quick_trampoline_entrypoints.cc revision 0cd81352a7c06e381951cea1b104fd73516f4341
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "callee_save_frame.h"
18#include "common_throws.h"
19#include "dex_file-inl.h"
20#include "dex_instruction-inl.h"
21#include "entrypoints/entrypoint_utils.h"
22#include "gc/accounting/card_table-inl.h"
23#include "interpreter/interpreter.h"
24#include "mirror/art_method-inl.h"
25#include "mirror/class-inl.h"
26#include "mirror/dex_cache-inl.h"
27#include "mirror/object-inl.h"
28#include "mirror/object_array-inl.h"
29#include "object_utils.h"
30#include "runtime.h"
31#include "scoped_thread_state_change.h"
32
33namespace art {
34
35// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36class QuickArgumentVisitor {
37  // Number of bytes for each out register in the caller method's frame.
38  static constexpr size_t kBytesStackArgLocation = 4;
39#if defined(__arm__)
40  // The callee save frame is pointed to by SP.
41  // | argN       |  |
42  // | ...        |  |
43  // | arg4       |  |
44  // | arg3 spill |  |  Caller's frame
45  // | arg2 spill |  |
46  // | arg1 spill |  |
47  // | Method*    | ---
48  // | LR         |
49  // | ...        |    callee saves
50  // | R3         |    arg3
51  // | R2         |    arg2
52  // | R1         |    arg1
53  // | R0         |    padding
54  // | Method*    |  <- sp
55  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
56  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
57  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
58  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
59  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8;  // Offset of first GPR arg.
60  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44;  // Offset of return address.
61  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48;  // Frame size.
62  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
63    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
64  }
65#elif defined(__aarch64__)
66  // The callee save frame is pointed to by SP.
67  // | argN       |  |
68  // | ...        |  |
69  // | arg4       |  |
70  // | arg3 spill |  |  Caller's frame
71  // | arg2 spill |  |
72  // | arg1 spill |  |
73  // | Method*    | ---
74  // | LR         |
75  // | X28        |
76  // |  :         |
77  // | X19        |
78  // | X7         |
79  // | :          |
80  // | X1         |
81  // | D15        |
82  // |  :         |
83  // | D0         |
84  // |            |    padding
85  // | Method*    |  <- sp
86  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
87  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
88  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
89  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16;  // Offset of first FPR arg.
90  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144;  // Offset of first GPR arg.
91  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296;  // Offset of return address.
92  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304;  // Frame size.
93  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
94    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
95  }
96#elif defined(__mips__)
97  // The callee save frame is pointed to by SP.
98  // | argN       |  |
99  // | ...        |  |
100  // | arg4       |  |
101  // | arg3 spill |  |  Caller's frame
102  // | arg2 spill |  |
103  // | arg1 spill |  |
104  // | Method*    | ---
105  // | RA         |
106  // | ...        |    callee saves
107  // | A3         |    arg3
108  // | A2         |    arg2
109  // | A1         |    arg1
110  // | A0/Method* |  <- sp
111  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
112  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
113  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
114  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
115  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
116  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
117  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64;  // Frame size.
118  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
119    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
120  }
121#elif defined(__i386__)
122  // The callee save frame is pointed to by SP.
123  // | argN        |  |
124  // | ...         |  |
125  // | arg4        |  |
126  // | arg3 spill  |  |  Caller's frame
127  // | arg2 spill  |  |
128  // | arg1 spill  |  |
129  // | Method*     | ---
130  // | Return      |
131  // | EBP,ESI,EDI |    callee saves
132  // | EBX         |    arg3
133  // | EDX         |    arg2
134  // | ECX         |    arg1
135  // | EAX/Method* |  <- sp
136  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
137  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
138  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
139  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
140  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
141  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28;  // Offset of return address.
142  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32;  // Frame size.
143  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
144    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
145  }
146#elif defined(__x86_64__)
147  // The callee save frame is pointed to by SP.
148  // | argN            |  |
149  // | ...             |  |
150  // | reg. arg spills |  |  Caller's frame
151  // | Method*         | ---
152  // | Return          |
153  // | R15             |    callee save
154  // | R14             |    callee save
155  // | R13             |    callee save
156  // | R12             |    callee save
157  // | R9              |    arg5
158  // | R8              |    arg4
159  // | RSI/R6          |    arg1
160  // | RBP/R5          |    callee save
161  // | RBX/R3          |    callee save
162  // | RDX/R2          |    arg2
163  // | RCX/R1          |    arg3
164  // | XMM7            |    float arg 8
165  // | XMM6            |    float arg 7
166  // | XMM5            |    float arg 6
167  // | XMM4            |    float arg 5
168  // | XMM3            |    float arg 4
169  // | XMM2            |    float arg 3
170  // | XMM1            |    float arg 2
171  // | XMM0            |    float arg 1
172  // | Padding         |
173  // | RDI/Method*     |  <- sp
174  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
175  static constexpr size_t kNumQuickGprArgs = 5;  // 3 arguments passed in GPRs.
176  static constexpr size_t kNumQuickFprArgs = 8;  // 0 arguments passed in FPRs.
177  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
178  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg.
179  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168;  // Offset of return address.
180  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176;  // Frame size.
181  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182    switch (gpr_index) {
183      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
184      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
185      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
186      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
187      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
188      default:
189        LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
190        return 0;
191    }
192  }
193#else
194#error "Unsupported architecture"
195#endif
196
197 public:
198  static mirror::ArtMethod* GetCallingMethod(mirror::ArtMethod** sp)
199      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
200    DCHECK((*sp)->IsCalleeSaveMethod());
201    byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
202    return *reinterpret_cast<mirror::ArtMethod**>(previous_sp);
203  }
204
205  // For the given quick ref and args quick frame, return the caller's PC.
206  static uintptr_t GetCallingPc(mirror::ArtMethod** sp)
207      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
208    DCHECK((*sp)->IsCalleeSaveMethod());
209    byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
210    return *reinterpret_cast<uintptr_t*>(lr);
211  }
212
213  QuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static,
214                       const char* shorty, uint32_t shorty_len)
215      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
216      is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
217      gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
218      fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
219      stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
220                  + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
221      gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
222      is_split_long_or_double_(false) {
223    DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize,
224              Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
225  }
226
227  virtual ~QuickArgumentVisitor() {}
228
229  virtual void Visit() = 0;
230
231  Primitive::Type GetParamPrimitiveType() const {
232    return cur_type_;
233  }
234
235  byte* GetParamAddress() const {
236    if (!kQuickSoftFloatAbi) {
237      Primitive::Type type = GetParamPrimitiveType();
238      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
239        if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
240          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
241        }
242        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
243      }
244    }
245    if (gpr_index_ < kNumQuickGprArgs) {
246      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
247    }
248    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
249  }
250
251  bool IsSplitLongOrDouble() const {
252    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
253      return is_split_long_or_double_;
254    } else {
255      return false;  // An optimization for when GPR and FPRs are 64bit.
256    }
257  }
258
259  bool IsParamAReference() const {
260    return GetParamPrimitiveType() == Primitive::kPrimNot;
261  }
262
263  bool IsParamALongOrDouble() const {
264    Primitive::Type type = GetParamPrimitiveType();
265    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
266  }
267
268  uint64_t ReadSplitLongParam() const {
269    DCHECK(IsSplitLongOrDouble());
270    uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
271    uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
272    return (low_half & 0xffffffffULL) | (high_half << 32);
273  }
274
275  void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
276    // This implementation doesn't support reg-spill area for hard float
277    // ABI targets such as x86_64 and aarch64. So, for those targets whose
278    // 'kQuickSoftFloatAbi' is 'false':
279    //     (a) 'stack_args_' should point to the first method's argument
280    //     (b) whatever the argument type it is, the 'stack_index_' should
281    //         be moved forward along with every visiting.
