quick_trampoline_entrypoints.cc revision 5c4b2ec16bcd779731bed1d2a0bd902dba3d5f92
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "callee_save_frame.h"
19#include "common_throws.h"
20#include "dex_file-inl.h"
21#include "dex_instruction-inl.h"
22#include "entrypoints/entrypoint_utils-inl.h"
23#include "entrypoints/runtime_asm_entrypoints.h"
24#include "gc/accounting/card_table-inl.h"
25#include "interpreter/interpreter.h"
26#include "linear_alloc.h"
27#include "method_reference.h"
28#include "mirror/class-inl.h"
29#include "mirror/dex_cache-inl.h"
30#include "mirror/method.h"
31#include "mirror/object-inl.h"
32#include "mirror/object_array-inl.h"
33#include "oat_quick_method_header.h"
34#include "quick_exception_handler.h"
35#include "runtime.h"
36#include "scoped_thread_state_change.h"
37#include "stack.h"
38#include "debugger.h"
39
40namespace art {
41
42// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
43class QuickArgumentVisitor {
44  // Number of bytes for each out register in the caller method's frame.
45  static constexpr size_t kBytesStackArgLocation = 4;
46  // Frame size in bytes of a callee-save frame for RefsAndArgs.
47  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
48      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
49#if defined(__arm__)
50  // The callee save frame is pointed to by SP.
51  // | argN       |  |
52  // | ...        |  |
53  // | arg4       |  |
54  // | arg3 spill |  |  Caller's frame
55  // | arg2 spill |  |
56  // | arg1 spill |  |
57  // | Method*    | ---
58  // | LR         |
59  // | ...        |    4x6 bytes callee saves
60  // | R3         |
61  // | R2         |
62  // | R1         |
63  // | S15        |
64  // | :          |
65  // | S0         |
66  // |            |    4x2 bytes padding
67  // | Method*    |  <- sp
68  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
69  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
70  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
71  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
72  static constexpr bool kQuickSkipOddFpRegisters = false;
73  static constexpr size_t kNumQuickGprArgs = 3;
74  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
75  static constexpr bool kGprFprLockstep = false;
76  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
77      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
78  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
79      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
80  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
81      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
82  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
83    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
84  }
85#elif defined(__aarch64__)
86  // The callee save frame is pointed to by SP.
87  // | argN       |  |
88  // | ...        |  |
89  // | arg4       |  |
90  // | arg3 spill |  |  Caller's frame
91  // | arg2 spill |  |
92  // | arg1 spill |  |
93  // | Method*    | ---
94  // | LR         |
95  // | X29        |
96  // |  :         |
97  // | X20        |
98  // | X7         |
99  // | :          |
100  // | X1         |
101  // | D7         |
102  // |  :         |
103  // | D0         |
104  // |            |    padding
105  // | Method*    |  <- sp
106  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
107  static constexpr bool kAlignPairRegister = false;
108  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
109  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
110  static constexpr bool kQuickSkipOddFpRegisters = false;
111  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
112  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
113  static constexpr bool kGprFprLockstep = false;
114  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
115      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
116  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
117      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
118  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
119      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
120  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
121    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
122  }
123#elif defined(__mips__) && !defined(__LP64__)
124  // The callee save frame is pointed to by SP.
125  // | argN       |  |
126  // | ...        |  |
127  // | arg4       |  |
128  // | arg3 spill |  |  Caller's frame
129  // | arg2 spill |  |
130  // | arg1 spill |  |
131  // | Method*    | ---
132  // | RA         |
133  // | ...        |    callee saves
134  // | A3         |    arg3
135  // | A2         |    arg2
136  // | A1         |    arg1
137  // | F15        |
138  // | F14        |    f_arg1
139  // | F13        |
140  // | F12        |    f_arg0
141  // |            |    padding
142  // | A0/Method* |  <- sp
143  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
144  static constexpr bool kAlignPairRegister = true;
145  static constexpr bool kQuickSoftFloatAbi = false;
146  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
147  static constexpr bool kQuickSkipOddFpRegisters = true;
148  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
149  static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
150                                                 // only in even numbered registers and each double
151                                                 // occupies two registers.
152  static constexpr bool kGprFprLockstep = false;
153  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
154  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
155  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
156  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
157    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
158  }
159#elif defined(__mips__) && defined(__LP64__)
160  // The callee save frame is pointed to by SP.
161  // | argN       |  |
162  // | ...        |  |
163  // | arg4       |  |
164  // | arg3 spill |  |  Caller's frame
165  // | arg2 spill |  |
166  // | arg1 spill |  |
167  // | Method*    | ---
168  // | RA         |
169  // | ...        |    callee saves
170  // | A7         |    arg7
171  // | A6         |    arg6
172  // | A5         |    arg5
173  // | A4         |    arg4
174  // | A3         |    arg3
175  // | A2         |    arg2
176  // | A1         |    arg1
177  // | F19        |    f_arg7
178  // | F18        |    f_arg6
179  // | F17        |    f_arg5
180  // | F16        |    f_arg4
181  // | F15        |    f_arg3
182  // | F14        |    f_arg2
183  // | F13        |    f_arg1
184  // | F12        |    f_arg0
185  // |            |    padding
186  // | A0/Method* |  <- sp
187  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
188  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
189  static constexpr bool kAlignPairRegister = false;
190  static constexpr bool kQuickSoftFloatAbi = false;
191  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
192  static constexpr bool kQuickSkipOddFpRegisters = false;
193  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
194  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
195  static constexpr bool kGprFprLockstep = true;
196
197  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
198  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
199  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
200  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
201    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
202  }
203#elif defined(__i386__)
204  // The callee save frame is pointed to by SP.
205  // | argN        |  |
206  // | ...         |  |
207  // | arg4        |  |
208  // | arg3 spill  |  |  Caller's frame
209  // | arg2 spill  |  |
210  // | arg1 spill  |  |
211  // | Method*     | ---
212  // | Return      |
213  // | EBP,ESI,EDI |    callee saves
214  // | EBX         |    arg3
215  // | EDX         |    arg2
216  // | ECX         |    arg1
217  // | XMM3        |    float arg 4
218  // | XMM2        |    float arg 3
219  // | XMM1        |    float arg 2
220  // | XMM0        |    float arg 1
221  // | EAX/Method* |  <- sp
222  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
223  static constexpr bool kAlignPairRegister = false;
224  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
225  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
226  static constexpr bool kQuickSkipOddFpRegisters = false;
227  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
228  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
229  static constexpr bool kGprFprLockstep = false;
230  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
231  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
232  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
233  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
234    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
235  }
236#elif defined(__x86_64__)
237  // The callee save frame is pointed to by SP.
238  // | argN            |  |
239  // | ...             |  |
240  // | reg. arg spills |  |  Caller's frame
241  // | Method*         | ---
242  // | Return          |
243  // | R15             |    callee save
244  // | R14             |    callee save
245  // | R13             |    callee save
246  // | R12             |    callee save
247  // | R9              |    arg5
248  // | R8              |    arg4
249  // | RSI/R6          |    arg1
250  // | RBP/R5          |    callee save
251  // | RBX/R3          |    callee save
252  // | RDX/R2          |    arg2
253  // | RCX/R1          |    arg3
254  // | XMM7            |    float arg 8
255  // | XMM6            |    float arg 7
256  // | XMM5            |    float arg 6
257  // | XMM4            |    float arg 5
258  // | XMM3            |    float arg 4
259  // | XMM2            |    float arg 3
260  // | XMM1            |    float arg 2
261  // | XMM0            |    float arg 1
262  // | Padding         |
263  // | RDI/Method*     |  <- sp
264  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
265  static constexpr bool kAlignPairRegister = false;
266  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
267  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
268  static constexpr bool kQuickSkipOddFpRegisters = false;
269  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
270  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
271  static constexpr bool kGprFprLockstep = false;
272  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
273  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
274  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
275  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
276    switch (gpr_index) {
277      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
278      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
279      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
280      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
281      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
282      default:
283      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
284      return 0;
285    }
286  }
287#else
288#error "Unsupported architecture"
289#endif
290
291 public:
292  // Special handling for proxy methods. Proxy methods are instance methods so the
293  // 'this' object is the 1st argument. They also have the same frame layout as the
294  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
295  // 1st GPR.
