quick_trampoline_entrypoints.cc revision 056d7756152bb3ced81dd57781be5028428ce2bd
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/callee_save_type.h"
19#include "base/enums.h"
20#include "callee_save_frame.h"
21#include "common_throws.h"
22#include "debugger.h"
23#include "dex_file-inl.h"
24#include "dex_file_types.h"
25#include "dex_instruction-inl.h"
26#include "entrypoints/entrypoint_utils-inl.h"
27#include "entrypoints/runtime_asm_entrypoints.h"
28#include "gc/accounting/card_table-inl.h"
29#include "imt_conflict_table.h"
30#include "imtable-inl.h"
31#include "index_bss_mapping.h"
32#include "instrumentation.h"
33#include "interpreter/interpreter.h"
34#include "linear_alloc.h"
35#include "method_handles.h"
36#include "method_reference.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/method.h"
40#include "mirror/method_handle_impl.h"
41#include "mirror/object-inl.h"
42#include "mirror/object_array-inl.h"
43#include "oat_file.h"
44#include "oat_quick_method_header.h"
45#include "quick_exception_handler.h"
46#include "runtime.h"
47#include "scoped_thread_state_change-inl.h"
48#include "stack.h"
49#include "thread-inl.h"
50#include "well_known_classes.h"
51
52namespace art {
53
54// Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
55class QuickArgumentVisitor {
56  // Number of bytes for each out register in the caller method's frame.
57  static constexpr size_t kBytesStackArgLocation = 4;
58  // Frame size in bytes of a callee-save frame for RefsAndArgs.
59  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
60      GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
61#if defined(__arm__)
62  // The callee save frame is pointed to by SP.
63  // | argN       |  |
64  // | ...        |  |
65  // | arg4       |  |
66  // | arg3 spill |  |  Caller's frame
67  // | arg2 spill |  |
68  // | arg1 spill |  |
69  // | Method*    | ---
70  // | LR         |
71  // | ...        |    4x6 bytes callee saves
72  // | R3         |
73  // | R2         |
74  // | R1         |
75  // | S15        |
76  // | :          |
77  // | S0         |
78  // |            |    4x2 bytes padding
79  // | Method*    |  <- sp
80  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
81  static constexpr bool kAlignPairRegister = true;
82  static constexpr bool kQuickSoftFloatAbi = false;
83  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
84  static constexpr bool kQuickSkipOddFpRegisters = false;
85  static constexpr size_t kNumQuickGprArgs = 3;
86  static constexpr size_t kNumQuickFprArgs = 16;
87  static constexpr bool kGprFprLockstep = false;
88  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
89      arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
90  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
91      arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
92  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
93      arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
94  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
95    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
96  }
97#elif defined(__aarch64__)
98  // The callee save frame is pointed to by SP.
99  // | argN       |  |
100  // | ...        |  |
101  // | arg4       |  |
102  // | arg3 spill |  |  Caller's frame
103  // | arg2 spill |  |
104  // | arg1 spill |  |
105  // | Method*    | ---
106  // | LR         |
107  // | X29        |
108  // |  :         |
109  // | X20        |
110  // | X7         |
111  // | :          |
112  // | X1         |
113  // | D7         |
114  // |  :         |
115  // | D0         |
116  // |            |    padding
117  // | Method*    |  <- sp
118  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
119  static constexpr bool kAlignPairRegister = false;
120  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
121  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
122  static constexpr bool kQuickSkipOddFpRegisters = false;
123  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
124  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
125  static constexpr bool kGprFprLockstep = false;
126  // Offset of first FPR arg.
127  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
128      arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
129  // Offset of first GPR arg.
130  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
131      arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
132  // Offset of return address.
133  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
134      arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
135  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
136    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
137  }
138#elif defined(__mips__) && !defined(__LP64__)
139  // The callee save frame is pointed to by SP.
140  // | argN       |  |
141  // | ...        |  |
142  // | arg4       |  |
143  // | arg3 spill |  |  Caller's frame
144  // | arg2 spill |  |
145  // | arg1 spill |  |
146  // | Method*    | ---
147  // | RA         |
148  // | ...        |    callee saves
149  // | T1         |    arg5
150  // | T0         |    arg4
151  // | A3         |    arg3
152  // | A2         |    arg2
153  // | A1         |    arg1
154  // | F19        |
155  // | F18        |    f_arg5
156  // | F17        |
157  // | F16        |    f_arg4
158  // | F15        |
159  // | F14        |    f_arg3
160  // | F13        |
161  // | F12        |    f_arg2
162  // | F11        |
163  // | F10        |    f_arg1
164  // | F9         |
165  // | F8         |    f_arg0
166  // |            |    padding
167  // | A0/Method* |  <- sp
168  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
169  static constexpr bool kAlignPairRegister = true;
170  static constexpr bool kQuickSoftFloatAbi = false;
171  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
172  static constexpr bool kQuickSkipOddFpRegisters = true;
173  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
174  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
175                                                  // passed only in even numbered registers and each
176                                                  // double occupies two registers.
177  static constexpr bool kGprFprLockstep = false;
178  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
179  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
180  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
181  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
183  }
184#elif defined(__mips__) && defined(__LP64__)
185  // The callee save frame is pointed to by SP.
186  // | argN       |  |
187  // | ...        |  |
188  // | arg4       |  |
189  // | arg3 spill |  |  Caller's frame
190  // | arg2 spill |  |
191  // | arg1 spill |  |
192  // | Method*    | ---
193  // | RA         |
194  // | ...        |    callee saves
195  // | A7         |    arg7
196  // | A6         |    arg6
197  // | A5         |    arg5
198  // | A4         |    arg4
199  // | A3         |    arg3
200  // | A2         |    arg2
201  // | A1         |    arg1
202  // | F19        |    f_arg7
203  // | F18        |    f_arg6
204  // | F17        |    f_arg5
205  // | F16        |    f_arg4
206  // | F15        |    f_arg3
207  // | F14        |    f_arg2
208  // | F13        |    f_arg1
209  // | F12        |    f_arg0
210  // |            |    padding
211  // | A0/Method* |  <- sp
212  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
213  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
214  static constexpr bool kAlignPairRegister = false;
215  static constexpr bool kQuickSoftFloatAbi = false;
216  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
217  static constexpr bool kQuickSkipOddFpRegisters = false;
218  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
219  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
220  static constexpr bool kGprFprLockstep = true;
221
222  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
223  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
224  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
225  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
226    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
227  }
228#elif defined(__i386__)
229  // The callee save frame is pointed to by SP.
230  // | argN        |  |
231  // | ...         |  |
232  // | arg4        |  |
233  // | arg3 spill  |  |  Caller's frame
234  // | arg2 spill  |  |
235  // | arg1 spill  |  |
236  // | Method*     | ---
237  // | Return      |
238  // | EBP,ESI,EDI |    callee saves
239  // | EBX         |    arg3
240  // | EDX         |    arg2
241  // | ECX         |    arg1
242  // | XMM3        |    float arg 4
243  // | XMM2        |    float arg 3
244  // | XMM1        |    float arg 2
245  // | XMM0        |    float arg 1
246  // | EAX/Method* |  <- sp
247  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
248  static constexpr bool kAlignPairRegister = false;
249  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
250  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
251  static constexpr bool kQuickSkipOddFpRegisters = false;
252  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
253  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
254  static constexpr bool kGprFprLockstep = false;
255  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
256  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
257  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
258  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
259    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
260  }
261#elif defined(__x86_64__)
262  // The callee save frame is pointed to by SP.
263  // | argN            |  |
264  // | ...             |  |
265  // | reg. arg spills |  |  Caller's frame
266  // | Method*         | ---
267  // | Return          |
268  // | R15             |    callee save
269  // | R14             |    callee save
270  // | R13             |    callee save
271  // | R12             |    callee save
272  // | R9              |    arg5
273  // | R8              |    arg4
274  // | RSI/R6          |    arg1
275  // | RBP/R5          |    callee save
276  // | RBX/R3          |    callee save
277  // | RDX/R2          |    arg2
278  // | RCX/R1          |    arg3
279  // | XMM7            |    float arg 8
280  // | XMM6            |    float arg 7
281  // | XMM5            |    float arg 6
282  // | XMM4            |    float arg 5
283  // | XMM3            |    float arg 4
284  // | XMM2            |    float arg 3
285  // | XMM1            |    float arg 2
286  // | XMM0            |    float arg 1
287  // | Padding         |
288  // | RDI/Method*     |  <- sp
289  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
290  static constexpr bool kAlignPairRegister = false;
291  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
292  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
293  static constexpr bool kQuickSkipOddFpRegisters = false;
294  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
295  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
296  static constexpr bool kGprFprLockstep = false;
297  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
298  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
299  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
300  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
301    switch (gpr_index) {
302      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
303      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
304      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
305      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
306      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
307      default:
308      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
309      return 0;
310    }
311  }
312#else
313#error "Unsupported architecture"
314#endif
315
316 public:
317  // Special handling for proxy methods. Proxy methods are instance methods so the
318  // 'this' object is the 1st argument. They also have the same frame layout as the
319  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
320  // 1st GPR.