282    gpr_index_ = 0;
283    fpr_index_ = 0;
284    stack_index_ = 0;
285    if (!is_static_) {  // Handle this.
286      cur_type_ = Primitive::kPrimNot;
287      is_split_long_or_double_ = false;
288      Visit();
289      if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
290        stack_index_++;
291      }
292      if (kNumQuickGprArgs > 0) {
293        gpr_index_++;
294      }
295    }
296    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
297      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
298      switch (cur_type_) {
299        case Primitive::kPrimNot:
300        case Primitive::kPrimBoolean:
301        case Primitive::kPrimByte:
302        case Primitive::kPrimChar:
303        case Primitive::kPrimShort:
304        case Primitive::kPrimInt:
305          is_split_long_or_double_ = false;
306          Visit();
307          if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
308            stack_index_++;
309          }
310          if (gpr_index_ < kNumQuickGprArgs) {
311            gpr_index_++;
312          }
313          break;
314        case Primitive::kPrimFloat:
315          is_split_long_or_double_ = false;
316          Visit();
317          if (kQuickSoftFloatAbi) {
318            if (gpr_index_ < kNumQuickGprArgs) {
319              gpr_index_++;
320            } else {
321              stack_index_++;
322            }
323          } else {
324            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
325              fpr_index_++;
326            }
327            stack_index_++;
328          }
329          break;
330        case Primitive::kPrimDouble:
331        case Primitive::kPrimLong:
332          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
333            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
334                ((gpr_index_ + 1) == kNumQuickGprArgs);
335            Visit();
336            if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
337              if (kBytesStackArgLocation == 4) {
338                stack_index_+= 2;
339              } else {
340                CHECK_EQ(kBytesStackArgLocation, 8U);
341                stack_index_++;
342              }
343            }
344            if (gpr_index_ < kNumQuickGprArgs) {
345              gpr_index_++;
346              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
347                if (gpr_index_ < kNumQuickGprArgs) {
348                  gpr_index_++;
349                } else if (kQuickSoftFloatAbi) {
350                  stack_index_++;
351                }
352              }
353            }
354          } else {
355            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
356                ((fpr_index_ + 1) == kNumQuickFprArgs);
357            Visit();
358            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
359              fpr_index_++;
360              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
361                if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
362                  fpr_index_++;
363                }
364              }
365            }
366            if (kBytesStackArgLocation == 4) {
367              stack_index_+= 2;
368            } else {
369              CHECK_EQ(kBytesStackArgLocation, 8U);
370              stack_index_++;
371            }
372          }
373          break;
374        default:
375          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
376      }
377    }
378  }
379
380 private:
381  static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
382                                             uint32_t shorty_len) {
383    if (kQuickSoftFloatAbi) {
384      CHECK_EQ(kNumQuickFprArgs, 0U);
385      return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
386          + GetBytesPerGprSpillLocation(kRuntimeISA) /* ArtMethod* */;
387    } else {
388      // For now, there is no reg-spill area for the targets with
389      // hard float ABI. So, the offset pointing to the first method's
390      // parameter ('this' for non-static methods) should be returned.
391      return GetBytesPerGprSpillLocation(kRuntimeISA);  // Skip Method*.
392    }
393  }
394
395  const bool is_static_;
396  const char* const shorty_;
397  const uint32_t shorty_len_;
398  byte* const gpr_args_;  // Address of GPR arguments in callee save frame.
399  byte* const fpr_args_;  // Address of FPR arguments in callee save frame.
400  byte* const stack_args_;  // Address of stack arguments in caller's frame.
401  uint32_t gpr_index_;  // Index into spilled GPRs.
402  uint32_t fpr_index_;  // Index into spilled FPRs.
403  uint32_t stack_index_;  // Index into arguments on the stack.
404  // The current type of argument during VisitArguments.
405  Primitive::Type cur_type_;
406  // Does a 64bit parameter straddle the register and stack arguments?
407  bool is_split_long_or_double_;
408};
409
410// Visits arguments on the stack placing them into the shadow frame.
411class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
412 public:
413  BuildQuickShadowFrameVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
414                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
415    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
416
417  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
418
419 private:
420  ShadowFrame* const sf_;
421  uint32_t cur_reg_;
422
423  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
424};
425
426void BuildQuickShadowFrameVisitor::Visit()  {
427  Primitive::Type type = GetParamPrimitiveType();
428  switch (type) {
429    case Primitive::kPrimLong:  // Fall-through.
430    case Primitive::kPrimDouble:
431      if (IsSplitLongOrDouble()) {
432        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
433      } else {
434        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
435      }
436      ++cur_reg_;
437      break;
438    case Primitive::kPrimNot: {
439        StackReference<mirror::Object>* stack_ref =
440            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
441        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
442      }
443      break;
444    case Primitive::kPrimBoolean:  // Fall-through.
445    case Primitive::kPrimByte:     // Fall-through.
446    case Primitive::kPrimChar:     // Fall-through.
447    case Primitive::kPrimShort:    // Fall-through.
448    case Primitive::kPrimInt:      // Fall-through.
449    case Primitive::kPrimFloat:
450      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
451      break;
452    case Primitive::kPrimVoid:
453      LOG(FATAL) << "UNREACHABLE";
454      break;
455  }
456  ++cur_reg_;
457}
458
459extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
460                                                mirror::ArtMethod** sp)
461    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
462  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
463  // frame.
464  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
465
466  if (method->IsAbstract()) {
467    ThrowAbstractMethodError(method);
468    return 0;
469  } else {
470    DCHECK(!method->IsNative()) << PrettyMethod(method);
471    const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame");
472    MethodHelper mh(method);
473    const DexFile::CodeItem* code_item = mh.GetCodeItem();
474    DCHECK(code_item != nullptr) << PrettyMethod(method);
475    uint16_t num_regs = code_item->registers_size_;
476    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
477    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL,  // No last shadow coming from quick.
478                                                  method, 0, memory));
479    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
480    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(),
481                                                      mh.GetShortyLength(),
482                                                      shadow_frame, first_arg_reg);
483    shadow_frame_builder.VisitArguments();
484    // Push a transition back into managed code onto the linked list in thread.
485    ManagedStack fragment;
486    self->PushManagedStackFragment(&fragment);
487    self->PushShadowFrame(shadow_frame);
488    self->EndAssertNoThreadSuspension(old_cause);
489
490    if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) {
491      // Ensure static method's class is initialized.
492      StackHandleScope<1> hs(self);
493      Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
494      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) {
495        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
496        self->PopManagedStackFragment(fragment);
497        return 0;
498      }
499    }
500
501    JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
502    // Pop transition.
503    self->PopManagedStackFragment(fragment);
504    // No need to restore the args since the method has already been run by the interpreter.
505    return result.GetJ();
506  }
507}
508
509// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
510// to jobjects.
511class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
512 public:
513  BuildQuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
514                            uint32_t shorty_len, ScopedObjectAccessUnchecked* soa,
515                            std::vector<jvalue>* args) :
516    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
517
518  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
519
520  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
521
522 private:
523  ScopedObjectAccessUnchecked* const soa_;
524  std::vector<jvalue>* const args_;
525  // References which we must update when exiting in case the GC moved the objects.
