quick_trampoline_entrypoints.cc revision 960d4f7c5f6a464aa00b8f393cc88996c55464f3
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/callee_save_type.h"
19#include "base/enums.h"
20#include "callee_save_frame.h"
21#include "common_throws.h"
22#include "debugger.h"
23#include "dex_file-inl.h"
24#include "dex_file_types.h"
25#include "dex_instruction-inl.h"
26#include "entrypoints/entrypoint_utils-inl.h"
27#include "entrypoints/runtime_asm_entrypoints.h"
28#include "gc/accounting/card_table-inl.h"
29#include "imt_conflict_table.h"
30#include "imtable-inl.h"
31#include "instrumentation.h"
32#include "interpreter/interpreter.h"
33#include "linear_alloc.h"
34#include "method_bss_mapping.h"
35#include "method_handles.h"
36#include "method_reference.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/method.h"
40#include "mirror/method_handle_impl.h"
41#include "mirror/object-inl.h"
42#include "mirror/object_array-inl.h"
43#include "oat_file.h"
44#include "oat_quick_method_header.h"
45#include "quick_exception_handler.h"
46#include "runtime.h"
47#include "scoped_thread_state_change-inl.h"
48#include "stack.h"
49#include "thread-inl.h"
50#include "well_known_classes.h"
51
52namespace art {
53
54// Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
55class QuickArgumentVisitor {
56  // Number of bytes for each out register in the caller method's frame.
57  static constexpr size_t kBytesStackArgLocation = 4;
58  // Frame size in bytes of a callee-save frame for RefsAndArgs.
59  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
60      GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
61#if defined(__arm__)
62  // The callee save frame is pointed to by SP.
63  // | argN       |  |
64  // | ...        |  |
65  // | arg4       |  |
66  // | arg3 spill |  |  Caller's frame
67  // | arg2 spill |  |
68  // | arg1 spill |  |
69  // | Method*    | ---
70  // | LR         |
71  // | ...        |    4x6 bytes callee saves
72  // | R3         |
73  // | R2         |
74  // | R1         |
75  // | S15        |
76  // | :          |
77  // | S0         |
78  // |            |    4x2 bytes padding
79  // | Method*    |  <- sp
80  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
81  static constexpr bool kAlignPairRegister = true;
82  static constexpr bool kQuickSoftFloatAbi = false;
83  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
84  static constexpr bool kQuickSkipOddFpRegisters = false;
85  static constexpr size_t kNumQuickGprArgs = 3;
86  static constexpr size_t kNumQuickFprArgs = 16;
87  static constexpr bool kGprFprLockstep = false;
88  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
89      arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
90  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
91      arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
92  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
93      arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
94  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
95    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
96  }
97#elif defined(__aarch64__)
98  // The callee save frame is pointed to by SP.
99  // | argN       |  |
100  // | ...        |  |
101  // | arg4       |  |
102  // | arg3 spill |  |  Caller's frame
103  // | arg2 spill |  |
104  // | arg1 spill |  |
105  // | Method*    | ---
106  // | LR         |
107  // | X29        |
108  // |  :         |
109  // | X20        |
110  // | X7         |
111  // | :          |
112  // | X1         |
113  // | D7         |
114  // |  :         |
115  // | D0         |
116  // |            |    padding
117  // | Method*    |  <- sp
118  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
119  static constexpr bool kAlignPairRegister = false;
120  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
121  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
122  static constexpr bool kQuickSkipOddFpRegisters = false;
123  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
124  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
125  static constexpr bool kGprFprLockstep = false;
126  // Offset of first FPR arg.
127  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
128      arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
129  // Offset of first GPR arg.
130  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
131      arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
132  // Offset of return address.
133  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
134      arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
135  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
136    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
137  }
138#elif defined(__mips__) && !defined(__LP64__)
139  // The callee save frame is pointed to by SP.
140  // | argN       |  |
141  // | ...        |  |
142  // | arg4       |  |
143  // | arg3 spill |  |  Caller's frame
144  // | arg2 spill |  |
145  // | arg1 spill |  |
146  // | Method*    | ---
147  // | RA         |
148  // | ...        |    callee saves
149  // | T1         |    arg5
150  // | T0         |    arg4
151  // | A3         |    arg3
152  // | A2         |    arg2
153  // | A1         |    arg1
154  // | F19        |
155  // | F18        |    f_arg5
156  // | F17        |
157  // | F16        |    f_arg4
158  // | F15        |
159  // | F14        |    f_arg3
160  // | F13        |
161  // | F12        |    f_arg2
162  // | F11        |
163  // | F10        |    f_arg1
164  // | F9         |
165  // | F8         |    f_arg0
166  // |            |    padding
167  // | A0/Method* |  <- sp
168  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
169  static constexpr bool kAlignPairRegister = true;
170  static constexpr bool kQuickSoftFloatAbi = false;
171  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
172  static constexpr bool kQuickSkipOddFpRegisters = true;
173  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
174  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
175                                                  // passed only in even numbered registers and each
176                                                  // double occupies two registers.
177  static constexpr bool kGprFprLockstep = false;
178  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
179  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
180  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
181  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
183  }
184#elif defined(__mips__) && defined(__LP64__)
185  // The callee save frame is pointed to by SP.
186  // | argN       |  |
187  // | ...        |  |
188  // | arg4       |  |
189  // | arg3 spill |  |  Caller's frame
190  // | arg2 spill |  |
191  // | arg1 spill |  |
192  // | Method*    | ---
193  // | RA         |
194  // | ...        |    callee saves
195  // | A7         |    arg7
196  // | A6         |    arg6
197  // | A5         |    arg5
198  // | A4         |    arg4
199  // | A3         |    arg3
200  // | A2         |    arg2
201  // | A1         |    arg1
202  // | F19        |    f_arg7
203  // | F18        |    f_arg6
204  // | F17        |    f_arg5
205  // | F16        |    f_arg4
206  // | F15        |    f_arg3
207  // | F14        |    f_arg2
208  // | F13        |    f_arg1
209  // | F12        |    f_arg0
210  // |            |    padding
211  // | A0/Method* |  <- sp
212  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
213  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
214  static constexpr bool kAlignPairRegister = false;
215  static constexpr bool kQuickSoftFloatAbi = false;
216  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
217  static constexpr bool kQuickSkipOddFpRegisters = false;
218  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
219  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
220  static constexpr bool kGprFprLockstep = true;
221
222  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
223  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
224  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
225  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
226    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
227  }
228#elif defined(__i386__)
229  // The callee save frame is pointed to by SP.
230  // | argN        |  |
231  // | ...         |  |
232  // | arg4        |  |
233  // | arg3 spill  |  |  Caller's frame
234  // | arg2 spill  |  |
235  // | arg1 spill  |  |
236  // | Method*     | ---
237  // | Return      |
238  // | EBP,ESI,EDI |    callee saves
239  // | EBX         |    arg3
240  // | EDX         |    arg2
241  // | ECX         |    arg1
242  // | XMM3        |    float arg 4
243  // | XMM2        |    float arg 3
244  // | XMM1        |    float arg 2
245  // | XMM0        |    float arg 1
246  // | EAX/Method* |  <- sp
247  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
248  static constexpr bool kAlignPairRegister = false;
249  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
250  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
251  static constexpr bool kQuickSkipOddFpRegisters = false;
252  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
253  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
254  static constexpr bool kGprFprLockstep = false;
255  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
256  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
257  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
258  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
259    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
260  }
261#elif defined(__x86_64__)
262  // The callee save frame is pointed to by SP.
