast<uintptr_t>(nullptr);
1976  }
1977
1978 protected:
1979  uint32_t num_stack_entries_;
1980};
1981
1982class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1983 public:
1984  explicit ComputeGenericJniFrameSize(bool critical_native)
1985    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1986
1987  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1988  // is at *m = sp. Will update to point to the bottom of the save frame.
1989  //
1990  // Note: assumes ComputeAll() has been run before.
1991  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1992      REQUIRES_SHARED(Locks::mutator_lock_) {
1993    ArtMethod* method = **m;
1994
1995    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1996
1997    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1998
1999    // First, fix up the layout of the callee-save frame.
2000    // We have to squeeze in the HandleScope, and relocate the method pointer.
2001
2002    // "Free" the slot for the method.
2003    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
2004
2005    // Under the callee saves put handle scope and new method stack reference.
2006    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
2007    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
2008
2009    sp8 -= scope_and_method;
2010    // Align by kStackAlignment.
2011    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
2012
2013    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
2014    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
2015                                        num_handle_scope_references_);
2016
2017    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
2018    uint8_t* method_pointer = sp8;
2019    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
2020    *new_method_ref = method;
2021    *m = new_method_ref;
2022  }
2023
2024  // Adds space for the cookie. Note: may leave stack unaligned.
2025  void LayoutCookie(uint8_t** sp) const {
2026    // Reference cookie and padding
2027    *sp -= 8;
2028  }
2029
2030  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
2031  // Returns the new bottom. Note: this may be unaligned.
2032  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
2033      REQUIRES_SHARED(Locks::mutator_lock_) {
2034    // First, fix up the layout of the callee-save frame.
2035    // We have to squeeze in the HandleScope, and relocate the method pointer.
2036    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
2037
2038    // The bottom of the callee-save frame is now where the method is, *m.
2039    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
2040
2041    // Add space for cookie.
2042    LayoutCookie(&sp8);
2043
2044    return sp8;
2045  }
2046
2047  // WARNING: After this, *sp won't be pointing to the method anymore!
2048  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
2049                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
2050                         uint32_t** start_fpr)
2051      REQUIRES_SHARED(Locks::mutator_lock_) {
2052    Walk(shorty, shorty_len);
2053
2054    // JNI part.
2055    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
2056
2057    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
2058
2059    // Return the new bottom.
2060    return sp8;
2061  }
2062
2063  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
2064
2065  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
2066  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
2067      REQUIRES_SHARED(Locks::mutator_lock_);
2068
2069 private:
2070  uint32_t num_handle_scope_references_;
2071  const bool critical_native_;
2072};
2073
2074uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
2075  num_handle_scope_references_++;
2076  return reinterpret_cast<uintptr_t>(nullptr);
2077}
2078
2079void ComputeGenericJniFrameSize::WalkHeader(
2080    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
2081  // First 2 parameters are always excluded for @CriticalNative.
2082  if (UNLIKELY(critical_native_)) {
2083    return;
2084  }
2085
2086  // JNIEnv
2087  sm->AdvancePointer(nullptr);
2088
2089  // Class object or this as first argument
2090  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
2091}
2092
2093// Class to push values to three separate regions. Used to fill the native call part. Adheres to
2094// the template requirements of BuildGenericJniFrameStateMachine.
2095class FillNativeCall {
2096 public:
2097  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
2098      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
2099
2100  virtual ~FillNativeCall() {}
2101
2102  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
2103    cur_gpr_reg_ = gpr_regs;
2104    cur_fpr_reg_ = fpr_regs;
2105    cur_stack_arg_ = stack_args;
2106  }
2107
2108  void PushGpr(uintptr_t val) {
2109    *cur_gpr_reg_ = val;
2110    cur_gpr_reg_++;
2111  }
2112
2113  void PushFpr4(float val) {
2114    *cur_fpr_reg_ = val;
2115    cur_fpr_reg_++;
2116  }
2117
2118  void PushFpr8(uint64_t val) {
2119    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
2120    *tmp = val;
2121    cur_fpr_reg_ += 2;
2122  }
2123
2124  void PushStack(uintptr_t val) {
2125    *cur_stack_arg_ = val;
2126    cur_stack_arg_++;
2127  }
2128
2129  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
2130    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
2131    UNREACHABLE();
2132  }
2133
2134 private:
2135  uintptr_t* cur_gpr_reg_;
2136  uint32_t* cur_fpr_reg_;
2137  uintptr_t* cur_stack_arg_;
2138};
2139
2140// Visits arguments on the stack placing them into a region lower down the stack for the benefit
2141// of transitioning into native code.