526  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
527
528  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
529};
530
531void BuildQuickArgumentVisitor::Visit() {
532  jvalue val;
533  Primitive::Type type = GetParamPrimitiveType();
534  switch (type) {
535    case Primitive::kPrimNot: {
536      StackReference<mirror::Object>* stack_ref =
537          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
538      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
539      references_.push_back(std::make_pair(val.l, stack_ref));
540      break;
541    }
542    case Primitive::kPrimLong:  // Fall-through.
543    case Primitive::kPrimDouble:
544      if (IsSplitLongOrDouble()) {
545        val.j = ReadSplitLongParam();
546      } else {
547        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
548      }
549      break;
550    case Primitive::kPrimBoolean:  // Fall-through.
551    case Primitive::kPrimByte:     // Fall-through.
552    case Primitive::kPrimChar:     // Fall-through.
553    case Primitive::kPrimShort:    // Fall-through.
554    case Primitive::kPrimInt:      // Fall-through.
555    case Primitive::kPrimFloat:
556      val.i = *reinterpret_cast<jint*>(GetParamAddress());
557      break;
558    case Primitive::kPrimVoid:
559      LOG(FATAL) << "UNREACHABLE";
560      val.j = 0;
561      break;
562  }
563  args_->push_back(val);
564}
565
566void BuildQuickArgumentVisitor::FixupReferences() {
567  // Fixup any references which may have changed.
568  for (const auto& pair : references_) {
569    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
570    soa_->Env()->DeleteLocalRef(pair.first);
571  }
572}
573
574// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
575// which is responsible for recording callee save registers. We explicitly place into jobjects the
576// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
577// field within the proxy object, which will box the primitive arguments and deal with error cases.
578extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
579                                               mirror::Object* receiver,
580                                               Thread* self, mirror::ArtMethod** sp)
581    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
582  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
583  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
584  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
585  const char* old_cause =
586      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
587  // Register the top of the managed stack, making stack crawlable.
588  DCHECK_EQ(*sp, proxy_method) << PrettyMethod(proxy_method);
589  self->SetTopOfStack(sp, 0);
590  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
591            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
592      << PrettyMethod(proxy_method);
593  self->VerifyStack();
594  // Start new JNI local reference state.
595  JNIEnvExt* env = self->GetJniEnv();
596  ScopedObjectAccessUnchecked soa(env);
597  ScopedJniEnvLocalRefState env_state(env);
598  // Create local ref. copies of proxy method and the receiver.
599  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
600
601  // Placing arguments into args vector and remove the receiver.
602  MethodHelper proxy_mh(proxy_method);
603  DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method);
604  std::vector<jvalue> args;
605  BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(),
606                                              proxy_mh.GetShortyLength(), &soa, &args);
607
608  local_ref_visitor.VisitArguments();
609  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
610  args.erase(args.begin());
611
612  // Convert proxy method into expected interface method.
613  mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
614  DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
615  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
616  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
617
618  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
619  // that performs allocations.
620  self->EndAssertNoThreadSuspension(old_cause);
621  JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(),
622                                               rcvr_jobj, interface_method_jobj, args);
623  // Restore references which might have moved.
624  local_ref_visitor.FixupReferences();
625  return result.GetJ();
626}
627
628// Read object references held in arguments from quick frames and place in a JNI local references,
629// so they don't get garbage collected.
630class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
631 public:
632  RememberForGcArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
633                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
634    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
635
636  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
637
638  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
639
640 private:
641  ScopedObjectAccessUnchecked* const soa_;
642  // References which we must update when exiting in case the GC moved the objects.
643  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
644  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
645};
646
647void RememberForGcArgumentVisitor::Visit() {
648  if (IsParamAReference()) {
649    StackReference<mirror::Object>* stack_ref =
650        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
651    jobject reference =
652        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
653    references_.push_back(std::make_pair(reference, stack_ref));
654  }
655}
656
657void RememberForGcArgumentVisitor::FixupReferences() {
658  // Fixup any references which may have changed.
659  for (const auto& pair : references_) {
660    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
661    soa_->Env()->DeleteLocalRef(pair.first);
662  }
663}
664
665
666// Lazily resolve a method for quick. Called by stub code.
667extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
668                                                    mirror::Object* receiver,
669                                                    Thread* self, mirror::ArtMethod** sp)
670    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
671  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
672  // Start new JNI local reference state
673  JNIEnvExt* env = self->GetJniEnv();
674  ScopedObjectAccessUnchecked soa(env);
675  ScopedJniEnvLocalRefState env_state(env);
676  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
677
678  // Compute details about the called method (avoid GCs)
679  ClassLinker* linker = Runtime::Current()->GetClassLinker();
680  mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
681  InvokeType invoke_type;
682  const DexFile* dex_file;
683  uint32_t dex_method_idx;
684  if (called->IsRuntimeMethod()) {
685    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
686    const DexFile::CodeItem* code;
687    {
688      MethodHelper mh(caller);
689      dex_file = &mh.GetDexFile();
690      code = mh.GetCodeItem();
691    }
692    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
693    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
694    Instruction::Code instr_code = instr->Opcode();
695    bool is_range;
696    switch (instr_code) {
697      case Instruction::INVOKE_DIRECT:
698        invoke_type = kDirect;
699        is_range = false;
700        break;
701      case Instruction::INVOKE_DIRECT_RANGE:
702        invoke_type = kDirect;
703        is_range = true;
704        break;
705      case Instruction::INVOKE_STATIC:
706        invoke_type = kStatic;
707        is_range = false;
708        break;
709      case Instruction::INVOKE_STATIC_RANGE:
710        invoke_type = kStatic;
711        is_range = true;
712        break;
713      case Instruction::INVOKE_SUPER:
714        invoke_type = kSuper;
715        is_range = false;
716        break;
717      case Instruction::INVOKE_SUPER_RANGE:
718        invoke_type = kSuper;
719        is_range = true;
720        break;
721      case Instruction::INVOKE_VIRTUAL:
722        invoke_type = kVirtual;
723        is_range = false;
724        break;
725      case Instruction::INVOKE_VIRTUAL_RANGE:
726        invoke_type = kVirtual;
727        is_range = true;
728        break;
729      case Instruction::INVOKE_INTERFACE:
730        invoke_type = kInterface;
731        is_range = false;
732        break;
733      case Instruction::INVOKE_INTERFACE_RANGE:
734        invoke_type = kInterface;
735        is_range = true;
736        break;
737      default:
738        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
739        // Avoid used uninitialized warnings.
740        invoke_type = kDirect;
741        is_range = false;
742    }
743    dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
744
745  } else {
746    invoke_type = kStatic;
747    dex_file = &MethodHelper(called).GetDexFile();
748    dex_method_idx = called->GetDexMethodIndex();
749  }
750  uint32_t shorty_len;
751  const char* shorty =
752      dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
753  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
754  visitor.VisitArguments();
755  self->EndAssertNoThreadSuspension(old_cause);
756  bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
757  // Resolve method filling in dex cache.
758  if (UNLIKELY(called->IsRuntimeMethod())) {
759    StackHandleScope<1> hs(self);
760    mirror::Object* dummy = nullptr;
761    HandleWrapper<mirror::Object> h_receiver(
762        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
763    called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
764  }
765  const void* code = NULL;
766  if (LIKELY(!self->IsExceptionPending())) {
767    // Incompatible class change should have been handled in resolve method.