296  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
297      SHARED_REQUIRES(Locks::mutator_lock_) {
298    CHECK((*sp)->IsProxyMethod());
299    CHECK_GT(kNumQuickGprArgs, 0u);
300    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
301    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
302        GprIndexToGprOffset(kThisGprIndex);
303    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
304    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
305  }
306
307  static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
308    DCHECK((*sp)->IsCalleeSaveMethod());
309    return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
310  }
311
312  static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
313    DCHECK((*sp)->IsCalleeSaveMethod());
314    uint8_t* previous_sp =
315        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
316    return *reinterpret_cast<ArtMethod**>(previous_sp);
317  }
318
319  static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
320    DCHECK((*sp)->IsCalleeSaveMethod());
321    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
322    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
323        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
324    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
325    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
326    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
327
328    if (current_code->IsOptimized()) {
329      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
330      CodeInfoEncoding encoding = code_info.ExtractEncoding();
331      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
332      DCHECK(stack_map.IsValid());
333      if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
334        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
335        return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding,
336                                           inline_info.GetDepth(encoding.inline_info_encoding)-1);
337      } else {
338        return stack_map.GetDexPc(encoding.stack_map_encoding);
339      }
340    } else {
341      return current_code->ToDexPc(*caller_sp, outer_pc);
342    }
343  }
344
345  // For the given quick ref and args quick frame, return the caller's PC.
346  static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
347    DCHECK((*sp)->IsCalleeSaveMethod());
348    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
349    return *reinterpret_cast<uintptr_t*>(lr);
350  }
351
352  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
353                       uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
354          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
355          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
356          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
357          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
358              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
359          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
360          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
361    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
362                  "Number of Quick FPR arguments unexpected");
363    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
364                  "Double alignment unexpected");
365    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
366    // next register is even.
367    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
368                  "Number of Quick FPR arguments not even");
369    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
370  }
371
372  virtual ~QuickArgumentVisitor() {}
373
374  virtual void Visit() = 0;
375
376  Primitive::Type GetParamPrimitiveType() const {
377    return cur_type_;
378  }
379
380  uint8_t* GetParamAddress() const {
381    if (!kQuickSoftFloatAbi) {
382      Primitive::Type type = GetParamPrimitiveType();
383      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
384        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
385          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
386            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
387          }
388        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
389          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
390        }
391        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
392      }
393    }
394    if (gpr_index_ < kNumQuickGprArgs) {
395      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
396    }
397    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
398  }
399
400  bool IsSplitLongOrDouble() const {
401    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
402        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
403      return is_split_long_or_double_;
404    } else {
405      return false;  // An optimization for when GPR and FPRs are 64bit.
406    }
407  }
408
409  bool IsParamAReference() const {
410    return GetParamPrimitiveType() == Primitive::kPrimNot;
411  }
412
413  bool IsParamALongOrDouble() const {
414    Primitive::Type type = GetParamPrimitiveType();
415    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
416  }
417
418  uint64_t ReadSplitLongParam() const {
419    // The splitted long is always available through the stack.
420    return *reinterpret_cast<uint64_t*>(stack_args_
421        + stack_index_ * kBytesStackArgLocation);
422  }
423
424  void IncGprIndex() {
425    gpr_index_++;
426    if (kGprFprLockstep) {
427      fpr_index_++;
428    }
429  }
430
431  void IncFprIndex() {
432    fpr_index_++;
433    if (kGprFprLockstep) {
434      gpr_index_++;
435    }
436  }
437
438  void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
439    // (a) 'stack_args_' should point to the first method's argument
440    // (b) whatever the argument type it is, the 'stack_index_' should
441    //     be moved forward along with every visiting.
442    gpr_index_ = 0;
443    fpr_index_ = 0;
444    if (kQuickDoubleRegAlignedFloatBackFilled) {
445      fpr_double_index_ = 0;
446    }
447    stack_index_ = 0;
448    if (!is_static_) {  // Handle this.
449      cur_type_ = Primitive::kPrimNot;
450      is_split_long_or_double_ = false;
451      Visit();
452      stack_index_++;
453      if (kNumQuickGprArgs > 0) {
454        IncGprIndex();
455      }
456    }
457    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
458      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
459      switch (cur_type_) {
460        case Primitive::kPrimNot:
461        case Primitive::kPrimBoolean:
462        case Primitive::kPrimByte:
463        case Primitive::kPrimChar:
464        case Primitive::kPrimShort:
465        case Primitive::kPrimInt:
466          is_split_long_or_double_ = false;
467          Visit();
468          stack_index_++;
469          if (gpr_index_ < kNumQuickGprArgs) {
470            IncGprIndex();
471          }
472          break;
473        case Primitive::kPrimFloat:
474          is_split_long_or_double_ = false;
475          Visit();
476          stack_index_++;
477          if (kQuickSoftFloatAbi) {
478            if (gpr_index_ < kNumQuickGprArgs) {
479              IncGprIndex();
480            }
481          } else {
482            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
483              IncFprIndex();
484              if (kQuickDoubleRegAlignedFloatBackFilled) {
485                // Double should not overlap with float.
486                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
487                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
488                // Float should not overlap with double.
489                if (fpr_index_ % 2 == 0) {
490                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
491                }
492              } else if (kQuickSkipOddFpRegisters) {
493                IncFprIndex();
494              }
495            }
496          }
497          break;
498        case Primitive::kPrimDouble:
499        case Primitive::kPrimLong:
500          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
501            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
502              // Currently, this is only for ARM and MIPS, where the first available parameter
503              // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
504              // A2 (on MIPS) instead.
505              IncGprIndex();
506            }
507            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
508                ((gpr_index_ + 1) == kNumQuickGprArgs);
509            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
510              // We don't want to split this. Pass over this register.
511              gpr_index_++;
512              is_split_long_or_double_ = false;
513            }
514            Visit();
515            if (kBytesStackArgLocation == 4) {
516              stack_index_+= 2;
517            } else {
518              CHECK_EQ(kBytesStackArgLocation, 8U);
519              stack_index_++;
520            }
521            if (gpr_index_ < kNumQuickGprArgs) {
522              IncGprIndex();
523              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
524                if (gpr_index_ < kNumQuickGprArgs) {
525                  IncGprIndex();
526                }
527              }
528            }
529          } else {
530            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
531                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
532            Visit();
533            if (kBytesStackArgLocation == 4) {
534              stack_index_+= 2;
535            } else {
536              CHECK_EQ(kBytesStackArgLocation, 8U);
537              stack_index_++;
538            }
539            if (kQuickDoubleRegAlignedFloatBackFilled) {
540              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
541                fpr_double_index_ += 2;
542                // Float should not overlap with double.
543                if (fpr_index_ % 2 == 0) {
544                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
545                }
546              }
547            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
548              IncFprIndex();
549              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
550                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
551                  IncFprIndex();
552                }
553              }
554            }
555          }
556          break;
557        default:
558          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
559      }
560    }
561  }
562
563 protected:
564  const bool is_static_;
565  const char* const shorty_;
566  const uint32_t shorty_len_;
567
568 private:
569  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
570  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
571  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
572  uint32_t gpr_index_;  // Index into spilled GPRs.
573  // Index into spilled FPRs.
574  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
575  // holds a higher register number.
576  uint32_t fpr_index_;
577  // Index into spilled FPRs for aligned double.
578  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
579  // terms of singles, may be behind fpr_index.
580  uint32_t fpr_double_index_;
581  uint32_t stack_index_;  // Index into arguments on the stack.
582  // The current type of argument during VisitArguments.
583  Primitive::Type cur_type_;
584  // Does a 64bit parameter straddle the register and stack arguments?
585  bool is_split_long_or_double_;
586};
587
588// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
589// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
590extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
591    SHARED_REQUIRES(Locks::mutator_lock_) {
592  return QuickArgumentVisitor::GetProxyThisObject(sp);
593}
594
595// Visits arguments on the stack placing them into the shadow frame.
596class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
597 public:
598  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
599                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
600      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
601
602  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
603
604 private:
605  ShadowFrame* const sf_;
606  uint32_t cur_reg_;
607
608  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
609};
610
611void BuildQuickShadowFrameVisitor::Visit() {
612  Primitive::Type type = GetParamPrimitiveType();
613  switch (type) {
614    case Primitive::kPrimLong:  // Fall-through.