2142class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
2143 public:
2144  BuildGenericJniFrameVisitor(Thread* self,
2145                              bool is_static,
2146                              bool critical_native,
2147                              const char* shorty,
2148                              uint32_t shorty_len,
2149                              ArtMethod*** sp)
2150     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
2151       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
2152       sm_(&jni_call_) {
2153    ComputeGenericJniFrameSize fsc(critical_native);
2154    uintptr_t* start_gpr_reg;
2155    uint32_t* start_fpr_reg;
2156    uintptr_t* start_stack_arg;
2157    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
2158                                             &handle_scope_,
2159                                             &start_stack_arg,
2160                                             &start_gpr_reg, &start_fpr_reg);
2161
2162    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
2163
2164    // First 2 parameters are always excluded for CriticalNative methods.
2165    if (LIKELY(!critical_native)) {
2166      // jni environment is always first argument
2167      sm_.AdvancePointer(self->GetJniEnv());
2168
2169      if (is_static) {
2170        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
2171      }  // else "this" reference is already handled by QuickArgumentVisitor.
2172    }
2173  }
2174
2175  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
2176
2177  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
2178
2179  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
2180    return handle_scope_->GetHandle(0).GetReference();
2181  }
2182
2183  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2184    return handle_scope_->GetHandle(0).ToJObject();
2185  }
2186
2187  void* GetBottomOfUsedArea() const {
2188    return bottom_of_used_area_;
2189  }
2190
2191 private:
2192  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2193  class FillJniCall FINAL : public FillNativeCall {
2194   public:
2195    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2196                HandleScope* handle_scope, bool critical_native)
2197      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2198                       handle_scope_(handle_scope),
2199        cur_entry_(0),
2200        critical_native_(critical_native) {}
2201
2202    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
2203
2204    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2205      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2206      handle_scope_ = scope;
2207      cur_entry_ = 0U;
2208    }
2209
2210    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2211      // Initialize padding entries.
2212      size_t expected_slots = handle_scope_->NumberOfReferences();
2213      while (cur_entry_ < expected_slots) {
2214        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2215      }
2216
2217      if (!critical_native_) {
2218        // Non-critical natives have at least the self class (jclass) or this (jobject).
2219        DCHECK_NE(cur_entry_, 0U);
2220      }
2221    }
2222
2223    bool CriticalNative() const {
2224      return critical_native_;
2225    }
2226
2227   private:
2228    HandleScope* handle_scope_;
2229    size_t cur_entry_;
2230    const bool critical_native_;
2231  };
2232
2233  HandleScope* handle_scope_;
2234  FillJniCall jni_call_;
2235  void* bottom_of_used_area_;
2236
2237  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2238
2239  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2240};
2241
2242uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2243  uintptr_t tmp;
2244  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2245  h.Assign(ref);
2246  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2247  cur_entry_++;
2248  return tmp;
2249}
2250
2251void BuildGenericJniFrameVisitor::Visit() {
2252  Primitive::Type type = GetParamPrimitiveType();
2253  switch (type) {
2254    case Primitive::kPrimLong: {
2255      jlong long_arg;
2256      if (IsSplitLongOrDouble()) {
2257        long_arg = ReadSplitLongParam();
2258      } else {
2259        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2260      }
2261      sm_.AdvanceLong(long_arg);
2262      break;
2263    }
2264    case Primitive::kPrimDouble: {
2265      uint64_t double_arg;
2266      if (IsSplitLongOrDouble()) {
2267        // Read into union so that we don't case to a double.
2268        double_arg = ReadSplitLongParam();
2269      } else {
2270        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2271      }
2272      sm_.AdvanceDouble(double_arg);
2273      break;
2274    }
2275    case Primitive::kPrimNot: {
2276      StackReference<mirror::Object>* stack_ref =
2277          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2278      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2279      break;
2280    }
2281    case Primitive::kPrimFloat:
2282      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2283      break;
2284    case Primitive::kPrimBoolean:  // Fall-through.
2285    case Primitive::kPrimByte:     // Fall-through.
2286    case Primitive::kPrimChar:     // Fall-through.
2287    case Primitive::kPrimShort:    // Fall-through.
