quick_trampoline_entrypoints.cc revision 0d2323e9fc700388ac0134390819c653c7893204
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/callee_save_type.h"
19#include "base/enums.h"
20#include "callee_save_frame.h"
21#include "common_throws.h"
22#include "debugger.h"
23#include "dex_file-inl.h"
24#include "dex_instruction-inl.h"
25#include "entrypoints/entrypoint_utils-inl.h"
26#include "entrypoints/runtime_asm_entrypoints.h"
27#include "gc/accounting/card_table-inl.h"
28#include "imt_conflict_table.h"
29#include "imtable-inl.h"
30#include "interpreter/interpreter.h"
31#include "instrumentation.h"
32#include "linear_alloc.h"
33#include "method_bss_mapping.h"
34#include "method_handles.h"
35#include "method_reference.h"
36#include "mirror/class-inl.h"
37#include "mirror/dex_cache-inl.h"
38#include "mirror/method.h"
39#include "mirror/method_handle_impl.h"
40#include "mirror/object-inl.h"
41#include "mirror/object_array-inl.h"
42#include "oat_file.h"
43#include "oat_quick_method_header.h"
44#include "quick_exception_handler.h"
45#include "runtime.h"
46#include "scoped_thread_state_change-inl.h"
47#include "stack.h"
48#include "thread-inl.h"
49#include "well_known_classes.h"
50
51namespace art {
52
53// Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
54class QuickArgumentVisitor {
55  // Number of bytes for each out register in the caller method's frame.
56  static constexpr size_t kBytesStackArgLocation = 4;
57  // Frame size in bytes of a callee-save frame for RefsAndArgs.
58  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
59      GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
60#if defined(__arm__)
61  // The callee save frame is pointed to by SP.
62  // | argN       |  |
63  // | ...        |  |
64  // | arg4       |  |
65  // | arg3 spill |  |  Caller's frame
66  // | arg2 spill |  |
67  // | arg1 spill |  |
68  // | Method*    | ---
69  // | LR         |
70  // | ...        |    4x6 bytes callee saves
71  // | R3         |
72  // | R2         |
73  // | R1         |
74  // | S15        |
75  // | :          |
76  // | S0         |
77  // |            |    4x2 bytes padding
78  // | Method*    |  <- sp
79  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
80  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
81  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
82  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
83  static constexpr bool kQuickSkipOddFpRegisters = false;
84  static constexpr size_t kNumQuickGprArgs = 3;
85  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
86  static constexpr bool kGprFprLockstep = false;
87  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
88      arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
89  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
90      arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
91  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
92      arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
93  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
94    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
95  }
96#elif defined(__aarch64__)
97  // The callee save frame is pointed to by SP.
98  // | argN       |  |
99  // | ...        |  |
100  // | arg4       |  |
101  // | arg3 spill |  |  Caller's frame
102  // | arg2 spill |  |
103  // | arg1 spill |  |
104  // | Method*    | ---
105  // | LR         |
106  // | X29        |
107  // |  :         |
108  // | X20        |
109  // | X7         |
110  // | :          |
111  // | X1         |
112  // | D7         |
113  // |  :         |
114  // | D0         |
115  // |            |    padding
116  // | Method*    |  <- sp
117  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
118  static constexpr bool kAlignPairRegister = false;
119  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
120  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
121  static constexpr bool kQuickSkipOddFpRegisters = false;
122  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
123  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
124  static constexpr bool kGprFprLockstep = false;
125  // Offset of first FPR arg.
126  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
127      arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
128  // Offset of first GPR arg.
129  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
130      arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
131  // Offset of return address.
132  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
133      arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
134  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
135    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
136  }
137#elif defined(__mips__) && !defined(__LP64__)
138  // The callee save frame is pointed to by SP.
139  // | argN       |  |
140  // | ...        |  |
141  // | arg4       |  |
142  // | arg3 spill |  |  Caller's frame
143  // | arg2 spill |  |
144  // | arg1 spill |  |
145  // | Method*    | ---
146  // | RA         |
147  // | ...        |    callee saves
148  // | T1         |    arg5
149  // | T0         |    arg4
150  // | A3         |    arg3
151  // | A2         |    arg2
152  // | A1         |    arg1
153  // | F19        |
154  // | F18        |    f_arg5
155  // | F17        |
156  // | F16        |    f_arg4
157  // | F15        |
158  // | F14        |    f_arg3
159  // | F13        |
160  // | F12        |    f_arg2
161  // | F11        |
162  // | F10        |    f_arg1
163  // | F9         |
164  // | F8         |    f_arg0
165  // |            |    padding
166  // | A0/Method* |  <- sp
167  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
168  static constexpr bool kAlignPairRegister = true;
169  static constexpr bool kQuickSoftFloatAbi = false;
170  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
171  static constexpr bool kQuickSkipOddFpRegisters = true;
172  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
173  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
174                                                  // passed only in even numbered registers and each
175                                                  // double occupies two registers.
176  static constexpr bool kGprFprLockstep = false;
177  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
178  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
179  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
180  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
181    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
182  }
183#elif defined(__mips__) && defined(__LP64__)
184  // The callee save frame is pointed to by SP.
185  // | argN       |  |
186  // | ...        |  |
187  // | arg4       |  |
188  // | arg3 spill |  |  Caller's frame
189  // | arg2 spill |  |
190  // | arg1 spill |  |
191  // | Method*    | ---
192  // | RA         |
193  // | ...        |    callee saves
194  // | A7         |    arg7
195  // | A6         |    arg6
196  // | A5         |    arg5
197  // | A4         |    arg4
198  // | A3         |    arg3
199  // | A2         |    arg2
200  // | A1         |    arg1
201  // | F19        |    f_arg7
202  // | F18        |    f_arg6
203  // | F17        |    f_arg5
204  // | F16        |    f_arg4
205  // | F15        |    f_arg3
206  // | F14        |    f_arg2
207  // | F13        |    f_arg1
208  // | F12        |    f_arg0
209  // |            |    padding
210  // | A0/Method* |  <- sp
211  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
212  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
213  static constexpr bool kAlignPairRegister = false;
214  static constexpr bool kQuickSoftFloatAbi = false;
215  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
216  static constexpr bool kQuickSkipOddFpRegisters = false;
217  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
218  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
219  static constexpr bool kGprFprLockstep = true;
220
221  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
222  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
223  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
224  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
225    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
226  }
227#elif defined(__i386__)
228  // The callee save frame is pointed to by SP.
229  // | argN        |  |
230  // | ...         |  |
231  // | arg4        |  |
232  // | arg3 spill  |  |  Caller's frame
233  // | arg2 spill  |  |
234  // | arg1 spill  |  |
235  // | Method*     | ---
236  // | Return      |
237  // | EBP,ESI,EDI |    callee saves
238  // | EBX         |    arg3
239  // | EDX         |    arg2
240  // | ECX         |    arg1
241  // | XMM3        |    float arg 4
242  // | XMM2        |    float arg 3
243  // | XMM1        |    float arg 2
244  // | XMM0        |    float arg 1
245  // | EAX/Method* |  <- sp
246  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
247  static constexpr bool kAlignPairRegister = false;
248  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
249  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
250  static constexpr bool kQuickSkipOddFpRegisters = false;
251  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
252  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
253  static constexpr bool kGprFprLockstep = false;
254  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
255  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
256  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
257  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
258    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
259  }
260#elif defined(__x86_64__)
261  // The callee save frame is pointed to by SP.
262  // | argN            |  |
263  // | ...             |  |
264  // | reg. arg spills |  |  Caller's frame
265  // | Method*         | ---
266  // | Return          |
267  // | R15             |    callee save
268  // | R14             |    callee save
269  // | R13             |    callee save
270  // | R12             |    callee save
271  // | R9              |    arg5
272  // | R8              |    arg4
273  // | RSI/R6          |    arg1
274  // | RBP/R5          |    callee save
275  // | RBX/R3          |    callee save
276  // | RDX/R2          |    arg2
277  // | RCX/R1          |    arg3
278  // | XMM7            |    float arg 8
279  // | XMM6            |    float arg 7
280  // | XMM5            |    float arg 6
281  // | XMM4            |    float arg 5
282  // | XMM3            |    float arg 4
283  // | XMM2            |    float arg 3
284  // | XMM1            |    float arg 2
285  // | XMM0            |    float arg 1
286  // | Padding         |
287  // | RDI/Method*     |  <- sp
288  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
289  static constexpr bool kAlignPairRegister = false;
290  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
291  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
292  static constexpr bool kQuickSkipOddFpRegisters = false;
293  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
294  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
295  static constexpr bool kGprFprLockstep = false;
296  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
297  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
298  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
299  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
300    switch (gpr_index) {
301      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
302      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
303      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
304      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
305      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
306      default:
307      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
308      return 0;
309    }
310  }
311#else
312#error "Unsupported architecture"
313#endif
314
315 public:
316  // Special handling for proxy methods. Proxy methods are instance methods so the
317  // 'this' object is the 1st argument. They also have the same frame layout as the
318  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
319  // 1st GPR.