615    case Primitive::kPrimDouble:
616      if (IsSplitLongOrDouble()) {
617        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
618      } else {
619        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
620      }
621      ++cur_reg_;
622      break;
623    case Primitive::kPrimNot: {
624        StackReference<mirror::Object>* stack_ref =
625            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
626        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
627      }
628      break;
629    case Primitive::kPrimBoolean:  // Fall-through.
630    case Primitive::kPrimByte:     // Fall-through.
631    case Primitive::kPrimChar:     // Fall-through.
632    case Primitive::kPrimShort:    // Fall-through.
633    case Primitive::kPrimInt:      // Fall-through.
634    case Primitive::kPrimFloat:
635      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
636      break;
637    case Primitive::kPrimVoid:
638      LOG(FATAL) << "UNREACHABLE";
639      UNREACHABLE();
640  }
641  ++cur_reg_;
642}
643
644extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
645    SHARED_REQUIRES(Locks::mutator_lock_) {
646  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
647  // frame.
648  ScopedQuickEntrypointChecks sqec(self);
649
650  if (UNLIKELY(!method->IsInvokable())) {
651    method->ThrowInvocationTimeError();
652    return 0;
653  }
654
655  JValue tmp_value;
656  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
657      StackedShadowFrameType::kSingleFrameDeoptimizationShadowFrame, false);
658  ManagedStack fragment;
659
660  DCHECK(!method->IsNative()) << PrettyMethod(method);
661  uint32_t shorty_len = 0;
662  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
663  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
664  DCHECK(code_item != nullptr) << PrettyMethod(method);
665  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
666
667  JValue result;
668
669  if (deopt_frame != nullptr) {
670    // Coming from single-frame deopt.
671
672    if (kIsDebugBuild) {
673      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
674      // of the call-stack) corresponds to the called method.
675      ShadowFrame* linked = deopt_frame;
676      while (linked->GetLink() != nullptr) {
677        linked = linked->GetLink();
678      }
679      CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
680          << PrettyMethod(linked->GetMethod());
681    }
682
683    if (VLOG_IS_ON(deopt)) {
684      // Print out the stack to verify that it was a single-frame deopt.
685      LOG(INFO) << "Continue-ing from deopt. Stack is:";
686      QuickExceptionHandler::DumpFramesWithType(self, true);
687    }
688
689    mirror::Throwable* pending_exception = nullptr;
690    bool from_code = false;
691    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
692    CHECK(from_code);
693
694    // Push a transition back into managed code onto the linked list in thread.
695    self->PushManagedStackFragment(&fragment);
696
697    // Ensure that the stack is still in order.
698    if (kIsDebugBuild) {
699      class DummyStackVisitor : public StackVisitor {
700       public:
701        explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_)
702            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
703
704        bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
705          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
706          // logic. Just always say we want to continue.
707          return true;
708        }
709      };
710      DummyStackVisitor dsv(self);
711      dsv.WalkStack();
712    }
713
714    // Restore the exception that was pending before deoptimization then interpret the
715    // deoptimized frames.
716    if (pending_exception != nullptr) {
717      self->SetException(pending_exception);
718    }
719    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
720  } else {
721    const char* old_cause = self->StartAssertNoThreadSuspension(
722        "Building interpreter shadow frame");
723    uint16_t num_regs = code_item->registers_size_;
724    // No last shadow coming from quick.
725    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
726        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
727    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
728    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
729    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
730                                                      shadow_frame, first_arg_reg);
731    shadow_frame_builder.VisitArguments();
732    const bool needs_initialization =
733        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
734    // Push a transition back into managed code onto the linked list in thread.
735    self->PushManagedStackFragment(&fragment);
736    self->PushShadowFrame(shadow_frame);
737    self->EndAssertNoThreadSuspension(old_cause);
738
739    if (needs_initialization) {
740      // Ensure static method's class is initialized.
741      StackHandleScope<1> hs(self);
742      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
743      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
744        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
745        self->PopManagedStackFragment(fragment);
746        return 0;
747      }
748    }
749
750    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
751  }
752
753  // Pop transition.
754  self->PopManagedStackFragment(fragment);
755
756  // Request a stack deoptimization if needed
757  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
758  if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
759    // Push the context of the deoptimization stack so we can restore the return value and the
760    // exception before executing the deoptimized frames.
761    self->PushDeoptimizationContext(
762        result, shorty[0] == 'L', /* from_code */ false, self->GetException());
763
764    // Set special exception to cause deoptimization.
765    self->SetException(Thread::GetDeoptimizationException());
766  }
767
768  // No need to restore the args since the method has already been run by the interpreter.
769  return result.GetJ();
770}
771
772// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
773// to jobjects.
774class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
775 public:
776  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
777                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
778      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
779
780  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
781
782  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
783
784 private:
785  ScopedObjectAccessUnchecked* const soa_;
786  std::vector<jvalue>* const args_;
787  // References which we must update when exiting in case the GC moved the objects.
788  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
789
790  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
791};
792
793void BuildQuickArgumentVisitor::Visit() {
794  jvalue val;
795  Primitive::Type type = GetParamPrimitiveType();
796  switch (type) {
797    case Primitive::kPrimNot: {
798      StackReference<mirror::Object>* stack_ref =
799          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
800      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
801      references_.push_back(std::make_pair(val.l, stack_ref));
802      break;
803    }
804    case Primitive::kPrimLong:  // Fall-through.
805    case Primitive::kPrimDouble:
806      if (IsSplitLongOrDouble()) {
807        val.j = ReadSplitLongParam();
808      } else {
809        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
810      }
811      break;
812    case Primitive::kPrimBoolean:  // Fall-through.
813    case Primitive::kPrimByte:     // Fall-through.
814    case Primitive::kPrimChar:     // Fall-through.
815    case Primitive::kPrimShort:    // Fall-through.
816    case Primitive::kPrimInt:      // Fall-through.
817    case Primitive::kPrimFloat:
818      val.i = *reinterpret_cast<jint*>(GetParamAddress());
819      break;
820    case Primitive::kPrimVoid:
821      LOG(FATAL) << "UNREACHABLE";
822      UNREACHABLE();
823  }
824  args_->push_back(val);
825}
826
827void BuildQuickArgumentVisitor::FixupReferences() {
828  // Fixup any references which may have changed.
829  for (const auto& pair : references_) {
830    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
831    soa_->Env()->DeleteLocalRef(pair.first);
832  }
833}
834
835// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
836// which is responsible for recording callee save registers. We explicitly place into jobjects the
837// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
838// field within the proxy object, which will box the primitive arguments and deal with error cases.
839extern "C" uint64_t artQuickProxyInvokeHandler(
840    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
841    SHARED_REQUIRES(Locks::mutator_lock_) {
842  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
843  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
844  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
845  const char* old_cause =
846      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
847  // Register the top of the managed stack, making stack crawlable.
848  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
849  self->VerifyStack();
850  // Start new JNI local reference state.
851  JNIEnvExt* env = self->GetJniEnv();
852  ScopedObjectAccessUnchecked soa(env);
853  ScopedJniEnvLocalRefState env_state(env);
854  // Create local ref. copies of proxy method and the receiver.
855  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
856
857  // Placing arguments into args vector and remove the receiver.
858  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
859  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
860                                       << PrettyMethod(non_proxy_method);
861  std::vector<jvalue> args;
862  uint32_t shorty_len = 0;
863  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
864  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
865
866  local_ref_visitor.VisitArguments();
867  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
868  args.erase(args.begin());
869
870  // Convert proxy method into expected interface method.
871  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
872  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
873  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
874  self->EndAssertNoThreadSuspension(old_cause);
875  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
876      mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
877
878  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
879  // that performs allocations.
880  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
881  // Restore references which might have moved.
882  local_ref_visitor.FixupReferences();
883  return result.GetJ();
884}
885
886// Read object references held in arguments from quick frames and place in a JNI local references,
887// so they don't get garbage collected.