768    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
769        << PrettyMethod(called) << " " << invoke_type;
770    if (virtual_or_interface) {
771      // Refine called method based on receiver.
772      CHECK(receiver != nullptr) << invoke_type;
773
774      mirror::ArtMethod* orig_called = called;
775      if (invoke_type == kVirtual) {
776        called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
777      } else {
778        called = receiver->GetClass()->FindVirtualMethodForInterface(called);
779      }
780
781      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
782                               << PrettyTypeOf(receiver) << " "
783                               << invoke_type << " " << orig_called->GetVtableIndex();
784
785      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
786      // of the sharpened method.
787      if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) {
788        caller->GetDexCacheResolvedMethods()->Set<false>(called->GetDexMethodIndex(), called);
789      } else {
790        // Calling from one dex file to another, need to compute the method index appropriate to
791        // the caller's dex file. Since we get here only if the original called was a runtime
792        // method, we've got the correct dex_file and a dex_method_idx from above.
793        DCHECK(&MethodHelper(caller).GetDexFile() == dex_file);
794        uint32_t method_index =
795            MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
796        if (method_index != DexFile::kDexNoIndex) {
797          caller->GetDexCacheResolvedMethods()->Set<false>(method_index, called);
798        }
799      }
800    }
801    // Ensure that the called method's class is initialized.
802    StackHandleScope<1> hs(soa.Self());
803    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
804    linker->EnsureInitialized(called_class, true, true);
805    if (LIKELY(called_class->IsInitialized())) {
806      code = called->GetEntryPointFromQuickCompiledCode();
807    } else if (called_class->IsInitializing()) {
808      if (invoke_type == kStatic) {
809        // Class is still initializing, go to oat and grab code (trampoline must be left in place
810        // until class is initialized to stop races between threads).
811        code = linker->GetQuickOatCodeFor(called);
812      } else {
813        // No trampoline for non-static methods.
814        code = called->GetEntryPointFromQuickCompiledCode();
815      }
816    } else {
817      DCHECK(called_class->IsErroneous());
818    }
819  }
820  CHECK_EQ(code == NULL, self->IsExceptionPending());
821  // Fixup any locally saved objects may have moved during a GC.
822  visitor.FixupReferences();
823  // Place called method in callee-save frame to be placed as first argument to quick method.
824  *sp = called;
825  return code;
826}
827
828
829
830/*
831 * This class uses a couple of observations to unite the different calling conventions through
832 * a few constants.
833 *
834 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
835 *    possible alignment.
836 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
837 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
838 *    when we have to split things
839 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
840 *    and we can use Int handling directly.
841 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
842 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
843 *    extension should be compatible with Aarch64, which mandates copying the available bits
844 *    into LSB and leaving the rest unspecified.
845 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
846 *    the stack.
847 * 6) There is only little endian.
848 *
849 *
850 * Actual work is supposed to be done in a delegate of the template type. The interface is as
851 * follows:
852 *
853 * void PushGpr(uintptr_t):   Add a value for the next GPR
854 *
855 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
856 *                            padding, that is, think the architecture is 32b and aligns 64b.
857 *
858 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
859 *                            split this if necessary. The current state will have aligned, if
860 *                            necessary.
861 *
862 * void PushStack(uintptr_t): Push a value to the stack.
863 *
864 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
865 *                                          as this might be important for null initialization.
866 *                                          Must return the jobject, that is, the reference to the
867 *                                          entry in the HandleScope (nullptr if necessary).
868 *
869 */
870template <class T> class BuildGenericJniFrameStateMachine {
871 public:
872#if defined(__arm__)
873  // TODO: These are all dummy values!
874  static constexpr bool kNativeSoftFloatAbi = true;
875  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
876  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
877
878  static constexpr size_t kRegistersNeededForLong = 2;
879  static constexpr size_t kRegistersNeededForDouble = 2;
880  static constexpr bool kMultiRegistersAligned = true;
881  static constexpr bool kMultiRegistersWidened = false;
882  static constexpr bool kAlignLongOnStack = true;
883  static constexpr bool kAlignDoubleOnStack = true;
884#elif defined(__aarch64__)
885  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
886  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
887  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
888
889  static constexpr size_t kRegistersNeededForLong = 1;
890  static constexpr size_t kRegistersNeededForDouble = 1;
891  static constexpr bool kMultiRegistersAligned = false;
892  static constexpr bool kMultiRegistersWidened = false;
893  static constexpr bool kAlignLongOnStack = false;
894  static constexpr bool kAlignDoubleOnStack = false;
895#elif defined(__mips__)
896  // TODO: These are all dummy values!
897  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
898  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
899  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
900
901  static constexpr size_t kRegistersNeededForLong = 2;
902  static constexpr size_t kRegistersNeededForDouble = 2;
903  static constexpr bool kMultiRegistersAligned = true;
904  static constexpr bool kMultiRegistersWidened = true;
905  static constexpr bool kAlignLongOnStack = false;
906  static constexpr bool kAlignDoubleOnStack = false;
907#elif defined(__i386__)
908  // TODO: Check these!
909  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
910  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
911  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
912
913  static constexpr size_t kRegistersNeededForLong = 2;
914  static constexpr size_t kRegistersNeededForDouble = 2;
915  static constexpr bool kMultiRegistersAligned = false;       // x86 not using regs, anyways
916  static constexpr bool kMultiRegistersWidened = false;
917  static constexpr bool kAlignLongOnStack = false;
918  static constexpr bool kAlignDoubleOnStack = false;
919#elif defined(__x86_64__)
920  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
921  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
922  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
923
924  static constexpr size_t kRegistersNeededForLong = 1;
925  static constexpr size_t kRegistersNeededForDouble = 1;
926  static constexpr bool kMultiRegistersAligned = false;
927  static constexpr bool kMultiRegistersWidened = false;
928  static constexpr bool kAlignLongOnStack = false;
929  static constexpr bool kAlignDoubleOnStack = false;
930#else
931#error "Unsupported architecture"
932#endif
933
934 public:
935  explicit BuildGenericJniFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs),
936                                                           fpr_index_(kNumNativeFprArgs),
937                                                           stack_entries_(0),
938                                                           delegate_(delegate) {
939    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
940    // the next register is even; counting down is just to make the compiler happy...