320  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
321      REQUIRES_SHARED(Locks::mutator_lock_) {
322    CHECK((*sp)->IsProxyMethod());
323    CHECK_GT(kNumQuickGprArgs, 0u);
324    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
325    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
326        GprIndexToGprOffset(kThisGprIndex);
327    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
328    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
329  }
330
331  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
332    DCHECK((*sp)->IsCalleeSaveMethod());
333    return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
334  }
335
336  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
337    DCHECK((*sp)->IsCalleeSaveMethod());
338    uint8_t* previous_sp =
339        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
340    return *reinterpret_cast<ArtMethod**>(previous_sp);
341  }
342
343  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
344    DCHECK((*sp)->IsCalleeSaveMethod());
345    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
346                                                            CalleeSaveType::kSaveRefsAndArgs);
347    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
348        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
349    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
350    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
351    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
352
353    if (current_code->IsOptimized()) {
354      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
355      CodeInfoEncoding encoding = code_info.ExtractEncoding();
356      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
357      DCHECK(stack_map.IsValid());
358      if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
359        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
360        return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
361                                           inline_info.GetDepth(encoding.inline_info.encoding)-1);
362      } else {
363        return stack_map.GetDexPc(encoding.stack_map.encoding);
364      }
365    } else {
366      return current_code->ToDexPc(*caller_sp, outer_pc);
367    }
368  }
369
370  static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
371      REQUIRES_SHARED(Locks::mutator_lock_) {
372    DCHECK((*sp)->IsCalleeSaveMethod());
373    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
374                                                            CalleeSaveType::kSaveRefsAndArgs);
375    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
376        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
377    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
378    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
379    if (!current_code->IsOptimized()) {
380      return false;
381    }
382    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
383    CodeInfo code_info = current_code->GetOptimizedCodeInfo();
384    CodeInfoEncoding encoding = code_info.ExtractEncoding();
385    MethodInfo method_info = current_code->GetOptimizedMethodInfo();
386    InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
387    if (invoke.IsValid()) {
388      *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
389      *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
390      return true;
391    }
392    return false;
393  }
394
395  // For the given quick ref and args quick frame, return the caller's PC.
396  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
397    DCHECK((*sp)->IsCalleeSaveMethod());
398    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
399    return *reinterpret_cast<uintptr_t*>(lr);
400  }
401
402  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
403                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
404          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
405          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
406          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
407          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
408              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
409          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
410          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
411    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
412                  "Number of Quick FPR arguments unexpected");
413    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
414                  "Double alignment unexpected");
415    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
416    // next register is even.
417    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
418                  "Number of Quick FPR arguments not even");
419    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
420  }
421
422  virtual ~QuickArgumentVisitor() {}
423
424  virtual void Visit() = 0;
425
426  Primitive::Type GetParamPrimitiveType() const {
427    return cur_type_;
428  }
429
430  uint8_t* GetParamAddress() const {
431    if (!kQuickSoftFloatAbi) {
432      Primitive::Type type = GetParamPrimitiveType();
433      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
434        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
435          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
436            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
437          }
438        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
439          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
440        }
441        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
442      }
443    }
444    if (gpr_index_ < kNumQuickGprArgs) {
445      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
446    }
447    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
448  }
449
450  bool IsSplitLongOrDouble() const {
451    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
452        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
453      return is_split_long_or_double_;
454    } else {
455      return false;  // An optimization for when GPR and FPRs are 64bit.
456    }
457  }
458
459  bool IsParamAReference() const {
460    return GetParamPrimitiveType() == Primitive::kPrimNot;
461  }
462
463  bool IsParamALongOrDouble() const {
464    Primitive::Type type = GetParamPrimitiveType();
465    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
466  }
467
468  uint64_t ReadSplitLongParam() const {
469    // The splitted long is always available through the stack.
470    return *reinterpret_cast<uint64_t*>(stack_args_
471        + stack_index_ * kBytesStackArgLocation);
472  }
473
474  void IncGprIndex() {
475    gpr_index_++;
476    if (kGprFprLockstep) {
477      fpr_index_++;
478    }
479  }
480
481  void IncFprIndex() {
482    fpr_index_++;
483    if (kGprFprLockstep) {
484      gpr_index_++;
485    }
486  }
487
488  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
489    // (a) 'stack_args_' should point to the first method's argument
490    // (b) whatever the argument type it is, the 'stack_index_' should
491    //     be moved forward along with every visiting.
492    gpr_index_ = 0;
493    fpr_index_ = 0;
494    if (kQuickDoubleRegAlignedFloatBackFilled) {
495      fpr_double_index_ = 0;
496    }
497    stack_index_ = 0;
498    if (!is_static_) {  // Handle this.
499      cur_type_ = Primitive::kPrimNot;
500      is_split_long_or_double_ = false;
501      Visit();
502      stack_index_++;
503      if (kNumQuickGprArgs > 0) {
504        IncGprIndex();
505      }
506    }
507    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
508      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
509      switch (cur_type_) {
510        case Primitive::kPrimNot:
511        case Primitive::kPrimBoolean:
512        case Primitive::kPrimByte:
513        case Primitive::kPrimChar:
514        case Primitive::kPrimShort:
515        case Primitive::kPrimInt:
516          is_split_long_or_double_ = false;
517          Visit();
518          stack_index_++;
519          if (gpr_index_ < kNumQuickGprArgs) {
520            IncGprIndex();
521          }
522          break;
523        case Primitive::kPrimFloat:
524          is_split_long_or_double_ = false;
525          Visit();
526          stack_index_++;
527          if (kQuickSoftFloatAbi) {
528            if (gpr_index_ < kNumQuickGprArgs) {
529              IncGprIndex();
530            }
531          } else {
532            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
533              IncFprIndex();
534              if (kQuickDoubleRegAlignedFloatBackFilled) {
535                // Double should not overlap with float.
536                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
537                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
538                // Float should not overlap with double.
539                if (fpr_index_ % 2 == 0) {
540                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
541                }
542              } else if (kQuickSkipOddFpRegisters) {
543                IncFprIndex();
544              }
545            }
546          }
547          break;
548        case Primitive::kPrimDouble:
549        case Primitive::kPrimLong:
550          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
551            if (cur_type_ == Primitive::kPrimLong &&
552#if defined(__mips__) && !defined(__LP64__)
553                (gpr_index_ == 0 || gpr_index_ == 2) &&
554#else
555                gpr_index_ == 0 &&
556#endif
557                kAlignPairRegister) {
558              // Currently, this is only for ARM and MIPS, where we align long parameters with
559              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
560              // R2 (on ARM) or A2(T0) (on MIPS) instead.
561              IncGprIndex();
562            }
563            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
564                ((gpr_index_ + 1) == kNumQuickGprArgs);
565            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
566              // We don't want to split this. Pass over this register.
567              gpr_index_++;
568              is_split_long_or_double_ = false;
569            }
570            Visit();
571            if (kBytesStackArgLocation == 4) {
572              stack_index_+= 2;
573            } else {
574              CHECK_EQ(kBytesStackArgLocation, 8U);
575              stack_index_++;
576            }
577            if (gpr_index_ < kNumQuickGprArgs) {
578              IncGprIndex();
579              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
580                if (gpr_index_ < kNumQuickGprArgs) {
581                  IncGprIndex();
582                }
583              }
584            }
585          } else {
586            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
587                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
588            Visit();
589            if (kBytesStackArgLocation == 4) {
590              stack_index_+= 2;
591            } else {
592              CHECK_EQ(kBytesStackArgLocation, 8U);
593              stack_index_++;
594            }
595            if (kQuickDoubleRegAlignedFloatBackFilled) {
596              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
597                fpr_double_index_ += 2;
598                // Float should not overlap with double.
599                if (fpr_index_ % 2 == 0) {
600                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
601                }
602              }
603            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
604              IncFprIndex();
605              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
606                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
607                  IncFprIndex();
608                }
609              }
610            }
611          }
612          break;
613        default:
614          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
615      }
616    }
617  }
618
619 protected:
620  const bool is_static_;
621  const char* const shorty_;
622  const uint32_t shorty_len_;
623
624 private:
625  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
626  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
627  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
628  uint32_t gpr_index_;  // Index into spilled GPRs.
629  // Index into spilled FPRs.
630  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
631  // holds a higher register number.
632  uint32_t fpr_index_;
633  // Index into spilled FPRs for aligned double.
634  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
635  // terms of singles, may be behind fpr_index.
636  uint32_t fpr_double_index_;
637  uint32_t stack_index_;  // Index into arguments on the stack.
638  // The current type of argument during VisitArguments.
639  Primitive::Type cur_type_;
640  // Does a 64bit parameter straddle the register and stack arguments?
641  bool is_split_long_or_double_;
642};
643
644// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
645// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
646extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
647    REQUIRES_SHARED(Locks::mutator_lock_) {
648  return QuickArgumentVisitor::GetProxyThisObject(sp);
649}
650
651// Visits arguments on the stack placing them into the shadow frame.
652class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
653 public:
654  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
655                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
656      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
657
658  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
659
660 private:
661  ShadowFrame* const sf_;
662  uint32_t cur_reg_;
663
664  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
665};
666
667void BuildQuickShadowFrameVisitor::Visit() {
668  Primitive::Type type = GetParamPrimitiveType();
669  switch (type) {
670    case Primitive::kPrimLong:  // Fall-through.
671    case Primitive::kPrimDouble:
672      if (IsSplitLongOrDouble()) {
673        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
674      } else {
675        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
676      }
677      ++cur_reg_;
678      break;
679    case Primitive::kPrimNot: {
680        StackReference<mirror::Object>* stack_ref =
681            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
682        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
683      }
684      break;
685    case Primitive::kPrimBoolean:  // Fall-through.
686    case Primitive::kPrimByte:     // Fall-through.
687    case Primitive::kPrimChar:     // Fall-through.
688    case Primitive::kPrimShort:    // Fall-through.
689    case Primitive::kPrimInt:      // Fall-through.
690    case Primitive::kPrimFloat:
691      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
692      break;
693    case Primitive::kPrimVoid:
694      LOG(FATAL) << "UNREACHABLE";
695      UNREACHABLE();
696  }
697  ++cur_reg_;
698}
699
700extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
701    REQUIRES_SHARED(Locks::mutator_lock_) {
702  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
703  // frame.
704  ScopedQuickEntrypointChecks sqec(self);
705
706  if (UNLIKELY(!method->IsInvokable())) {
707    method->ThrowInvocationTimeError();
708    return 0;
709  }
710
711  JValue tmp_value;
712  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
713      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
714  ManagedStack fragment;
715
716  DCHECK(!method->IsNative()) << method->PrettyMethod();
717  uint32_t shorty_len = 0;
718  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
719  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
720  DCHECK(code_item != nullptr) << method->PrettyMethod();
721  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
722
723  JValue result;
724
725  if (deopt_frame != nullptr) {
726    // Coming from partial-fragment deopt.
727
728    if (kIsDebugBuild) {
729      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
730      // of the call-stack) corresponds to the called method.