263  // | argN            |  |
264  // | ...             |  |
265  // | reg. arg spills |  |  Caller's frame
266  // | Method*         | ---
267  // | Return          |
268  // | R15             |    callee save
269  // | R14             |    callee save
270  // | R13             |    callee save
271  // | R12             |    callee save
272  // | R9              |    arg5
273  // | R8              |    arg4
274  // | RSI/R6          |    arg1
275  // | RBP/R5          |    callee save
276  // | RBX/R3          |    callee save
277  // | RDX/R2          |    arg2
278  // | RCX/R1          |    arg3
279  // | XMM7            |    float arg 8
280  // | XMM6            |    float arg 7
281  // | XMM5            |    float arg 6
282  // | XMM4            |    float arg 5
283  // | XMM3            |    float arg 4
284  // | XMM2            |    float arg 3
285  // | XMM1            |    float arg 2
286  // | XMM0            |    float arg 1
287  // | Padding         |
288  // | RDI/Method*     |  <- sp
289  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
290  static constexpr bool kAlignPairRegister = false;
291  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
292  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
293  static constexpr bool kQuickSkipOddFpRegisters = false;
294  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
295  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
296  static constexpr bool kGprFprLockstep = false;
297  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
298  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
299  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
300  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
301    switch (gpr_index) {
302      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
303      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
304      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
305      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
306      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
307      default:
308      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
309      return 0;
310    }
311  }
312#else
313#error "Unsupported architecture"
314#endif
315
316 public:
317  // Special handling for proxy methods. Proxy methods are instance methods so the
318  // 'this' object is the 1st argument. They also have the same frame layout as the
319  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
320  // 1st GPR.
321  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
322      REQUIRES_SHARED(Locks::mutator_lock_) {
323    CHECK((*sp)->IsProxyMethod());
324    CHECK_GT(kNumQuickGprArgs, 0u);
325    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
326    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
327        GprIndexToGprOffset(kThisGprIndex);
328    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
329    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
330  }
331
332  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
333    DCHECK((*sp)->IsCalleeSaveMethod());
334    return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
335  }
336
337  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
338    DCHECK((*sp)->IsCalleeSaveMethod());
339    uint8_t* previous_sp =
340        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
341    return *reinterpret_cast<ArtMethod**>(previous_sp);
342  }
343
344  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
345    DCHECK((*sp)->IsCalleeSaveMethod());
346    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
347                                                            CalleeSaveType::kSaveRefsAndArgs);
348    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
349        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
350    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
351    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
352    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
353
354    if (current_code->IsOptimized()) {
355      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
356      CodeInfoEncoding encoding = code_info.ExtractEncoding();
357      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
358      DCHECK(stack_map.IsValid());
359      if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
360        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
361        return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
362                                           inline_info.GetDepth(encoding.inline_info.encoding)-1);
363      } else {
364        return stack_map.GetDexPc(encoding.stack_map.encoding);
365      }
366    } else {
367      return current_code->ToDexPc(*caller_sp, outer_pc);
368    }
369  }
370
371  static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
372      REQUIRES_SHARED(Locks::mutator_lock_) {
373    DCHECK((*sp)->IsCalleeSaveMethod());
374    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
375                                                            CalleeSaveType::kSaveRefsAndArgs);
376    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
377        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
378    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
379    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
380    if (!current_code->IsOptimized()) {
381      return false;
382    }
383    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
384    CodeInfo code_info = current_code->GetOptimizedCodeInfo();
385    CodeInfoEncoding encoding = code_info.ExtractEncoding();
386    MethodInfo method_info = current_code->GetOptimizedMethodInfo();
387    InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
388    if (invoke.IsValid()) {
389      *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
390      *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
391      return true;
392    }
393    return false;
394  }
395
396  // For the given quick ref and args quick frame, return the caller's PC.
397  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
398    DCHECK((*sp)->IsCalleeSaveMethod());
399    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
400    return *reinterpret_cast<uintptr_t*>(lr);
401  }
402
403  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
404                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
405          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
406          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
407          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
408          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
409              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
410          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
411          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
412    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
413                  "Number of Quick FPR arguments unexpected");
414    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
415                  "Double alignment unexpected");
416    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
417    // next register is even.
418    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
419                  "Number of Quick FPR arguments not even");
420    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
421  }
422
423  virtual ~QuickArgumentVisitor() {}
424
425  virtual void Visit() = 0;
426
427  Primitive::Type GetParamPrimitiveType() const {
428    return cur_type_;
429  }
430
431  uint8_t* GetParamAddress() const {
432    if (!kQuickSoftFloatAbi) {
433      Primitive::Type type = GetParamPrimitiveType();
434      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
435        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
436          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
437            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
438          }
439        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
440          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
441        }
442        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
443      }
444    }
445    if (gpr_index_ < kNumQuickGprArgs) {
446      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
447    }
448    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
449  }
450
451  bool IsSplitLongOrDouble() const {
452    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
453        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
454      return is_split_long_or_double_;
455    } else {
456      return false;  // An optimization for when GPR and FPRs are 64bit.
457    }
458  }
459
460  bool IsParamAReference() const {
461    return GetParamPrimitiveType() == Primitive::kPrimNot;
462  }
463
464  bool IsParamALongOrDouble() const {
465    Primitive::Type type = GetParamPrimitiveType();
466    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
467  }
468
469  uint64_t ReadSplitLongParam() const {
470    // The splitted long is always available through the stack.
471    return *reinterpret_cast<uint64_t*>(stack_args_
472        + stack_index_ * kBytesStackArgLocation);
473  }
474
475  void IncGprIndex() {
476    gpr_index_++;
477    if (kGprFprLockstep) {
478      fpr_index_++;
479    }
480  }
481
482  void IncFprIndex() {
483    fpr_index_++;
484    if (kGprFprLockstep) {
485      gpr_index_++;
486    }
487  }
488
489  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
490    // (a) 'stack_args_' should point to the first method's argument
491    // (b) whatever the argument type it is, the 'stack_index_' should
492    //     be moved forward along with every visiting.
493    gpr_index_ = 0;
494    fpr_index_ = 0;
495    if (kQuickDoubleRegAlignedFloatBackFilled) {
496      fpr_double_index_ = 0;
497    }
498    stack_index_ = 0;
499    if (!is_static_) {  // Handle this.
500      cur_type_ = Primitive::kPrimNot;
501      is_split_long_or_double_ = false;
502      Visit();
503      stack_index_++;
504      if (kNumQuickGprArgs > 0) {
505        IncGprIndex();
506      }
507    }
508    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
509      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
510      switch (cur_type_) {
511        case Primitive::kPrimNot:
512        case Primitive::kPrimBoolean:
513        case Primitive::kPrimByte:
514        case Primitive::kPrimChar:
515        case Primitive::kPrimShort:
516        case Primitive::kPrimInt:
517          is_split_long_or_double_ = false;
518          Visit();
519          stack_index_++;
520          if (gpr_index_ < kNumQuickGprArgs) {
521            IncGprIndex();
522          }
523          break;
524        case Primitive::kPrimFloat:
525          is_split_long_or_double_ = false;
526          Visit();
527          stack_index_++;
528          if (kQuickSoftFloatAbi) {
529            if (gpr_index_ < kNumQuickGprArgs) {
530              IncGprIndex();
531            }
532          } else {
533            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
534              IncFprIndex();
535              if (kQuickDoubleRegAlignedFloatBackFilled) {
536                // Double should not overlap with float.
537                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
538                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
539                // Float should not overlap with double.
540                if (fpr_index_ % 2 == 0) {
541                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
542                }
543              } else if (kQuickSkipOddFpRegisters) {
544                IncFprIndex();
545              }
546            }
547          }
548          break;
549        case Primitive::kPrimDouble:
550        case Primitive::kPrimLong:
551          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
552            if (cur_type_ == Primitive::kPrimLong &&
553#if defined(__mips__) && !defined(__LP64__)
554                (gpr_index_ == 0 || gpr_index_ == 2) &&
555#else
556                gpr_index_ == 0 &&
557#endif
558                kAlignPairRegister) {
559              // Currently, this is only for ARM and MIPS, where we align long parameters with
560              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
561              // R2 (on ARM) or A2(T0) (on MIPS) instead.