2288    case Primitive::kPrimInt:      // Fall-through.
2289      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2290      break;
2291    case Primitive::kPrimVoid:
2292      LOG(FATAL) << "UNREACHABLE";
2293      UNREACHABLE();
2294  }
2295}
2296
2297void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2298  // Clear out rest of the scope.
2299  jni_call_.ResetRemainingScopeSlots();
2300  if (!jni_call_.CriticalNative()) {
2301    // Install HandleScope.
2302    self->PushHandleScope(handle_scope_);
2303  }
2304}
2305
2306#if defined(__arm__) || defined(__aarch64__)
2307extern "C" const void* artFindNativeMethod();
2308#else
2309extern "C" const void* artFindNativeMethod(Thread* self);
2310#endif
2311
2312static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2313                                            uint32_t cookie,
2314                                            bool fast_native ATTRIBUTE_UNUSED,
2315                                            jobject l,
2316                                            jobject lock) {
2317  // TODO: add entrypoints for @FastNative returning objects.
2318  if (lock != nullptr) {
2319    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2320  } else {
2321    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2322  }
2323}
2324
2325static void artQuickGenericJniEndJNINonRef(Thread* self,
2326                                           uint32_t cookie,
2327                                           bool fast_native,
2328                                           jobject lock) {
2329  if (lock != nullptr) {
2330    JniMethodEndSynchronized(cookie, lock, self);
2331    // Ignore "fast_native" here because synchronized functions aren't very fast.
2332  } else {
2333    if (UNLIKELY(fast_native)) {
2334      JniMethodFastEnd(cookie, self);
2335    } else {
2336      JniMethodEnd(cookie, self);
2337    }
2338  }
2339}
2340
2341/*
2342 * Initializes an alloca region assumed to be directly below sp for a native call:
2343 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2344 * The final element on the stack is a pointer to the native code.
2345 *
2346 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2347 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2348 *
2349 * The return of this function denotes:
2350 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2351 * 2) An error, if the value is negative.
2352 */
2353extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2354    REQUIRES_SHARED(Locks::mutator_lock_) {
2355  // Note: We cannot walk the stack properly until fixed up below.
2356  ArtMethod* called = *sp;
2357  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2358  Runtime* runtime = Runtime::Current();
2359  jit::Jit* jit = runtime->GetJit();
2360  if (jit != nullptr) {
2361    jit->AddSamples(self, called, 1u, /*with_backedges*/ false);
2362  }
2363  uint32_t shorty_len = 0;
2364  const char* shorty = called->GetShorty(&shorty_len);
2365  bool critical_native = called->IsCriticalNative();
2366  bool fast_native = called->IsFastNative();
2367  bool normal_native = !critical_native && !fast_native;
2368
2369  // Run the visitor and update sp.
2370  BuildGenericJniFrameVisitor visitor(self,
2371                                      called->IsStatic(),
2372                                      critical_native,
2373                                      shorty,
2374                                      shorty_len,
2375                                      &sp);
2376  {
2377    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2378    visitor.VisitArguments();
2379    // FinalizeHandleScope pushes the handle scope on the thread.
2380    visitor.FinalizeHandleScope(self);
2381  }
2382
2383  // Fix up managed-stack things in Thread. After this we can walk the stack.
2384  self->SetTopOfStackTagged(sp);
2385
2386  self->VerifyStack();
2387
2388  uint32_t cookie;
2389  uint32_t* sp32;
2390  // Skip calling JniMethodStart for @CriticalNative.
2391  if (LIKELY(!critical_native)) {
2392    // Start JNI, save the cookie.
2393    if (called->IsSynchronized()) {
2394      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2395      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2396      if (self->IsExceptionPending()) {
2397        self->PopHandleScope();
2398        // A negative value denotes an error.
2399        return GetTwoWordFailureValue();
2400      }
2401    } else {
2402      if (fast_native) {
2403        cookie = JniMethodFastStart(self);
2404      } else {
2405        DCHECK(normal_native);
2406        cookie = JniMethodStart(self);
2407      }
2408    }
2409    sp32 = reinterpret_cast<uint32_t*>(sp);
2410    *(sp32 - 1) = cookie;
2411  }
2412
2413  // Retrieve the stored native code.
2414  void const* nativeCode = called->GetEntryPointFromJni();
2415
2416  // There are two cases for the content of nativeCode:
2417  // 1) Pointer to the native function.