731      ShadowFrame* linked = deopt_frame;
732      while (linked->GetLink() != nullptr) {
733        linked = linked->GetLink();
734      }
735      CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
736          << ArtMethod::PrettyMethod(linked->GetMethod());
737    }
738
739    if (VLOG_IS_ON(deopt)) {
740      // Print out the stack to verify that it was a partial-fragment deopt.
741      LOG(INFO) << "Continue-ing from deopt. Stack is:";
742      QuickExceptionHandler::DumpFramesWithType(self, true);
743    }
744
745    ObjPtr<mirror::Throwable> pending_exception;
746    bool from_code = false;
747    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
748
749    // Push a transition back into managed code onto the linked list in thread.
750    self->PushManagedStackFragment(&fragment);
751
752    // Ensure that the stack is still in order.
753    if (kIsDebugBuild) {
754      class DummyStackVisitor : public StackVisitor {
755       public:
756        explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
757            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
758
759        bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
760          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
761          // logic. Just always say we want to continue.
762          return true;
763        }
764      };
765      DummyStackVisitor dsv(self);
766      dsv.WalkStack();
767    }
768
769    // Restore the exception that was pending before deoptimization then interpret the
770    // deoptimized frames.
771    if (pending_exception != nullptr) {
772      self->SetException(pending_exception);
773    }
774    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
775  } else {
776    const char* old_cause = self->StartAssertNoThreadSuspension(
777        "Building interpreter shadow frame");
778    uint16_t num_regs = code_item->registers_size_;
779    // No last shadow coming from quick.
780    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
781        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
782    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
783    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
784    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
785                                                      shadow_frame, first_arg_reg);
786    shadow_frame_builder.VisitArguments();
787    const bool needs_initialization =
788        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
789    // Push a transition back into managed code onto the linked list in thread.
790    self->PushManagedStackFragment(&fragment);
791    self->PushShadowFrame(shadow_frame);
792    self->EndAssertNoThreadSuspension(old_cause);
793
794    if (needs_initialization) {
795      // Ensure static method's class is initialized.
796      StackHandleScope<1> hs(self);
797      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
798      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
799        DCHECK(Thread::Current()->IsExceptionPending())
800            << shadow_frame->GetMethod()->PrettyMethod();
801        self->PopManagedStackFragment(fragment);
802        return 0;
803      }
804    }
805
806    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
807  }
808
809  // Pop transition.
810  self->PopManagedStackFragment(fragment);
811
812  // Request a stack deoptimization if needed
813  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
814  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
815  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
816  // should be done and it knows the real return pc.
817  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
818               Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
819    if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
820      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
821                   << caller->PrettyMethod();
822    } else {
823      // Push the context of the deoptimization stack so we can restore the return value and the
824      // exception before executing the deoptimized frames.
825      self->PushDeoptimizationContext(
826          result, shorty[0] == 'L', /* from_code */ false, self->GetException());
827
828      // Set special exception to cause deoptimization.
829      self->SetException(Thread::GetDeoptimizationException());
830    }
831  }
832
833  // No need to restore the args since the method has already been run by the interpreter.
834  return result.GetJ();
835}
836
837// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
838// to jobjects.
839class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
840 public:
841  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
842                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
843      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
844
845  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
846
847  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
848
849 private:
850  ScopedObjectAccessUnchecked* const soa_;
851  std::vector<jvalue>* const args_;
852  // References which we must update when exiting in case the GC moved the objects.
853  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
854
855  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
856};
857
858void BuildQuickArgumentVisitor::Visit() {
859  jvalue val;
860  Primitive::Type type = GetParamPrimitiveType();
861  switch (type) {
862    case Primitive::kPrimNot: {
863      StackReference<mirror::Object>* stack_ref =
864          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
865      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
866      references_.push_back(std::make_pair(val.l, stack_ref));
867      break;
868    }
869    case Primitive::kPrimLong:  // Fall-through.
870    case Primitive::kPrimDouble:
871      if (IsSplitLongOrDouble()) {
872        val.j = ReadSplitLongParam();
873      } else {
874        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
875      }
876      break;
877    case Primitive::kPrimBoolean:  // Fall-through.
878    case Primitive::kPrimByte:     // Fall-through.
879    case Primitive::kPrimChar:     // Fall-through.
880    case Primitive::kPrimShort:    // Fall-through.
881    case Primitive::kPrimInt:      // Fall-through.
882    case Primitive::kPrimFloat:
883      val.i = *reinterpret_cast<jint*>(GetParamAddress());
884      break;
885    case Primitive::kPrimVoid:
886      LOG(FATAL) << "UNREACHABLE";
887      UNREACHABLE();
888  }
889  args_->push_back(val);
890}
891
892void BuildQuickArgumentVisitor::FixupReferences() {
893  // Fixup any references which may have changed.
894  for (const auto& pair : references_) {
895    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
896    soa_->Env()->DeleteLocalRef(pair.first);
897  }
898}
899// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
900// which is responsible for recording callee save registers. We explicitly place into jobjects the
901// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
902// field within the proxy object, which will box the primitive arguments and deal with error cases.
903extern "C" uint64_t artQuickProxyInvokeHandler(
904    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
905    REQUIRES_SHARED(Locks::mutator_lock_) {
906  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
907  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
908  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
909  const char* old_cause =
910      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
911  // Register the top of the managed stack, making stack crawlable.
912  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
913  self->VerifyStack();
914  // Start new JNI local reference state.
915  JNIEnvExt* env = self->GetJniEnv();
916  ScopedObjectAccessUnchecked soa(env);
917  ScopedJniEnvLocalRefState env_state(env);
918  // Create local ref. copies of proxy method and the receiver.
919  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
920
921  // Placing arguments into args vector and remove the receiver.
922  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
923  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
924                                       << non_proxy_method->PrettyMethod();
925  std::vector<jvalue> args;
926  uint32_t shorty_len = 0;
927  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
928  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
929
930  local_ref_visitor.VisitArguments();
931  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
932  args.erase(args.begin());
933
934  // Convert proxy method into expected interface method.
935  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
936  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
937  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
938  self->EndAssertNoThreadSuspension(old_cause);
939  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
940  DCHECK(!Runtime::Current()->IsActiveTransaction());
941  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
942      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
943                                                                      interface_method));
944
945  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
946  // that performs allocations.
947  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
948  // Restore references which might have moved.
949  local_ref_visitor.FixupReferences();
950  return result.GetJ();
951}
952
953// Read object references held in arguments from quick frames and place in a JNI local references,
954// so they don't get garbage collected.
955class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
956 public:
957  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
958                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
959      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
960
961  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
962
963  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
964
965 private:
966  ScopedObjectAccessUnchecked* const soa_;
967  // References which we must update when exiting in case the GC moved the objects.
968  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
969
970  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
971};
972
973void RememberForGcArgumentVisitor::Visit() {
974  if (IsParamAReference()) {
975    StackReference<mirror::Object>* stack_ref =
976        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
977    jobject reference =
978        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
979    references_.push_back(std::make_pair(reference, stack_ref));
980  }
981}
982
983void RememberForGcArgumentVisitor::FixupReferences() {
984  // Fixup any references which may have changed.
985  for (const auto& pair : references_) {
986    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
987    soa_->Env()->DeleteLocalRef(pair.first);
988  }
989}
990
991extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
992                                                             mirror::Object* this_object,
993                                                             Thread* self,
994                                                             ArtMethod** sp)
995    REQUIRES_SHARED(Locks::mutator_lock_) {
996  const void* result;
997  // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
998  // that part.
999  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1000  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1001  if (instrumentation->IsDeoptimized(method)) {
1002    result = GetQuickToInterpreterBridge();
1003  } else {
1004    result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1005    DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1006  }
1007
1008  bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1009  bool is_static = method->IsStatic();
1010  uint32_t shorty_len;
1011  const char* shorty =
1012      method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1013
1014  ScopedObjectAccessUnchecked soa(self);
1015  RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1016  visitor.VisitArguments();
1017
1018  instrumentation->PushInstrumentationStackFrame(self,
1019                                                 is_static ? nullptr : this_object,
1020                                                 method,
1021                                                 QuickArgumentVisitor::GetCallingPc(sp),
1022                                                 interpreter_entry);
1023
1024  visitor.FixupReferences();
1025  if (UNLIKELY(self->IsExceptionPending())) {
1026    return nullptr;
1027  }
1028  CHECK(result != nullptr) << method->PrettyMethod();
1029  return result;
1030}
1031
1032extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1033                                                              ArtMethod** sp,
1034                                                              uint64_t* gpr_result,
1035                                                              uint64_t* fpr_result)
1036    REQUIRES_SHARED(Locks::mutator_lock_) {
1037  DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1038  CHECK(gpr_result != nullptr);
1039  CHECK(fpr_result != nullptr);
1040  // Instrumentation exit stub must not be entered with a pending exception.
1041  CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1042                                     << self->GetException()->Dump();
1043  // Compute address of return PC and sanity check that it currently holds 0.
1044  size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, CalleeSaveType::kSaveRefsOnly);
1045  uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1046                                                      return_pc_offset);
1047  CHECK_EQ(*return_pc, 0U);
1048
1049  // Pop the frame filling in the return pc. The low half of the return value is 0 when
1050  // deoptimization shouldn't be performed with the high-half having the return address. When
1051  // deoptimization should be performed the low half is zero and the high-half the address of the
1052  // deoptimization entry point.
1053  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1054  TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1055      self, return_pc, gpr_result, fpr_result);
1056  if (self->IsExceptionPending()) {
1057    return GetTwoWordFailureValue();
1058  }
1059  return return_or_deoptimize_pc;
1060}
1061
1062// Lazily resolve a method for quick. Called by stub code.
1063extern "C" const void* artQuickResolutionTrampoline(
1064    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1065    REQUIRES_SHARED(Locks::mutator_lock_) {
1066  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1067  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1068  // does not have the same stack layout as the callee-save method).