562              IncGprIndex();
563            }
564            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
565                ((gpr_index_ + 1) == kNumQuickGprArgs);
566            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
567              // We don't want to split this. Pass over this register.
568              gpr_index_++;
569              is_split_long_or_double_ = false;
570            }
571            Visit();
572            if (kBytesStackArgLocation == 4) {
573              stack_index_+= 2;
574            } else {
575              CHECK_EQ(kBytesStackArgLocation, 8U);
576              stack_index_++;
577            }
578            if (gpr_index_ < kNumQuickGprArgs) {
579              IncGprIndex();
580              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
581                if (gpr_index_ < kNumQuickGprArgs) {
582                  IncGprIndex();
583                }
584              }
585            }
586          } else {
587            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
588                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
589            Visit();
590            if (kBytesStackArgLocation == 4) {
591              stack_index_+= 2;
592            } else {
593              CHECK_EQ(kBytesStackArgLocation, 8U);
594              stack_index_++;
595            }
596            if (kQuickDoubleRegAlignedFloatBackFilled) {
597              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
598                fpr_double_index_ += 2;
599                // Float should not overlap with double.
600                if (fpr_index_ % 2 == 0) {
601                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
602                }
603              }
604            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
605              IncFprIndex();
606              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
607                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
608                  IncFprIndex();
609                }
610              }
611            }
612          }
613          break;
614        default:
615          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
616      }
617    }
618  }
619
620 protected:
621  const bool is_static_;
622  const char* const shorty_;
623  const uint32_t shorty_len_;
624
625 private:
626  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
627  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
628  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
629  uint32_t gpr_index_;  // Index into spilled GPRs.
630  // Index into spilled FPRs.
631  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
632  // holds a higher register number.
633  uint32_t fpr_index_;
634  // Index into spilled FPRs for aligned double.
635  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
636  // terms of singles, may be behind fpr_index.
637  uint32_t fpr_double_index_;
638  uint32_t stack_index_;  // Index into arguments on the stack.
639  // The current type of argument during VisitArguments.
640  Primitive::Type cur_type_;
641  // Does a 64bit parameter straddle the register and stack arguments?
642  bool is_split_long_or_double_;
643};
644
645// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
646// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
647extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
648    REQUIRES_SHARED(Locks::mutator_lock_) {
649  return QuickArgumentVisitor::GetProxyThisObject(sp);
650}
651
652// Visits arguments on the stack placing them into the shadow frame.
653class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
654 public:
655  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
656                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
657      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
658
659  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
660
661 private:
662  ShadowFrame* const sf_;
663  uint32_t cur_reg_;
664
665  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
666};
667
668void BuildQuickShadowFrameVisitor::Visit() {
669  Primitive::Type type = GetParamPrimitiveType();
670  switch (type) {
671    case Primitive::kPrimLong:  // Fall-through.
672    case Primitive::kPrimDouble:
673      if (IsSplitLongOrDouble()) {
674        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
675      } else {
676        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
677      }
678      ++cur_reg_;
679      break;
680    case Primitive::kPrimNot: {
681        StackReference<mirror::Object>* stack_ref =
682            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
683        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
684      }
685      break;
686    case Primitive::kPrimBoolean:  // Fall-through.
687    case Primitive::kPrimByte:     // Fall-through.
688    case Primitive::kPrimChar:     // Fall-through.
689    case Primitive::kPrimShort:    // Fall-through.
690    case Primitive::kPrimInt:      // Fall-through.
691    case Primitive::kPrimFloat:
692      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
693      break;
694    case Primitive::kPrimVoid:
695      LOG(FATAL) << "UNREACHABLE";
696      UNREACHABLE();
697  }
698  ++cur_reg_;
699}
700
701// Don't inline. See b/65159206.
702NO_INLINE
703static void HandleDeoptimization(JValue* result,
704                                 ArtMethod* method,
705                                 ShadowFrame* deopt_frame,
706                                 ManagedStack* fragment)
707    REQUIRES_SHARED(Locks::mutator_lock_) {
708  // Coming from partial-fragment deopt.
709  Thread* self = Thread::Current();
710  if (kIsDebugBuild) {
711    // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
712    // of the call-stack) corresponds to the called method.
713    ShadowFrame* linked = deopt_frame;
714    while (linked->GetLink() != nullptr) {
715      linked = linked->GetLink();
716    }
717    CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
718        << ArtMethod::PrettyMethod(linked->GetMethod());
719  }
720
721  if (VLOG_IS_ON(deopt)) {
722    // Print out the stack to verify that it was a partial-fragment deopt.
723    LOG(INFO) << "Continue-ing from deopt. Stack is:";
724    QuickExceptionHandler::DumpFramesWithType(self, true);
725  }
726
727  ObjPtr<mirror::Throwable> pending_exception;
728  bool from_code = false;
729  DeoptimizationMethodType method_type;
730  self->PopDeoptimizationContext(/* out */ result,
731                                 /* out */ &pending_exception,
732                                 /* out */ &from_code,
733                                 /* out */ &method_type);
734
735  // Push a transition back into managed code onto the linked list in thread.
736  self->PushManagedStackFragment(fragment);
737
738  // Ensure that the stack is still in order.
739  if (kIsDebugBuild) {
740    class DummyStackVisitor : public StackVisitor {
741     public:
742      explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
743          : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
744
745      bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
746        // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
747        // logic. Just always say we want to continue.
748        return true;
749      }
750    };
751    DummyStackVisitor dsv(self);
752    dsv.WalkStack();
753  }
754
755  // Restore the exception that was pending before deoptimization then interpret the
756  // deoptimized frames.
757  if (pending_exception != nullptr) {
758    self->SetException(pending_exception);
759  }
760  interpreter::EnterInterpreterFromDeoptimize(self,
761                                              deopt_frame,
762                                              result,
763                                              from_code,
764                                              DeoptimizationMethodType::kDefault);
765}
766
767extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
768    REQUIRES_SHARED(Locks::mutator_lock_) {
769  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
770  // frame.
771  ScopedQuickEntrypointChecks sqec(self);
772
773  if (UNLIKELY(!method->IsInvokable())) {
774    method->ThrowInvocationTimeError();
775    return 0;
776  }
777
778  JValue tmp_value;
779  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
780      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
781  ManagedStack fragment;
782
783  DCHECK(!method->IsNative()) << method->PrettyMethod();
784  uint32_t shorty_len = 0;
785  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
786  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
787  DCHECK(code_item != nullptr) << method->PrettyMethod();
788  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
789
790  JValue result;
791
792  if (UNLIKELY(deopt_frame != nullptr)) {
793    HandleDeoptimization(&result, method, deopt_frame, &fragment);
794  } else {
795    const char* old_cause = self->StartAssertNoThreadSuspension(
796        "Building interpreter shadow frame");
797    uint16_t num_regs = code_item->registers_size_;
798    // No last shadow coming from quick.
799    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
800        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
801    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
802    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
803    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
804                                                      shadow_frame, first_arg_reg);
805    shadow_frame_builder.VisitArguments();
806    const bool needs_initialization =
807        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
808    // Push a transition back into managed code onto the linked list in thread.
809    self->PushManagedStackFragment(&fragment);
810    self->PushShadowFrame(shadow_frame);
811    self->EndAssertNoThreadSuspension(old_cause);
812
813    if (needs_initialization) {
814      // Ensure static method's class is initialized.
815      StackHandleScope<1> hs(self);
816      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
817      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
818        DCHECK(Thread::Current()->IsExceptionPending())
819            << shadow_frame->GetMethod()->PrettyMethod();
820        self->PopManagedStackFragment(fragment);
821        return 0;
822      }
823    }
824
825    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
826  }
827
828  // Pop transition.