888class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
889 public:
890  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
891                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
892      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
893
894  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
895
896  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
897
898 private:
899  ScopedObjectAccessUnchecked* const soa_;
900  // References which we must update when exiting in case the GC moved the objects.
901  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
902
903  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
904};
905
906void RememberForGcArgumentVisitor::Visit() {
907  if (IsParamAReference()) {
908    StackReference<mirror::Object>* stack_ref =
909        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
910    jobject reference =
911        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
912    references_.push_back(std::make_pair(reference, stack_ref));
913  }
914}
915
916void RememberForGcArgumentVisitor::FixupReferences() {
917  // Fixup any references which may have changed.
918  for (const auto& pair : references_) {
919    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
920    soa_->Env()->DeleteLocalRef(pair.first);
921  }
922}
923
924// Lazily resolve a method for quick. Called by stub code.
925extern "C" const void* artQuickResolutionTrampoline(
926    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
927    SHARED_REQUIRES(Locks::mutator_lock_) {
928  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
929  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
930  // does not have the same stack layout as the callee-save method).
931  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
932  // Start new JNI local reference state
933  JNIEnvExt* env = self->GetJniEnv();
934  ScopedObjectAccessUnchecked soa(env);
935  ScopedJniEnvLocalRefState env_state(env);
936  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
937
938  // Compute details about the called method (avoid GCs)
939  ClassLinker* linker = Runtime::Current()->GetClassLinker();
940  InvokeType invoke_type;
941  MethodReference called_method(nullptr, 0);
942  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
943  ArtMethod* caller = nullptr;
944  if (!called_method_known_on_entry) {
945    caller = QuickArgumentVisitor::GetCallingMethod(sp);
946    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
947    const DexFile::CodeItem* code;
948    called_method.dex_file = caller->GetDexFile();
949    code = caller->GetCodeItem();
950    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
951    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
952    Instruction::Code instr_code = instr->Opcode();
953    bool is_range;
954    switch (instr_code) {
955      case Instruction::INVOKE_DIRECT:
956        invoke_type = kDirect;
957        is_range = false;
958        break;
959      case Instruction::INVOKE_DIRECT_RANGE:
960        invoke_type = kDirect;
961        is_range = true;
962        break;
963      case Instruction::INVOKE_STATIC:
964        invoke_type = kStatic;
965        is_range = false;
966        break;
967      case Instruction::INVOKE_STATIC_RANGE:
968        invoke_type = kStatic;
969        is_range = true;
970        break;
971      case Instruction::INVOKE_SUPER:
972        invoke_type = kSuper;
973        is_range = false;
974        break;
975      case Instruction::INVOKE_SUPER_RANGE:
976        invoke_type = kSuper;
977        is_range = true;
978        break;
979      case Instruction::INVOKE_VIRTUAL:
980        invoke_type = kVirtual;
981        is_range = false;
982        break;
983      case Instruction::INVOKE_VIRTUAL_RANGE:
984        invoke_type = kVirtual;
985        is_range = true;
986        break;
987      case Instruction::INVOKE_INTERFACE:
988        invoke_type = kInterface;
989        is_range = false;
990        break;
991      case Instruction::INVOKE_INTERFACE_RANGE:
992        invoke_type = kInterface;
993        is_range = true;
994        break;
995      default:
996        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
997        UNREACHABLE();
998    }
999    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1000  } else {
1001    invoke_type = kStatic;
1002    called_method.dex_file = called->GetDexFile();
1003    called_method.dex_method_index = called->GetDexMethodIndex();
1004  }
1005  uint32_t shorty_len;
1006  const char* shorty =
1007      called_method.dex_file->GetMethodShorty(
1008          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1009  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1010  visitor.VisitArguments();
1011  self->EndAssertNoThreadSuspension(old_cause);
1012  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1013  // Resolve method filling in dex cache.
1014  if (!called_method_known_on_entry) {
1015    StackHandleScope<1> hs(self);
1016    mirror::Object* dummy = nullptr;
1017    HandleWrapper<mirror::Object> h_receiver(
1018        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1019    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1020    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1021        self, called_method.dex_method_index, caller, invoke_type);
1022  }
1023  const void* code = nullptr;
1024  if (LIKELY(!self->IsExceptionPending())) {
1025    // Incompatible class change should have been handled in resolve method.
1026    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1027        << PrettyMethod(called) << " " << invoke_type;
1028    if (virtual_or_interface || invoke_type == kSuper) {
1029      // Refine called method based on receiver for kVirtual/kInterface, and
1030      // caller for kSuper.
1031      ArtMethod* orig_called = called;
1032      if (invoke_type == kVirtual) {
1033        CHECK(receiver != nullptr) << invoke_type;
1034        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
1035      } else if (invoke_type == kInterface) {
1036        CHECK(receiver != nullptr) << invoke_type;
1037        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
1038      } else {
1039        DCHECK_EQ(invoke_type, kSuper);
1040        CHECK(caller != nullptr) << invoke_type;
1041        StackHandleScope<2> hs(self);
1042        Handle<mirror::DexCache> dex_cache(
1043            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1044        Handle<mirror::ClassLoader> class_loader(
1045            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1046        // TODO Maybe put this into a mirror::Class function.
1047        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1048            called_method.dex_method_index, dex_cache, class_loader);
1049        if (ref_class->IsInterface()) {
1050          called = ref_class->FindVirtualMethodForInterfaceSuper(called, sizeof(void*));
1051        } else {
1052          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1053              called->GetMethodIndex(), sizeof(void*));
1054        }
1055      }
1056
1057      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
1058                               << PrettyTypeOf(receiver) << " "
1059                               << invoke_type << " " << orig_called->GetVtableIndex();
1060
1061      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1062      // of the sharpened method avoiding dirtying the dex cache if possible.
1063      // Note, called_method.dex_method_index references the dex method before the
1064      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1065      // about the name and signature.
1066      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1067      if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) {
1068        // Calling from one dex file to another, need to compute the method index appropriate to
1069        // the caller's dex file. Since we get here only if the original called was a runtime
1070        // method, we've got the correct dex_file and a dex_method_idx from above.
1071        DCHECK(!called_method_known_on_entry);
1072        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1073        const DexFile* caller_dex_file = called_method.dex_file;
1074        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1075        update_dex_cache_method_index =
1076            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1077                                                     caller_method_name_and_sig_index);
1078      }
1079      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1080          (caller->GetDexCacheResolvedMethod(
1081              update_dex_cache_method_index, sizeof(void*)) != called)) {
1082        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
1083      }
1084    } else if (invoke_type == kStatic) {
1085      const auto called_dex_method_idx = called->GetDexMethodIndex();
1086      // For static invokes, we may dispatch to the static method in the superclass but resolve
1087      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1088      // resolved method for the super class dex method index if we are in the same dex file.
1089      // b/19175856
1090      if (called->GetDexFile() == called_method.dex_file &&
1091          called_method.dex_method_index != called_dex_method_idx) {
1092        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
1093      }
1094    }
1095
1096    // Ensure that the called method's class is initialized.
1097    StackHandleScope<1> hs(soa.Self());
1098    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1099    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1100    if (LIKELY(called_class->IsInitialized())) {
1101      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1102        // If we are single-stepping or the called method is deoptimized (by a
1103        // breakpoint, for example), then we have to execute the called method
1104        // with the interpreter.
1105        code = GetQuickToInterpreterBridge();
1106      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1107        // If the caller is deoptimized (by a breakpoint, for example), we have to
1108        // continue its execution with interpreter when returning from the called
1109        // method. Because we do not want to execute the called method with the
1110        // interpreter, we wrap its execution into the instrumentation stubs.
1111        // When the called method returns, it will execute the instrumentation
1112        // exit hook that will determine the need of the interpreter with a call
1113        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1114        // it is needed.
1115        code = GetQuickInstrumentationEntryPoint();
1116      } else {
1117        code = called->GetEntryPointFromQuickCompiledCode();
1118      }
1119    } else if (called_class->IsInitializing()) {
1120      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1121        // If we are single-stepping or the called method is deoptimized (by a
1122        // breakpoint, for example), then we have to execute the called method
1123        // with the interpreter.
1124        code = GetQuickToInterpreterBridge();
1125      } else if (invoke_type == kStatic) {
1126        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1127        // until class is initialized to stop races between threads).