1069  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1070  // Start new JNI local reference state
1071  JNIEnvExt* env = self->GetJniEnv();
1072  ScopedObjectAccessUnchecked soa(env);
1073  ScopedJniEnvLocalRefState env_state(env);
1074  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1075
1076  // Compute details about the called method (avoid GCs)
1077  ClassLinker* linker = Runtime::Current()->GetClassLinker();
1078  InvokeType invoke_type;
1079  MethodReference called_method(nullptr, 0);
1080  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1081  ArtMethod* caller = nullptr;
1082  if (!called_method_known_on_entry) {
1083    caller = QuickArgumentVisitor::GetCallingMethod(sp);
1084    called_method.dex_file = caller->GetDexFile();
1085
1086    InvokeType stack_map_invoke_type;
1087    uint32_t stack_map_dex_method_idx;
1088    const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1089                                                                     &stack_map_invoke_type,
1090                                                                     &stack_map_dex_method_idx);
1091    // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1092    // code.
1093    if (!found_stack_map || kIsDebugBuild) {
1094      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1095      const DexFile::CodeItem* code;
1096      code = caller->GetCodeItem();
1097      CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1098      const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1099      Instruction::Code instr_code = instr->Opcode();
1100      bool is_range;
1101      switch (instr_code) {
1102        case Instruction::INVOKE_DIRECT:
1103          invoke_type = kDirect;
1104          is_range = false;
1105          break;
1106        case Instruction::INVOKE_DIRECT_RANGE:
1107          invoke_type = kDirect;
1108          is_range = true;
1109          break;
1110        case Instruction::INVOKE_STATIC:
1111          invoke_type = kStatic;
1112          is_range = false;
1113          break;
1114        case Instruction::INVOKE_STATIC_RANGE:
1115          invoke_type = kStatic;
1116          is_range = true;
1117          break;
1118        case Instruction::INVOKE_SUPER:
1119          invoke_type = kSuper;
1120          is_range = false;
1121          break;
1122        case Instruction::INVOKE_SUPER_RANGE:
1123          invoke_type = kSuper;
1124          is_range = true;
1125          break;
1126        case Instruction::INVOKE_VIRTUAL:
1127          invoke_type = kVirtual;
1128          is_range = false;
1129          break;
1130        case Instruction::INVOKE_VIRTUAL_RANGE:
1131          invoke_type = kVirtual;
1132          is_range = true;
1133          break;
1134        case Instruction::INVOKE_INTERFACE:
1135          invoke_type = kInterface;
1136          is_range = false;
1137          break;
1138        case Instruction::INVOKE_INTERFACE_RANGE:
1139          invoke_type = kInterface;
1140          is_range = true;
1141          break;
1142        default:
1143          LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1144          UNREACHABLE();
1145      }
1146      called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1147      // Check that the invoke matches what we expected, note that this path only happens for debug
1148      // builds.
1149      if (found_stack_map) {
1150        DCHECK_EQ(stack_map_invoke_type, invoke_type);
1151        if (invoke_type != kSuper) {
1152          // Super may be sharpened.
1153          DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index)
1154              << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1155              << called_method.dex_file->PrettyMethod(called_method.dex_method_index);
1156        }
1157      } else {
1158        VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1159                  << called_method.dex_method_index;
1160      }
1161    } else {
1162      invoke_type = stack_map_invoke_type;
1163      called_method.dex_method_index = stack_map_dex_method_idx;
1164    }
1165  } else {
1166    invoke_type = kStatic;
1167    called_method.dex_file = called->GetDexFile();
1168    called_method.dex_method_index = called->GetDexMethodIndex();
1169  }
1170  uint32_t shorty_len;
1171  const char* shorty =
1172      called_method.dex_file->GetMethodShorty(
1173          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1174  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1175  visitor.VisitArguments();
1176  self->EndAssertNoThreadSuspension(old_cause);
1177  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1178  // Resolve method filling in dex cache.
1179  if (!called_method_known_on_entry) {
1180    StackHandleScope<1> hs(self);
1181    mirror::Object* dummy = nullptr;
1182    HandleWrapper<mirror::Object> h_receiver(
1183        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1184    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1185    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1186        self, called_method.dex_method_index, caller, invoke_type);
1187
1188    // Update .bss entry in oat file if any.
1189    if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1190      const MethodBssMapping* mapping =
1191          called_method.dex_file->GetOatDexFile()->GetMethodBssMapping();
1192      if (mapping != nullptr) {
1193        auto pp = std::partition_point(
1194            mapping->begin(),
1195            mapping->end(),
1196            [called_method](const MethodBssMappingEntry& entry) {
1197              return entry.method_index < called_method.dex_method_index;
1198            });
1199        if (pp != mapping->end() && pp->CoversIndex(called_method.dex_method_index)) {
1200          size_t bss_offset = pp->GetBssOffset(called_method.dex_method_index,
1201                                               static_cast<size_t>(kRuntimePointerSize));
1202          DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1203          const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1204          ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1205              oat_file->BssBegin() + bss_offset));
1206          DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1207          DCHECK_LT(method_entry,
1208                    oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1209          *method_entry = called;
1210        }
1211      }
1212    }
1213  }
1214  const void* code = nullptr;
1215  if (LIKELY(!self->IsExceptionPending())) {
1216    // Incompatible class change should have been handled in resolve method.
1217    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1218        << called->PrettyMethod() << " " << invoke_type;
1219    if (virtual_or_interface || invoke_type == kSuper) {
1220      // Refine called method based on receiver for kVirtual/kInterface, and
1221      // caller for kSuper.
1222      ArtMethod* orig_called = called;
1223      if (invoke_type == kVirtual) {
1224        CHECK(receiver != nullptr) << invoke_type;
1225        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1226      } else if (invoke_type == kInterface) {
1227        CHECK(receiver != nullptr) << invoke_type;
1228        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1229      } else {
1230        DCHECK_EQ(invoke_type, kSuper);
1231        CHECK(caller != nullptr) << invoke_type;
1232        StackHandleScope<2> hs(self);
1233        Handle<mirror::DexCache> dex_cache(
1234            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1235        Handle<mirror::ClassLoader> class_loader(
1236            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1237        // TODO Maybe put this into a mirror::Class function.
1238        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1239            called_method.dex_method_index, dex_cache, class_loader);
1240        if (ref_class->IsInterface()) {
1241          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1242        } else {
1243          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1244              called->GetMethodIndex(), kRuntimePointerSize);
1245        }
1246      }
1247
1248      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1249                               << mirror::Object::PrettyTypeOf(receiver) << " "
1250                               << invoke_type << " " << orig_called->GetVtableIndex();
1251
1252      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1253      // of the sharpened method avoiding dirtying the dex cache if possible.
1254      // Note, called_method.dex_method_index references the dex method before the
1255      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1256      // about the name and signature.
1257      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1258      if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
1259        // Calling from one dex file to another, need to compute the method index appropriate to
1260        // the caller's dex file. Since we get here only if the original called was a runtime
1261        // method, we've got the correct dex_file and a dex_method_idx from above.
1262        DCHECK(!called_method_known_on_entry);
1263        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1264        const DexFile* caller_dex_file = called_method.dex_file;
1265        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1266        update_dex_cache_method_index =
1267            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1268                                                     caller_method_name_and_sig_index);
1269      }
1270      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1271          (caller->GetDexCacheResolvedMethod(
1272              update_dex_cache_method_index, kRuntimePointerSize) != called)) {
1273        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
1274                                          called,
1275                                          kRuntimePointerSize);
1276      }
1277    } else if (invoke_type == kStatic) {
1278      const auto called_dex_method_idx = called->GetDexMethodIndex();
1279      // For static invokes, we may dispatch to the static method in the superclass but resolve
1280      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1281      // resolved method for the super class dex method index if we are in the same dex file.
1282      // b/19175856
1283      if (called->GetDexFile() == called_method.dex_file &&
1284          called_method.dex_method_index != called_dex_method_idx) {
1285        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
1286                                                 called,
1287                                                 kRuntimePointerSize);
1288      }
1289    }
1290
1291    // Ensure that the called method's class is initialized.
1292    StackHandleScope<1> hs(soa.Self());
1293    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1294    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1295    if (LIKELY(called_class->IsInitialized())) {
1296      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1297        // If we are single-stepping or the called method is deoptimized (by a
1298        // breakpoint, for example), then we have to execute the called method
1299        // with the interpreter.
1300        code = GetQuickToInterpreterBridge();
1301      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1302        // If the caller is deoptimized (by a breakpoint, for example), we have to
1303        // continue its execution with interpreter when returning from the called
1304        // method. Because we do not want to execute the called method with the
1305        // interpreter, we wrap its execution into the instrumentation stubs.
1306        // When the called method returns, it will execute the instrumentation
1307        // exit hook that will determine the need of the interpreter with a call
1308        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1309        // it is needed.
1310        code = GetQuickInstrumentationEntryPoint();
1311      } else {
1312        code = called->GetEntryPointFromQuickCompiledCode();
1313      }
1314    } else if (called_class->IsInitializing()) {
1315      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1316        // If we are single-stepping or the called method is deoptimized (by a
1317        // breakpoint, for example), then we have to execute the called method
1318        // with the interpreter.
1319        code = GetQuickToInterpreterBridge();
1320      } else if (invoke_type == kStatic) {
1321        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1322        // until class is initialized to stop races between threads).
1323        code = linker->GetQuickOatCodeFor(called);
1324      } else {
1325        // No trampoline for non-static methods.
1326        code = called->GetEntryPointFromQuickCompiledCode();
1327      }
1328    } else {
1329      DCHECK(called_class->IsErroneous());
1330    }
1331  }
1332  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1333  // Fixup any locally saved objects may have moved during a GC.
1334  visitor.FixupReferences();
1335  // Place called method in callee-save frame to be placed as first argument to quick method.
1336  *sp = called;
1337
1338  return code;
1339}
1340
1341/*
1342 * This class uses a couple of observations to unite the different calling conventions through
1343 * a few constants.
1344 *
1345 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1346 *    possible alignment.
1347 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1348 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1349 *    when we have to split things
1350 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1351 *    and we can use Int handling directly.