829  self->PopManagedStackFragment(fragment);
830
831  // Request a stack deoptimization if needed
832  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
833  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
834  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
835  // should be done and it knows the real return pc.
836  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
837               Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
838    if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
839      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
840                   << caller->PrettyMethod();
841    } else {
842      // Push the context of the deoptimization stack so we can restore the return value and the
843      // exception before executing the deoptimized frames.
844      self->PushDeoptimizationContext(
845          result,
846          shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
847          self->GetException(),
848          false /* from_code */,
849          DeoptimizationMethodType::kDefault);
850
851      // Set special exception to cause deoptimization.
852      self->SetException(Thread::GetDeoptimizationException());
853    }
854  }
855
856  // No need to restore the args since the method has already been run by the interpreter.
857  return result.GetJ();
858}
859
860// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
861// to jobjects.
862class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
863 public:
864  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
865                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
866      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
867
868  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
869
870  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
871
872 private:
873  ScopedObjectAccessUnchecked* const soa_;
874  std::vector<jvalue>* const args_;
875  // References which we must update when exiting in case the GC moved the objects.
876  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
877
878  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
879};
880
881void BuildQuickArgumentVisitor::Visit() {
882  jvalue val;
883  Primitive::Type type = GetParamPrimitiveType();
884  switch (type) {
885    case Primitive::kPrimNot: {
886      StackReference<mirror::Object>* stack_ref =
887          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
888      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
889      references_.push_back(std::make_pair(val.l, stack_ref));
890      break;
891    }
892    case Primitive::kPrimLong:  // Fall-through.
893    case Primitive::kPrimDouble:
894      if (IsSplitLongOrDouble()) {
895        val.j = ReadSplitLongParam();
896      } else {
897        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
898      }
899      break;
900    case Primitive::kPrimBoolean:  // Fall-through.
901    case Primitive::kPrimByte:     // Fall-through.
902    case Primitive::kPrimChar:     // Fall-through.
903    case Primitive::kPrimShort:    // Fall-through.
904    case Primitive::kPrimInt:      // Fall-through.
905    case Primitive::kPrimFloat:
906      val.i = *reinterpret_cast<jint*>(GetParamAddress());
907      break;
908    case Primitive::kPrimVoid:
909      LOG(FATAL) << "UNREACHABLE";
910      UNREACHABLE();
911  }
912  args_->push_back(val);
913}
914
915void BuildQuickArgumentVisitor::FixupReferences() {
916  // Fixup any references which may have changed.
917  for (const auto& pair : references_) {
918    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
919    soa_->Env()->DeleteLocalRef(pair.first);
920  }
921}
922// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
923// which is responsible for recording callee save registers. We explicitly place into jobjects the
924// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
925// field within the proxy object, which will box the primitive arguments and deal with error cases.
926extern "C" uint64_t artQuickProxyInvokeHandler(
927    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
928    REQUIRES_SHARED(Locks::mutator_lock_) {
929  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
930  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
931  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
932  const char* old_cause =
933      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
934  // Register the top of the managed stack, making stack crawlable.
935  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
936  self->VerifyStack();
937  // Start new JNI local reference state.
938  JNIEnvExt* env = self->GetJniEnv();
939  ScopedObjectAccessUnchecked soa(env);
940  ScopedJniEnvLocalRefState env_state(env);
941  // Create local ref. copies of proxy method and the receiver.
942  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
943
944  // Placing arguments into args vector and remove the receiver.
945  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
946  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
947                                       << non_proxy_method->PrettyMethod();
948  std::vector<jvalue> args;
949  uint32_t shorty_len = 0;
950  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
951  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
952
953  local_ref_visitor.VisitArguments();
954  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
955  args.erase(args.begin());
956
957  // Convert proxy method into expected interface method.
958  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
959  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
960  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
961  self->EndAssertNoThreadSuspension(old_cause);
962  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
963  DCHECK(!Runtime::Current()->IsActiveTransaction());
964  ObjPtr<mirror::Method> interface_reflect_method =
965      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
966  if (interface_reflect_method == nullptr) {
967    soa.Self()->AssertPendingOOMException();
968    return 0;
969  }
970  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
971
972  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
973  // that performs allocations.
974  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
975  // Restore references which might have moved.
976  local_ref_visitor.FixupReferences();
977  return result.GetJ();
978}
979
980// Read object references held in arguments from quick frames and place in a JNI local references,
981// so they don't get garbage collected.
982class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
983 public:
984  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
985                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
986      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
987
988  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
989
990  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
991
992 private:
993  ScopedObjectAccessUnchecked* const soa_;
994  // References which we must update when exiting in case the GC moved the objects.
995  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
996
997  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
998};
999
1000void RememberForGcArgumentVisitor::Visit() {
1001  if (IsParamAReference()) {
1002    StackReference<mirror::Object>* stack_ref =
1003        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1004    jobject reference =
1005        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1006    references_.push_back(std::make_pair(reference, stack_ref));
1007  }
1008}
1009
1010void RememberForGcArgumentVisitor::FixupReferences() {
1011  // Fixup any references which may have changed.
1012  for (const auto& pair : references_) {
1013    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1014    soa_->Env()->DeleteLocalRef(pair.first);
1015  }
1016}
1017
1018extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1019                                                             mirror::Object* this_object,
1020                                                             Thread* self,
1021                                                             ArtMethod** sp)
1022    REQUIRES_SHARED(Locks::mutator_lock_) {
1023  const void* result;
1024  // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1025  // that part.
1026  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1027  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1028  if (instrumentation->IsDeoptimized(method)) {
1029    result = GetQuickToInterpreterBridge();
1030  } else {
1031    result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
1032    DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
1033  }
1034
1035  bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1036  bool is_static = method->IsStatic();
1037  uint32_t shorty_len;
1038  const char* shorty =
1039      method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1040
1041  ScopedObjectAccessUnchecked soa(self);
1042  RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1043  visitor.VisitArguments();
1044
1045  instrumentation->PushInstrumentationStackFrame(self,
1046                                                 is_static ? nullptr : this_object,
1047                                                 method,
1048                                                 QuickArgumentVisitor::GetCallingPc(sp),
1049                                                 interpreter_entry);
1050
1051  visitor.FixupReferences();
1052  if (UNLIKELY(self->IsExceptionPending())) {
1053    return nullptr;
1054  }
1055  CHECK(result != nullptr) << method->PrettyMethod();
1056  return result;
1057}
1058
1059extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1060                                                              ArtMethod** sp,
1061                                                              uint64_t* gpr_result,
1062                                                              uint64_t* fpr_result)
1063    REQUIRES_SHARED(Locks::mutator_lock_) {
1064  DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1065  CHECK(gpr_result != nullptr);
1066  CHECK(fpr_result != nullptr);
1067  // Instrumentation exit stub must not be entered with a pending exception.
1068  CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1069                                     << self->GetException()->Dump();
1070  // Compute address of return PC and sanity check that it currently holds 0.
1071  size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA,
1072                                                        CalleeSaveType::kSaveEverything);
1073  uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1074                                                      return_pc_offset);
1075  CHECK_EQ(*return_pc, 0U);
1076
1077  // Pop the frame filling in the return pc. The low half of the return value is 0 when
1078  // deoptimization shouldn't be performed with the high-half having the return address. When
1079  // deoptimization should be performed the low half is zero and the high-half the address of the
1080  // deoptimization entry point.
1081  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1082  TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1083      self, return_pc, gpr_result, fpr_result);
1084  if (self->IsExceptionPending()) {
1085    return GetTwoWordFailureValue();
1086  }
1087  return return_or_deoptimize_pc;
1088}
1089
1090// Lazily resolve a method for quick. Called by stub code.