1128        code = linker->GetQuickOatCodeFor(called);
1129      } else {
1130        // No trampoline for non-static methods.
1131        code = called->GetEntryPointFromQuickCompiledCode();
1132      }
1133    } else {
1134      DCHECK(called_class->IsErroneous());
1135    }
1136  }
1137  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1138  // Fixup any locally saved objects may have moved during a GC.
1139  visitor.FixupReferences();
1140  // Place called method in callee-save frame to be placed as first argument to quick method.
1141  *sp = called;
1142
1143  return code;
1144}
1145
1146/*
1147 * This class uses a couple of observations to unite the different calling conventions through
1148 * a few constants.
1149 *
1150 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1151 *    possible alignment.
1152 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1153 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1154 *    when we have to split things
1155 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1156 *    and we can use Int handling directly.
1157 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1158 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1159 *    extension should be compatible with Aarch64, which mandates copying the available bits
1160 *    into LSB and leaving the rest unspecified.
1161 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1162 *    the stack.
1163 * 6) There is only little endian.
1164 *
1165 *
1166 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1167 * follows:
1168 *
1169 * void PushGpr(uintptr_t):   Add a value for the next GPR
1170 *
1171 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1172 *                            padding, that is, think the architecture is 32b and aligns 64b.
1173 *
1174 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1175 *                            split this if necessary. The current state will have aligned, if
1176 *                            necessary.
1177 *
1178 * void PushStack(uintptr_t): Push a value to the stack.
1179 *
1180 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1181 *                                          as this might be important for null initialization.
1182 *                                          Must return the jobject, that is, the reference to the
1183 *                                          entry in the HandleScope (nullptr if necessary).
1184 *
1185 */
1186template<class T> class BuildNativeCallFrameStateMachine {
1187 public:
1188#if defined(__arm__)
1189  // TODO: These are all dummy values!
1190  static constexpr bool kNativeSoftFloatAbi = true;
1191  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1192  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1193
1194  static constexpr size_t kRegistersNeededForLong = 2;
1195  static constexpr size_t kRegistersNeededForDouble = 2;
1196  static constexpr bool kMultiRegistersAligned = true;
1197  static constexpr bool kMultiFPRegistersWidened = false;
1198  static constexpr bool kMultiGPRegistersWidened = false;
1199  static constexpr bool kAlignLongOnStack = true;
1200  static constexpr bool kAlignDoubleOnStack = true;
1201#elif defined(__aarch64__)
1202  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1203  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1204  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1205
1206  static constexpr size_t kRegistersNeededForLong = 1;
1207  static constexpr size_t kRegistersNeededForDouble = 1;
1208  static constexpr bool kMultiRegistersAligned = false;
1209  static constexpr bool kMultiFPRegistersWidened = false;
1210  static constexpr bool kMultiGPRegistersWidened = false;
1211  static constexpr bool kAlignLongOnStack = false;
1212  static constexpr bool kAlignDoubleOnStack = false;
1213#elif defined(__mips__) && !defined(__LP64__)
1214  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1215  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1216  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1217
1218  static constexpr size_t kRegistersNeededForLong = 2;
1219  static constexpr size_t kRegistersNeededForDouble = 2;
1220  static constexpr bool kMultiRegistersAligned = true;
1221  static constexpr bool kMultiFPRegistersWidened = true;
1222  static constexpr bool kMultiGPRegistersWidened = false;
1223  static constexpr bool kAlignLongOnStack = true;
1224  static constexpr bool kAlignDoubleOnStack = true;
1225#elif defined(__mips__) && defined(__LP64__)
1226  // Let the code prepare GPRs only and we will load the FPRs with same data.
1227  static constexpr bool kNativeSoftFloatAbi = true;
1228  static constexpr size_t kNumNativeGprArgs = 8;
1229  static constexpr size_t kNumNativeFprArgs = 0;
1230
1231  static constexpr size_t kRegistersNeededForLong = 1;
1232  static constexpr size_t kRegistersNeededForDouble = 1;
1233  static constexpr bool kMultiRegistersAligned = false;
1234  static constexpr bool kMultiFPRegistersWidened = false;
1235  static constexpr bool kMultiGPRegistersWidened = true;
1236  static constexpr bool kAlignLongOnStack = false;
1237  static constexpr bool kAlignDoubleOnStack = false;
1238#elif defined(__i386__)
1239  // TODO: Check these!
1240  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1241  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1242  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1243
1244  static constexpr size_t kRegistersNeededForLong = 2;
1245  static constexpr size_t kRegistersNeededForDouble = 2;
1246  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1247  static constexpr bool kMultiFPRegistersWidened = false;
1248  static constexpr bool kMultiGPRegistersWidened = false;
1249  static constexpr bool kAlignLongOnStack = false;
1250  static constexpr bool kAlignDoubleOnStack = false;
1251#elif defined(__x86_64__)
1252  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1253  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1254  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1255
1256  static constexpr size_t kRegistersNeededForLong = 1;
1257  static constexpr size_t kRegistersNeededForDouble = 1;
1258  static constexpr bool kMultiRegistersAligned = false;
1259  static constexpr bool kMultiFPRegistersWidened = false;
1260  static constexpr bool kMultiGPRegistersWidened = false;
1261  static constexpr bool kAlignLongOnStack = false;
1262  static constexpr bool kAlignDoubleOnStack = false;
1263#else
1264#error "Unsupported architecture"
1265#endif
1266
1267 public:
1268  explicit BuildNativeCallFrameStateMachine(T* delegate)
1269      : gpr_index_(kNumNativeGprArgs),
1270        fpr_index_(kNumNativeFprArgs),
1271        stack_entries_(0),
1272        delegate_(delegate) {
1273    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1274    // the next register is even; counting down is just to make the compiler happy...
1275    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1276    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1277  }
1278
1279  virtual ~BuildNativeCallFrameStateMachine() {}
1280
1281  bool HavePointerGpr() const {
1282    return gpr_index_ > 0;
1283  }
1284
1285  void AdvancePointer(const void* val) {
1286    if (HavePointerGpr()) {
1287      gpr_index_--;
1288      PushGpr(reinterpret_cast<uintptr_t>(val));
1289    } else {
1290      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1291      PushStack(reinterpret_cast<uintptr_t>(val));
1292      gpr_index_ = 0;
1293    }
1294  }
1295
1296  bool HaveHandleScopeGpr() const {
1297    return gpr_index_ > 0;
1298  }
1299
1300  void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1301    uintptr_t handle = PushHandle(ptr);
1302    if (HaveHandleScopeGpr()) {
1303      gpr_index_--;
1304      PushGpr(handle);
1305    } else {
1306      stack_entries_++;
1307      PushStack(handle);
1308      gpr_index_ = 0;
1309    }
1310  }
1311
1312  bool HaveIntGpr() const {
1313    return gpr_index_ > 0;
1314  }
1315
1316  void AdvanceInt(uint32_t val) {
1317    if (HaveIntGpr()) {
1318      gpr_index_--;
1319      if (kMultiGPRegistersWidened) {
1320        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1321        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1322      } else {
1323        PushGpr(val);
1324      }
1325    } else {
1326      stack_entries_++;
1327      if (kMultiGPRegistersWidened) {
1328        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1329        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1330      } else {
1331        PushStack(val);
1332      }
1333      gpr_index_ = 0;
1334    }
1335  }
1336
1337  bool HaveLongGpr() const {
1338    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1339  }
1340
1341  bool LongGprNeedsPadding() const {
1342    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1343        kAlignLongOnStack &&                  // and when it needs alignment
1344        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1345  }
1346
1347  bool LongStackNeedsPadding() const {
1348    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1349        kAlignLongOnStack &&                  // and when it needs 8B alignment
1350        (stack_entries_ & 1) == 1;            // counter is odd
1351  }
1352
1353  void AdvanceLong(uint64_t val) {
1354    if (HaveLongGpr()) {
1355      if (LongGprNeedsPadding()) {
1356        PushGpr(0);
1357        gpr_index_--;
1358      }
1359      if (kRegistersNeededForLong == 1) {
1360        PushGpr(static_cast<uintptr_t>(val));
1361      } else {
1362        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1363        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1364      }
1365      gpr_index_ -= kRegistersNeededForLong;
1366    } else {
1367      if (LongStackNeedsPadding()) {
1368        PushStack(0);
1369        stack_entries_++;
1370      }
1371      if (kRegistersNeededForLong == 1) {
1372        PushStack(static_cast<uintptr_t>(val));
1373        stack_entries_++;
1374      } else {
1375        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1376        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1377        stack_entries_ += 2;
1378      }
1379      gpr_index_ = 0;
1380    }
1381  }
1382
1383  bool HaveFloatFpr() const {
1384    return fpr_index_ > 0;
1385  }
1386
1387  void AdvanceFloat(float val) {
1388    if (kNativeSoftFloatAbi) {
1389      AdvanceInt(bit_cast<uint32_t, float>(val));
1390    } else {
1391      if (HaveFloatFpr()) {
1392        fpr_index_--;
1393        if (kRegistersNeededForDouble == 1) {
1394          if (kMultiFPRegistersWidened) {
1395            PushFpr8(bit_cast<uint64_t, double>(val));
1396          } else {
1397            // No widening, just use the bits.