941    CHECK_EQ(kNumNativeGprArgs % 2, 0U);
942    CHECK_EQ(kNumNativeFprArgs % 2, 0U);
943  }
944
945  virtual ~BuildGenericJniFrameStateMachine() {}
946
947  bool HavePointerGpr() {
948    return gpr_index_ > 0;
949  }
950
951  void AdvancePointer(void* val) {
952    if (HavePointerGpr()) {
953      gpr_index_--;
954      PushGpr(reinterpret_cast<uintptr_t>(val));
955    } else {
956      stack_entries_++;         // TODO: have a field for pointer length as multiple of 32b
957      PushStack(reinterpret_cast<uintptr_t>(val));
958      gpr_index_ = 0;
959    }
960  }
961
962
963  bool HaveHandleScopeGpr() {
964    return gpr_index_ > 0;
965  }
966
967  void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
968    uintptr_t handle = PushHandle(ptr);
969    if (HaveHandleScopeGpr()) {
970      gpr_index_--;
971      PushGpr(handle);
972    } else {
973      stack_entries_++;
974      PushStack(handle);
975      gpr_index_ = 0;
976    }
977  }
978
979
980  bool HaveIntGpr() {
981    return gpr_index_ > 0;
982  }
983
984  void AdvanceInt(uint32_t val) {
985    if (HaveIntGpr()) {
986      gpr_index_--;
987      PushGpr(val);
988    } else {
989      stack_entries_++;
990      PushStack(val);
991      gpr_index_ = 0;
992    }
993  }
994
995
996  bool HaveLongGpr() {
997    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
998  }
999
1000  bool LongGprNeedsPadding() {
1001    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1002        kAlignLongOnStack &&                  // and when it needs alignment
1003        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1004  }
1005
1006  bool LongStackNeedsPadding() {
1007    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1008        kAlignLongOnStack &&                  // and when it needs 8B alignment
1009        (stack_entries_ & 1) == 1;            // counter is odd
1010  }
1011
1012  void AdvanceLong(uint64_t val) {
1013    if (HaveLongGpr()) {
1014      if (LongGprNeedsPadding()) {
1015        PushGpr(0);
1016        gpr_index_--;
1017      }
1018      if (kRegistersNeededForLong == 1) {
1019        PushGpr(static_cast<uintptr_t>(val));
1020      } else {
1021        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1022        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1023      }
1024      gpr_index_ -= kRegistersNeededForLong;
1025    } else {
1026      if (LongStackNeedsPadding()) {
1027        PushStack(0);
1028        stack_entries_++;
1029      }
1030      if (kRegistersNeededForLong == 1) {
1031        PushStack(static_cast<uintptr_t>(val));
1032        stack_entries_++;
1033      } else {
1034        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1035        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1036        stack_entries_ += 2;
1037      }
1038      gpr_index_ = 0;
1039    }
1040  }
1041
1042
1043  bool HaveFloatFpr() {
1044    return fpr_index_ > 0;
1045  }
1046
1047  template <typename U, typename V> V convert(U in) {
1048    CHECK_LE(sizeof(U), sizeof(V));
1049    union { U u; V v; } tmp;
1050    tmp.u = in;
1051    return tmp.v;
1052  }
1053
1054  void AdvanceFloat(float val) {
1055    if (kNativeSoftFloatAbi) {
1056      AdvanceInt(convert<float, uint32_t>(val));
1057    } else {
1058      if (HaveFloatFpr()) {
1059        fpr_index_--;
1060        if (kRegistersNeededForDouble == 1) {
1061          if (kMultiRegistersWidened) {
1062            PushFpr8(convert<double, uint64_t>(val));
1063          } else {
1064            // No widening, just use the bits.
1065            PushFpr8(convert<float, uint64_t>(val));
1066          }
1067        } else {
1068          PushFpr4(val);
1069        }
1070      } else {
1071        stack_entries_++;
1072        if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1073          // Need to widen before storing: Note the "double" in the template instantiation.
1074          PushStack(convert<double, uintptr_t>(val));
1075        } else {
1076          PushStack(convert<float, uintptr_t>(val));
1077        }
1078        fpr_index_ = 0;
1079      }
1080    }
1081  }
1082
1083
1084  bool HaveDoubleFpr() {
1085    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1086  }
1087
1088  bool DoubleFprNeedsPadding() {
1089    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1090        kAlignDoubleOnStack &&                  // and when it needs alignment
1091        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1092  }
1093
1094  bool DoubleStackNeedsPadding() {
1095    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1096        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1097        (stack_entries_ & 1) == 1;              // counter is odd
1098  }
1099
1100  void AdvanceDouble(uint64_t val) {
1101    if (kNativeSoftFloatAbi) {
1102      AdvanceLong(val);
1103    } else {
1104      if (HaveDoubleFpr()) {
1105        if (DoubleFprNeedsPadding()) {
1106          PushFpr4(0);
1107          fpr_index_--;
1108        }
1109        PushFpr8(val);
1110        fpr_index_ -= kRegistersNeededForDouble;
1111      } else {
1112        if (DoubleStackNeedsPadding()) {
1113          PushStack(0);
1114          stack_entries_++;
1115        }
1116        if (kRegistersNeededForDouble == 1) {
1117          PushStack(static_cast<uintptr_t>(val));
1118          stack_entries_++;
1119        } else {
1120          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1121          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1122          stack_entries_ += 2;
1123        }
1124        fpr_index_ = 0;
1125      }
1126    }
1127  }
1128
1129  uint32_t getStackEntries() {
1130    return stack_entries_;
1131  }
1132
1133  uint32_t getNumberOfUsedGprs() {
1134    return kNumNativeGprArgs - gpr_index_;
1135  }
1136
1137  uint32_t getNumberOfUsedFprs() {
1138    return kNumNativeFprArgs - fpr_index_;
1139  }
1140
1141 private:
1142  void PushGpr(uintptr_t val) {
1143    delegate_->PushGpr(val);
1144  }
1145  void PushFpr4(float val) {
1146    delegate_->PushFpr4(val);
1147  }
1148  void PushFpr8(uint64_t val) {
1149    delegate_->PushFpr8(val);
1150  }
1151  void PushStack(uintptr_t val) {
1152    delegate_->PushStack(val);
1153  }
1154  uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1155    return delegate_->PushHandle(ref);
1156  }
1157
1158  uint32_t gpr_index_;      // Number of free GPRs
1159  uint32_t fpr_index_;      // Number of free FPRs
1160  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1161                            // extended
1162  T* delegate_;             // What Push implementation gets called
1163};
1164
1165class ComputeGenericJniFrameSize FINAL {
1166 public:
1167  ComputeGenericJniFrameSize() : num_handle_scope_references_(0), num_stack_entries_(0) {}
1168
1169  uint32_t GetStackSize() {
1170    return num_stack_entries_ * sizeof(uintptr_t);
1171  }
1172
1173  // WARNING: After this, *sp won't be pointing to the method anymore!
1174  void ComputeLayout(mirror::ArtMethod*** m, bool is_static, const char* shorty, uint32_t shorty_len,
1175                     void* sp, HandleScope** table, uint32_t* handle_scope_entries,
1176                     uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr,
1177                     void** code_return, size_t* overall_size)
1178      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1179    ComputeAll(is_static, shorty, shorty_len);
1180
1181    mirror::ArtMethod* method = **m;
1182
1183    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1184
1185    // First, fix up the layout of the callee-save frame.
1186    // We have to squeeze in the HandleScope, and relocate the method pointer.
1187
1188    // "Free" the slot for the method.
1189    sp8 += kPointerSize;
1190
1191    // Add the HandleScope.
1192    *handle_scope_entries = num_handle_scope_references_;
1193    size_t handle_scope_size = HandleScope::GetAlignedHandleScopeSize(num_handle_scope_references_);
1194    sp8 -= handle_scope_size;
1195    *table = reinterpret_cast<HandleScope*>(sp8);
1196    (*table)->SetNumberOfReferences(num_handle_scope_references_);
1197
1198    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1199    sp8 -= kPointerSize;
1200    uint8_t* method_pointer = sp8;
1201    *(reinterpret_cast<mirror::ArtMethod**>(method_pointer)) = method;
1202    *m = reinterpret_cast<mirror::ArtMethod**>(method_pointer);
1203
1204    // Reference cookie and padding
1205    sp8 -= 8;
1206    // Store HandleScope size
1207    *reinterpret_cast<uint32_t*>(sp8) = static_cast<uint32_t>(handle_scope_size & 0xFFFFFFFF);
1208
1209    // Next comes the native call stack.
1210    sp8 -= GetStackSize();
1211    // Now align the call stack below. This aligns by 16, as AArch64 seems to require.