321  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
322      REQUIRES_SHARED(Locks::mutator_lock_) {
323    CHECK((*sp)->IsProxyMethod());
324    CHECK_GT(kNumQuickGprArgs, 0u);
325    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
326    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
327        GprIndexToGprOffset(kThisGprIndex);
328    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
329    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
330  }
331
332  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
333    DCHECK((*sp)->IsCalleeSaveMethod());
334    return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
335  }
336
337  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
338    DCHECK((*sp)->IsCalleeSaveMethod());
339    uint8_t* previous_sp =
340        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
341    return *reinterpret_cast<ArtMethod**>(previous_sp);
342  }
343
344  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
345    DCHECK((*sp)->IsCalleeSaveMethod());
346    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
347                                                            CalleeSaveType::kSaveRefsAndArgs);
348    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
349        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
350    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
351    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
352    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
353
354    if (current_code->IsOptimized()) {
355      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
356      CodeInfoEncoding encoding = code_info.ExtractEncoding();
357      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
358      DCHECK(stack_map.IsValid());
359      if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
360        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
361        return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
362                                           inline_info.GetDepth(encoding.inline_info.encoding)-1);
363      } else {
364        return stack_map.GetDexPc(encoding.stack_map.encoding);
365      }
366    } else {
367      return current_code->ToDexPc(*caller_sp, outer_pc);
368    }
369  }
370
371  static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
372      REQUIRES_SHARED(Locks::mutator_lock_) {
373    DCHECK((*sp)->IsCalleeSaveMethod());
374    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
375                                                            CalleeSaveType::kSaveRefsAndArgs);
376    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
377        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
378    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
379    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
380    if (!current_code->IsOptimized()) {
381      return false;
382    }
383    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
384    CodeInfo code_info = current_code->GetOptimizedCodeInfo();
385    CodeInfoEncoding encoding = code_info.ExtractEncoding();
386    MethodInfo method_info = current_code->GetOptimizedMethodInfo();
387    InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
388    if (invoke.IsValid()) {
389      *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
390      *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
391      return true;
392    }
393    return false;
394  }
395
396  // For the given quick ref and args quick frame, return the caller's PC.
397  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
398    DCHECK((*sp)->IsCalleeSaveMethod());
399    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
400    return *reinterpret_cast<uintptr_t*>(lr);
401  }
402
403  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
404                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
405          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
406          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
407          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
408          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
409              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
410          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
411          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
412    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
413                  "Number of Quick FPR arguments unexpected");
414    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
415                  "Double alignment unexpected");
416    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
417    // next register is even.
418    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
419                  "Number of Quick FPR arguments not even");
420    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
421  }
422
423  virtual ~QuickArgumentVisitor() {}
424
425  virtual void Visit() = 0;
426
427  Primitive::Type GetParamPrimitiveType() const {
428    return cur_type_;
429  }
430
431  uint8_t* GetParamAddress() const {
432    if (!kQuickSoftFloatAbi) {
433      Primitive::Type type = GetParamPrimitiveType();
434      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
435        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
436          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
437            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
438          }
439        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
440          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
441        }
442        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
443      }
444    }
445    if (gpr_index_ < kNumQuickGprArgs) {
446      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
447    }
448    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
449  }
450
451  bool IsSplitLongOrDouble() const {
452    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
453        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
454      return is_split_long_or_double_;
455    } else {
456      return false;  // An optimization for when GPR and FPRs are 64bit.
457    }
458  }
459
460  bool IsParamAReference() const {
461    return GetParamPrimitiveType() == Primitive::kPrimNot;
462  }
463
464  bool IsParamALongOrDouble() const {
465    Primitive::Type type = GetParamPrimitiveType();
466    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
467  }
468
469  uint64_t ReadSplitLongParam() const {
470    // The splitted long is always available through the stack.
471    return *reinterpret_cast<uint64_t*>(stack_args_
472        + stack_index_ * kBytesStackArgLocation);
473  }
474
475  void IncGprIndex() {
476    gpr_index_++;
477    if (kGprFprLockstep) {
478      fpr_index_++;
479    }
480  }
481
482  void IncFprIndex() {
483    fpr_index_++;
484    if (kGprFprLockstep) {
485      gpr_index_++;
486    }
487  }
488
489  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
490    // (a) 'stack_args_' should point to the first method's argument
491    // (b) whatever the argument type it is, the 'stack_index_' should
492    //     be moved forward along with every visiting.
493    gpr_index_ = 0;
494    fpr_index_ = 0;
495    if (kQuickDoubleRegAlignedFloatBackFilled) {
496      fpr_double_index_ = 0;
497    }
498    stack_index_ = 0;
499    if (!is_static_) {  // Handle this.
500      cur_type_ = Primitive::kPrimNot;
501      is_split_long_or_double_ = false;
502      Visit();
503      stack_index_++;
504      if (kNumQuickGprArgs > 0) {
505        IncGprIndex();
506      }
507    }
508    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
509      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
510      switch (cur_type_) {
511        case Primitive::kPrimNot:
512        case Primitive::kPrimBoolean:
513        case Primitive::kPrimByte:
514        case Primitive::kPrimChar:
515        case Primitive::kPrimShort:
516        case Primitive::kPrimInt:
517          is_split_long_or_double_ = false;
518          Visit();
519          stack_index_++;
520          if (gpr_index_ < kNumQuickGprArgs) {
521            IncGprIndex();
522          }
523          break;
524        case Primitive::kPrimFloat:
525          is_split_long_or_double_ = false;
526          Visit();
527          stack_index_++;
528          if (kQuickSoftFloatAbi) {
529            if (gpr_index_ < kNumQuickGprArgs) {
530              IncGprIndex();
531            }
532          } else {
533            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
534              IncFprIndex();
535              if (kQuickDoubleRegAlignedFloatBackFilled) {
536                // Double should not overlap with float.
537                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
538                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
539                // Float should not overlap with double.
540                if (fpr_index_ % 2 == 0) {
541                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
542                }
543              } else if (kQuickSkipOddFpRegisters) {
544                IncFprIndex();
545              }
546            }
547          }
548          break;
549        case Primitive::kPrimDouble:
550        case Primitive::kPrimLong:
551          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
552            if (cur_type_ == Primitive::kPrimLong &&
553#if defined(__mips__) && !defined(__LP64__)
554                (gpr_index_ == 0 || gpr_index_ == 2) &&
555#else
556                gpr_index_ == 0 &&
557#endif
558                kAlignPairRegister) {
559              // Currently, this is only for ARM and MIPS, where we align long parameters with
560              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
561              // R2 (on ARM) or A2(T0) (on MIPS) instead.
562              IncGprIndex();
563            }
564            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
565                ((gpr_index_ + 1) == kNumQuickGprArgs);
566            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
567              // We don't want to split this. Pass over this register.
568              gpr_index_++;
569              is_split_long_or_double_ = false;
570            }
571            Visit();
572            if (kBytesStackArgLocation == 4) {
573              stack_index_+= 2;
574            } else {
575              CHECK_EQ(kBytesStackArgLocation, 8U);
576              stack_index_++;
577            }
578            if (gpr_index_ < kNumQuickGprArgs) {
579              IncGprIndex();
580              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
581                if (gpr_index_ < kNumQuickGprArgs) {
582                  IncGprIndex();
583                }
584              }
585            }
586          } else {
587            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
588                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
589            Visit();
590            if (kBytesStackArgLocation == 4) {
591              stack_index_+= 2;
592            } else {
593              CHECK_EQ(kBytesStackArgLocation, 8U);
594              stack_index_++;
595            }
596            if (kQuickDoubleRegAlignedFloatBackFilled) {
597              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
598                fpr_double_index_ += 2;
599                // Float should not overlap with double.
600                if (fpr_index_ % 2 == 0) {
601                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
602                }
603              }
604            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
605              IncFprIndex();
606              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
607                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
608                  IncFprIndex();
609                }
610              }
611            }
612          }
613          break;
614        default:
615          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
616      }
617    }
618  }
619
620 protected:
621  const bool is_static_;
622  const char* const shorty_;
623  const uint32_t shorty_len_;
624
625 private:
626  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
627  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
628  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
629  uint32_t gpr_index_;  // Index into spilled GPRs.
630  // Index into spilled FPRs.
631  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
632  // holds a higher register number.
633  uint32_t fpr_index_;
634  // Index into spilled FPRs for aligned double.
635  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
636  // terms of singles, may be behind fpr_index.
637  uint32_t fpr_double_index_;
638  uint32_t stack_index_;  // Index into arguments on the stack.
639  // The current type of argument during VisitArguments.
640  Primitive::Type cur_type_;
641  // Does a 64bit parameter straddle the register and stack arguments?
642  bool is_split_long_or_double_;
643};
644
645// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
646// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
647extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
648    REQUIRES_SHARED(Locks::mutator_lock_) {
649  return QuickArgumentVisitor::GetProxyThisObject(sp);
650}
651
652// Visits arguments on the stack placing them into the shadow frame.
653class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
654 public:
655  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
656                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
657      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
658
659  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
660
661 private:
662  ShadowFrame* const sf_;
663  uint32_t cur_reg_;
664
665  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
666};
667
668void BuildQuickShadowFrameVisitor::Visit() {
669  Primitive::Type type = GetParamPrimitiveType();
670  switch (type) {
671    case Primitive::kPrimLong:  // Fall-through.
672    case Primitive::kPrimDouble:
673      if (IsSplitLongOrDouble()) {
674        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
675      } else {
676        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
677      }
678      ++cur_reg_;
679      break;
680    case Primitive::kPrimNot: {
681        StackReference<mirror::Object>* stack_ref =
682            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
683        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
684      }
685      break;
686    case Primitive::kPrimBoolean:  // Fall-through.
687    case Primitive::kPrimByte:     // Fall-through.
688    case Primitive::kPrimChar:     // Fall-through.
689    case Primitive::kPrimShort:    // Fall-through.
690    case Primitive::kPrimInt:      // Fall-through.
691    case Primitive::kPrimFloat:
692      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
693      break;
694    case Primitive::kPrimVoid:
695      LOG(FATAL) << "UNREACHABLE";
696      UNREACHABLE();
697  }
698  ++cur_reg_;
699}
700
701// Don't inline. See b/65159206.
702NO_INLINE
703static void HandleDeoptimization(JValue* result,
704                                 ArtMethod* method,
705                                 ShadowFrame* deopt_frame,
706                                 ManagedStack* fragment)
707    REQUIRES_SHARED(Locks::mutator_lock_) {
708  // Coming from partial-fragment deopt.
709  Thread* self = Thread::Current();
710  if (kIsDebugBuild) {
711    // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
712    // of the call-stack) corresponds to the called method.