2418  // 2) Pointer to the trampoline for native code binding.
2419  // In the second case, we need to execute the binding and continue with the actual native function
2420  // pointer.
2421  DCHECK(nativeCode != nullptr);
2422  if (nativeCode == GetJniDlsymLookupStub()) {
2423#if defined(__arm__) || defined(__aarch64__)
2424    nativeCode = artFindNativeMethod();
2425#else
2426    nativeCode = artFindNativeMethod(self);
2427#endif
2428
2429    if (nativeCode == nullptr) {
2430      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2431
2432      // @CriticalNative calls do not need to call back into JniMethodEnd.
2433      if (LIKELY(!critical_native)) {
2434        // End JNI, as the assembly will move to deliver the exception.
2435        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2436        if (shorty[0] == 'L') {
2437          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2438        } else {
2439          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2440        }
2441      }
2442
2443      return GetTwoWordFailureValue();
2444    }
2445    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2446  }
2447
2448#if defined(__mips__) && !defined(__LP64__)
2449  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2450  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2451  // and load into floating-point registers.
2452  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2453  // view):
2454  // (1)
2455  //  |     DOUBLE    |     DOUBLE    | other args, if any
2456  //  |  F12  |  F13  |  F14  |  F15  |
2457  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2458  // (2)
2459  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2460  //  |  F12  |  F13  |  F14  |       |
2461  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2462  // (3)
2463  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2464  //  |  F12  |       |  F14  |  F15  |
2465  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2466  // (4)
2467  //  | FLOAT | FLOAT | other args, if any
2468  //  |  F12  |  F14  |
2469  //  |  SP+0 |  SP+4 | SP+8
2470  // As you can see, only the last case (4) is special. In all others we can just
2471  // load F12/F13 and F14/F15 in the same manner.
2472  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2473  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2474  if (nativeCode != nullptr &&
2475      shorty != nullptr &&
2476      shorty_len >= 3 &&
2477      shorty[1] == 'F' &&
2478      shorty[2] == 'F') {
2479    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2480  }
2481#endif
2482
2483  // Return native code addr(lo) and bottom of alloca address(hi).
2484  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2485                                reinterpret_cast<uintptr_t>(nativeCode));
2486}
2487
2488// Defined in quick_jni_entrypoints.cc.
2489extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2490                                    jvalue result, uint64_t result_f, ArtMethod* called,
2491                                    HandleScope* handle_scope);
2492/*
2493 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2494 * unlocking.
2495 */
2496extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2497                                                    jvalue result,
2498                                                    uint64_t result_f) {
2499  // We're here just back from a native call. We don't have the shared mutator lock at this point
2500  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2501  // anything that requires a mutator lock before that would cause problems as GC may have the
2502  // exclusive mutator lock and may be moving objects, etc.
2503  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2504  DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2505  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2506  ArtMethod* called = *sp;
2507  uint32_t cookie = *(sp32 - 1);
2508  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2509  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2510}
2511
2512// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2513// for the method pointer.
2514//
2515// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2516// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2517
2518template <InvokeType type, bool access_check>
2519static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2520                                     ObjPtr<mirror::Object> this_object,
2521                                     Thread* self,
2522                                     ArtMethod** sp) {
2523  ScopedQuickEntrypointChecks sqec(self);
2524  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2525  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2526  ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2527  if (UNLIKELY(method == nullptr)) {
2528    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2529    uint32_t shorty_len;
2530    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2531    {
2532      // Remember the args in case a GC happens in FindMethodFromCode.
2533      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2534      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2535      visitor.VisitArguments();
2536      method = FindMethodFromCode<type, access_check>(method_idx,
2537                                                      &this_object,
2538                                                      caller_method,
2539                                                      self);
2540      visitor.FixupReferences();
2541    }
2542
2543    if (UNLIKELY(method == nullptr)) {
2544      CHECK(self->IsExceptionPending());
2545      return GetTwoWordFailureValue();  // Failure.
2546    }
2547  }
2548  DCHECK(!self->IsExceptionPending());
2549  const void* code = method->GetEntryPointFromQuickCompiledCode();
2550
2551  // When we return, the caller will branch to this address, so it had better not be 0!
2552  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2553                          << " location: "
2554                          << method->GetDexFile()->GetLocation();
2555
2556  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2557                                reinterpret_cast<uintptr_t>(method));
2558}
2559
2560// Explicit artInvokeCommon template function declarations to please analysis tool.