1212    uintptr_t mask = ~0x0F;
1213    sp8 = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(sp8) & mask);
1214    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1215
1216    // put fprs and gprs below
1217    // Assumption is OK right now, as we have soft-float arm
1218    size_t fregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeFprArgs;
1219    sp8 -= fregs * sizeof(uintptr_t);
1220    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1221    size_t iregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeGprArgs;
1222    sp8 -= iregs * sizeof(uintptr_t);
1223    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1224
1225    // reserve space for the code pointer
1226    sp8 -= kPointerSize;
1227    *code_return = reinterpret_cast<void*>(sp8);
1228
1229    *overall_size = reinterpret_cast<uint8_t*>(sp) - sp8;
1230
1231    // The new SP is stored at the end of the alloca, so it can be immediately popped
1232    sp8 = reinterpret_cast<uint8_t*>(sp) - 5 * KB;
1233    *(reinterpret_cast<uint8_t**>(sp8)) = method_pointer;
1234  }
1235
1236  void ComputeHandleScopeOffset() { }  // nothing to do, static right now
1237
1238  void ComputeAll(bool is_static, const char* shorty, uint32_t shorty_len)
1239      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1240    BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize> sm(this);
1241
1242    // JNIEnv
1243    sm.AdvancePointer(nullptr);
1244
1245    // Class object or this as first argument
1246    sm.AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1247
1248    for (uint32_t i = 1; i < shorty_len; ++i) {
1249      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1250      switch (cur_type_) {
1251        case Primitive::kPrimNot:
1252          sm.AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1253          break;
1254
1255        case Primitive::kPrimBoolean:
1256        case Primitive::kPrimByte:
1257        case Primitive::kPrimChar:
1258        case Primitive::kPrimShort:
1259        case Primitive::kPrimInt:
1260          sm.AdvanceInt(0);
1261          break;
1262        case Primitive::kPrimFloat:
1263          sm.AdvanceFloat(0);
1264          break;
1265        case Primitive::kPrimDouble:
1266          sm.AdvanceDouble(0);
1267          break;
1268        case Primitive::kPrimLong:
1269          sm.AdvanceLong(0);
1270          break;
1271        default:
1272          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1273      }
1274    }
1275
1276    num_stack_entries_ = sm.getStackEntries();
1277  }
1278
1279  void PushGpr(uintptr_t /* val */) {
1280    // not optimizing registers, yet
1281  }
1282
1283  void PushFpr4(float /* val */) {
1284    // not optimizing registers, yet
1285  }
1286
1287  void PushFpr8(uint64_t /* val */) {
1288    // not optimizing registers, yet
1289  }
1290
1291  void PushStack(uintptr_t /* val */) {
1292    // counting is already done in the superclass
1293  }
1294
1295  uintptr_t PushHandle(mirror::Object* /* ptr */) {
1296    num_handle_scope_references_++;
1297    return reinterpret_cast<uintptr_t>(nullptr);
1298  }
1299
1300 private:
1301  uint32_t num_handle_scope_references_;
1302  uint32_t num_stack_entries_;
1303};
1304
1305// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1306// of transitioning into native code.
1307class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1308 public:
1309  BuildGenericJniFrameVisitor(mirror::ArtMethod*** sp, bool is_static, const char* shorty,
1310                              uint32_t shorty_len, Thread* self) :
1311      QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), sm_(this) {
1312    ComputeGenericJniFrameSize fsc;
1313    fsc.ComputeLayout(sp, is_static, shorty, shorty_len, *sp, &handle_scope_, &handle_scope_expected_refs_,
1314                      &cur_stack_arg_, &cur_gpr_reg_, &cur_fpr_reg_, &code_return_,
1315                      &alloca_used_size_);
1316    handle_scope_number_of_references_ = 0;
1317    cur_hs_entry_ = GetFirstHandleScopeEntry();
1318
1319    // jni environment is always first argument
1320    sm_.AdvancePointer(self->GetJniEnv());
1321
1322    if (is_static) {
1323      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1324    }
1325  }
1326
1327  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1328
1329  void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1330
1331  StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1332      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1333    return handle_scope_->GetHandle(0).GetReference();
1334  }
1335
1336  jobject GetFirstHandleScopeJObject()
1337      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1338    return handle_scope_->GetHandle(0).ToJObject();
1339  }
1340
1341  void PushGpr(uintptr_t val) {
1342    *cur_gpr_reg_ = val;
1343    cur_gpr_reg_++;
1344  }
1345
1346  void PushFpr4(float val) {
1347    *cur_fpr_reg_ = val;
1348    cur_fpr_reg_++;
1349  }
1350
1351  void PushFpr8(uint64_t val) {
1352    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1353    *tmp = val;
1354    cur_fpr_reg_ += 2;
1355  }
1356
1357  void PushStack(uintptr_t val) {
1358    *cur_stack_arg_ = val;
1359    cur_stack_arg_++;
1360  }
1361
1362  uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1363    uintptr_t tmp;
1364    if (ref == nullptr) {
1365      *cur_hs_entry_ = StackReference<mirror::Object>();
1366      tmp = reinterpret_cast<uintptr_t>(nullptr);
1367    } else {
1368      *cur_hs_entry_ = StackReference<mirror::Object>::FromMirrorPtr(ref);
1369      tmp = reinterpret_cast<uintptr_t>(cur_hs_entry_);
1370    }
1371    cur_hs_entry_++;
1372    handle_scope_number_of_references_++;
1373    return tmp;
1374  }
1375
1376  // Size of the part of the alloca that we actually need.
1377  size_t GetAllocaUsedSize() {
1378    return alloca_used_size_;
1379  }
1380
1381  void* GetCodeReturn() {
1382    return code_return_;
1383  }
1384
1385 private:
1386  uint32_t handle_scope_number_of_references_;
1387  StackReference<mirror::Object>* cur_hs_entry_;
1388  HandleScope* handle_scope_;
1389  uint32_t handle_scope_expected_refs_;
1390  uintptr_t* cur_gpr_reg_;
1391  uint32_t* cur_fpr_reg_;
1392  uintptr_t* cur_stack_arg_;
1393  // StackReference<mirror::Object>* top_of_handle_scope_;
1394  void* code_return_;
1395  size_t alloca_used_size_;
1396
1397  BuildGenericJniFrameStateMachine<BuildGenericJniFrameVisitor> sm_;
1398
1399  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1400};
1401
1402void BuildGenericJniFrameVisitor::Visit() {
1403  Primitive::Type type = GetParamPrimitiveType();
1404  switch (type) {
1405    case Primitive::kPrimLong: {
1406      jlong long_arg;
1407      if (IsSplitLongOrDouble()) {
1408        long_arg = ReadSplitLongParam();
1409      } else {
1410        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1411      }
1412      sm_.AdvanceLong(long_arg);
1413      break;
1414    }
1415    case Primitive::kPrimDouble: {
1416      uint64_t double_arg;
1417      if (IsSplitLongOrDouble()) {
1418        // Read into union so that we don't case to a double.
1419        double_arg = ReadSplitLongParam();
1420      } else {
1421        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1422      }
1423      sm_.AdvanceDouble(double_arg);
1424      break;
1425    }
1426    case Primitive::kPrimNot: {
1427      StackReference<mirror::Object>* stack_ref =
1428          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1429      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1430      break;
1431    }
1432    case Primitive::kPrimFloat:
1433      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1434      break;
1435    case Primitive::kPrimBoolean:  // Fall-through.
1436    case Primitive::kPrimByte:     // Fall-through.
1437    case Primitive::kPrimChar:     // Fall-through.