713    ShadowFrame* linked = deopt_frame;
714    while (linked->GetLink() != nullptr) {
715      linked = linked->GetLink();
716    }
717    CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
718        << ArtMethod::PrettyMethod(linked->GetMethod());
719  }
720
721  if (VLOG_IS_ON(deopt)) {
722    // Print out the stack to verify that it was a partial-fragment deopt.
723    LOG(INFO) << "Continue-ing from deopt. Stack is:";
724    QuickExceptionHandler::DumpFramesWithType(self, true);
725  }
726
727  ObjPtr<mirror::Throwable> pending_exception;
728  bool from_code = false;
729  DeoptimizationMethodType method_type;
730  self->PopDeoptimizationContext(/* out */ result,
731                                 /* out */ &pending_exception,
732                                 /* out */ &from_code,
733                                 /* out */ &method_type);
734
735  // Push a transition back into managed code onto the linked list in thread.
736  self->PushManagedStackFragment(fragment);
737
738  // Ensure that the stack is still in order.
739  if (kIsDebugBuild) {
740    class DummyStackVisitor : public StackVisitor {
741     public:
742      explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
743          : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
744
745      bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
746        // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
747        // logic. Just always say we want to continue.
748        return true;
749      }
750    };
751    DummyStackVisitor dsv(self);
752    dsv.WalkStack();
753  }
754
755  // Restore the exception that was pending before deoptimization then interpret the
756  // deoptimized frames.
757  if (pending_exception != nullptr) {
758    self->SetException(pending_exception);
759  }
760  interpreter::EnterInterpreterFromDeoptimize(self,
761                                              deopt_frame,
762                                              result,
763                                              from_code,
764                                              DeoptimizationMethodType::kDefault);
765}
766
767extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
768    REQUIRES_SHARED(Locks::mutator_lock_) {
769  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
770  // frame.
771  ScopedQuickEntrypointChecks sqec(self);
772
773  if (UNLIKELY(!method->IsInvokable())) {
774    method->ThrowInvocationTimeError();
775    return 0;
776  }
777
778  JValue tmp_value;
779  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
780      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
781  ManagedStack fragment;
782
783  DCHECK(!method->IsNative()) << method->PrettyMethod();
784  uint32_t shorty_len = 0;
785  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
786  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
787  DCHECK(code_item != nullptr) << method->PrettyMethod();
788  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
789
790  JValue result;
791
792  if (UNLIKELY(deopt_frame != nullptr)) {
793    HandleDeoptimization(&result, method, deopt_frame, &fragment);
794  } else {
795    const char* old_cause = self->StartAssertNoThreadSuspension(
796        "Building interpreter shadow frame");
797    uint16_t num_regs = code_item->registers_size_;
798    // No last shadow coming from quick.
799    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
800        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
801    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
802    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
803    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
804                                                      shadow_frame, first_arg_reg);
805    shadow_frame_builder.VisitArguments();
806    const bool needs_initialization =
807        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
808    // Push a transition back into managed code onto the linked list in thread.
809    self->PushManagedStackFragment(&fragment);
810    self->PushShadowFrame(shadow_frame);
811    self->EndAssertNoThreadSuspension(old_cause);
812
813    if (needs_initialization) {
814      // Ensure static method's class is initialized.
815      StackHandleScope<1> hs(self);
816      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
817      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
818        DCHECK(Thread::Current()->IsExceptionPending())
819            << shadow_frame->GetMethod()->PrettyMethod();
820        self->PopManagedStackFragment(fragment);
821        return 0;
822      }
823    }
824
825    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
826  }
827
828  // Pop transition.
829  self->PopManagedStackFragment(fragment);
830
831  // Request a stack deoptimization if needed
832  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
833  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
834  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
835  // should be done and it knows the real return pc.
836  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
837               Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
838    if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
839      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
840                   << caller->PrettyMethod();
841    } else {
842      // Push the context of the deoptimization stack so we can restore the return value and the
843      // exception before executing the deoptimized frames.
844      self->PushDeoptimizationContext(
845          result,
846          shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
847          self->GetException(),
848          false /* from_code */,
849          DeoptimizationMethodType::kDefault);
850
851      // Set special exception to cause deoptimization.
852      self->SetException(Thread::GetDeoptimizationException());
853    }
854  }
855
856  // No need to restore the args since the method has already been run by the interpreter.
857  return result.GetJ();
858}
859
860// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
861// to jobjects.
862class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
863 public:
864  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
865                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
866      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
867
868  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
869
870  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
871
872 private:
873  ScopedObjectAccessUnchecked* const soa_;
874  std::vector<jvalue>* const args_;
875  // References which we must update when exiting in case the GC moved the objects.
876  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
877
878  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
879};
880
881void BuildQuickArgumentVisitor::Visit() {
882  jvalue val;
883  Primitive::Type type = GetParamPrimitiveType();
884  switch (type) {
885    case Primitive::kPrimNot: {
886      StackReference<mirror::Object>* stack_ref =
887          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
888      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
889      references_.push_back(std::make_pair(val.l, stack_ref));
890      break;
891    }
892    case Primitive::kPrimLong:  // Fall-through.
893    case Primitive::kPrimDouble:
894      if (IsSplitLongOrDouble()) {
895        val.j = ReadSplitLongParam();
896      } else {
897        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
898      }
899      break;
900    case Primitive::kPrimBoolean:  // Fall-through.
901    case Primitive::kPrimByte:     // Fall-through.
902    case Primitive::kPrimChar:     // Fall-through.
903    case Primitive::kPrimShort:    // Fall-through.
904    case Primitive::kPrimInt:      // Fall-through.
905    case Primitive::kPrimFloat:
906      val.i = *reinterpret_cast<jint*>(GetParamAddress());
907      break;
908    case Primitive::kPrimVoid:
909      LOG(FATAL) << "UNREACHABLE";
910      UNREACHABLE();
911  }
912  args_->push_back(val);
913}
914
915void BuildQuickArgumentVisitor::FixupReferences() {
916  // Fixup any references which may have changed.
917  for (const auto& pair : references_) {
918    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
919    soa_->Env()->DeleteLocalRef(pair.first);
920  }
921}
922// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
923// which is responsible for recording callee save registers. We explicitly place into jobjects the
924// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
925// field within the proxy object, which will box the primitive arguments and deal with error cases.
926extern "C" uint64_t artQuickProxyInvokeHandler(
927    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
928    REQUIRES_SHARED(Locks::mutator_lock_) {
929  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
930  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
931  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
932  const char* old_cause =
933      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
934  // Register the top of the managed stack, making stack crawlable.
935  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
936  self->VerifyStack();
937  // Start new JNI local reference state.
938  JNIEnvExt* env = self->GetJniEnv();
939  ScopedObjectAccessUnchecked soa(env);
940  ScopedJniEnvLocalRefState env_state(env);
941  // Create local ref. copies of proxy method and the receiver.
942  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
943
944  // Placing arguments into args vector and remove the receiver.
945  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
946  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
947                                       << non_proxy_method->PrettyMethod();
948  std::vector<jvalue> args;
949  uint32_t shorty_len = 0;
950  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
951  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
952
953  local_ref_visitor.VisitArguments();
954  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
955  args.erase(args.begin());
956
957  // Convert proxy method into expected interface method.
958  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
959  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
960  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
961  self->EndAssertNoThreadSuspension(old_cause);
962  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
963  DCHECK(!Runtime::Current()->IsActiveTransaction());
964  ObjPtr<mirror::Method> interface_reflect_method =
965      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
966  if (interface_reflect_method == nullptr) {
967    soa.Self()->AssertPendingOOMException();
968    return 0;
969  }
970  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
971
972  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
973  // that performs allocations.
974  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
975  // Restore references which might have moved.
976  local_ref_visitor.FixupReferences();
977  return result.GetJ();
978}
979
980// Read object references held in arguments from quick frames and place in a JNI local references,
981// so they don't get garbage collected.
982class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
983 public:
984  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
985                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
986      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
987
988  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
989
990  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
991
992 private:
993  ScopedObjectAccessUnchecked* const soa_;
994  // References which we must update when exiting in case the GC moved the objects.
995  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
996
997  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
998};
999
1000void RememberForGcArgumentVisitor::Visit() {
1001  if (IsParamAReference()) {
1002    StackReference<mirror::Object>* stack_ref =
1003        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1004    jobject reference =
1005        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1006    references_.push_back(std::make_pair(reference, stack_ref));
1007  }
1008}
1009
1010void RememberForGcArgumentVisitor::FixupReferences() {
1011  // Fixup any references which may have changed.
1012  for (const auto& pair : references_) {
1013    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1014    soa_->Env()->DeleteLocalRef(pair.first);
1015  }
1016}
1017
1018extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1019                                                             mirror::Object* this_object,
1020                                                             Thread* self,
1021                                                             ArtMethod** sp)
1022    REQUIRES_SHARED(Locks::mutator_lock_) {
1023  const void* result;
1024  // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1025  // that part.
1026  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1027  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1028  if (instrumentation->IsDeoptimized(method)) {
1029    result = GetQuickToInterpreterBridge();
1030  } else {
1031    result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1032    DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1033  }
1034
1035  bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1036  bool is_static = method->IsStatic();
1037  uint32_t shorty_len;
1038  const char* shorty =
1039      method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1040
1041  ScopedObjectAccessUnchecked soa(self);
1042  RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1043  visitor.VisitArguments();
1044
1045  instrumentation->PushInstrumentationStackFrame(self,
1046                                                 is_static ? nullptr : this_object,
1047                                                 method,
1048                                                 QuickArgumentVisitor::GetCallingPc(sp),
1049                                                 interpreter_entry);
1050
1051  visitor.FixupReferences();
1052  if (UNLIKELY(self->IsExceptionPending())) {
1053    return nullptr;
1054  }
1055  CHECK(result != nullptr) << method->PrettyMethod();
1056  return result;
1057}
1058
1059extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1060                                                              ArtMethod** sp,
1061                                                              uint64_t* gpr_result,
1062                                                              uint64_t* fpr_result)
1063    REQUIRES_SHARED(Locks::mutator_lock_) {
1064  DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1065  CHECK(gpr_result != nullptr);
1066  CHECK(fpr_result != nullptr);
1067  // Instrumentation exit stub must not be entered with a pending exception.