1352 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1353 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1354 *    extension should be compatible with Aarch64, which mandates copying the available bits
1355 *    into LSB and leaving the rest unspecified.
1356 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1357 *    the stack.
1358 * 6) There is only little endian.
1359 *
1360 *
1361 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1362 * follows:
1363 *
1364 * void PushGpr(uintptr_t):   Add a value for the next GPR
1365 *
1366 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1367 *                            padding, that is, think the architecture is 32b and aligns 64b.
1368 *
1369 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1370 *                            split this if necessary. The current state will have aligned, if
1371 *                            necessary.
1372 *
1373 * void PushStack(uintptr_t): Push a value to the stack.
1374 *
1375 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1376 *                                          as this might be important for null initialization.
1377 *                                          Must return the jobject, that is, the reference to the
1378 *                                          entry in the HandleScope (nullptr if necessary).
1379 *
1380 */
1381template<class T> class BuildNativeCallFrameStateMachine {
1382 public:
1383#if defined(__arm__)
1384  // TODO: These are all dummy values!
1385  static constexpr bool kNativeSoftFloatAbi = true;
1386  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1387  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1388
1389  static constexpr size_t kRegistersNeededForLong = 2;
1390  static constexpr size_t kRegistersNeededForDouble = 2;
1391  static constexpr bool kMultiRegistersAligned = true;
1392  static constexpr bool kMultiFPRegistersWidened = false;
1393  static constexpr bool kMultiGPRegistersWidened = false;
1394  static constexpr bool kAlignLongOnStack = true;
1395  static constexpr bool kAlignDoubleOnStack = true;
1396#elif defined(__aarch64__)
1397  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1398  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1399  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1400
1401  static constexpr size_t kRegistersNeededForLong = 1;
1402  static constexpr size_t kRegistersNeededForDouble = 1;
1403  static constexpr bool kMultiRegistersAligned = false;
1404  static constexpr bool kMultiFPRegistersWidened = false;
1405  static constexpr bool kMultiGPRegistersWidened = false;
1406  static constexpr bool kAlignLongOnStack = false;
1407  static constexpr bool kAlignDoubleOnStack = false;
1408#elif defined(__mips__) && !defined(__LP64__)
1409  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1410  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1411  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1412
1413  static constexpr size_t kRegistersNeededForLong = 2;
1414  static constexpr size_t kRegistersNeededForDouble = 2;
1415  static constexpr bool kMultiRegistersAligned = true;
1416  static constexpr bool kMultiFPRegistersWidened = true;
1417  static constexpr bool kMultiGPRegistersWidened = false;
1418  static constexpr bool kAlignLongOnStack = true;
1419  static constexpr bool kAlignDoubleOnStack = true;
1420#elif defined(__mips__) && defined(__LP64__)
1421  // Let the code prepare GPRs only and we will load the FPRs with same data.
1422  static constexpr bool kNativeSoftFloatAbi = true;
1423  static constexpr size_t kNumNativeGprArgs = 8;
1424  static constexpr size_t kNumNativeFprArgs = 0;
1425
1426  static constexpr size_t kRegistersNeededForLong = 1;
1427  static constexpr size_t kRegistersNeededForDouble = 1;
1428  static constexpr bool kMultiRegistersAligned = false;
1429  static constexpr bool kMultiFPRegistersWidened = false;
1430  static constexpr bool kMultiGPRegistersWidened = true;
1431  static constexpr bool kAlignLongOnStack = false;
1432  static constexpr bool kAlignDoubleOnStack = false;
1433#elif defined(__i386__)
1434  // TODO: Check these!
1435  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1436  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1437  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1438
1439  static constexpr size_t kRegistersNeededForLong = 2;
1440  static constexpr size_t kRegistersNeededForDouble = 2;
1441  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1442  static constexpr bool kMultiFPRegistersWidened = false;
1443  static constexpr bool kMultiGPRegistersWidened = false;
1444  static constexpr bool kAlignLongOnStack = false;
1445  static constexpr bool kAlignDoubleOnStack = false;
1446#elif defined(__x86_64__)
1447  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1448  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1449  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1450
1451  static constexpr size_t kRegistersNeededForLong = 1;
1452  static constexpr size_t kRegistersNeededForDouble = 1;
1453  static constexpr bool kMultiRegistersAligned = false;
1454  static constexpr bool kMultiFPRegistersWidened = false;
1455  static constexpr bool kMultiGPRegistersWidened = false;
1456  static constexpr bool kAlignLongOnStack = false;
1457  static constexpr bool kAlignDoubleOnStack = false;
1458#else
1459#error "Unsupported architecture"
1460#endif
1461
1462 public:
1463  explicit BuildNativeCallFrameStateMachine(T* delegate)
1464      : gpr_index_(kNumNativeGprArgs),
1465        fpr_index_(kNumNativeFprArgs),
1466        stack_entries_(0),
1467        delegate_(delegate) {
1468    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1469    // the next register is even; counting down is just to make the compiler happy...
1470    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1471    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1472  }
1473
1474  virtual ~BuildNativeCallFrameStateMachine() {}
1475
1476  bool HavePointerGpr() const {
1477    return gpr_index_ > 0;
1478  }
1479
1480  void AdvancePointer(const void* val) {
1481    if (HavePointerGpr()) {
1482      gpr_index_--;
1483      PushGpr(reinterpret_cast<uintptr_t>(val));
1484    } else {
1485      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1486      PushStack(reinterpret_cast<uintptr_t>(val));
1487      gpr_index_ = 0;
1488    }
1489  }
1490
1491  bool HaveHandleScopeGpr() const {
1492    return gpr_index_ > 0;
1493  }
1494
1495  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1496    uintptr_t handle = PushHandle(ptr);
1497    if (HaveHandleScopeGpr()) {
1498      gpr_index_--;
1499      PushGpr(handle);
1500    } else {
1501      stack_entries_++;
1502      PushStack(handle);
1503      gpr_index_ = 0;
1504    }
1505  }
1506
1507  bool HaveIntGpr() const {
1508    return gpr_index_ > 0;
1509  }
1510
1511  void AdvanceInt(uint32_t val) {
1512    if (HaveIntGpr()) {
1513      gpr_index_--;
1514      if (kMultiGPRegistersWidened) {
1515        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1516        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1517      } else {
1518        PushGpr(val);
1519      }
1520    } else {
1521      stack_entries_++;
1522      if (kMultiGPRegistersWidened) {
1523        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1524        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1525      } else {
1526        PushStack(val);
1527      }
1528      gpr_index_ = 0;
1529    }
1530  }
1531
1532  bool HaveLongGpr() const {
1533    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1534  }
1535
1536  bool LongGprNeedsPadding() const {
1537    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1538        kAlignLongOnStack &&                  // and when it needs alignment
1539        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1540  }
1541
1542  bool LongStackNeedsPadding() const {
1543    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1544        kAlignLongOnStack &&                  // and when it needs 8B alignment
1545        (stack_entries_ & 1) == 1;            // counter is odd
1546  }
1547
1548  void AdvanceLong(uint64_t val) {
1549    if (HaveLongGpr()) {
1550      if (LongGprNeedsPadding()) {
1551        PushGpr(0);
1552        gpr_index_--;
1553      }
1554      if (kRegistersNeededForLong == 1) {
1555        PushGpr(static_cast<uintptr_t>(val));
1556      } else {
1557        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1558        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1559      }
1560      gpr_index_ -= kRegistersNeededForLong;
1561    } else {
1562      if (LongStackNeedsPadding()) {
1563        PushStack(0);
1564        stack_entries_++;
1565      }
1566      if (kRegistersNeededForLong == 1) {
1567        PushStack(static_cast<uintptr_t>(val));
1568        stack_entries_++;
1569      } else {
1570        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1571        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1572        stack_entries_ += 2;
1573      }
1574      gpr_index_ = 0;
1575    }
1576  }
1577
1578  bool HaveFloatFpr() const {
1579    return fpr_index_ > 0;
1580  }
1581
1582  void AdvanceFloat(float val) {
1583    if (kNativeSoftFloatAbi) {
1584      AdvanceInt(bit_cast<uint32_t, float>(val));
1585    } else {
1586      if (HaveFloatFpr()) {
1587        fpr_index_--;
1588        if (kRegistersNeededForDouble == 1) {
1589          if (kMultiFPRegistersWidened) {
1590            PushFpr8(bit_cast<uint64_t, double>(val));
1591          } else {
1592            // No widening, just use the bits.
1593            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1594          }
1595        } else {
1596          PushFpr4(val);
1597        }
1598      } else {
1599        stack_entries_++;
1600        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1601          // Need to widen before storing: Note the "double" in the template instantiation.
1602          // Note: We need to jump through those hoops to make the compiler happy.
1603          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1604          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1605        } else {
1606          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1607        }
1608        fpr_index_ = 0;
1609      }
1610    }
1611  }
1612
1613  bool HaveDoubleFpr() const {
1614    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1615  }
1616
1617  bool DoubleFprNeedsPadding() const {
1618    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1619        kAlignDoubleOnStack &&                  // and when it needs alignment
1620        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1621  }
1622
1623  bool DoubleStackNeedsPadding() const {
1624    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1625        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1626        (stack_entries_ & 1) == 1;              // counter is odd
1627  }
1628
1629  void AdvanceDouble(uint64_t val) {
1630    if (kNativeSoftFloatAbi) {
1631      AdvanceLong(val);
1632    } else {
1633      if (HaveDoubleFpr()) {
1634        if (DoubleFprNeedsPadding()) {
1635          PushFpr4(0);
1636          fpr_index_--;
1637        }
1638        PushFpr8(val);
1639        fpr_index_ -= kRegistersNeededForDouble;
1640      } else {
1641        if (DoubleStackNeedsPadding()) {
1642          PushStack(0);
1643          stack_entries_++;
1644        }
1645        if (kRegistersNeededForDouble == 1) {
1646          PushStack(static_cast<uintptr_t>(val));
1647          stack_entries_++;
1648        } else {
1649          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1650          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1651          stack_entries_ += 2;
1652        }
1653        fpr_index_ = 0;
1654      }
1655    }
1656  }
1657
1658  uint32_t GetStackEntries() const {
1659    return stack_entries_;
1660  }
1661
1662  uint32_t GetNumberOfUsedGprs() const {
1663    return kNumNativeGprArgs - gpr_index_;
1664  }
1665
1666  uint32_t GetNumberOfUsedFprs() const {
1667    return kNumNativeFprArgs - fpr_index_;
1668  }
1669
1670 private:
1671  void PushGpr(uintptr_t val) {
1672    delegate_->PushGpr(val);
1673  }
1674  void PushFpr4(float val) {
1675    delegate_->PushFpr4(val);
1676  }
1677  void PushFpr8(uint64_t val) {
1678    delegate_->PushFpr8(val);
1679  }
1680  void PushStack(uintptr_t val) {
1681    delegate_->PushStack(val);
1682  }
1683  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1684    return delegate_->PushHandle(ref);
1685  }
1686
1687  uint32_t gpr_index_;      // Number of free GPRs
1688  uint32_t fpr_index_;      // Number of free FPRs
1689  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1690                            // extended
1691  T* const delegate_;             // What Push implementation gets called
1692};
1693
1694// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1695// in subclasses.