2561#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2562  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2563  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2564      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2565
2566EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2567EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2568EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2569EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2570EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2571EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2572EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2573EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2574EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2575EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2576#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2577
2578// See comments in runtime_support_asm.S
2579extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2580    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2581    REQUIRES_SHARED(Locks::mutator_lock_) {
2582  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2583}
2584
2585extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2586    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2587    REQUIRES_SHARED(Locks::mutator_lock_) {
2588  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2589}
2590
2591extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2592    uint32_t method_idx,
2593    mirror::Object* this_object ATTRIBUTE_UNUSED,
2594    Thread* self,
2595    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2596  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2597  // it doesn't cause ObjPtr alignment failure check.
2598  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2599}
2600
2601extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2602    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2603    REQUIRES_SHARED(Locks::mutator_lock_) {
2604  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2605}
2606
2607extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2608    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2609    REQUIRES_SHARED(Locks::mutator_lock_) {
2610  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2611}
2612
2613// Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
2614extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2615    REQUIRES_SHARED(Locks::mutator_lock_) {
2616  ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2617  DCHECK(!referrer->IsProxyMethod());
2618  ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2619      method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2620  DCHECK(result == nullptr ||
2621         result->GetDeclaringClass()->IsInterface() ||
2622         result->GetDeclaringClass() ==
2623             WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2624      << result->PrettyMethod();
2625  return result;
2626}
2627
2628// Determine target of interface dispatch. The interface method and this object are known non-null.
2629// The interface method is the method returned by the dex cache in the conflict trampoline.
2630extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2631                                                      mirror::Object* raw_this_object,
2632                                                      Thread* self,
2633                                                      ArtMethod** sp)
2634    REQUIRES_SHARED(Locks::mutator_lock_) {
2635  ScopedQuickEntrypointChecks sqec(self);
2636  StackHandleScope<2> hs(self);
2637  Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2638  Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2639
2640  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2641  ArtMethod* method = nullptr;
2642  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2643
2644  if (UNLIKELY(interface_method == nullptr)) {
2645    // The interface method is unresolved, so resolve it in the dex file of the caller.
2646    // Fetch the dex_method_idx of the target interface method from the caller.
2647    uint32_t dex_method_idx;
2648    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2649    const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2650    Instruction::Code instr_code = instr.Opcode();
2651    DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2652           instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2653        << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2654    if (instr_code == Instruction::INVOKE_INTERFACE) {
2655      dex_method_idx = instr.VRegB_35c();
2656    } else {
2657      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2658      dex_method_idx = instr.VRegB_3rc();
2659    }
2660
2661    const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
2662    uint32_t shorty_len;
2663    const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2664                                                  &shorty_len);
2665    {
2666      // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2667      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2668      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2669      visitor.VisitArguments();
2670      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2671      interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2672          self, dex_method_idx, caller_method, kInterface);
2673      visitor.FixupReferences();
2674    }
2675
2676    if (UNLIKELY(interface_method == nullptr)) {
2677      CHECK(self->IsExceptionPending());
2678      return GetTwoWordFailureValue();  // Failure.
2679    }
2680  }
2681
2682  DCHECK(!interface_method->IsRuntimeMethod());
2683  // Look whether we have a match in the ImtConflictTable.
2684  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2685  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2686  if (LIKELY(conflict_method->IsRuntimeMethod())) {
2687    ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2688    DCHECK(current_table != nullptr);
2689    method = current_table->Lookup(interface_method, kRuntimePointerSize);
2690  } else {
2691    // It seems we aren't really a conflict method!
2692    if (kIsDebugBuild) {
2693      ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2694      CHECK_EQ(conflict_method, m)
2695          << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2696          << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2697    }
2698    method = conflict_method;
2699  }
2700  if (method != nullptr) {
2701    return GetTwoWordSuccessValue(
2702        reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2703        reinterpret_cast<uintptr_t>(method));
2704  }
2705
2706  // No match, use the IfTable.
2707  method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2708  if (UNLIKELY(method == nullptr)) {
2709    ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2710        interface_method, this_object.Get(), caller_method);
2711    return GetTwoWordFailureValue();  // Failure.
2712  }
2713
2714  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2715  // We create a new table with the new pair { interface_method, method }.