1068  CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1069                                     << self->GetException()->Dump();
1070  // Compute address of return PC and sanity check that it currently holds 0.
1071  size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA,
1072                                                        CalleeSaveType::kSaveEverything);
1073  uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1074                                                      return_pc_offset);
1075  CHECK_EQ(*return_pc, 0U);
1076
1077  // Pop the frame filling in the return pc. The low half of the return value is 0 when
1078  // deoptimization shouldn't be performed with the high-half having the return address. When
1079  // deoptimization should be performed the low half is zero and the high-half the address of the
1080  // deoptimization entry point.
1081  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1082  TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1083      self, return_pc, gpr_result, fpr_result);
1084  if (self->IsExceptionPending()) {
1085    return GetTwoWordFailureValue();
1086  }
1087  return return_or_deoptimize_pc;
1088}
1089
1090// Lazily resolve a method for quick. Called by stub code.
1091extern "C" const void* artQuickResolutionTrampoline(
1092    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1093    REQUIRES_SHARED(Locks::mutator_lock_) {
1094  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1095  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1096  // does not have the same stack layout as the callee-save method).
1097  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1098  // Start new JNI local reference state
1099  JNIEnvExt* env = self->GetJniEnv();
1100  ScopedObjectAccessUnchecked soa(env);
1101  ScopedJniEnvLocalRefState env_state(env);
1102  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1103
1104  // Compute details about the called method (avoid GCs)
1105  ClassLinker* linker = Runtime::Current()->GetClassLinker();
1106  InvokeType invoke_type;
1107  MethodReference called_method(nullptr, 0);
1108  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1109  ArtMethod* caller = nullptr;
1110  if (!called_method_known_on_entry) {
1111    caller = QuickArgumentVisitor::GetCallingMethod(sp);
1112    called_method.dex_file = caller->GetDexFile();
1113
1114    InvokeType stack_map_invoke_type;
1115    uint32_t stack_map_dex_method_idx;
1116    const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1117                                                                     &stack_map_invoke_type,
1118                                                                     &stack_map_dex_method_idx);
1119    // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1120    // code.
1121    if (!found_stack_map || kIsDebugBuild) {
1122      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1123      const DexFile::CodeItem* code;
1124      code = caller->GetCodeItem();
1125      CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1126      const Instruction& instr = code->InstructionAt(dex_pc);
1127      Instruction::Code instr_code = instr.Opcode();
1128      bool is_range;
1129      switch (instr_code) {
1130        case Instruction::INVOKE_DIRECT:
1131          invoke_type = kDirect;
1132          is_range = false;
1133          break;
1134        case Instruction::INVOKE_DIRECT_RANGE:
1135          invoke_type = kDirect;
1136          is_range = true;
1137          break;
1138        case Instruction::INVOKE_STATIC:
1139          invoke_type = kStatic;
1140          is_range = false;
1141          break;
1142        case Instruction::INVOKE_STATIC_RANGE:
1143          invoke_type = kStatic;
1144          is_range = true;
1145          break;
1146        case Instruction::INVOKE_SUPER:
1147          invoke_type = kSuper;
1148          is_range = false;
1149          break;
1150        case Instruction::INVOKE_SUPER_RANGE:
1151          invoke_type = kSuper;
1152          is_range = true;
1153          break;
1154        case Instruction::INVOKE_VIRTUAL:
1155          invoke_type = kVirtual;
1156          is_range = false;
1157          break;
1158        case Instruction::INVOKE_VIRTUAL_RANGE:
1159          invoke_type = kVirtual;
1160          is_range = true;
1161          break;
1162        case Instruction::INVOKE_INTERFACE:
1163          invoke_type = kInterface;
1164          is_range = false;
1165          break;
1166        case Instruction::INVOKE_INTERFACE_RANGE:
1167          invoke_type = kInterface;
1168          is_range = true;
1169          break;
1170        default:
1171          LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1172          UNREACHABLE();
1173      }
1174      called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1175      // Check that the invoke matches what we expected, note that this path only happens for debug
1176      // builds.
1177      if (found_stack_map) {
1178        DCHECK_EQ(stack_map_invoke_type, invoke_type);
1179        if (invoke_type != kSuper) {
1180          // Super may be sharpened.
1181          DCHECK_EQ(stack_map_dex_method_idx, called_method.index)
1182              << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1183              << called_method.PrettyMethod();
1184        }
1185      } else {
1186        VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1187                  << called_method.index;
1188      }
1189    } else {
1190      invoke_type = stack_map_invoke_type;
1191      called_method.index = stack_map_dex_method_idx;
1192    }
1193  } else {
1194    invoke_type = kStatic;
1195    called_method.dex_file = called->GetDexFile();
1196    called_method.index = called->GetDexMethodIndex();
1197  }
1198  uint32_t shorty_len;
1199  const char* shorty =
1200      called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1201  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1202  visitor.VisitArguments();
1203  self->EndAssertNoThreadSuspension(old_cause);
1204  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1205  // Resolve method filling in dex cache.
1206  if (!called_method_known_on_entry) {
1207    StackHandleScope<1> hs(self);
1208    mirror::Object* dummy = nullptr;
1209    HandleWrapper<mirror::Object> h_receiver(
1210        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1211    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1212    called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1213        self, called_method.index, caller, invoke_type);
1214
1215    // Update .bss entry in oat file if any.
1216    if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1217      size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
1218          called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
1219          called_method.index,
1220          called_method.dex_file->NumMethodIds(),
1221          static_cast<size_t>(kRuntimePointerSize));
1222      if (bss_offset != IndexBssMappingLookup::npos) {
1223        DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1224        const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1225        ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1226            oat_file->BssBegin() + bss_offset));
1227        DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1228        DCHECK_LT(method_entry,
1229                  oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1230        *method_entry = called;
1231      }
1232    }
1233  }
1234  const void* code = nullptr;
1235  if (LIKELY(!self->IsExceptionPending())) {
1236    // Incompatible class change should have been handled in resolve method.
1237    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1238        << called->PrettyMethod() << " " << invoke_type;
1239    if (virtual_or_interface || invoke_type == kSuper) {
1240      // Refine called method based on receiver for kVirtual/kInterface, and
1241      // caller for kSuper.
1242      ArtMethod* orig_called = called;
1243      if (invoke_type == kVirtual) {
1244        CHECK(receiver != nullptr) << invoke_type;
1245        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1246      } else if (invoke_type == kInterface) {
1247        CHECK(receiver != nullptr) << invoke_type;
1248        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1249      } else {
1250        DCHECK_EQ(invoke_type, kSuper);
1251        CHECK(caller != nullptr) << invoke_type;
1252        StackHandleScope<2> hs(self);
1253        Handle<mirror::DexCache> dex_cache(
1254            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1255        Handle<mirror::ClassLoader> class_loader(
1256            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1257        // TODO Maybe put this into a mirror::Class function.
1258        ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1259            *dex_cache->GetDexFile(),
1260            dex_cache->GetDexFile()->GetMethodId(called_method.index).class_idx_,
1261            dex_cache.Get(),
1262            class_loader.Get());
1263        if (ref_class->IsInterface()) {
1264          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1265        } else {
1266          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1267              called->GetMethodIndex(), kRuntimePointerSize);
1268        }
1269      }
1270
1271      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1272                               << mirror::Object::PrettyTypeOf(receiver) << " "
1273                               << invoke_type << " " << orig_called->GetVtableIndex();
1274    }
1275
1276    // Ensure that the called method's class is initialized.
1277    StackHandleScope<1> hs(soa.Self());
1278    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1279    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1280    if (LIKELY(called_class->IsInitialized())) {
1281      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1282        // If we are single-stepping or the called method is deoptimized (by a
1283        // breakpoint, for example), then we have to execute the called method
1284        // with the interpreter.
1285        code = GetQuickToInterpreterBridge();
1286      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1287        // If the caller is deoptimized (by a breakpoint, for example), we have to
1288        // continue its execution with interpreter when returning from the called
1289        // method. Because we do not want to execute the called method with the
1290        // interpreter, we wrap its execution into the instrumentation stubs.
1291        // When the called method returns, it will execute the instrumentation
1292        // exit hook that will determine the need of the interpreter with a call
1293        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1294        // it is needed.
1295        code = GetQuickInstrumentationEntryPoint();
1296      } else {
1297        code = called->GetEntryPointFromQuickCompiledCode();
1298      }
1299    } else if (called_class->IsInitializing()) {
1300      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1301        // If we are single-stepping or the called method is deoptimized (by a
1302        // breakpoint, for example), then we have to execute the called method
1303        // with the interpreter.
1304        code = GetQuickToInterpreterBridge();
1305      } else if (invoke_type == kStatic) {
1306        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1307        // until class is initialized to stop races between threads).
1308        code = linker->GetQuickOatCodeFor(called);
1309      } else {
1310        // No trampoline for non-static methods.
1311        code = called->GetEntryPointFromQuickCompiledCode();
1312      }
1313    } else {
1314      DCHECK(called_class->IsErroneous());
1315    }
1316  }
1317  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1318  // Fixup any locally saved objects may have moved during a GC.
1319  visitor.FixupReferences();
1320  // Place called method in callee-save frame to be placed as first argument to quick method.
1321  *sp = called;
1322
1323  return code;
1324}
1325
1326/*
1327 * This class uses a couple of observations to unite the different calling conventions through
1328 * a few constants.
1329 *
1330 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1331 *    possible alignment.
1332 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1333 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1334 *    when we have to split things
1335 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1336 *    and we can use Int handling directly.
1337 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1338 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1339 *    extension should be compatible with Aarch64, which mandates copying the available bits
1340 *    into LSB and leaving the rest unspecified.