1091extern "C" const void* artQuickResolutionTrampoline(
1092    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1093    REQUIRES_SHARED(Locks::mutator_lock_) {
1094  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1095  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1096  // does not have the same stack layout as the callee-save method).
1097  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1098  // Start new JNI local reference state
1099  JNIEnvExt* env = self->GetJniEnv();
1100  ScopedObjectAccessUnchecked soa(env);
1101  ScopedJniEnvLocalRefState env_state(env);
1102  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1103
1104  // Compute details about the called method (avoid GCs)
1105  ClassLinker* linker = Runtime::Current()->GetClassLinker();
1106  InvokeType invoke_type;
1107  MethodReference called_method(nullptr, 0);
1108  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1109  ArtMethod* caller = nullptr;
1110  if (!called_method_known_on_entry) {
1111    caller = QuickArgumentVisitor::GetCallingMethod(sp);
1112    called_method.dex_file = caller->GetDexFile();
1113
1114    InvokeType stack_map_invoke_type;
1115    uint32_t stack_map_dex_method_idx;
1116    const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1117                                                                     &stack_map_invoke_type,
1118                                                                     &stack_map_dex_method_idx);
1119    // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1120    // code.
1121    if (!found_stack_map || kIsDebugBuild) {
1122      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1123      const DexFile::CodeItem* code;
1124      code = caller->GetCodeItem();
1125      CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1126      const Instruction& instr = code->InstructionAt(dex_pc);
1127      Instruction::Code instr_code = instr.Opcode();
1128      bool is_range;
1129      switch (instr_code) {
1130        case Instruction::INVOKE_DIRECT:
1131          invoke_type = kDirect;
1132          is_range = false;
1133          break;
1134        case Instruction::INVOKE_DIRECT_RANGE:
1135          invoke_type = kDirect;
1136          is_range = true;
1137          break;
1138        case Instruction::INVOKE_STATIC:
1139          invoke_type = kStatic;
1140          is_range = false;
1141          break;
1142        case Instruction::INVOKE_STATIC_RANGE:
1143          invoke_type = kStatic;
1144          is_range = true;
1145          break;
1146        case Instruction::INVOKE_SUPER:
1147          invoke_type = kSuper;
1148          is_range = false;
1149          break;
1150        case Instruction::INVOKE_SUPER_RANGE:
1151          invoke_type = kSuper;
1152          is_range = true;
1153          break;
1154        case Instruction::INVOKE_VIRTUAL:
1155          invoke_type = kVirtual;
1156          is_range = false;
1157          break;
1158        case Instruction::INVOKE_VIRTUAL_RANGE:
1159          invoke_type = kVirtual;
1160          is_range = true;
1161          break;
1162        case Instruction::INVOKE_INTERFACE:
1163          invoke_type = kInterface;
1164          is_range = false;
1165          break;
1166        case Instruction::INVOKE_INTERFACE_RANGE:
1167          invoke_type = kInterface;
1168          is_range = true;
1169          break;
1170        default:
1171          LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1172          UNREACHABLE();
1173      }
1174      called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1175      // Check that the invoke matches what we expected, note that this path only happens for debug
1176      // builds.
1177      if (found_stack_map) {
1178        DCHECK_EQ(stack_map_invoke_type, invoke_type);
1179        if (invoke_type != kSuper) {
1180          // Super may be sharpened.
1181          DCHECK_EQ(stack_map_dex_method_idx, called_method.index)
1182              << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1183              << called_method.PrettyMethod();
1184        }
1185      } else {
1186        VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1187                  << called_method.index;
1188      }
1189    } else {
1190      invoke_type = stack_map_invoke_type;
1191      called_method.index = stack_map_dex_method_idx;
1192    }
1193  } else {
1194    invoke_type = kStatic;
1195    called_method.dex_file = called->GetDexFile();
1196    called_method.index = called->GetDexMethodIndex();
1197  }
1198  uint32_t shorty_len;
1199  const char* shorty =
1200      called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1201  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1202  visitor.VisitArguments();
1203  self->EndAssertNoThreadSuspension(old_cause);
1204  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1205  // Resolve method filling in dex cache.
1206  if (!called_method_known_on_entry) {
1207    StackHandleScope<1> hs(self);
1208    mirror::Object* dummy = nullptr;
1209    HandleWrapper<mirror::Object> h_receiver(
1210        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1211    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1212    called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1213        self, called_method.index, caller, invoke_type);
1214
1215    // Update .bss entry in oat file if any.
1216    if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1217      const MethodBssMapping* mapping =
1218          called_method.dex_file->GetOatDexFile()->GetMethodBssMapping();
1219      if (mapping != nullptr) {
1220        auto pp = std::partition_point(
1221            mapping->begin(),
1222            mapping->end(),
1223            [called_method](const MethodBssMappingEntry& entry) {
1224              return entry.method_index < called_method.index;
1225            });
1226        if (pp != mapping->end() && pp->CoversIndex(called_method.index)) {
1227          size_t bss_offset = pp->GetBssOffset(called_method.index,
1228                                               static_cast<size_t>(kRuntimePointerSize));
1229          DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1230          const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1231          ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1232              oat_file->BssBegin() + bss_offset));
1233          DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1234          DCHECK_LT(method_entry,
1235                    oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1236          *method_entry = called;
1237        }
1238      }
1239    }
1240  }
1241  const void* code = nullptr;
1242  if (LIKELY(!self->IsExceptionPending())) {
1243    // Incompatible class change should have been handled in resolve method.
1244    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1245        << called->PrettyMethod() << " " << invoke_type;
1246    if (virtual_or_interface || invoke_type == kSuper) {
1247      // Refine called method based on receiver for kVirtual/kInterface, and
1248      // caller for kSuper.
1249      ArtMethod* orig_called = called;
1250      if (invoke_type == kVirtual) {
1251        CHECK(receiver != nullptr) << invoke_type;
1252        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1253      } else if (invoke_type == kInterface) {
1254        CHECK(receiver != nullptr) << invoke_type;
1255        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1256      } else {
1257        DCHECK_EQ(invoke_type, kSuper);
1258        CHECK(caller != nullptr) << invoke_type;
1259        StackHandleScope<2> hs(self);
1260        Handle<mirror::DexCache> dex_cache(
1261            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1262        Handle<mirror::ClassLoader> class_loader(
1263            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1264        // TODO Maybe put this into a mirror::Class function.
1265        ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1266            *dex_cache->GetDexFile(),
1267            dex_cache->GetDexFile()->GetMethodId(called_method.index).class_idx_,
1268            dex_cache.Get(),
1269            class_loader.Get());
1270        if (ref_class->IsInterface()) {
1271          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1272        } else {
1273          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1274              called->GetMethodIndex(), kRuntimePointerSize);
1275        }
1276      }
1277
1278      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1279                               << mirror::Object::PrettyTypeOf(receiver) << " "
1280                               << invoke_type << " " << orig_called->GetVtableIndex();
1281    }
1282
1283    // Ensure that the called method's class is initialized.
1284    StackHandleScope<1> hs(soa.Self());
1285    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1286    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1287    if (LIKELY(called_class->IsInitialized())) {
1288      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1289        // If we are single-stepping or the called method is deoptimized (by a
1290        // breakpoint, for example), then we have to execute the called method
1291        // with the interpreter.
1292        code = GetQuickToInterpreterBridge();
1293      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1294        // If the caller is deoptimized (by a breakpoint, for example), we have to
1295        // continue its execution with interpreter when returning from the called
1296        // method. Because we do not want to execute the called method with the
1297        // interpreter, we wrap its execution into the instrumentation stubs.
1298        // When the called method returns, it will execute the instrumentation
1299        // exit hook that will determine the need of the interpreter with a call
1300        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1301        // it is needed.