1696//
1697// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1698// them with handles.
1699class ComputeNativeCallFrameSize {
1700 public:
1701  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1702
1703  virtual ~ComputeNativeCallFrameSize() {}
1704
1705  uint32_t GetStackSize() const {
1706    return num_stack_entries_ * sizeof(uintptr_t);
1707  }
1708
1709  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1710    sp8 -= GetStackSize();
1711    // Align by kStackAlignment.
1712    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1713    return sp8;
1714  }
1715
1716  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1717      const {
1718    // Assumption is OK right now, as we have soft-float arm
1719    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1720    sp8 -= fregs * sizeof(uintptr_t);
1721    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1722    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1723    sp8 -= iregs * sizeof(uintptr_t);
1724    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1725    return sp8;
1726  }
1727
1728  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1729                            uint32_t** start_fpr) const {
1730    // Native call stack.
1731    sp8 = LayoutCallStack(sp8);
1732    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1733
1734    // Put fprs and gprs below.
1735    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1736
1737    // Return the new bottom.
1738    return sp8;
1739  }
1740
1741  virtual void WalkHeader(
1742      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1743      REQUIRES_SHARED(Locks::mutator_lock_) {
1744  }
1745
1746  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1747    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1748
1749    WalkHeader(&sm);
1750
1751    for (uint32_t i = 1; i < shorty_len; ++i) {
1752      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1753      switch (cur_type_) {
1754        case Primitive::kPrimNot:
1755          // TODO: fix abuse of mirror types.
1756          sm.AdvanceHandleScope(
1757              reinterpret_cast<mirror::Object*>(0x12345678));
1758          break;
1759
1760        case Primitive::kPrimBoolean:
1761        case Primitive::kPrimByte:
1762        case Primitive::kPrimChar:
1763        case Primitive::kPrimShort:
1764        case Primitive::kPrimInt:
1765          sm.AdvanceInt(0);
1766          break;
1767        case Primitive::kPrimFloat:
1768          sm.AdvanceFloat(0);
1769          break;
1770        case Primitive::kPrimDouble:
1771          sm.AdvanceDouble(0);
1772          break;
1773        case Primitive::kPrimLong:
1774          sm.AdvanceLong(0);
1775          break;
1776        default:
1777          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1778          UNREACHABLE();
1779      }
1780    }
1781
1782    num_stack_entries_ = sm.GetStackEntries();
1783  }
1784
1785  void PushGpr(uintptr_t /* val */) {
1786    // not optimizing registers, yet
1787  }
1788
1789  void PushFpr4(float /* val */) {
1790    // not optimizing registers, yet
1791  }
1792
1793  void PushFpr8(uint64_t /* val */) {
1794    // not optimizing registers, yet
1795  }
1796
1797  void PushStack(uintptr_t /* val */) {
1798    // counting is already done in the superclass
1799  }
1800
1801  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1802    return reinterpret_cast<uintptr_t>(nullptr);
1803  }
1804
1805 protected:
1806  uint32_t num_stack_entries_;
1807};
1808
1809class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1810 public:
1811  explicit ComputeGenericJniFrameSize(bool critical_native)
1812    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1813
1814  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1815  // is at *m = sp. Will update to point to the bottom of the save frame.
1816  //
1817  // Note: assumes ComputeAll() has been run before.
1818  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1819      REQUIRES_SHARED(Locks::mutator_lock_) {
1820    ArtMethod* method = **m;
1821
1822    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1823
1824    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1825
1826    // First, fix up the layout of the callee-save frame.
1827    // We have to squeeze in the HandleScope, and relocate the method pointer.
1828
1829    // "Free" the slot for the method.
1830    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1831
1832    // Under the callee saves put handle scope and new method stack reference.
1833    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1834    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1835
1836    sp8 -= scope_and_method;
1837    // Align by kStackAlignment.
1838    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1839
1840    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1841    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1842                                        num_handle_scope_references_);
1843
1844    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1845    uint8_t* method_pointer = sp8;
1846    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1847    *new_method_ref = method;
1848    *m = new_method_ref;
1849  }
1850
1851  // Adds space for the cookie. Note: may leave stack unaligned.
1852  void LayoutCookie(uint8_t** sp) const {
1853    // Reference cookie and padding
1854    *sp -= 8;
1855  }
1856
1857  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1858  // Returns the new bottom. Note: this may be unaligned.
1859  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1860      REQUIRES_SHARED(Locks::mutator_lock_) {
1861    // First, fix up the layout of the callee-save frame.
1862    // We have to squeeze in the HandleScope, and relocate the method pointer.
1863    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1864
1865    // The bottom of the callee-save frame is now where the method is, *m.
1866    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1867
1868    // Add space for cookie.
1869    LayoutCookie(&sp8);
1870
1871    return sp8;
1872  }
1873
1874  // WARNING: After this, *sp won't be pointing to the method anymore!
1875  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1876                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1877                         uint32_t** start_fpr)
1878      REQUIRES_SHARED(Locks::mutator_lock_) {
1879    Walk(shorty, shorty_len);
1880
1881    // JNI part.
1882    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1883
1884    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1885
1886    // Return the new bottom.
1887    return sp8;
1888  }
1889
1890  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1891
1892  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1893  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1894      REQUIRES_SHARED(Locks::mutator_lock_);
1895
1896 private:
1897  uint32_t num_handle_scope_references_;
1898  const bool critical_native_;
1899};
1900
1901uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1902  num_handle_scope_references_++;
1903  return reinterpret_cast<uintptr_t>(nullptr);
1904}
1905
1906void ComputeGenericJniFrameSize::WalkHeader(
1907    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1908  // First 2 parameters are always excluded for @CriticalNative.
1909  if (UNLIKELY(critical_native_)) {
1910    return;
1911  }
1912
1913  // JNIEnv
1914  sm->AdvancePointer(nullptr);
1915
1916  // Class object or this as first argument
1917  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1918}
1919
1920// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1921// the template requirements of BuildGenericJniFrameStateMachine.
1922class FillNativeCall {
1923 public:
1924  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1925      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1926
1927  virtual ~FillNativeCall() {}
1928
1929  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1930    cur_gpr_reg_ = gpr_regs;
1931    cur_fpr_reg_ = fpr_regs;
1932    cur_stack_arg_ = stack_args;
1933  }
1934
1935  void PushGpr(uintptr_t val) {
1936    *cur_gpr_reg_ = val;
1937    cur_gpr_reg_++;
1938  }
1939
1940  void PushFpr4(float val) {
1941    *cur_fpr_reg_ = val;
1942    cur_fpr_reg_++;
1943  }
1944
1945  void PushFpr8(uint64_t val) {
1946    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1947    *tmp = val;
1948    cur_fpr_reg_ += 2;
1949  }
1950
1951  void PushStack(uintptr_t val) {
1952    *cur_stack_arg_ = val;
1953    cur_stack_arg_++;
1954  }
1955
1956  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1957    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1958    UNREACHABLE();
1959  }
1960
1961 private:
1962  uintptr_t* cur_gpr_reg_;
1963  uint32_t* cur_fpr_reg_;
1964  uintptr_t* cur_stack_arg_;
1965};
1966
1967// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1968// of transitioning into native code.
1969class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1970 public:
1971  BuildGenericJniFrameVisitor(Thread* self,
1972                              bool is_static,
1973                              bool critical_native,
1974                              const char* shorty,
1975                              uint32_t shorty_len,
1976                              ArtMethod*** sp)
1977     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1978       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1979       sm_(&jni_call_) {
1980    ComputeGenericJniFrameSize fsc(critical_native);
1981    uintptr_t* start_gpr_reg;
1982    uint32_t* start_fpr_reg;
1983    uintptr_t* start_stack_arg;
1984    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1985                                             &handle_scope_,
1986                                             &start_stack_arg,
1987                                             &start_gpr_reg, &start_fpr_reg);
1988
1989    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1990
1991    // First 2 parameters are always excluded for CriticalNative methods.
1992    if (LIKELY(!critical_native)) {
1993      // jni environment is always first argument
1994      sm_.AdvancePointer(self->GetJniEnv());
1995
1996      if (is_static) {
1997        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1998      }  // else "this" reference is already handled by QuickArgumentVisitor.
1999    }
2000  }
2001
2002  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
2003
2004  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
2005
2006  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
2007    return handle_scope_->GetHandle(0).GetReference();
2008  }
2009
2010  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2011    return handle_scope_->GetHandle(0).ToJObject();
2012  }
2013
2014  void* GetBottomOfUsedArea() const {
2015    return bottom_of_used_area_;
2016  }
2017
2018 private:
2019  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2020  class FillJniCall FINAL : public FillNativeCall {
2021   public:
2022    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2023                HandleScope* handle_scope, bool critical_native)
2024      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2025                       handle_scope_(handle_scope),
2026        cur_entry_(0),
2027        critical_native_(critical_native) {}
2028
2029    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
2030
2031    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2032      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2033      handle_scope_ = scope;
2034      cur_entry_ = 0U;
2035    }
2036
2037    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2038      // Initialize padding entries.