1341 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1342 *    the stack.
1343 * 6) There is only little endian.
1344 *
1345 *
1346 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1347 * follows:
1348 *
1349 * void PushGpr(uintptr_t):   Add a value for the next GPR
1350 *
1351 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1352 *                            padding, that is, think the architecture is 32b and aligns 64b.
1353 *
1354 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1355 *                            split this if necessary. The current state will have aligned, if
1356 *                            necessary.
1357 *
1358 * void PushStack(uintptr_t): Push a value to the stack.
1359 *
1360 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1361 *                                          as this might be important for null initialization.
1362 *                                          Must return the jobject, that is, the reference to the
1363 *                                          entry in the HandleScope (nullptr if necessary).
1364 *
1365 */
1366template<class T> class BuildNativeCallFrameStateMachine {
1367 public:
1368#if defined(__arm__)
1369  // TODO: These are all dummy values!
1370  static constexpr bool kNativeSoftFloatAbi = true;
1371  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1372  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1373
1374  static constexpr size_t kRegistersNeededForLong = 2;
1375  static constexpr size_t kRegistersNeededForDouble = 2;
1376  static constexpr bool kMultiRegistersAligned = true;
1377  static constexpr bool kMultiFPRegistersWidened = false;
1378  static constexpr bool kMultiGPRegistersWidened = false;
1379  static constexpr bool kAlignLongOnStack = true;
1380  static constexpr bool kAlignDoubleOnStack = true;
1381#elif defined(__aarch64__)
1382  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1383  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1384  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1385
1386  static constexpr size_t kRegistersNeededForLong = 1;
1387  static constexpr size_t kRegistersNeededForDouble = 1;
1388  static constexpr bool kMultiRegistersAligned = false;
1389  static constexpr bool kMultiFPRegistersWidened = false;
1390  static constexpr bool kMultiGPRegistersWidened = false;
1391  static constexpr bool kAlignLongOnStack = false;
1392  static constexpr bool kAlignDoubleOnStack = false;
1393#elif defined(__mips__) && !defined(__LP64__)
1394  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1395  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1396  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1397
1398  static constexpr size_t kRegistersNeededForLong = 2;
1399  static constexpr size_t kRegistersNeededForDouble = 2;
1400  static constexpr bool kMultiRegistersAligned = true;
1401  static constexpr bool kMultiFPRegistersWidened = true;
1402  static constexpr bool kMultiGPRegistersWidened = false;
1403  static constexpr bool kAlignLongOnStack = true;
1404  static constexpr bool kAlignDoubleOnStack = true;
1405#elif defined(__mips__) && defined(__LP64__)
1406  // Let the code prepare GPRs only and we will load the FPRs with same data.
1407  static constexpr bool kNativeSoftFloatAbi = true;
1408  static constexpr size_t kNumNativeGprArgs = 8;
1409  static constexpr size_t kNumNativeFprArgs = 0;
1410
1411  static constexpr size_t kRegistersNeededForLong = 1;
1412  static constexpr size_t kRegistersNeededForDouble = 1;
1413  static constexpr bool kMultiRegistersAligned = false;
1414  static constexpr bool kMultiFPRegistersWidened = false;
1415  static constexpr bool kMultiGPRegistersWidened = true;
1416  static constexpr bool kAlignLongOnStack = false;
1417  static constexpr bool kAlignDoubleOnStack = false;
1418#elif defined(__i386__)
1419  // TODO: Check these!
1420  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1421  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1422  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1423
1424  static constexpr size_t kRegistersNeededForLong = 2;
1425  static constexpr size_t kRegistersNeededForDouble = 2;
1426  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1427  static constexpr bool kMultiFPRegistersWidened = false;
1428  static constexpr bool kMultiGPRegistersWidened = false;
1429  static constexpr bool kAlignLongOnStack = false;
1430  static constexpr bool kAlignDoubleOnStack = false;
1431#elif defined(__x86_64__)
1432  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1433  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1434  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1435
1436  static constexpr size_t kRegistersNeededForLong = 1;
1437  static constexpr size_t kRegistersNeededForDouble = 1;
1438  static constexpr bool kMultiRegistersAligned = false;
1439  static constexpr bool kMultiFPRegistersWidened = false;
1440  static constexpr bool kMultiGPRegistersWidened = false;
1441  static constexpr bool kAlignLongOnStack = false;
1442  static constexpr bool kAlignDoubleOnStack = false;
1443#else
1444#error "Unsupported architecture"
1445#endif
1446
1447 public:
1448  explicit BuildNativeCallFrameStateMachine(T* delegate)
1449      : gpr_index_(kNumNativeGprArgs),
1450        fpr_index_(kNumNativeFprArgs),
1451        stack_entries_(0),
1452        delegate_(delegate) {
1453    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1454    // the next register is even; counting down is just to make the compiler happy...
1455    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1456    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1457  }
1458
1459  virtual ~BuildNativeCallFrameStateMachine() {}
1460
1461  bool HavePointerGpr() const {
1462    return gpr_index_ > 0;
1463  }
1464
1465  void AdvancePointer(const void* val) {
1466    if (HavePointerGpr()) {
1467      gpr_index_--;
1468      PushGpr(reinterpret_cast<uintptr_t>(val));
1469    } else {
1470      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1471      PushStack(reinterpret_cast<uintptr_t>(val));
1472      gpr_index_ = 0;
1473    }
1474  }
1475
1476  bool HaveHandleScopeGpr() const {
1477    return gpr_index_ > 0;
1478  }
1479
1480  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1481    uintptr_t handle = PushHandle(ptr);
1482    if (HaveHandleScopeGpr()) {
1483      gpr_index_--;
1484      PushGpr(handle);
1485    } else {
1486      stack_entries_++;
1487      PushStack(handle);
1488      gpr_index_ = 0;
1489    }
1490  }
1491
1492  bool HaveIntGpr() const {
1493    return gpr_index_ > 0;
1494  }
1495
1496  void AdvanceInt(uint32_t val) {
1497    if (HaveIntGpr()) {
1498      gpr_index_--;
1499      if (kMultiGPRegistersWidened) {
1500        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1501        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1502      } else {
1503        PushGpr(val);
1504      }
1505    } else {
1506      stack_entries_++;
1507      if (kMultiGPRegistersWidened) {
1508        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1509        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1510      } else {
1511        PushStack(val);
1512      }
1513      gpr_index_ = 0;
1514    }
1515  }
1516
1517  bool HaveLongGpr() const {
1518    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1519  }
1520
1521  bool LongGprNeedsPadding() const {
1522    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1523        kAlignLongOnStack &&                  // and when it needs alignment
1524        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1525  }
1526
1527  bool LongStackNeedsPadding() const {
1528    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1529        kAlignLongOnStack &&                  // and when it needs 8B alignment
1530        (stack_entries_ & 1) == 1;            // counter is odd
1531  }
1532
1533  void AdvanceLong(uint64_t val) {
1534    if (HaveLongGpr()) {
1535      if (LongGprNeedsPadding()) {
1536        PushGpr(0);
1537        gpr_index_--;
1538      }
1539      if (kRegistersNeededForLong == 1) {
1540        PushGpr(static_cast<uintptr_t>(val));
1541      } else {
1542        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1543        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1544      }
1545      gpr_index_ -= kRegistersNeededForLong;
1546    } else {
1547      if (LongStackNeedsPadding()) {
1548        PushStack(0);
1549        stack_entries_++;
1550      }
1551      if (kRegistersNeededForLong == 1) {
1552        PushStack(static_cast<uintptr_t>(val));
1553        stack_entries_++;
1554      } else {
1555        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1556        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1557        stack_entries_ += 2;
1558      }
1559      gpr_index_ = 0;
1560    }
1561  }
1562
1563  bool HaveFloatFpr() const {
1564    return fpr_index_ > 0;
1565  }
1566
1567  void AdvanceFloat(float val) {
1568    if (kNativeSoftFloatAbi) {
1569      AdvanceInt(bit_cast<uint32_t, float>(val));
1570    } else {
1571      if (HaveFloatFpr()) {
1572        fpr_index_--;
1573        if (kRegistersNeededForDouble == 1) {
1574          if (kMultiFPRegistersWidened) {
1575            PushFpr8(bit_cast<uint64_t, double>(val));
1576          } else {
1577            // No widening, just use the bits.
1578            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1579          }
1580        } else {
1581          PushFpr4(val);
1582        }
1583      } else {
1584        stack_entries_++;
1585        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1586          // Need to widen before storing: Note the "double" in the template instantiation.
1587          // Note: We need to jump through those hoops to make the compiler happy.
1588          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1589          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1590        } else {
1591          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1592        }
1593        fpr_index_ = 0;
1594      }
1595    }
1596  }
1597
1598  bool HaveDoubleFpr() const {
1599    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1600  }
1601
1602  bool DoubleFprNeedsPadding() const {
1603    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1604        kAlignDoubleOnStack &&                  // and when it needs alignment
1605        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1606  }
1607
1608  bool DoubleStackNeedsPadding() const {
1609    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1610        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1611        (stack_entries_ & 1) == 1;              // counter is odd
1612  }
1613
1614  void AdvanceDouble(uint64_t val) {
1615    if (kNativeSoftFloatAbi) {
1616      AdvanceLong(val);
1617    } else {
1618      if (HaveDoubleFpr()) {
1619        if (DoubleFprNeedsPadding()) {
1620          PushFpr4(0);
1621          fpr_index_--;
1622        }
1623        PushFpr8(val);
1624        fpr_index_ -= kRegistersNeededForDouble;
1625      } else {
1626        if (DoubleStackNeedsPadding()) {
1627          PushStack(0);
1628          stack_entries_++;
1629        }
1630        if (kRegistersNeededForDouble == 1) {
1631          PushStack(static_cast<uintptr_t>(val));
1632          stack_entries_++;
1633        } else {
1634          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1635          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1636          stack_entries_ += 2;
1637        }
1638        fpr_index_ = 0;
1639      }
1640    }
1641  }
1642
1643  uint32_t GetStackEntries() const {
1644    return stack_entries_;
1645  }
1646
1647  uint32_t GetNumberOfUsedGprs() const {
1648    return kNumNativeGprArgs - gpr_index_;
1649  }
1650
1651  uint32_t GetNumberOfUsedFprs() const {
1652    return kNumNativeFprArgs - fpr_index_;
1653  }
1654
1655 private:
1656  void PushGpr(uintptr_t val) {
1657    delegate_->PushGpr(val);
1658  }
1659  void PushFpr4(float val) {
1660    delegate_->PushFpr4(val);
1661  }
1662  void PushFpr8(uint64_t val) {
1663    delegate_->PushFpr8(val);
1664  }
1665  void PushStack(uintptr_t val) {
1666    delegate_->PushStack(val);
1667  }
1668  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1669    return delegate_->PushHandle(ref);
1670  }
1671
1672  uint32_t gpr_index_;      // Number of free GPRs
1673  uint32_t fpr_index_;      // Number of free FPRs
1674  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1675                            // extended
1676  T* const delegate_;             // What Push implementation gets called
1677};
1678
1679// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1680// in subclasses.