1302        code = GetQuickInstrumentationEntryPoint();
1303      } else {
1304        code = called->GetEntryPointFromQuickCompiledCode();
1305      }
1306    } else if (called_class->IsInitializing()) {
1307      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1308        // If we are single-stepping or the called method is deoptimized (by a
1309        // breakpoint, for example), then we have to execute the called method
1310        // with the interpreter.
1311        code = GetQuickToInterpreterBridge();
1312      } else if (invoke_type == kStatic) {
1313        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1314        // until class is initialized to stop races between threads).
1315        code = linker->GetQuickOatCodeFor(called);
1316      } else {
1317        // No trampoline for non-static methods.
1318        code = called->GetEntryPointFromQuickCompiledCode();
1319      }
1320    } else {
1321      DCHECK(called_class->IsErroneous());
1322    }
1323  }
1324  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1325  // Fixup any locally saved objects may have moved during a GC.
1326  visitor.FixupReferences();
1327  // Place called method in callee-save frame to be placed as first argument to quick method.
1328  *sp = called;
1329
1330  return code;
1331}
1332
1333/*
1334 * This class uses a couple of observations to unite the different calling conventions through
1335 * a few constants.
1336 *
1337 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1338 *    possible alignment.
1339 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1340 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1341 *    when we have to split things
1342 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1343 *    and we can use Int handling directly.
1344 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1345 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1346 *    extension should be compatible with Aarch64, which mandates copying the available bits
1347 *    into LSB and leaving the rest unspecified.
1348 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1349 *    the stack.
1350 * 6) There is only little endian.
1351 *
1352 *
1353 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1354 * follows:
1355 *
1356 * void PushGpr(uintptr_t):   Add a value for the next GPR
1357 *
1358 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1359 *                            padding, that is, think the architecture is 32b and aligns 64b.
1360 *
1361 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1362 *                            split this if necessary. The current state will have aligned, if
1363 *                            necessary.
1364 *
1365 * void PushStack(uintptr_t): Push a value to the stack.
1366 *
1367 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1368 *                                          as this might be important for null initialization.
1369 *                                          Must return the jobject, that is, the reference to the
1370 *                                          entry in the HandleScope (nullptr if necessary).
1371 *
1372 */
1373template<class T> class BuildNativeCallFrameStateMachine {
1374 public:
1375#if defined(__arm__)
1376  // TODO: These are all dummy values!
1377  static constexpr bool kNativeSoftFloatAbi = true;
1378  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1379  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1380
1381  static constexpr size_t kRegistersNeededForLong = 2;
1382  static constexpr size_t kRegistersNeededForDouble = 2;
1383  static constexpr bool kMultiRegistersAligned = true;
1384  static constexpr bool kMultiFPRegistersWidened = false;
1385  static constexpr bool kMultiGPRegistersWidened = false;
1386  static constexpr bool kAlignLongOnStack = true;
1387  static constexpr bool kAlignDoubleOnStack = true;
1388#elif defined(__aarch64__)
1389  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1390  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1391  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1392
1393  static constexpr size_t kRegistersNeededForLong = 1;
1394  static constexpr size_t kRegistersNeededForDouble = 1;
1395  static constexpr bool kMultiRegistersAligned = false;
1396  static constexpr bool kMultiFPRegistersWidened = false;
1397  static constexpr bool kMultiGPRegistersWidened = false;
1398  static constexpr bool kAlignLongOnStack = false;
1399  static constexpr bool kAlignDoubleOnStack = false;
1400#elif defined(__mips__) && !defined(__LP64__)
1401  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1402  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1403  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1404
1405  static constexpr size_t kRegistersNeededForLong = 2;
1406  static constexpr size_t kRegistersNeededForDouble = 2;
1407  static constexpr bool kMultiRegistersAligned = true;
1408  static constexpr bool kMultiFPRegistersWidened = true;
1409  static constexpr bool kMultiGPRegistersWidened = false;
1410  static constexpr bool kAlignLongOnStack = true;
1411  static constexpr bool kAlignDoubleOnStack = true;
1412#elif defined(__mips__) && defined(__LP64__)
1413  // Let the code prepare GPRs only and we will load the FPRs with same data.
1414  static constexpr bool kNativeSoftFloatAbi = true;
1415  static constexpr size_t kNumNativeGprArgs = 8;
1416  static constexpr size_t kNumNativeFprArgs = 0;
1417
1418  static constexpr size_t kRegistersNeededForLong = 1;
1419  static constexpr size_t kRegistersNeededForDouble = 1;
1420  static constexpr bool kMultiRegistersAligned = false;
1421  static constexpr bool kMultiFPRegistersWidened = false;
1422  static constexpr bool kMultiGPRegistersWidened = true;
1423  static constexpr bool kAlignLongOnStack = false;
1424  static constexpr bool kAlignDoubleOnStack = false;
1425#elif defined(__i386__)
1426  // TODO: Check these!
1427  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1428  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1429  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1430
1431  static constexpr size_t kRegistersNeededForLong = 2;
1432  static constexpr size_t kRegistersNeededForDouble = 2;
1433  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1434  static constexpr bool kMultiFPRegistersWidened = false;
1435  static constexpr bool kMultiGPRegistersWidened = false;
1436  static constexpr bool kAlignLongOnStack = false;
1437  static constexpr bool kAlignDoubleOnStack = false;
1438#elif defined(__x86_64__)
1439  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1440  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1441  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1442
1443  static constexpr size_t kRegistersNeededForLong = 1;
1444  static constexpr size_t kRegistersNeededForDouble = 1;
1445  static constexpr bool kMultiRegistersAligned = false;
1446  static constexpr bool kMultiFPRegistersWidened = false;
1447  static constexpr bool kMultiGPRegistersWidened = false;
1448  static constexpr bool kAlignLongOnStack = false;
1449  static constexpr bool kAlignDoubleOnStack = false;
1450#else
1451#error "Unsupported architecture"
1452#endif
1453
1454 public:
1455  explicit BuildNativeCallFrameStateMachine(T* delegate)
1456      : gpr_index_(kNumNativeGprArgs),
1457        fpr_index_(kNumNativeFprArgs),
1458        stack_entries_(0),
1459        delegate_(delegate) {
1460    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1461    // the next register is even; counting down is just to make the compiler happy...