1398            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1399          }
1400        } else {
1401          PushFpr4(val);
1402        }
1403      } else {
1404        stack_entries_++;
1405        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1406          // Need to widen before storing: Note the "double" in the template instantiation.
1407          // Note: We need to jump through those hoops to make the compiler happy.
1408          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1409          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1410        } else {
1411          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1412        }
1413        fpr_index_ = 0;
1414      }
1415    }
1416  }
1417
1418  bool HaveDoubleFpr() const {
1419    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1420  }
1421
1422  bool DoubleFprNeedsPadding() const {
1423    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1424        kAlignDoubleOnStack &&                  // and when it needs alignment
1425        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1426  }
1427
1428  bool DoubleStackNeedsPadding() const {
1429    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1430        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1431        (stack_entries_ & 1) == 1;              // counter is odd
1432  }
1433
1434  void AdvanceDouble(uint64_t val) {
1435    if (kNativeSoftFloatAbi) {
1436      AdvanceLong(val);
1437    } else {
1438      if (HaveDoubleFpr()) {
1439        if (DoubleFprNeedsPadding()) {
1440          PushFpr4(0);
1441          fpr_index_--;
1442        }
1443        PushFpr8(val);
1444        fpr_index_ -= kRegistersNeededForDouble;
1445      } else {
1446        if (DoubleStackNeedsPadding()) {
1447          PushStack(0);
1448          stack_entries_++;
1449        }
1450        if (kRegistersNeededForDouble == 1) {
1451          PushStack(static_cast<uintptr_t>(val));
1452          stack_entries_++;
1453        } else {
1454          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1455          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1456          stack_entries_ += 2;
1457        }
1458        fpr_index_ = 0;
1459      }
1460    }
1461  }
1462
1463  uint32_t GetStackEntries() const {
1464    return stack_entries_;
1465  }
1466
1467  uint32_t GetNumberOfUsedGprs() const {
1468    return kNumNativeGprArgs - gpr_index_;
1469  }
1470
1471  uint32_t GetNumberOfUsedFprs() const {
1472    return kNumNativeFprArgs - fpr_index_;
1473  }
1474
1475 private:
1476  void PushGpr(uintptr_t val) {
1477    delegate_->PushGpr(val);
1478  }
1479  void PushFpr4(float val) {
1480    delegate_->PushFpr4(val);
1481  }
1482  void PushFpr8(uint64_t val) {
1483    delegate_->PushFpr8(val);
1484  }
1485  void PushStack(uintptr_t val) {
1486    delegate_->PushStack(val);
1487  }
1488  uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
1489    return delegate_->PushHandle(ref);
1490  }
1491
1492  uint32_t gpr_index_;      // Number of free GPRs
1493  uint32_t fpr_index_;      // Number of free FPRs
1494  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1495                            // extended
1496  T* const delegate_;             // What Push implementation gets called
1497};
1498
1499// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1500// in subclasses.
1501//
1502// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1503// them with handles.
1504class ComputeNativeCallFrameSize {
1505 public:
1506  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1507
1508  virtual ~ComputeNativeCallFrameSize() {}
1509
1510  uint32_t GetStackSize() const {
1511    return num_stack_entries_ * sizeof(uintptr_t);
1512  }
1513
1514  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1515    sp8 -= GetStackSize();
1516    // Align by kStackAlignment.
1517    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1518    return sp8;
1519  }
1520
1521  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1522      const {
1523    // Assumption is OK right now, as we have soft-float arm
1524    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1525    sp8 -= fregs * sizeof(uintptr_t);
1526    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1527    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1528    sp8 -= iregs * sizeof(uintptr_t);
1529    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1530    return sp8;
1531  }
1532
1533  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1534                            uint32_t** start_fpr) const {
1535    // Native call stack.
1536    sp8 = LayoutCallStack(sp8);
1537    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1538
1539    // Put fprs and gprs below.
1540    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1541
1542    // Return the new bottom.
1543    return sp8;
1544  }
1545
1546  virtual void WalkHeader(
1547      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1548      SHARED_REQUIRES(Locks::mutator_lock_) {
1549  }
1550
1551  void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
1552    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1553
1554    WalkHeader(&sm);
1555
1556    for (uint32_t i = 1; i < shorty_len; ++i) {
1557      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1558      switch (cur_type_) {
1559        case Primitive::kPrimNot:
1560          // TODO: fix abuse of mirror types.
1561          sm.AdvanceHandleScope(
1562              reinterpret_cast<mirror::Object*>(0x12345678));
1563          break;
1564
1565        case Primitive::kPrimBoolean:
1566        case Primitive::kPrimByte:
1567        case Primitive::kPrimChar:
1568        case Primitive::kPrimShort:
1569        case Primitive::kPrimInt:
1570          sm.AdvanceInt(0);
1571          break;
1572        case Primitive::kPrimFloat:
1573          sm.AdvanceFloat(0);
1574          break;
1575        case Primitive::kPrimDouble:
1576          sm.AdvanceDouble(0);
1577          break;
1578        case Primitive::kPrimLong:
1579          sm.AdvanceLong(0);
1580          break;
1581        default:
1582          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1583          UNREACHABLE();
1584      }
1585    }
1586
1587    num_stack_entries_ = sm.GetStackEntries();
1588  }
1589
1590  void PushGpr(uintptr_t /* val */) {
1591    // not optimizing registers, yet
1592  }
1593
1594  void PushFpr4(float /* val */) {
1595    // not optimizing registers, yet
1596  }
1597
1598  void PushFpr8(uint64_t /* val */) {
1599    // not optimizing registers, yet
1600  }
1601
1602  void PushStack(uintptr_t /* val */) {
1603    // counting is already done in the superclass
1604  }
1605
1606  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1607    return reinterpret_cast<uintptr_t>(nullptr);
1608  }
1609
1610 protected:
1611  uint32_t num_stack_entries_;
1612};
1613
1614class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1615 public:
1616  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1617
1618  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1619  // is at *m = sp. Will update to point to the bottom of the save frame.
1620  //
1621  // Note: assumes ComputeAll() has been run before.
1622  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1623      SHARED_REQUIRES(Locks::mutator_lock_) {
1624    ArtMethod* method = **m;
1625
1626    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1627
1628    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1629
1630    // First, fix up the layout of the callee-save frame.
1631    // We have to squeeze in the HandleScope, and relocate the method pointer.
1632
1633    // "Free" the slot for the method.
1634    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1635
1636    // Under the callee saves put handle scope and new method stack reference.
1637    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1638    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1639
1640    sp8 -= scope_and_method;
1641    // Align by kStackAlignment.
1642    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1643
1644    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1645    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1646                                        num_handle_scope_references_);
1647
1648    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1649    uint8_t* method_pointer = sp8;
1650    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1651    *new_method_ref = method;
1652    *m = new_method_ref;
1653  }
1654
1655  // Adds space for the cookie. Note: may leave stack unaligned.
1656  void LayoutCookie(uint8_t** sp) const {
1657    // Reference cookie and padding
1658    *sp -= 8;
1659  }
1660
1661  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1662  // Returns the new bottom. Note: this may be unaligned.