1681//
1682// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1683// them with handles.
1684class ComputeNativeCallFrameSize {
1685 public:
1686  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1687
1688  virtual ~ComputeNativeCallFrameSize() {}
1689
1690  uint32_t GetStackSize() const {
1691    return num_stack_entries_ * sizeof(uintptr_t);
1692  }
1693
1694  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1695    sp8 -= GetStackSize();
1696    // Align by kStackAlignment.
1697    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1698    return sp8;
1699  }
1700
1701  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1702      const {
1703    // Assumption is OK right now, as we have soft-float arm
1704    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1705    sp8 -= fregs * sizeof(uintptr_t);
1706    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1707    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1708    sp8 -= iregs * sizeof(uintptr_t);
1709    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1710    return sp8;
1711  }
1712
1713  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1714                            uint32_t** start_fpr) const {
1715    // Native call stack.
1716    sp8 = LayoutCallStack(sp8);
1717    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1718
1719    // Put fprs and gprs below.
1720    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1721
1722    // Return the new bottom.
1723    return sp8;
1724  }
1725
1726  virtual void WalkHeader(
1727      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1728      REQUIRES_SHARED(Locks::mutator_lock_) {
1729  }
1730
1731  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1732    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1733
1734    WalkHeader(&sm);
1735
1736    for (uint32_t i = 1; i < shorty_len; ++i) {
1737      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1738      switch (cur_type_) {
1739        case Primitive::kPrimNot:
1740          // TODO: fix abuse of mirror types.
1741          sm.AdvanceHandleScope(
1742              reinterpret_cast<mirror::Object*>(0x12345678));
1743          break;
1744
1745        case Primitive::kPrimBoolean:
1746        case Primitive::kPrimByte:
1747        case Primitive::kPrimChar:
1748        case Primitive::kPrimShort:
1749        case Primitive::kPrimInt:
1750          sm.AdvanceInt(0);
1751          break;
1752        case Primitive::kPrimFloat:
1753          sm.AdvanceFloat(0);
1754          break;
1755        case Primitive::kPrimDouble:
1756          sm.AdvanceDouble(0);
1757          break;
1758        case Primitive::kPrimLong:
1759          sm.AdvanceLong(0);
1760          break;
1761        default:
1762          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1763          UNREACHABLE();
1764      }
1765    }
1766
1767    num_stack_entries_ = sm.GetStackEntries();
1768  }
1769
1770  void PushGpr(uintptr_t /* val */) {
1771    // not optimizing registers, yet
1772  }
1773
1774  void PushFpr4(float /* val */) {
1775    // not optimizing registers, yet
1776  }
1777
1778  void PushFpr8(uint64_t /* val */) {
1779    // not optimizing registers, yet
1780  }
1781
1782  void PushStack(uintptr_t /* val */) {
1783    // counting is already done in the superclass
1784  }
1785
1786  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1787    return reinterpret_cast<uintptr_t>(nullptr);
1788  }
1789
1790 protected:
1791  uint32_t num_stack_entries_;
1792};
1793
1794class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1795 public:
1796  explicit ComputeGenericJniFrameSize(bool critical_native)
1797    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1798
1799  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1800  // is at *m = sp. Will update to point to the bottom of the save frame.
1801  //
1802  // Note: assumes ComputeAll() has been run before.
1803  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1804      REQUIRES_SHARED(Locks::mutator_lock_) {
1805    ArtMethod* method = **m;
1806
1807    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1808
1809    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1810
1811    // First, fix up the layout of the callee-save frame.
1812    // We have to squeeze in the HandleScope, and relocate the method pointer.
1813
1814    // "Free" the slot for the method.
1815    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1816
1817    // Under the callee saves put handle scope and new method stack reference.
1818    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1819    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1820
1821    sp8 -= scope_and_method;
1822    // Align by kStackAlignment.
1823    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1824
1825    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1826    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1827                                        num_handle_scope_references_);
1828
1829    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1830    uint8_t* method_pointer = sp8;
1831    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1832    *new_method_ref = method;
1833    *m = new_method_ref;
1834  }
1835
1836  // Adds space for the cookie. Note: may leave stack unaligned.
1837  void LayoutCookie(uint8_t** sp) const {
1838    // Reference cookie and padding
1839    *sp -= 8;
1840  }
1841
1842  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1843  // Returns the new bottom. Note: this may be unaligned.
1844  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1845      REQUIRES_SHARED(Locks::mutator_lock_) {
1846    // First, fix up the layout of the callee-save frame.
1847    // We have to squeeze in the HandleScope, and relocate the method pointer.
1848    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1849
1850    // The bottom of the callee-save frame is now where the method is, *m.
1851    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1852
1853    // Add space for cookie.
1854    LayoutCookie(&sp8);
1855
1856    return sp8;
1857  }
1858
1859  // WARNING: After this, *sp won't be pointing to the method anymore!
1860  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1861                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1862                         uint32_t** start_fpr)
1863      REQUIRES_SHARED(Locks::mutator_lock_) {
1864    Walk(shorty, shorty_len);
1865
1866    // JNI part.
1867    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1868
1869    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1870
1871    // Return the new bottom.
1872    return sp8;
1873  }
1874
1875  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1876
1877  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1878  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1879      REQUIRES_SHARED(Locks::mutator_lock_);
1880
1881 private:
1882  uint32_t num_handle_scope_references_;
1883  const bool critical_native_;
1884};
1885
1886uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1887  num_handle_scope_references_++;
1888  return reinterpret_cast<uintptr_t>(nullptr);
1889}
1890
1891void ComputeGenericJniFrameSize::WalkHeader(
1892    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1893  // First 2 parameters are always excluded for @CriticalNative.
1894  if (UNLIKELY(critical_native_)) {
1895    return;
1896  }
1897
1898  // JNIEnv
1899  sm->AdvancePointer(nullptr);
1900
1901  // Class object or this as first argument
1902  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1903}
1904
1905// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1906// the template requirements of BuildGenericJniFrameStateMachine.
1907class FillNativeCall {
1908 public:
1909  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1910      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1911
1912  virtual ~FillNativeCall() {}
1913
1914  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1915    cur_gpr_reg_ = gpr_regs;
1916    cur_fpr_reg_ = fpr_regs;
1917    cur_stack_arg_ = stack_args;
1918  }
1919
1920  void PushGpr(uintptr_t val) {
1921    *cur_gpr_reg_ = val;
1922    cur_gpr_reg_++;
1923  }
1924
1925  void PushFpr4(float val) {
1926    *cur_fpr_reg_ = val;
1927    cur_fpr_reg_++;
1928  }
1929
1930  void PushFpr8(uint64_t val) {
1931    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1932    *tmp = val;
1933    cur_fpr_reg_ += 2;
1934  }
1935
1936  void PushStack(uintptr_t val) {
1937    *cur_stack_arg_ = val;
1938    cur_stack_arg_++;
1939  }
1940
1941  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1942    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1943    UNREACHABLE();
1944  }
1945
1946 private:
1947  uintptr_t* cur_gpr_reg_;
1948  uint32_t* cur_fpr_reg_;
1949  uintptr_t* cur_stack_arg_;
1950};
1951
1952// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1953// of transitioning into native code.
1954class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1955 public:
1956  BuildGenericJniFrameVisitor(Thread* self,
1957                              bool is_static,
1958                              bool critical_native,
1959                              const char* shorty,
1960                              uint32_t shorty_len,
1961                              ArtMethod*** sp)
1962     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1963       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1964       sm_(&jni_call_) {
1965    ComputeGenericJniFrameSize fsc(critical_native);
1966    uintptr_t* start_gpr_reg;
1967    uint32_t* start_fpr_reg;
1968    uintptr_t* start_stack_arg;
1969    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1970                                             &handle_scope_,
1971                                             &start_stack_arg,
1972                                             &start_gpr_reg, &start_fpr_reg);
1973
1974    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1975
1976    // First 2 parameters are always excluded for CriticalNative methods.
1977    if (LIKELY(!critical_native)) {
1978      // jni environment is always first argument
1979      sm_.AdvancePointer(self->GetJniEnv());
1980
1981      if (is_static) {
1982        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1983      }  // else "this" reference is already handled by QuickArgumentVisitor.
1984    }
1985  }
1986
1987  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1988
1989  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1990
1991  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1992    return handle_scope_->GetHandle(0).GetReference();
1993  }
1994
1995  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1996    return handle_scope_->GetHandle(0).ToJObject();
1997  }
1998
1999  void* GetBottomOfUsedArea() const {
2000    return bottom_of_used_area_;
2001  }
2002
2003 private:
2004  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2005  class FillJniCall FINAL : public FillNativeCall {
2006   public:
2007    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2008                HandleScope* handle_scope, bool critical_native)
2009      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2010                       handle_scope_(handle_scope),
2011        cur_entry_(0),
2012        critical_native_(critical_native) {}
2013
2014    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
2015
2016    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2017      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2018      handle_scope_ = scope;
2019      cur_entry_ = 0U;
2020    }
2021
2022    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2023      // Initialize padding entries.