1438    case Primitive::kPrimShort:    // Fall-through.
1439    case Primitive::kPrimInt:      // Fall-through.
1440      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1441      break;
1442    case Primitive::kPrimVoid:
1443      LOG(FATAL) << "UNREACHABLE";
1444      break;
1445  }
1446}
1447
1448void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1449  // Initialize padding entries.
1450  while (handle_scope_number_of_references_ < handle_scope_expected_refs_) {
1451    *cur_hs_entry_ = StackReference<mirror::Object>();
1452    cur_hs_entry_++;
1453    handle_scope_number_of_references_++;
1454  }
1455  handle_scope_->SetNumberOfReferences(handle_scope_expected_refs_);
1456  DCHECK_NE(handle_scope_expected_refs_, 0U);
1457  // Install HandleScope.
1458  self->PushHandleScope(handle_scope_);
1459}
1460
1461extern "C" void* artFindNativeMethod();
1462
1463uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1464  if (lock != nullptr) {
1465    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1466  } else {
1467    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1468  }
1469}
1470
1471void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1472  if (lock != nullptr) {
1473    JniMethodEndSynchronized(cookie, lock, self);
1474  } else {
1475    JniMethodEnd(cookie, self);
1476  }
1477}
1478
1479/*
1480 * Initializes an alloca region assumed to be directly below sp for a native call:
1481 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1482 * The final element on the stack is a pointer to the native code.
1483 *
1484 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1485 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1486 *
1487 * The return of this function denotes:
1488 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1489 * 2) An error, if the value is negative.
1490 */
1491extern "C" ssize_t artQuickGenericJniTrampoline(Thread* self, mirror::ArtMethod** sp)
1492    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1493  mirror::ArtMethod* called = *sp;
1494  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1495
1496  // run the visitor
1497  MethodHelper mh(called);
1498
1499  BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), mh.GetShorty(), mh.GetShortyLength(),
1500                                      self);
1501  visitor.VisitArguments();
1502  visitor.FinalizeHandleScope(self);
1503
1504  // fix up managed-stack things in Thread
1505  self->SetTopOfStack(sp, 0);
1506
1507  self->VerifyStack();
1508
1509  // Start JNI, save the cookie.
1510  uint32_t cookie;
1511  if (called->IsSynchronized()) {
1512    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1513    if (self->IsExceptionPending()) {
1514      self->PopHandleScope();
1515      // A negative value denotes an error.
1516      return -1;
1517    }
1518  } else {
1519    cookie = JniMethodStart(self);
1520  }
1521  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1522  *(sp32 - 1) = cookie;
1523
1524  // Retrieve the stored native code.
1525  const void* nativeCode = called->GetNativeMethod();
1526
1527  // There are two cases for the content of nativeCode:
1528  // 1) Pointer to the native function.
1529  // 2) Pointer to the trampoline for native code binding.
1530  // In the second case, we need to execute the binding and continue with the actual native function
1531  // pointer.
1532  DCHECK(nativeCode != nullptr);
1533  if (nativeCode == GetJniDlsymLookupStub()) {
1534    nativeCode = artFindNativeMethod();
1535
1536    if (nativeCode == nullptr) {
1537      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1538
1539      // End JNI, as the assembly will move to deliver the exception.
1540      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1541      if (mh.GetShorty()[0] == 'L') {
1542        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1543      } else {
1544        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1545      }
1546
1547      return -1;
1548    }
1549    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1550  }
1551
1552  // Store the native code pointer in the stack at the right location.
1553  uintptr_t* code_pointer = reinterpret_cast<uintptr_t*>(visitor.GetCodeReturn());
1554  *code_pointer = reinterpret_cast<uintptr_t>(nativeCode);
1555
1556  // 5K reserved, window_size + frame pointer used.
1557  size_t window_size = visitor.GetAllocaUsedSize();
1558  return (5 * KB) - window_size - kPointerSize;
1559}
1560
1561/*
1562 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1563 * unlocking.
1564 */
1565extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, mirror::ArtMethod** sp,
1566                                                    jvalue result, uint64_t result_f)
1567    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1568  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1569  mirror::ArtMethod* called = *sp;
1570  uint32_t cookie = *(sp32 - 1);
1571
1572  jobject lock = nullptr;
1573  if (called->IsSynchronized()) {
1574    HandleScope* table = reinterpret_cast<HandleScope*>(
1575        reinterpret_cast<uint8_t*>(sp) + kPointerSize);
1576    lock = table->GetHandle(0).ToJObject();
1577  }
1578
1579  MethodHelper mh(called);
1580  char return_shorty_char = mh.GetShorty()[0];
1581
1582  if (return_shorty_char == 'L') {
1583    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1584  } else {
1585    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1586
1587    switch (return_shorty_char) {
1588      case 'F':  // Fall-through.
1589      case 'D':
1590        return result_f;
1591      case 'Z':
1592        return result.z;
1593      case 'B':
1594        return result.b;
1595      case 'C':
1596        return result.c;
1597      case 'S':
1598        return result.s;
1599      case 'I':
1600        return result.i;
1601      case 'J':
1602        return result.j;
1603      case 'V':
1604        return 0;
1605      default:
1606        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1607        return 0;
1608    }
1609  }
1610}
1611
1612// The following definitions create return types for two word-sized entities that will be passed
1613// in registers so that memory operations for the interface trampolines can be avoided. The entities
1614// are the resolved method and the pointer to the code to be invoked.
1615//
1616// On x86, ARM32 and MIPS, this is given for a *scalar* 64bit value. The definition thus *must* be
1617// uint64_t or long long int. We use the upper 32b for code, and the lower 32b for the method.
1618//
1619// On x86_64 and ARM64, structs are decomposed for allocation, so we can create a structs of two
1620// size_t-sized values.
1621//
1622// We need two operations:
1623//
1624// 1) A flag value that signals failure. The assembly stubs expect the method part to be "0".
1625//    GetFailureValue() will return a value that has method == 0.
1626//
1627// 2) A value that combines a code pointer and a method pointer.
1628//    GetSuccessValue() constructs this.
1629
1630#if defined(__i386__) || defined(__arm__) || defined(__mips__)
1631typedef uint64_t MethodAndCode;
1632
1633// Encodes method_ptr==nullptr and code_ptr==nullptr
1634static constexpr MethodAndCode GetFailureValue() {
1635  return 0;
1636}
1637
1638// Use the lower 32b for the method pointer and the upper 32b for the code pointer.
1639static MethodAndCode GetSuccessValue(const void* code, mirror::ArtMethod* method) {
1640  uint32_t method_uint = reinterpret_cast<uint32_t>(method);
1641  uint64_t code_uint = reinterpret_cast<uint32_t>(code);
1642  return ((code_uint << 32) | method_uint);
1643}
1644
1645#elif defined(__x86_64__) || defined(__aarch64__)
1646struct MethodAndCode {
1647  uintptr_t method;
1648  uintptr_t code;
1649};
1650
1651// Encodes method_ptr==nullptr. Leaves random value in code pointer.
1652static MethodAndCode GetFailureValue() {
1653  MethodAndCode ret;
1654  ret.method = 0;
1655  return ret;
1656}
1657
1658// Write values into their respective members.