1663  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1664      SHARED_REQUIRES(Locks::mutator_lock_) {
1665    // First, fix up the layout of the callee-save frame.
1666    // We have to squeeze in the HandleScope, and relocate the method pointer.
1667    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1668
1669    // The bottom of the callee-save frame is now where the method is, *m.
1670    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1671
1672    // Add space for cookie.
1673    LayoutCookie(&sp8);
1674
1675    return sp8;
1676  }
1677
1678  // WARNING: After this, *sp won't be pointing to the method anymore!
1679  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1680                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1681                         uint32_t** start_fpr)
1682      SHARED_REQUIRES(Locks::mutator_lock_) {
1683    Walk(shorty, shorty_len);
1684
1685    // JNI part.
1686    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1687
1688    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1689
1690    // Return the new bottom.
1691    return sp8;
1692  }
1693
1694  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1695
1696  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1697  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1698      SHARED_REQUIRES(Locks::mutator_lock_);
1699
1700 private:
1701  uint32_t num_handle_scope_references_;
1702};
1703
1704uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1705  num_handle_scope_references_++;
1706  return reinterpret_cast<uintptr_t>(nullptr);
1707}
1708
1709void ComputeGenericJniFrameSize::WalkHeader(
1710    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1711  // JNIEnv
1712  sm->AdvancePointer(nullptr);
1713
1714  // Class object or this as first argument
1715  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1716}
1717
1718// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1719// the template requirements of BuildGenericJniFrameStateMachine.
1720class FillNativeCall {
1721 public:
1722  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1723      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1724
1725  virtual ~FillNativeCall() {}
1726
1727  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1728    cur_gpr_reg_ = gpr_regs;
1729    cur_fpr_reg_ = fpr_regs;
1730    cur_stack_arg_ = stack_args;
1731  }
1732
1733  void PushGpr(uintptr_t val) {
1734    *cur_gpr_reg_ = val;
1735    cur_gpr_reg_++;
1736  }
1737
1738  void PushFpr4(float val) {
1739    *cur_fpr_reg_ = val;
1740    cur_fpr_reg_++;
1741  }
1742
1743  void PushFpr8(uint64_t val) {
1744    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1745    *tmp = val;
1746    cur_fpr_reg_ += 2;
1747  }
1748
1749  void PushStack(uintptr_t val) {
1750    *cur_stack_arg_ = val;
1751    cur_stack_arg_++;
1752  }
1753
1754  virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
1755    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1756    UNREACHABLE();
1757  }
1758
1759 private:
1760  uintptr_t* cur_gpr_reg_;
1761  uint32_t* cur_fpr_reg_;
1762  uintptr_t* cur_stack_arg_;
1763};
1764
1765// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1766// of transitioning into native code.
1767class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1768 public:
1769  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1770                              ArtMethod*** sp)
1771     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1772       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1773    ComputeGenericJniFrameSize fsc;
1774    uintptr_t* start_gpr_reg;
1775    uint32_t* start_fpr_reg;
1776    uintptr_t* start_stack_arg;
1777    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1778                                             &handle_scope_,
1779                                             &start_stack_arg,
1780                                             &start_gpr_reg, &start_fpr_reg);
1781
1782    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1783
1784    // jni environment is always first argument
1785    sm_.AdvancePointer(self->GetJniEnv());
1786
1787    if (is_static) {
1788      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1789    }
1790  }
1791
1792  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
1793
1794  void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
1795
1796  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1797    return handle_scope_->GetHandle(0).GetReference();
1798  }
1799
1800  jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
1801    return handle_scope_->GetHandle(0).ToJObject();
1802  }
1803
1804  void* GetBottomOfUsedArea() const {
1805    return bottom_of_used_area_;
1806  }
1807
1808 private:
1809  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1810  class FillJniCall FINAL : public FillNativeCall {
1811   public:
1812    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1813                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1814                                             handle_scope_(handle_scope), cur_entry_(0) {}
1815
1816    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
1817
1818    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1819      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1820      handle_scope_ = scope;
1821      cur_entry_ = 0U;
1822    }
1823
1824    void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
1825      // Initialize padding entries.
1826      size_t expected_slots = handle_scope_->NumberOfReferences();
1827      while (cur_entry_ < expected_slots) {
1828        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1829      }
1830      DCHECK_NE(cur_entry_, 0U);
1831    }
1832
1833   private:
1834    HandleScope* handle_scope_;
1835    size_t cur_entry_;
1836  };
1837
1838  HandleScope* handle_scope_;
1839  FillJniCall jni_call_;
1840  void* bottom_of_used_area_;
1841
1842  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1843
1844  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1845};
1846
1847uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1848  uintptr_t tmp;
1849  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1850  h.Assign(ref);
1851  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1852  cur_entry_++;
1853  return tmp;
1854}
1855
1856void BuildGenericJniFrameVisitor::Visit() {
1857  Primitive::Type type = GetParamPrimitiveType();
1858  switch (type) {
1859    case Primitive::kPrimLong: {
1860      jlong long_arg;
1861      if (IsSplitLongOrDouble()) {
1862        long_arg = ReadSplitLongParam();
1863      } else {
1864        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1865      }
1866      sm_.AdvanceLong(long_arg);
1867      break;
1868    }
1869    case Primitive::kPrimDouble: {
1870      uint64_t double_arg;
1871      if (IsSplitLongOrDouble()) {
1872        // Read into union so that we don't case to a double.
1873        double_arg = ReadSplitLongParam();
1874      } else {
1875        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1876      }
1877      sm_.AdvanceDouble(double_arg);
1878      break;
1879    }
1880    case Primitive::kPrimNot: {
1881      StackReference<mirror::Object>* stack_ref =
1882          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1883      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1884      break;
1885    }
1886    case Primitive::kPrimFloat:
1887      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1888      break;
1889    case Primitive::kPrimBoolean:  // Fall-through.
1890    case Primitive::kPrimByte:     // Fall-through.
1891    case Primitive::kPrimChar:     // Fall-through.
1892    case Primitive::kPrimShort:    // Fall-through.
1893    case Primitive::kPrimInt:      // Fall-through.
1894      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1895      break;
1896    case Primitive::kPrimVoid:
1897      LOG(FATAL) << "UNREACHABLE";
1898      UNREACHABLE();
1899  }
1900}
1901
1902void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1903  // Clear out rest of the scope.
1904  jni_call_.ResetRemainingScopeSlots();
1905  // Install HandleScope.
1906  self->PushHandleScope(handle_scope_);
1907}
1908
1909#if defined(__arm__) || defined(__aarch64__)
1910extern "C" void* artFindNativeMethod();
1911#else
1912extern "C" void* artFindNativeMethod(Thread* self);
1913#endif
1914
1915uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1916  if (lock != nullptr) {
1917    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1918  } else {
1919    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1920  }
1921}
1922
1923void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1924  if (lock != nullptr) {
1925    JniMethodEndSynchronized(cookie, lock, self);
1926  } else {
1927    JniMethodEnd(cookie, self);
1928  }
1929}
1930
1931/*
1932 * Initializes an alloca region assumed to be directly below sp for a native call:
1933 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1934 * The final element on the stack is a pointer to the native code.
1935 *
1936 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1937 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1938 *
1939 * The return of this function denotes:
1940 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1941 * 2) An error, if the value is negative.
1942 */
1943extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1944    SHARED_REQUIRES(Locks::mutator_lock_) {
1945  ArtMethod* called = *sp;
1946  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1947  uint32_t shorty_len = 0;
1948  const char* shorty = called->GetShorty(&shorty_len);
1949
1950  // Run the visitor and update sp.
1951  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1952  visitor.VisitArguments();
1953  visitor.FinalizeHandleScope(self);
1954
1955  // Fix up managed-stack things in Thread.
1956  self->SetTopOfStack(sp);
1957
1958  self->VerifyStack();
1959
1960  // Start JNI, save the cookie.
1961  uint32_t cookie;
1962  if (called->IsSynchronized()) {
1963    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1964    if (self->IsExceptionPending()) {
1965      self->PopHandleScope();
1966      // A negative value denotes an error.
1967      return GetTwoWordFailureValue();
1968    }
1969  } else {
1970    cookie = JniMethodStart(self);
1971  }
1972  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1973  *(sp32 - 1) = cookie;
1974
1975  // Retrieve the stored native code.