2024      size_t expected_slots = handle_scope_->NumberOfReferences();
2025      while (cur_entry_ < expected_slots) {
2026        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2027      }
2028
2029      if (!critical_native_) {
2030        // Non-critical natives have at least the self class (jclass) or this (jobject).
2031        DCHECK_NE(cur_entry_, 0U);
2032      }
2033    }
2034
2035    bool CriticalNative() const {
2036      return critical_native_;
2037    }
2038
2039   private:
2040    HandleScope* handle_scope_;
2041    size_t cur_entry_;
2042    const bool critical_native_;
2043  };
2044
2045  HandleScope* handle_scope_;
2046  FillJniCall jni_call_;
2047  void* bottom_of_used_area_;
2048
2049  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2050
2051  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2052};
2053
2054uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2055  uintptr_t tmp;
2056  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2057  h.Assign(ref);
2058  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2059  cur_entry_++;
2060  return tmp;
2061}
2062
2063void BuildGenericJniFrameVisitor::Visit() {
2064  Primitive::Type type = GetParamPrimitiveType();
2065  switch (type) {
2066    case Primitive::kPrimLong: {
2067      jlong long_arg;
2068      if (IsSplitLongOrDouble()) {
2069        long_arg = ReadSplitLongParam();
2070      } else {
2071        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2072      }
2073      sm_.AdvanceLong(long_arg);
2074      break;
2075    }
2076    case Primitive::kPrimDouble: {
2077      uint64_t double_arg;
2078      if (IsSplitLongOrDouble()) {
2079        // Read into union so that we don't case to a double.
2080        double_arg = ReadSplitLongParam();
2081      } else {
2082        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2083      }
2084      sm_.AdvanceDouble(double_arg);
2085      break;
2086    }
2087    case Primitive::kPrimNot: {
2088      StackReference<mirror::Object>* stack_ref =
2089          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2090      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2091      break;
2092    }
2093    case Primitive::kPrimFloat:
2094      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2095      break;
2096    case Primitive::kPrimBoolean:  // Fall-through.
2097    case Primitive::kPrimByte:     // Fall-through.
2098    case Primitive::kPrimChar:     // Fall-through.
2099    case Primitive::kPrimShort:    // Fall-through.
2100    case Primitive::kPrimInt:      // Fall-through.
2101      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2102      break;
2103    case Primitive::kPrimVoid:
2104      LOG(FATAL) << "UNREACHABLE";
2105      UNREACHABLE();
2106  }
2107}
2108
2109void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2110  // Clear out rest of the scope.
2111  jni_call_.ResetRemainingScopeSlots();
2112  if (!jni_call_.CriticalNative()) {
2113    // Install HandleScope.
2114    self->PushHandleScope(handle_scope_);
2115  }
2116}
2117
2118#if defined(__arm__) || defined(__aarch64__)
2119extern "C" const void* artFindNativeMethod();
2120#else
2121extern "C" const void* artFindNativeMethod(Thread* self);
2122#endif
2123
2124static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2125                                            uint32_t cookie,
2126                                            bool fast_native ATTRIBUTE_UNUSED,
2127                                            jobject l,
2128                                            jobject lock) {
2129  // TODO: add entrypoints for @FastNative returning objects.
2130  if (lock != nullptr) {
2131    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2132  } else {
2133    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2134  }
2135}
2136
2137static void artQuickGenericJniEndJNINonRef(Thread* self,
2138                                           uint32_t cookie,
2139                                           bool fast_native,
2140                                           jobject lock) {
2141  if (lock != nullptr) {
2142    JniMethodEndSynchronized(cookie, lock, self);
2143    // Ignore "fast_native" here because synchronized functions aren't very fast.
2144  } else {
2145    if (UNLIKELY(fast_native)) {
2146      JniMethodFastEnd(cookie, self);
2147    } else {
2148      JniMethodEnd(cookie, self);
2149    }
2150  }
2151}
2152
2153/*
2154 * Initializes an alloca region assumed to be directly below sp for a native call:
2155 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2156 * The final element on the stack is a pointer to the native code.
2157 *
2158 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2159 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2160 *
2161 * The return of this function denotes:
2162 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2163 * 2) An error, if the value is negative.
2164 */
2165extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2166    REQUIRES_SHARED(Locks::mutator_lock_) {
2167  // Note: We cannot walk the stack properly until fixed up below.
2168  ArtMethod* called = *sp;
2169  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2170  uint32_t shorty_len = 0;
2171  const char* shorty = called->GetShorty(&shorty_len);
2172  bool critical_native = called->IsCriticalNative();
2173  bool fast_native = called->IsFastNative();
2174  bool normal_native = !critical_native && !fast_native;
2175
2176  // Run the visitor and update sp.
2177  BuildGenericJniFrameVisitor visitor(self,
2178                                      called->IsStatic(),
2179                                      critical_native,
2180                                      shorty,
2181                                      shorty_len,
2182                                      &sp);
2183  {
2184    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2185    visitor.VisitArguments();
2186    // FinalizeHandleScope pushes the handle scope on the thread.
2187    visitor.FinalizeHandleScope(self);
2188  }
2189
2190  // Fix up managed-stack things in Thread. After this we can walk the stack.
2191  self->SetTopOfStack(sp);
2192
2193  self->VerifyStack();
2194
2195  uint32_t cookie;
2196  uint32_t* sp32;
2197  // Skip calling JniMethodStart for @CriticalNative.
2198  if (LIKELY(!critical_native)) {
2199    // Start JNI, save the cookie.
2200    if (called->IsSynchronized()) {
2201      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2202      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2203      if (self->IsExceptionPending()) {
2204        self->PopHandleScope();
2205        // A negative value denotes an error.
2206        return GetTwoWordFailureValue();
2207      }
2208    } else {
2209      if (fast_native) {
2210        cookie = JniMethodFastStart(self);
2211      } else {
2212        DCHECK(normal_native);
2213        cookie = JniMethodStart(self);
2214      }
2215    }
2216    sp32 = reinterpret_cast<uint32_t*>(sp);
2217    *(sp32 - 1) = cookie;
2218  }
2219
2220  // Retrieve the stored native code.
2221  void const* nativeCode = called->GetEntryPointFromJni();
2222
2223  // There are two cases for the content of nativeCode:
2224  // 1) Pointer to the native function.
2225  // 2) Pointer to the trampoline for native code binding.
2226  // In the second case, we need to execute the binding and continue with the actual native function
2227  // pointer.
2228  DCHECK(nativeCode != nullptr);
2229  if (nativeCode == GetJniDlsymLookupStub()) {
2230#if defined(__arm__) || defined(__aarch64__)
2231    nativeCode = artFindNativeMethod();
2232#else
2233    nativeCode = artFindNativeMethod(self);
2234#endif
2235
2236    if (nativeCode == nullptr) {
2237      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2238
2239      // @CriticalNative calls do not need to call back into JniMethodEnd.
2240      if (LIKELY(!critical_native)) {
2241        // End JNI, as the assembly will move to deliver the exception.
2242        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2243        if (shorty[0] == 'L') {
2244          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2245        } else {
2246          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2247        }
2248      }
2249
2250      return GetTwoWordFailureValue();
2251    }
2252    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2253  }
2254
2255#if defined(__mips__) && !defined(__LP64__)
2256  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2257  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2258  // and load into floating-point registers.
2259  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2260  // view):
2261  // (1)
2262  //  |     DOUBLE    |     DOUBLE    | other args, if any
2263  //  |  F12  |  F13  |  F14  |  F15  |
2264  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2265  // (2)
2266  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2267  //  |  F12  |  F13  |  F14  |       |
2268  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2269  // (3)
2270  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2271  //  |  F12  |       |  F14  |  F15  |
2272  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2273  // (4)
2274  //  | FLOAT | FLOAT | other args, if any
2275  //  |  F12  |  F14  |
2276  //  |  SP+0 |  SP+4 | SP+8
2277  // As you can see, only the last case (4) is special. In all others we can just
2278  // load F12/F13 and F14/F15 in the same manner.
2279  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2280  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2281  if (nativeCode != nullptr &&
2282      shorty != nullptr &&
2283      shorty_len >= 3 &&
2284      shorty[1] == 'F' &&
2285      shorty[2] == 'F') {
2286    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2287  }
2288#endif
2289
2290  // Return native code addr(lo) and bottom of alloca address(hi).
2291  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2292                                reinterpret_cast<uintptr_t>(nativeCode));
2293}
2294
2295// Defined in quick_jni_entrypoints.cc.
2296extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2297                                    jvalue result, uint64_t result_f, ArtMethod* called,
2298                                    HandleScope* handle_scope);
2299/*
2300 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2301 * unlocking.
2302 */
2303extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2304                                                    jvalue result,
2305                                                    uint64_t result_f) {
2306  // We're here just back from a native call. We don't have the shared mutator lock at this point
2307  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2308  // anything that requires a mutator lock before that would cause problems as GC may have the
2309  // exclusive mutator lock and may be moving objects, etc.
2310  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2311  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2312  ArtMethod* called = *sp;
2313  uint32_t cookie = *(sp32 - 1);
2314  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2315  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2316}
2317
2318// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2319// for the method pointer.
2320//
2321// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2322// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2323
2324template <InvokeType type, bool access_check>
2325static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2326                                     ObjPtr<mirror::Object> this_object,
2327                                     Thread* self,
2328                                     ArtMethod** sp) {
2329  ScopedQuickEntrypointChecks sqec(self);
2330  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2331  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2332  ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2333  if (UNLIKELY(method == nullptr)) {
2334    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2335    uint32_t shorty_len;
2336    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2337    {
2338      // Remember the args in case a GC happens in FindMethodFromCode.