1462    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1463    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1464  }
1465
1466  virtual ~BuildNativeCallFrameStateMachine() {}
1467
1468  bool HavePointerGpr() const {
1469    return gpr_index_ > 0;
1470  }
1471
1472  void AdvancePointer(const void* val) {
1473    if (HavePointerGpr()) {
1474      gpr_index_--;
1475      PushGpr(reinterpret_cast<uintptr_t>(val));
1476    } else {
1477      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1478      PushStack(reinterpret_cast<uintptr_t>(val));
1479      gpr_index_ = 0;
1480    }
1481  }
1482
1483  bool HaveHandleScopeGpr() const {
1484    return gpr_index_ > 0;
1485  }
1486
1487  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1488    uintptr_t handle = PushHandle(ptr);
1489    if (HaveHandleScopeGpr()) {
1490      gpr_index_--;
1491      PushGpr(handle);
1492    } else {
1493      stack_entries_++;
1494      PushStack(handle);
1495      gpr_index_ = 0;
1496    }
1497  }
1498
1499  bool HaveIntGpr() const {
1500    return gpr_index_ > 0;
1501  }
1502
1503  void AdvanceInt(uint32_t val) {
1504    if (HaveIntGpr()) {
1505      gpr_index_--;
1506      if (kMultiGPRegistersWidened) {
1507        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1508        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1509      } else {
1510        PushGpr(val);
1511      }
1512    } else {
1513      stack_entries_++;
1514      if (kMultiGPRegistersWidened) {
1515        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1516        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1517      } else {
1518        PushStack(val);
1519      }
1520      gpr_index_ = 0;
1521    }
1522  }
1523
1524  bool HaveLongGpr() const {
1525    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1526  }
1527
1528  bool LongGprNeedsPadding() const {
1529    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1530        kAlignLongOnStack &&                  // and when it needs alignment
1531        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1532  }
1533
1534  bool LongStackNeedsPadding() const {
1535    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1536        kAlignLongOnStack &&                  // and when it needs 8B alignment
1537        (stack_entries_ & 1) == 1;            // counter is odd
1538  }
1539
1540  void AdvanceLong(uint64_t val) {
1541    if (HaveLongGpr()) {
1542      if (LongGprNeedsPadding()) {
1543        PushGpr(0);
1544        gpr_index_--;
1545      }
1546      if (kRegistersNeededForLong == 1) {
1547        PushGpr(static_cast<uintptr_t>(val));
1548      } else {
1549        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1550        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1551      }
1552      gpr_index_ -= kRegistersNeededForLong;
1553    } else {
1554      if (LongStackNeedsPadding()) {
1555        PushStack(0);
1556        stack_entries_++;
1557      }
1558      if (kRegistersNeededForLong == 1) {
1559        PushStack(static_cast<uintptr_t>(val));
1560        stack_entries_++;
1561      } else {
1562        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1563        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1564        stack_entries_ += 2;
1565      }
1566      gpr_index_ = 0;
1567    }
1568  }
1569
1570  bool HaveFloatFpr() const {
1571    return fpr_index_ > 0;
1572  }
1573
1574  void AdvanceFloat(float val) {
1575    if (kNativeSoftFloatAbi) {
1576      AdvanceInt(bit_cast<uint32_t, float>(val));
1577    } else {
1578      if (HaveFloatFpr()) {
1579        fpr_index_--;
1580        if (kRegistersNeededForDouble == 1) {
1581          if (kMultiFPRegistersWidened) {
1582            PushFpr8(bit_cast<uint64_t, double>(val));
1583          } else {
1584            // No widening, just use the bits.
1585            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1586          }
1587        } else {
1588          PushFpr4(val);
1589        }
1590      } else {
1591        stack_entries_++;
1592        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1593          // Need to widen before storing: Note the "double" in the template instantiation.
1594          // Note: We need to jump through those hoops to make the compiler happy.
1595          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1596          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1597        } else {
1598          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1599        }
1600        fpr_index_ = 0;
1601      }
1602    }
1603  }
1604
1605  bool HaveDoubleFpr() const {
1606    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1607  }
1608
1609  bool DoubleFprNeedsPadding() const {
1610    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1611        kAlignDoubleOnStack &&                  // and when it needs alignment
1612        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1613  }
1614
1615  bool DoubleStackNeedsPadding() const {
1616    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1617        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1618        (stack_entries_ & 1) == 1;              // counter is odd
1619  }
1620
1621  void AdvanceDouble(uint64_t val) {
1622    if (kNativeSoftFloatAbi) {
1623      AdvanceLong(val);
1624    } else {
1625      if (HaveDoubleFpr()) {
1626        if (DoubleFprNeedsPadding()) {
1627          PushFpr4(0);
1628          fpr_index_--;
1629        }
1630        PushFpr8(val);
1631        fpr_index_ -= kRegistersNeededForDouble;
1632      } else {
1633        if (DoubleStackNeedsPadding()) {
1634          PushStack(0);
1635          stack_entries_++;
1636        }
1637        if (kRegistersNeededForDouble == 1) {
1638          PushStack(static_cast<uintptr_t>(val));
1639          stack_entries_++;
1640        } else {
1641          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1642          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1643          stack_entries_ += 2;
1644        }
1645        fpr_index_ = 0;
1646      }
1647    }
1648  }
1649
1650  uint32_t GetStackEntries() const {
1651    return stack_entries_;
1652  }
1653
1654  uint32_t GetNumberOfUsedGprs() const {
1655    return kNumNativeGprArgs - gpr_index_;
1656  }
1657
1658  uint32_t GetNumberOfUsedFprs() const {
1659    return kNumNativeFprArgs - fpr_index_;
1660  }
1661
1662 private:
1663  void PushGpr(uintptr_t val) {
1664    delegate_->PushGpr(val);
1665  }
1666  void PushFpr4(float val) {
1667    delegate_->PushFpr4(val);
1668  }
1669  void PushFpr8(uint64_t val) {
1670    delegate_->PushFpr8(val);
1671  }
1672  void PushStack(uintptr_t val) {
1673    delegate_->PushStack(val);
1674  }
1675  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1676    return delegate_->PushHandle(ref);
1677  }
1678
1679  uint32_t gpr_index_;      // Number of free GPRs
1680  uint32_t fpr_index_;      // Number of free FPRs
1681  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1682                            // extended
1683  T* const delegate_;             // What Push implementation gets called
1684};
1685
1686// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1687// in subclasses.
1688//
1689// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1690// them with handles.
1691class ComputeNativeCallFrameSize {
1692 public:
1693  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1694
1695  virtual ~ComputeNativeCallFrameSize() {}
1696
1697  uint32_t GetStackSize() const {
1698    return num_stack_entries_ * sizeof(uintptr_t);
1699  }
1700
1701  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1702    sp8 -= GetStackSize();
1703    // Align by kStackAlignment.
1704    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1705    return sp8;
1706  }
1707
1708  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1709      const {
1710    // Assumption is OK right now, as we have soft-float arm
1711    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1712    sp8 -= fregs * sizeof(uintptr_t);
1713    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1714    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1715    sp8 -= iregs * sizeof(uintptr_t);
1716    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1717    return sp8;
1718  }
1719
1720  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1721                            uint32_t** start_fpr) const {
1722    // Native call stack.
1723    sp8 = LayoutCallStack(sp8);
1724    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1725
1726    // Put fprs and gprs below.
1727    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1728
1729    // Return the new bottom.
1730    return sp8;
1731  }
1732
1733  virtual void WalkHeader(
1734      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1735      REQUIRES_SHARED(Locks::mutator_lock_) {
1736  }
1737
1738  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1739    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1740
1741    WalkHeader(&sm);
1742
1743    for (uint32_t i = 1; i < shorty_len; ++i) {
1744      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1745      switch (cur_type_) {
1746        case Primitive::kPrimNot:
1747          // TODO: fix abuse of mirror types.
1748          sm.AdvanceHandleScope(
1749              reinterpret_cast<mirror::Object*>(0x12345678));
1750          break;
1751
1752        case Primitive::kPrimBoolean:
1753        case Primitive::kPrimByte:
1754        case Primitive::kPrimChar:
1755        case Primitive::kPrimShort:
1756        case Primitive::kPrimInt:
1757          sm.AdvanceInt(0);
1758          break;
1759        case Primitive::kPrimFloat:
1760          sm.AdvanceFloat(0);
1761          break;
1762        case Primitive::kPrimDouble:
1763          sm.AdvanceDouble(0);
1764          break;
1765        case Primitive::kPrimLong:
1766          sm.AdvanceLong(0);
1767          break;
1768        default:
1769          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1770          UNREACHABLE();
1771      }
1772    }
1773
1774    num_stack_entries_ = sm.GetStackEntries();
1775  }
1776
1777  void PushGpr(uintptr_t /* val */) {
1778    // not optimizing registers, yet
1779  }
1780
1781  void PushFpr4(float /* val */) {
1782    // not optimizing registers, yet
1783  }
1784
1785  void PushFpr8(uint64_t /* val */) {
1786    // not optimizing registers, yet
1787  }
1788
1789  void PushStack(uintptr_t /* val */) {
1790    // counting is already done in the superclass
1791  }
1792
1793  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1794    return reinterpret_cast<uintptr_t>(nullptr);
1795  }
1796
1797 protected:
1798  uint32_t num_stack_entries_;
1799};
1800
1801class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1802 public:
1803  explicit ComputeGenericJniFrameSize(bool critical_native)
1804    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1805
1806  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1807  // is at *m = sp. Will update to point to the bottom of the save frame.