2039      size_t expected_slots = handle_scope_->NumberOfReferences();
2040      while (cur_entry_ < expected_slots) {
2041        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2042      }
2043
2044      if (!critical_native_) {
2045        // Non-critical natives have at least the self class (jclass) or this (jobject).
2046        DCHECK_NE(cur_entry_, 0U);
2047      }
2048    }
2049
2050    bool CriticalNative() const {
2051      return critical_native_;
2052    }
2053
2054   private:
2055    HandleScope* handle_scope_;
2056    size_t cur_entry_;
2057    const bool critical_native_;
2058  };
2059
2060  HandleScope* handle_scope_;
2061  FillJniCall jni_call_;
2062  void* bottom_of_used_area_;
2063
2064  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2065
2066  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2067};
2068
2069uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2070  uintptr_t tmp;
2071  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2072  h.Assign(ref);
2073  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2074  cur_entry_++;
2075  return tmp;
2076}
2077
2078void BuildGenericJniFrameVisitor::Visit() {
2079  Primitive::Type type = GetParamPrimitiveType();
2080  switch (type) {
2081    case Primitive::kPrimLong: {
2082      jlong long_arg;
2083      if (IsSplitLongOrDouble()) {
2084        long_arg = ReadSplitLongParam();
2085      } else {
2086        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2087      }
2088      sm_.AdvanceLong(long_arg);
2089      break;
2090    }
2091    case Primitive::kPrimDouble: {
2092      uint64_t double_arg;
2093      if (IsSplitLongOrDouble()) {
2094        // Read into union so that we don't case to a double.
2095        double_arg = ReadSplitLongParam();
2096      } else {
2097        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2098      }
2099      sm_.AdvanceDouble(double_arg);
2100      break;
2101    }
2102    case Primitive::kPrimNot: {
2103      StackReference<mirror::Object>* stack_ref =
2104          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2105      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2106      break;
2107    }
2108    case Primitive::kPrimFloat:
2109      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2110      break;
2111    case Primitive::kPrimBoolean:  // Fall-through.
2112    case Primitive::kPrimByte:     // Fall-through.
2113    case Primitive::kPrimChar:     // Fall-through.
2114    case Primitive::kPrimShort:    // Fall-through.
2115    case Primitive::kPrimInt:      // Fall-through.
2116      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2117      break;
2118    case Primitive::kPrimVoid:
2119      LOG(FATAL) << "UNREACHABLE";
2120      UNREACHABLE();
2121  }
2122}
2123
2124void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2125  // Clear out rest of the scope.
2126  jni_call_.ResetRemainingScopeSlots();
2127  if (!jni_call_.CriticalNative()) {
2128    // Install HandleScope.
2129    self->PushHandleScope(handle_scope_);
2130  }
2131}
2132
2133#if defined(__arm__) || defined(__aarch64__)
2134extern "C" const void* artFindNativeMethod();
2135#else
2136extern "C" const void* artFindNativeMethod(Thread* self);
2137#endif
2138
2139static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2140                                            uint32_t cookie,
2141                                            bool fast_native ATTRIBUTE_UNUSED,
2142                                            jobject l,
2143                                            jobject lock) {
2144  // TODO: add entrypoints for @FastNative returning objects.
2145  if (lock != nullptr) {
2146    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2147  } else {
2148    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2149  }
2150}
2151
2152static void artQuickGenericJniEndJNINonRef(Thread* self,
2153                                           uint32_t cookie,
2154                                           bool fast_native,
2155                                           jobject lock) {
2156  if (lock != nullptr) {
2157    JniMethodEndSynchronized(cookie, lock, self);
2158    // Ignore "fast_native" here because synchronized functions aren't very fast.
2159  } else {
2160    if (UNLIKELY(fast_native)) {
2161      JniMethodFastEnd(cookie, self);
2162    } else {
2163      JniMethodEnd(cookie, self);
2164    }
2165  }
2166}
2167
2168/*
2169 * Initializes an alloca region assumed to be directly below sp for a native call:
2170 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2171 * The final element on the stack is a pointer to the native code.
2172 *
2173 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2174 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2175 *
2176 * The return of this function denotes:
2177 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2178 * 2) An error, if the value is negative.
2179 */
2180extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2181    REQUIRES_SHARED(Locks::mutator_lock_) {
2182  ArtMethod* called = *sp;
2183  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2184  // Fix up a callee-save frame at the bottom of the stack (at `*sp`,
2185  // above the alloca region) while we check for optimization
2186  // annotations, thus allowing stack walking until the completion of
2187  // the JNI frame creation.
2188  //
2189  // Note however that the Generic JNI trampoline does not expect
2190  // exception being thrown at that stage.
2191  *sp = Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2192  self->SetTopOfStack(sp);
2193  uint32_t shorty_len = 0;
2194  const char* shorty = called->GetShorty(&shorty_len);
2195  bool critical_native = called->IsAnnotatedWithCriticalNative();
2196  // ArtMethod::IsAnnotatedWithCriticalNative should not throw
2197  // an exception; clear it if it happened anyway.
2198  // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
2199  if (self->IsExceptionPending()) {
2200    self->ClearException();
2201  }
2202  bool fast_native = called->IsAnnotatedWithFastNative();
2203  // ArtMethod::IsAnnotatedWithFastNative should not throw
2204  // an exception; clear it if it happened anyway.
2205  // TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
2206  if (self->IsExceptionPending()) {
2207    self->ClearException();
2208  }
2209  bool normal_native = !critical_native && !fast_native;
2210  // Restore the initial ArtMethod pointer at `*sp`.
2211  *sp = called;
2212
2213  // Run the visitor and update sp.
2214  BuildGenericJniFrameVisitor visitor(self,
2215                                      called->IsStatic(),
2216                                      critical_native,
2217                                      shorty,
2218                                      shorty_len,
2219                                      &sp);
2220  {
2221    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2222    visitor.VisitArguments();
2223    // FinalizeHandleScope pushes the handle scope on the thread.
2224    visitor.FinalizeHandleScope(self);
2225  }
2226
2227  // Fix up managed-stack things in Thread.
2228  self->SetTopOfStack(sp);
2229
2230  self->VerifyStack();
2231
2232  uint32_t cookie;
2233  uint32_t* sp32;
2234  // Skip calling JniMethodStart for @CriticalNative.
2235  if (LIKELY(!critical_native)) {
2236    // Start JNI, save the cookie.
2237    if (called->IsSynchronized()) {
2238      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2239      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2240      if (self->IsExceptionPending()) {
2241        self->PopHandleScope();
2242        // A negative value denotes an error.
2243        return GetTwoWordFailureValue();
2244      }
2245    } else {
2246      if (fast_native) {
2247        cookie = JniMethodFastStart(self);
2248      } else {
2249        DCHECK(normal_native);
2250        cookie = JniMethodStart(self);
2251      }
2252    }
2253    sp32 = reinterpret_cast<uint32_t*>(sp);
2254    *(sp32 - 1) = cookie;
2255  }
2256
2257  // Retrieve the stored native code.
2258  void const* nativeCode = called->GetEntryPointFromJni();
2259
2260  // There are two cases for the content of nativeCode:
2261  // 1) Pointer to the native function.
2262  // 2) Pointer to the trampoline for native code binding.
2263  // In the second case, we need to execute the binding and continue with the actual native function
2264  // pointer.
2265  DCHECK(nativeCode != nullptr);
2266  if (nativeCode == GetJniDlsymLookupStub()) {
2267#if defined(__arm__) || defined(__aarch64__)
2268    nativeCode = artFindNativeMethod();
2269#else
2270    nativeCode = artFindNativeMethod(self);
2271#endif
2272
2273    if (nativeCode == nullptr) {
2274      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2275
2276      // @CriticalNative calls do not need to call back into JniMethodEnd.
2277      if (LIKELY(!critical_native)) {
2278        // End JNI, as the assembly will move to deliver the exception.
2279        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2280        if (shorty[0] == 'L') {
2281          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2282        } else {
2283          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2284        }
2285      }
2286
2287      return GetTwoWordFailureValue();
2288    }
2289    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2290  }
2291
2292#if defined(__mips__) && !defined(__LP64__)
2293  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2294  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2295  // and load into floating-point registers.
2296  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2297  // view):
2298  // (1)
2299  //  |     DOUBLE    |     DOUBLE    | other args, if any
2300  //  |  F12  |  F13  |  F14  |  F15  |
2301  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2302  // (2)
2303  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2304  //  |  F12  |  F13  |  F14  |       |
2305  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2306  // (3)
2307  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2308  //  |  F12  |       |  F14  |  F15  |
2309  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2310  // (4)
2311  //  | FLOAT | FLOAT | other args, if any
2312  //  |  F12  |  F14  |
2313  //  |  SP+0 |  SP+4 | SP+8
2314  // As you can see, only the last case (4) is special. In all others we can just
2315  // load F12/F13 and F14/F15 in the same manner.
2316  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2317  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2318  if (nativeCode != nullptr &&
2319      shorty != nullptr &&
2320      shorty_len >= 3 &&
2321      shorty[1] == 'F' &&
2322      shorty[2] == 'F') {
2323    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2324  }
2325#endif
2326
2327  // Return native code addr(lo) and bottom of alloca address(hi).
2328  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2329                                reinterpret_cast<uintptr_t>(nativeCode));
2330}
2331
2332// Defined in quick_jni_entrypoints.cc.
2333extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2334                                    jvalue result, uint64_t result_f, ArtMethod* called,
2335                                    HandleScope* handle_scope);
2336/*
2337 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2338 * unlocking.
2339 */
2340extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2341                                                    jvalue result,
2342                                                    uint64_t result_f) {
2343  // We're here just back from a native call. We don't have the shared mutator lock at this point
2344  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2345  // anything that requires a mutator lock before that would cause problems as GC may have the
2346  // exclusive mutator lock and may be moving objects, etc.