2339      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2340      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2341      visitor.VisitArguments();
2342      method = FindMethodFromCode<type, access_check>(method_idx,
2343                                                      &this_object,
2344                                                      caller_method,
2345                                                      self);
2346      visitor.FixupReferences();
2347    }
2348
2349    if (UNLIKELY(method == nullptr)) {
2350      CHECK(self->IsExceptionPending());
2351      return GetTwoWordFailureValue();  // Failure.
2352    }
2353  }
2354  DCHECK(!self->IsExceptionPending());
2355  const void* code = method->GetEntryPointFromQuickCompiledCode();
2356
2357  // When we return, the caller will branch to this address, so it had better not be 0!
2358  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2359                          << " location: "
2360                          << method->GetDexFile()->GetLocation();
2361
2362  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2363                                reinterpret_cast<uintptr_t>(method));
2364}
2365
2366// Explicit artInvokeCommon template function declarations to please analysis tool.
2367#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2368  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2369  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2370      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2371
2372EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2373EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2374EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2375EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2376EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2377EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2378EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2379EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2380EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2381EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2382#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2383
2384// See comments in runtime_support_asm.S
2385extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2386    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2387    REQUIRES_SHARED(Locks::mutator_lock_) {
2388  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2389}
2390
2391extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2392    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2393    REQUIRES_SHARED(Locks::mutator_lock_) {
2394  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2395}
2396
2397extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2398    uint32_t method_idx,
2399    mirror::Object* this_object ATTRIBUTE_UNUSED,
2400    Thread* self,
2401    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2402  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2403  // it doesn't cause ObjPtr alignment failure check.
2404  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2405}
2406
2407extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2408    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2409    REQUIRES_SHARED(Locks::mutator_lock_) {
2410  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2411}
2412
2413extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2414    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2415    REQUIRES_SHARED(Locks::mutator_lock_) {
2416  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2417}
2418
2419// Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
2420extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2421    REQUIRES_SHARED(Locks::mutator_lock_) {
2422  ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2423  DCHECK(!referrer->IsProxyMethod());
2424  ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2425      method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2426  DCHECK(result == nullptr ||
2427         result->GetDeclaringClass()->IsInterface() ||
2428         result->GetDeclaringClass() ==
2429             WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2430      << result->PrettyMethod();
2431  return result;
2432}
2433
2434// Determine target of interface dispatch. The interface method and this object are known non-null.
2435// The interface method is the method returned by the dex cache in the conflict trampoline.
2436extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2437                                                      mirror::Object* raw_this_object,
2438                                                      Thread* self,
2439                                                      ArtMethod** sp)
2440    REQUIRES_SHARED(Locks::mutator_lock_) {
2441  ScopedQuickEntrypointChecks sqec(self);
2442  StackHandleScope<2> hs(self);
2443  Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2444  Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2445
2446  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2447  ArtMethod* method = nullptr;
2448  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2449
2450  if (UNLIKELY(interface_method == nullptr)) {
2451    // The interface method is unresolved, so resolve it in the dex file of the caller.
2452    // Fetch the dex_method_idx of the target interface method from the caller.
2453    uint32_t dex_method_idx;
2454    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2455    const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2456    DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2457    const Instruction& instr = code_item->InstructionAt(dex_pc);
2458    Instruction::Code instr_code = instr.Opcode();
2459    DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2460           instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2461        << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2462    if (instr_code == Instruction::INVOKE_INTERFACE) {
2463      dex_method_idx = instr.VRegB_35c();
2464    } else {
2465      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2466      dex_method_idx = instr.VRegB_3rc();
2467    }
2468
2469    const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
2470    uint32_t shorty_len;
2471    const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2472                                                  &shorty_len);
2473    {
2474      // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2475      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2476      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2477      visitor.VisitArguments();
2478      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2479      interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2480          self, dex_method_idx, caller_method, kInterface);
2481      visitor.FixupReferences();
2482    }
2483
2484    if (UNLIKELY(interface_method == nullptr)) {
2485      CHECK(self->IsExceptionPending());
2486      return GetTwoWordFailureValue();  // Failure.
2487    }
2488  }
2489
2490  DCHECK(!interface_method->IsRuntimeMethod());
2491  // Look whether we have a match in the ImtConflictTable.
2492  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2493  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2494  if (LIKELY(conflict_method->IsRuntimeMethod())) {
2495    ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2496    DCHECK(current_table != nullptr);
2497    method = current_table->Lookup(interface_method, kRuntimePointerSize);
2498  } else {
2499    // It seems we aren't really a conflict method!
2500    if (kIsDebugBuild) {
2501      ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2502      CHECK_EQ(conflict_method, m)
2503          << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2504          << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2505    }
2506    method = conflict_method;
2507  }
2508  if (method != nullptr) {
2509    return GetTwoWordSuccessValue(
2510        reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2511        reinterpret_cast<uintptr_t>(method));
2512  }
2513
2514  // No match, use the IfTable.
2515  method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2516  if (UNLIKELY(method == nullptr)) {
2517    ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2518        interface_method, this_object.Get(), caller_method);
2519    return GetTwoWordFailureValue();  // Failure.
2520  }
2521
2522  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2523  // We create a new table with the new pair { interface_method, method }.
2524  DCHECK(conflict_method->IsRuntimeMethod());
2525  ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2526      cls.Get(),
2527      conflict_method,
2528      interface_method,
2529      method,
2530      /*force_new_conflict_method*/false);
2531  if (new_conflict_method != conflict_method) {
2532    // Update the IMT if we create a new conflict method. No fence needed here, as the
2533    // data is consistent.
2534    imt->Set(imt_index,
2535             new_conflict_method,
2536             kRuntimePointerSize);
2537  }
2538
2539  const void* code = method->GetEntryPointFromQuickCompiledCode();
2540
2541  // When we return, the caller will branch to this address, so it had better not be 0!
2542  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2543                          << " location: " << method->GetDexFile()->GetLocation();
2544
2545  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2546                                reinterpret_cast<uintptr_t>(method));
2547}
2548
2549// Returns shorty type so the caller can determine how to put |result|
2550// into expected registers. The shorty type is static so the compiler
2551// could call different flavors of this code path depending on the
2552// shorty type though this would require different entry points for
2553// each type.
2554extern "C" uintptr_t artInvokePolymorphic(
2555    JValue* result,
2556    mirror::Object* raw_receiver,
2557    Thread* self,
2558    ArtMethod** sp)
2559    REQUIRES_SHARED(Locks::mutator_lock_) {
2560  ScopedQuickEntrypointChecks sqec(self);
2561  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2562
2563  // Start new JNI local reference state
2564  JNIEnvExt* env = self->GetJniEnv();
2565  ScopedObjectAccessUnchecked soa(env);
2566  ScopedJniEnvLocalRefState env_state(env);
2567  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2568
2569  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2570  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2571  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2572  const DexFile::CodeItem* code = caller_method->GetCodeItem();
2573  const Instruction& inst = code->InstructionAt(dex_pc);
2574  DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2575         inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2576  const DexFile* dex_file = caller_method->GetDexFile();
2577  const uint32_t proto_idx = inst.VRegH();
2578  const char* shorty = dex_file->GetShorty(proto_idx);
2579  const size_t shorty_length = strlen(shorty);
2580  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2581  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2582  gc_visitor.VisitArguments();
2583
2584  // Wrap raw_receiver in a Handle for safety.
2585  StackHandleScope<3> hs(self);
2586  Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2587  raw_receiver = nullptr;
2588  self->EndAssertNoThreadSuspension(old_cause);
2589
2590  // Resolve method.
2591  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2592  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2593      self, inst.VRegB(), caller_method, kVirtual);
2594
2595  if (UNLIKELY(receiver_handle.IsNull())) {
2596    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2597    return static_cast<uintptr_t>('V');
2598  }
2599
2600  // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996).
2601  DCHECK_EQ(resolved_method->GetDeclaringClass(),
2602            WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle));
2603
2604  Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2605      ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get()))));
2606
2607  Handle<mirror::MethodType> method_type(
2608      hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2609
2610  // This implies we couldn't resolve one or more types in this method handle.
2611  if (UNLIKELY(method_type.IsNull())) {
2612    CHECK(self->IsExceptionPending());
2613    return static_cast<uintptr_t>('V');
2614  }
2615
2616  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2617  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2618
2619  // Fix references before constructing the shadow frame.
2620  gc_visitor.FixupReferences();
2621
2622  // Construct shadow frame placing arguments consecutively from |first_arg|.
2623  const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2624  const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2625  const size_t first_arg = 0;
2626  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2627      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2628  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2629  ScopedStackedShadowFramePusher
2630      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2631  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2632                                                    kMethodIsStatic,
2633                                                    shorty,
2634                                                    strlen(shorty),
2635                                                    shadow_frame,
2636                                                    first_arg);
2637  shadow_frame_builder.VisitArguments();
2638
2639  // Push a transition back into managed code onto the linked list in thread.
2640  ManagedStack fragment;
2641  self->PushManagedStackFragment(&fragment);
2642
2643  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2644  // consecutive order.
2645  RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2646  bool isExact = (jni::EncodeArtMethod(resolved_method) ==
2647                  WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact);
2648  bool success = false;
2649  if (isExact) {
2650    success = MethodHandleInvokeExact(self,
2651                                      *shadow_frame,
2652                                      method_handle,
2653                                      method_type,
2654                                      &operands,
2655                                      result);
2656  } else {
2657    success = MethodHandleInvoke(self,
2658                                 *shadow_frame,
2659                                 method_handle,
2660                                 method_type,
2661                                 &operands,
2662                                 result);
2663  }
2664  DCHECK(success || self->IsExceptionPending());
2665
2666  // Pop transition record.
2667  self->PopManagedStackFragment(fragment);
2668
2669  return static_cast<uintptr_t>(shorty[0]);
2670}
2671
2672}  // namespace art
2673