1976  void* nativeCode = called->GetEntryPointFromJni();
1977
1978  // There are two cases for the content of nativeCode:
1979  // 1) Pointer to the native function.
1980  // 2) Pointer to the trampoline for native code binding.
1981  // In the second case, we need to execute the binding and continue with the actual native function
1982  // pointer.
1983  DCHECK(nativeCode != nullptr);
1984  if (nativeCode == GetJniDlsymLookupStub()) {
1985#if defined(__arm__) || defined(__aarch64__)
1986    nativeCode = artFindNativeMethod();
1987#else
1988    nativeCode = artFindNativeMethod(self);
1989#endif
1990
1991    if (nativeCode == nullptr) {
1992      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1993
1994      // End JNI, as the assembly will move to deliver the exception.
1995      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1996      if (shorty[0] == 'L') {
1997        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1998      } else {
1999        artQuickGenericJniEndJNINonRef(self, cookie, lock);
2000      }
2001
2002      return GetTwoWordFailureValue();
2003    }
2004    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2005  }
2006
2007  // Return native code addr(lo) and bottom of alloca address(hi).
2008  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2009                                reinterpret_cast<uintptr_t>(nativeCode));
2010}
2011
2012// Defined in quick_jni_entrypoints.cc.
2013extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2014                                    jvalue result, uint64_t result_f, ArtMethod* called,
2015                                    HandleScope* handle_scope);
2016/*
2017 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2018 * unlocking.
2019 */
2020extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2021                                                    jvalue result,
2022                                                    uint64_t result_f) {
2023  // We're here just back from a native call. We don't have the shared mutator lock at this point
2024  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2025  // anything that requires a mutator lock before that would cause problems as GC may have the
2026  // exclusive mutator lock and may be moving objects, etc.
2027  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2028  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2029  ArtMethod* called = *sp;
2030  uint32_t cookie = *(sp32 - 1);
2031  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2032  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2033}
2034
2035// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2036// for the method pointer.
2037//
2038// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2039// to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
2040
2041template<InvokeType type, bool access_check>
2042static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
2043                                     ArtMethod** sp) {
2044  ScopedQuickEntrypointChecks sqec(self);
2045  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
2046  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2047  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2048  if (UNLIKELY(method == nullptr)) {
2049    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2050    uint32_t shorty_len;
2051    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2052    {
2053      // Remember the args in case a GC happens in FindMethodFromCode.
2054      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2055      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2056      visitor.VisitArguments();
2057      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
2058                                                      self);
2059      visitor.FixupReferences();
2060    }
2061
2062    if (UNLIKELY(method == nullptr)) {
2063      CHECK(self->IsExceptionPending());
2064      return GetTwoWordFailureValue();  // Failure.
2065    }
2066  }
2067  DCHECK(!self->IsExceptionPending());
2068  const void* code = method->GetEntryPointFromQuickCompiledCode();
2069
2070  // When we return, the caller will branch to this address, so it had better not be 0!
2071  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2072                          << " location: "
2073                          << method->GetDexFile()->GetLocation();
2074
2075  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2076                                reinterpret_cast<uintptr_t>(method));
2077}
2078
2079// Explicit artInvokeCommon template function declarations to please analysis tool.
2080#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2081  template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
2082  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2083      uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2084
2085EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2086EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2087EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2088EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2089EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2090EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2091EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2092EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2093EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2094EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2095#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2096
2097// See comments in runtime_support_asm.S
2098extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2099    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2100    SHARED_REQUIRES(Locks::mutator_lock_) {
2101  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2102}
2103
2104extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2105    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2106    SHARED_REQUIRES(Locks::mutator_lock_) {
2107  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2108}
2109
2110extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2111    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2112    SHARED_REQUIRES(Locks::mutator_lock_) {
2113  return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2114}
2115
2116extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2117    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2118    SHARED_REQUIRES(Locks::mutator_lock_) {
2119  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2120}
2121
2122extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2123    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2124    SHARED_REQUIRES(Locks::mutator_lock_) {
2125  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2126}
2127
2128// Determine target of interface dispatch. This object is known non-null. First argument
2129// is there for consistency but should not be used, as some architectures overwrite it
2130// in the assembly trampoline.
2131extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2132                                                      mirror::Object* this_object,
2133                                                      Thread* self,
2134                                                      ArtMethod** sp)
2135    SHARED_REQUIRES(Locks::mutator_lock_) {
2136  ScopedQuickEntrypointChecks sqec(self);
2137  StackHandleScope<1> hs(self);
2138  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2139
2140  // The optimizing compiler currently does not inline methods that have an interface
2141  // invocation. We use the outer method directly to avoid fetching a stack map, which is
2142  // more expensive.
2143  ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
2144  DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
2145
2146  // Fetch the dex_method_idx of the target interface method from the caller.
2147  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2148
2149  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2150  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2151  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2152  Instruction::Code instr_code = instr->Opcode();
2153  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2154        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2155      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2156  uint32_t dex_method_idx;
2157  if (instr_code == Instruction::INVOKE_INTERFACE) {
2158    dex_method_idx = instr->VRegB_35c();
2159  } else {
2160    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2161    dex_method_idx = instr->VRegB_3rc();
2162  }
2163
2164  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2165      dex_method_idx, sizeof(void*));
2166  DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2167  ArtMethod* method = nullptr;
2168
2169  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2170    // If the dex cache already resolved the interface method, look whether we have
2171    // a match in the ImtConflictTable.
2172    uint32_t imt_index = interface_method->GetDexMethodIndex();
2173    ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
2174        imt_index % mirror::Class::kImtSize, sizeof(void*));
2175    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2176      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
2177      DCHECK(current_table != nullptr);
2178      method = current_table->Lookup(interface_method, sizeof(void*));
2179    } else {
2180      // It seems we aren't really a conflict method!
2181      method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2182    }
2183    if (method != nullptr) {
2184      return GetTwoWordSuccessValue(
2185          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2186          reinterpret_cast<uintptr_t>(method));
2187    }
2188
2189    // No match, use the IfTable.
2190    method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2191    if (UNLIKELY(method == nullptr)) {
2192      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2193          interface_method, this_object, caller_method);
2194      return GetTwoWordFailureValue();  // Failure.
2195    }
2196  } else {
2197    // The dex cache did not resolve the method, look it up in the dex file
2198    // of the caller,
2199    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2200    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2201        ->GetDexFile();
2202    uint32_t shorty_len;
2203    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2204                                                   &shorty_len);
2205    {
2206      // Remember the args in case a GC happens in FindMethodFromCode.
2207      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2208      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2209      visitor.VisitArguments();
2210      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2211                                                     self);
2212      visitor.FixupReferences();
2213    }
2214
2215    if (UNLIKELY(method == nullptr)) {
2216      CHECK(self->IsExceptionPending());
2217      return GetTwoWordFailureValue();  // Failure.
2218    }
2219    interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, sizeof(void*));
2220    DCHECK(!interface_method->IsRuntimeMethod());
2221  }
2222
2223  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2224  // We create a new table with the new pair { interface_method, method }.
2225  uint32_t imt_index = interface_method->GetDexMethodIndex();
2226  ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
2227      imt_index % mirror::Class::kImtSize, sizeof(void*));
2228  if (conflict_method->IsRuntimeMethod()) {
2229    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2230        cls.Get(),
2231        conflict_method,
2232        interface_method,
2233        method,
2234        /*force_new_conflict_method*/false);
2235    if (new_conflict_method != conflict_method) {
2236      // Update the IMT if we create a new conflict method. No fence needed here, as the
2237      // data is consistent.
2238      cls->SetEmbeddedImTableEntry(imt_index % mirror::Class::kImtSize,
2239                                  new_conflict_method,
2240                                  sizeof(void*));
2241    }
2242  }
2243
2244  const void* code = method->GetEntryPointFromQuickCompiledCode();
2245
2246  // When we return, the caller will branch to this address, so it had better not be 0!
2247  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2248                          << " location: " << method->GetDexFile()->GetLocation();
2249
2250  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2251                                reinterpret_cast<uintptr_t>(method));
2252}
2253
2254}  // namespace art
2255