2347  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2348  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2349  ArtMethod* called = *sp;
2350  uint32_t cookie = *(sp32 - 1);
2351  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2352  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2353}
2354
2355// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2356// for the method pointer.
2357//
2358// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2359// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2360
2361template<InvokeType type, bool access_check>
2362static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2363                                     ObjPtr<mirror::Object> this_object,
2364                                     Thread* self,
2365                                     ArtMethod** sp) {
2366  ScopedQuickEntrypointChecks sqec(self);
2367  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2368  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2369  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2370  if (UNLIKELY(method == nullptr)) {
2371    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2372    uint32_t shorty_len;
2373    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2374    {
2375      // Remember the args in case a GC happens in FindMethodFromCode.
2376      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2377      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2378      visitor.VisitArguments();
2379      method = FindMethodFromCode<type, access_check>(method_idx,
2380                                                      &this_object,
2381                                                      caller_method,
2382                                                      self);
2383      visitor.FixupReferences();
2384    }
2385
2386    if (UNLIKELY(method == nullptr)) {
2387      CHECK(self->IsExceptionPending());
2388      return GetTwoWordFailureValue();  // Failure.
2389    }
2390  }
2391  DCHECK(!self->IsExceptionPending());
2392  const void* code = method->GetEntryPointFromQuickCompiledCode();
2393
2394  // When we return, the caller will branch to this address, so it had better not be 0!
2395  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2396                          << " location: "
2397                          << method->GetDexFile()->GetLocation();
2398
2399  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2400                                reinterpret_cast<uintptr_t>(method));
2401}
2402
2403// Explicit artInvokeCommon template function declarations to please analysis tool.
2404#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2405  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2406  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2407      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2408
2409EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2410EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2411EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2412EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2413EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2414EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2415EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2416EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2417EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2418EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2419#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2420
2421// See comments in runtime_support_asm.S
2422extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2423    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2424    REQUIRES_SHARED(Locks::mutator_lock_) {
2425  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2426}
2427
2428extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2429    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2430    REQUIRES_SHARED(Locks::mutator_lock_) {
2431  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2432}
2433
2434extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2435    uint32_t method_idx,
2436    mirror::Object* this_object ATTRIBUTE_UNUSED,
2437    Thread* self,
2438    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2439  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2440  // it doesn't cause ObjPtr alignment failure check.
2441  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2442}
2443
2444extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2445    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2446    REQUIRES_SHARED(Locks::mutator_lock_) {
2447  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2448}
2449
2450extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2451    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2452    REQUIRES_SHARED(Locks::mutator_lock_) {
2453  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2454}
2455
2456// Determine target of interface dispatch. The interface method and this object are known non-null.
2457// The interface method is the method returned by the dex cache in the conflict trampoline.
2458extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2459                                                      mirror::Object* raw_this_object,
2460                                                      Thread* self,
2461                                                      ArtMethod** sp)
2462    REQUIRES_SHARED(Locks::mutator_lock_) {
2463  CHECK(interface_method != nullptr);
2464  ObjPtr<mirror::Object> this_object(raw_this_object);
2465  ScopedQuickEntrypointChecks sqec(self);
2466  StackHandleScope<1> hs(self);
2467  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2468
2469  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2470  ArtMethod* method = nullptr;
2471  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2472
2473  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2474    // If the interface method is already resolved, look whether we have a match in the
2475    // ImtConflictTable.
2476    ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method),
2477                                          kRuntimePointerSize);
2478    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2479      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2480      DCHECK(current_table != nullptr);
2481      method = current_table->Lookup(interface_method, kRuntimePointerSize);
2482    } else {
2483      // It seems we aren't really a conflict method!
2484      method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2485    }
2486    if (method != nullptr) {
2487      return GetTwoWordSuccessValue(
2488          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2489          reinterpret_cast<uintptr_t>(method));
2490    }
2491
2492    // No match, use the IfTable.
2493    method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2494    if (UNLIKELY(method == nullptr)) {
2495      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2496          interface_method, this_object, caller_method);
2497      return GetTwoWordFailureValue();  // Failure.
2498    }
2499  } else {
2500    // The interface method is unresolved, so look it up in the dex file of the caller.
2501    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2502
2503    // Fetch the dex_method_idx of the target interface method from the caller.
2504    uint32_t dex_method_idx;
2505    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2506    const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2507    DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2508    const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2509    Instruction::Code instr_code = instr->Opcode();
2510    DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2511           instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2512        << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2513    if (instr_code == Instruction::INVOKE_INTERFACE) {
2514      dex_method_idx = instr->VRegB_35c();
2515    } else {
2516      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2517      dex_method_idx = instr->VRegB_3rc();
2518    }
2519
2520    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2521        ->GetDexFile();
2522    uint32_t shorty_len;
2523    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2524                                                   &shorty_len);
2525    {
2526      // Remember the args in case a GC happens in FindMethodFromCode.
2527      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2528      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2529      visitor.VisitArguments();
2530      method = FindMethodFromCode<kInterface, false>(dex_method_idx,
2531                                                     &this_object,
2532                                                     caller_method,
2533                                                     self);
2534      visitor.FixupReferences();
2535    }
2536
2537    if (UNLIKELY(method == nullptr)) {
2538      CHECK(self->IsExceptionPending());
2539      return GetTwoWordFailureValue();  // Failure.
2540    }
2541    interface_method =
2542        caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
2543    DCHECK(!interface_method->IsRuntimeMethod());
2544  }
2545
2546  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2547  // We create a new table with the new pair { interface_method, method }.
2548  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2549  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2550  if (conflict_method->IsRuntimeMethod()) {
2551    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2552        cls.Get(),
2553        conflict_method,
2554        interface_method,
2555        method,
2556        /*force_new_conflict_method*/false);
2557    if (new_conflict_method != conflict_method) {
2558      // Update the IMT if we create a new conflict method. No fence needed here, as the
2559      // data is consistent.
2560      imt->Set(imt_index,
2561               new_conflict_method,
2562               kRuntimePointerSize);
2563    }
2564  }
2565
2566  const void* code = method->GetEntryPointFromQuickCompiledCode();
2567
2568  // When we return, the caller will branch to this address, so it had better not be 0!
2569  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2570                          << " location: " << method->GetDexFile()->GetLocation();
2571
2572  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2573                                reinterpret_cast<uintptr_t>(method));
2574}
2575
2576// Returns shorty type so the caller can determine how to put |result|
2577// into expected registers. The shorty type is static so the compiler
2578// could call different flavors of this code path depending on the
2579// shorty type though this would require different entry points for
2580// each type.
2581extern "C" uintptr_t artInvokePolymorphic(
2582    JValue* result,
2583    mirror::Object* raw_method_handle,
2584    Thread* self,
2585    ArtMethod** sp)
2586    REQUIRES_SHARED(Locks::mutator_lock_) {
2587  ScopedQuickEntrypointChecks sqec(self);
2588  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2589
2590  // Start new JNI local reference state
2591  JNIEnvExt* env = self->GetJniEnv();
2592  ScopedObjectAccessUnchecked soa(env);
2593  ScopedJniEnvLocalRefState env_state(env);
2594  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2595
2596  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2597  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2598  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2599  const DexFile::CodeItem* code = caller_method->GetCodeItem();
2600  const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
2601  DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2602         inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2603  const DexFile* dex_file = caller_method->GetDexFile();
2604  const uint32_t proto_idx = inst->VRegH();
2605  const char* shorty = dex_file->GetShorty(proto_idx);
2606  const size_t shorty_length = strlen(shorty);
2607  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2608  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2609  gc_visitor.VisitArguments();
2610
2611  // Wrap raw_method_handle in a Handle for safety.
2612  StackHandleScope<5> hs(self);
2613  Handle<mirror::MethodHandle> method_handle(
2614      hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle))));
2615  raw_method_handle = nullptr;
2616  self->EndAssertNoThreadSuspension(old_cause);
2617
2618  // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
2619  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2620  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self,
2621                                                                                   inst->VRegB(),
2622                                                                                   caller_method,
2623                                                                                   kVirtual);
2624  DCHECK((resolved_method ==
2625          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
2626         (resolved_method ==
2627          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
2628  if (UNLIKELY(method_handle.IsNull())) {
2629    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2630    return static_cast<uintptr_t>('V');
2631  }
2632
2633  Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
2634  Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
2635      *dex_file, proto_idx,
2636      hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
2637      hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
2638  // This implies we couldn't resolve one or more types in this method handle.
2639  if (UNLIKELY(method_type.IsNull())) {
2640    CHECK(self->IsExceptionPending());
2641    return static_cast<uintptr_t>('V');
2642  }
2643
2644  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
2645  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2646
2647  // Fix references before constructing the shadow frame.
2648  gc_visitor.FixupReferences();
2649
2650  // Construct shadow frame placing arguments consecutively from |first_arg|.
2651  const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2652  const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
2653  const size_t first_arg = 0;
2654  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2655      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2656  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2657  ScopedStackedShadowFramePusher
2658      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2659  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2660                                                    kMethodIsStatic,
2661                                                    shorty,
2662                                                    strlen(shorty),
2663                                                    shadow_frame,
2664                                                    first_arg);
2665  shadow_frame_builder.VisitArguments();
2666
2667  // Push a transition back into managed code onto the linked list in thread.
2668  ManagedStack fragment;
2669  self->PushManagedStackFragment(&fragment);
2670
2671  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2672  // consecutive order.
2673  uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
2674  uint32_t first_callee_arg = first_arg + 1;
2675  if (!DoInvokePolymorphic<true /* is_range */>(self,
2676                                                resolved_method,
2677                                                *shadow_frame,
2678                                                method_handle,
2679                                                method_type,
2680                                                unused_args,
2681                                                first_callee_arg,
2682                                                result)) {
2683    DCHECK(self->IsExceptionPending());
2684  }
2685
2686  // Pop transition record.
2687  self->PopManagedStackFragment(fragment);
2688
2689  return static_cast<uintptr_t>(shorty[0]);
2690}
2691
2692}  // namespace art
2693