1659static MethodAndCode GetSuccessValue(const void* code, mirror::ArtMethod* method) {
1660  MethodAndCode ret;
1661  ret.method = reinterpret_cast<uintptr_t>(method);
1662  ret.code = reinterpret_cast<uintptr_t>(code);
1663  return ret;
1664}
1665#else
1666#error "Unsupported architecture"
1667#endif
1668
1669template<InvokeType type, bool access_check>
1670static MethodAndCode artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1671                                     mirror::ArtMethod* caller_method,
1672                                     Thread* self, mirror::ArtMethod** sp);
1673
1674template<InvokeType type, bool access_check>
1675static MethodAndCode artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1676                                     mirror::ArtMethod* caller_method,
1677                                     Thread* self, mirror::ArtMethod** sp) {
1678  mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1679                                             type);
1680  if (UNLIKELY(method == nullptr)) {
1681    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1682    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1683    uint32_t shorty_len;
1684    const char* shorty =
1685        dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1686    {
1687      // Remember the args in case a GC happens in FindMethodFromCode.
1688      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1689      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1690      visitor.VisitArguments();
1691      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1692                                                      self);
1693      visitor.FixupReferences();
1694    }
1695
1696    if (UNLIKELY(method == NULL)) {
1697      CHECK(self->IsExceptionPending());
1698      return GetFailureValue();  // Failure.
1699    }
1700  }
1701  DCHECK(!self->IsExceptionPending());
1702  const void* code = method->GetEntryPointFromQuickCompiledCode();
1703
1704  // When we return, the caller will branch to this address, so it had better not be 0!
1705  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
1706      << MethodHelper(method).GetDexFile().GetLocation();
1707
1708  return GetSuccessValue(code, method);
1709}
1710
1711// Explicit artInvokeCommon template function declarations to please analysis tool.
1712#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1713  template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1714  MethodAndCode artInvokeCommon<type, access_check>(uint32_t method_idx,                        \
1715                                                    mirror::Object* this_object,                \
1716                                                    mirror::ArtMethod* caller_method,           \
1717                                                    Thread* self, mirror::ArtMethod** sp)       \
1718
1719EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1720EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1721EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1722EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1723EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1724EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1725EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1726EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1727EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1728EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1729#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1730
1731
1732// See comments in runtime_support_asm.S
1733extern "C" MethodAndCode artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,
1734                                                                     mirror::Object* this_object,
1735                                                                     mirror::ArtMethod* caller_method,
1736                                                                     Thread* self,
1737                                                                     mirror::ArtMethod** sp)
1738    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1739  return artInvokeCommon<kInterface, true>(method_idx, this_object, caller_method, self, sp);
1740}
1741
1742
1743extern "C" MethodAndCode artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,
1744                                                                  mirror::Object* this_object,
1745                                                                  mirror::ArtMethod* caller_method,
1746                                                                  Thread* self,
1747                                                                  mirror::ArtMethod** sp)
1748    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1749  return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, self, sp);
1750}
1751
1752extern "C" MethodAndCode artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,
1753                                                                  mirror::Object* this_object,
1754                                                                  mirror::ArtMethod* caller_method,
1755                                                                  Thread* self,
1756                                                                  mirror::ArtMethod** sp)
1757    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1758  return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, self, sp);
1759}
1760
1761extern "C" MethodAndCode artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,
1762                                                                 mirror::Object* this_object,
1763                                                                 mirror::ArtMethod* caller_method,
1764                                                                 Thread* self,
1765                                                                 mirror::ArtMethod** sp)
1766    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1767  return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, self, sp);
1768}
1769
1770extern "C" MethodAndCode artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,
1771                                                                   mirror::Object* this_object,
1772                                                                   mirror::ArtMethod* caller_method,
1773                                                                   Thread* self,
1774                                                                   mirror::ArtMethod** sp)
1775    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1776  return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, self, sp);
1777}
1778
1779// Determine target of interface dispatch. This object is known non-null.
1780extern "C" MethodAndCode artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1781                                                      mirror::Object* this_object,
1782                                                      mirror::ArtMethod* caller_method,
1783                                                      Thread* self, mirror::ArtMethod** sp)
1784    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1785  mirror::ArtMethod* method;
1786  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1787    method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1788    if (UNLIKELY(method == NULL)) {
1789      FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1790      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1791                                                                 caller_method);
1792      return GetFailureValue();  // Failure.
1793    }
1794  } else {
1795    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1796    DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1797    // Determine method index from calling dex instruction.
1798#if defined(__arm__)
1799    // On entry the stack pointed by sp is:
1800    // | argN       |  |
1801    // | ...        |  |
1802    // | arg4       |  |
1803    // | arg3 spill |  |  Caller's frame
1804    // | arg2 spill |  |
1805    // | arg1 spill |  |
1806    // | Method*    | ---
1807    // | LR         |
1808    // | ...        |    callee saves
1809    // | R3         |    arg3
1810    // | R2         |    arg2
1811    // | R1         |    arg1
1812    // | R0         |
1813    // | Method*    |  <- sp
1814    DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1815    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + kPointerSize);
1816    uintptr_t caller_pc = regs[10];
1817#elif defined(__i386__)
1818    // On entry the stack pointed by sp is:
1819    // | argN        |  |
1820    // | ...         |  |
1821    // | arg4        |  |
1822    // | arg3 spill  |  |  Caller's frame
1823    // | arg2 spill  |  |
1824    // | arg1 spill  |  |
1825    // | Method*     | ---
1826    // | Return      |
1827    // | EBP,ESI,EDI |    callee saves
1828    // | EBX         |    arg3
1829    // | EDX         |    arg2
1830    // | ECX         |    arg1
1831    // | EAX/Method* |  <- sp
1832    DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1833    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
1834    uintptr_t caller_pc = regs[7];
1835#elif defined(__mips__)
1836    // On entry the stack pointed by sp is:
1837    // | argN       |  |
1838    // | ...        |  |
1839    // | arg4       |  |
1840    // | arg3 spill |  |  Caller's frame
1841    // | arg2 spill |  |
1842    // | arg1 spill |  |
1843    // | Method*    | ---
1844    // | RA         |
1845    // | ...        |    callee saves
1846    // | A3         |    arg3
1847    // | A2         |    arg2
1848    // | A1         |    arg1
1849    // | A0/Method* |  <- sp
1850    DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1851    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
1852    uintptr_t caller_pc = regs[15];
1853#else
1854    UNIMPLEMENTED(FATAL);
1855    uintptr_t caller_pc = 0;
1856#endif
1857    uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1858    const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem();
1859    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1860    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1861    Instruction::Code instr_code = instr->Opcode();
1862    CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1863          instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1864        << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1865    uint32_t dex_method_idx;
1866    if (instr_code == Instruction::INVOKE_INTERFACE) {
1867      dex_method_idx = instr->VRegB_35c();
1868    } else {
1869      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1870      dex_method_idx = instr->VRegB_3rc();
1871    }
1872
1873    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1874    uint32_t shorty_len;
1875    const char* shorty =
1876        dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
1877    {
1878      // Remember the args in case a GC happens in FindMethodFromCode.
1879      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1880      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1881      visitor.VisitArguments();
1882      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
1883                                                     self);
1884      visitor.FixupReferences();
1885    }
1886
1887    if (UNLIKELY(method == nullptr)) {
1888      CHECK(self->IsExceptionPending());
1889      return GetFailureValue();  // Failure.
1890    }
1891  }
1892  const void* code = method->GetEntryPointFromQuickCompiledCode();
1893
1894  // When we return, the caller will branch to this address, so it had better not be 0!
1895  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
1896      << MethodHelper(method).GetDexFile().GetLocation();
1897
1898  return GetSuccessValue(code, method);
1899}
1900
1901}  // namespace art
1902