2716  DCHECK(conflict_method->IsRuntimeMethod());
2717  ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2718      cls.Get(),
2719      conflict_method,
2720      interface_method,
2721      method,
2722      /*force_new_conflict_method*/false);
2723  if (new_conflict_method != conflict_method) {
2724    // Update the IMT if we create a new conflict method. No fence needed here, as the
2725    // data is consistent.
2726    imt->Set(imt_index,
2727             new_conflict_method,
2728             kRuntimePointerSize);
2729  }
2730
2731  const void* code = method->GetEntryPointFromQuickCompiledCode();
2732
2733  // When we return, the caller will branch to this address, so it had better not be 0!
2734  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2735                          << " location: " << method->GetDexFile()->GetLocation();
2736
2737  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2738                                reinterpret_cast<uintptr_t>(method));
2739}
2740
2741// Returns shorty type so the caller can determine how to put |result|
2742// into expected registers. The shorty type is static so the compiler
2743// could call different flavors of this code path depending on the
2744// shorty type though this would require different entry points for
2745// each type.
2746extern "C" uintptr_t artInvokePolymorphic(
2747    JValue* result,
2748    mirror::Object* raw_receiver,
2749    Thread* self,
2750    ArtMethod** sp)
2751    REQUIRES_SHARED(Locks::mutator_lock_) {
2752  ScopedQuickEntrypointChecks sqec(self);
2753  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2754
2755  // Start new JNI local reference state
2756  JNIEnvExt* env = self->GetJniEnv();
2757  ScopedObjectAccessUnchecked soa(env);
2758  ScopedJniEnvLocalRefState env_state(env);
2759  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2760
2761  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2762  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2763  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2764  const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2765  DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2766         inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2767  const uint32_t proto_idx = inst.VRegH();
2768  const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2769  const size_t shorty_length = strlen(shorty);
2770  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2771  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2772  gc_visitor.VisitArguments();
2773
2774  // Wrap raw_receiver in a Handle for safety.
2775  StackHandleScope<3> hs(self);
2776  Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2777  raw_receiver = nullptr;
2778  self->EndAssertNoThreadSuspension(old_cause);
2779
2780  // Resolve method.
2781  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2782  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2783      self, inst.VRegB(), caller_method, kVirtual);
2784
2785  if (UNLIKELY(receiver_handle.IsNull())) {
2786    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2787    return static_cast<uintptr_t>('V');
2788  }
2789
2790  // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996).
2791  DCHECK_EQ(resolved_method->GetDeclaringClass(),
2792            WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle));
2793
2794  Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2795      ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get()))));
2796
2797  Handle<mirror::MethodType> method_type(
2798      hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2799
2800  // This implies we couldn't resolve one or more types in this method handle.
2801  if (UNLIKELY(method_type.IsNull())) {
2802    CHECK(self->IsExceptionPending());
2803    return static_cast<uintptr_t>('V');
2804  }
2805
2806  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2807  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2808
2809  // Fix references before constructing the shadow frame.
2810  gc_visitor.FixupReferences();
2811
2812  // Construct shadow frame placing arguments consecutively from |first_arg|.
2813  const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2814  const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2815  const size_t first_arg = 0;
2816  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2817      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2818  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2819  ScopedStackedShadowFramePusher
2820      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2821  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2822                                                    kMethodIsStatic,
2823                                                    shorty,
2824                                                    strlen(shorty),
2825                                                    shadow_frame,
2826                                                    first_arg);
2827  shadow_frame_builder.VisitArguments();
2828
2829  // Push a transition back into managed code onto the linked list in thread.
2830  ManagedStack fragment;
2831  self->PushManagedStackFragment(&fragment);
2832
2833  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2834  // consecutive order.
2835  RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2836  bool isExact = (jni::EncodeArtMethod(resolved_method) ==
2837                  WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact);
2838  bool success = false;
2839  if (isExact) {
2840    success = MethodHandleInvokeExact(self,
2841                                      *shadow_frame,
2842                                      method_handle,
2843                                      method_type,
2844                                      &operands,
2845                                      result);
2846  } else {
2847    success = MethodHandleInvoke(self,
2848                                 *shadow_frame,
2849                                 method_handle,
2850                                 method_type,
2851                                 &operands,
2852                                 result);
2853  }
2854  DCHECK(success || self->IsExceptionPending());
2855
2856  // Pop transition record.
2857  self->PopManagedStackFragment(fragment);
2858
2859  return static_cast<uintptr_t>(shorty[0]);
2860}
2861
2862}  // namespace art
2863