1808  //
1809  // Note: assumes ComputeAll() has been run before.
1810  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1811      REQUIRES_SHARED(Locks::mutator_lock_) {
1812    ArtMethod* method = **m;
1813
1814    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1815
1816    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1817
1818    // First, fix up the layout of the callee-save frame.
1819    // We have to squeeze in the HandleScope, and relocate the method pointer.
1820
1821    // "Free" the slot for the method.
1822    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1823
1824    // Under the callee saves put handle scope and new method stack reference.
1825    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1826    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1827
1828    sp8 -= scope_and_method;
1829    // Align by kStackAlignment.
1830    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1831
1832    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1833    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1834                                        num_handle_scope_references_);
1835
1836    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1837    uint8_t* method_pointer = sp8;
1838    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1839    *new_method_ref = method;
1840    *m = new_method_ref;
1841  }
1842
1843  // Adds space for the cookie. Note: may leave stack unaligned.
1844  void LayoutCookie(uint8_t** sp) const {
1845    // Reference cookie and padding
1846    *sp -= 8;
1847  }
1848
1849  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1850  // Returns the new bottom. Note: this may be unaligned.
1851  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1852      REQUIRES_SHARED(Locks::mutator_lock_) {
1853    // First, fix up the layout of the callee-save frame.
1854    // We have to squeeze in the HandleScope, and relocate the method pointer.
1855    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1856
1857    // The bottom of the callee-save frame is now where the method is, *m.
1858    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1859
1860    // Add space for cookie.
1861    LayoutCookie(&sp8);
1862
1863    return sp8;
1864  }
1865
1866  // WARNING: After this, *sp won't be pointing to the method anymore!
1867  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1868                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1869                         uint32_t** start_fpr)
1870      REQUIRES_SHARED(Locks::mutator_lock_) {
1871    Walk(shorty, shorty_len);
1872
1873    // JNI part.
1874    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1875
1876    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1877
1878    // Return the new bottom.
1879    return sp8;
1880  }
1881
1882  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1883
1884  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1885  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1886      REQUIRES_SHARED(Locks::mutator_lock_);
1887
1888 private:
1889  uint32_t num_handle_scope_references_;
1890  const bool critical_native_;
1891};
1892
1893uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1894  num_handle_scope_references_++;
1895  return reinterpret_cast<uintptr_t>(nullptr);
1896}
1897
1898void ComputeGenericJniFrameSize::WalkHeader(
1899    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1900  // First 2 parameters are always excluded for @CriticalNative.
1901  if (UNLIKELY(critical_native_)) {
1902    return;
1903  }
1904
1905  // JNIEnv
1906  sm->AdvancePointer(nullptr);
1907
1908  // Class object or this as first argument
1909  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1910}
1911
1912// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1913// the template requirements of BuildGenericJniFrameStateMachine.
1914class FillNativeCall {
1915 public:
1916  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1917      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1918
1919  virtual ~FillNativeCall() {}
1920
1921  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1922    cur_gpr_reg_ = gpr_regs;
1923    cur_fpr_reg_ = fpr_regs;
1924    cur_stack_arg_ = stack_args;
1925  }
1926
1927  void PushGpr(uintptr_t val) {
1928    *cur_gpr_reg_ = val;
1929    cur_gpr_reg_++;
1930  }
1931
1932  void PushFpr4(float val) {
1933    *cur_fpr_reg_ = val;
1934    cur_fpr_reg_++;
1935  }
1936
1937  void PushFpr8(uint64_t val) {
1938    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1939    *tmp = val;
1940    cur_fpr_reg_ += 2;
1941  }
1942
1943  void PushStack(uintptr_t val) {
1944    *cur_stack_arg_ = val;
1945    cur_stack_arg_++;
1946  }
1947
1948  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1949    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1950    UNREACHABLE();
1951  }
1952
1953 private:
1954  uintptr_t* cur_gpr_reg_;
1955  uint32_t* cur_fpr_reg_;
1956  uintptr_t* cur_stack_arg_;
1957};
1958
1959// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1960// of transitioning into native code.
1961class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1962 public:
1963  BuildGenericJniFrameVisitor(Thread* self,
1964                              bool is_static,
1965                              bool critical_native,
1966                              const char* shorty,
1967                              uint32_t shorty_len,
1968                              ArtMethod*** sp)
1969     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1970       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1971       sm_(&jni_call_) {
1972    ComputeGenericJniFrameSize fsc(critical_native);
1973    uintptr_t* start_gpr_reg;
1974    uint32_t* start_fpr_reg;
1975    uintptr_t* start_stack_arg;
1976    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1977                                             &handle_scope_,
1978                                             &start_stack_arg,
1979                                             &start_gpr_reg, &start_fpr_reg);
1980
1981    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1982
1983    // First 2 parameters are always excluded for CriticalNative methods.
1984    if (LIKELY(!critical_native)) {
1985      // jni environment is always first argument
1986      sm_.AdvancePointer(self->GetJniEnv());
1987
1988      if (is_static) {
1989        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1990      }  // else "this" reference is already handled by QuickArgumentVisitor.
1991    }
1992  }
1993
1994  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1995
1996  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1997
1998  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1999    return handle_scope_->GetHandle(0).GetReference();
2000  }
2001
2002  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2003    return handle_scope_->GetHandle(0).ToJObject();
2004  }
2005
2006  void* GetBottomOfUsedArea() const {
2007    return bottom_of_used_area_;
2008  }
2009
2010 private:
2011  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2012  class FillJniCall FINAL : public FillNativeCall {
2013   public:
2014    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2015                HandleScope* handle_scope, bool critical_native)
2016      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2017                       handle_scope_(handle_scope),
2018        cur_entry_(0),
2019        critical_native_(critical_native) {}
2020
2021    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
2022
2023    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2024      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2025      handle_scope_ = scope;
2026      cur_entry_ = 0U;
2027    }
2028
2029    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2030      // Initialize padding entries.
2031      size_t expected_slots = handle_scope_->NumberOfReferences();
2032      while (cur_entry_ < expected_slots) {
2033        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2034      }
2035
2036      if (!critical_native_) {
2037        // Non-critical natives have at least the self class (jclass) or this (jobject).
2038        DCHECK_NE(cur_entry_, 0U);
2039      }
2040    }
2041
2042    bool CriticalNative() const {
2043      return critical_native_;
2044    }
2045
2046   private:
2047    HandleScope* handle_scope_;
2048    size_t cur_entry_;
2049    const bool critical_native_;
2050  };
2051
2052  HandleScope* handle_scope_;
2053  FillJniCall jni_call_;
2054  void* bottom_of_used_area_;
2055
2056  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2057
2058  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2059};
2060
2061uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2062  uintptr_t tmp;
2063  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2064  h.Assign(ref);
2065  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2066  cur_entry_++;
2067  return tmp;
2068}
2069
2070void BuildGenericJniFrameVisitor::Visit() {
2071  Primitive::Type type = GetParamPrimitiveType();
2072  switch (type) {
2073    case Primitive::kPrimLong: {
2074      jlong long_arg;
2075      if (IsSplitLongOrDouble()) {
2076        long_arg = ReadSplitLongParam();
2077      } else {
2078        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2079      }
2080      sm_.AdvanceLong(long_arg);
2081      break;
2082    }
2083    case Primitive::kPrimDouble: {
2084      uint64_t double_arg;
2085      if (IsSplitLongOrDouble()) {
2086        // Read into union so that we don't case to a double.
2087        double_arg = ReadSplitLongParam();
2088      } else {
2089        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2090      }
2091      sm_.AdvanceDouble(double_arg);
2092      break;
2093    }
2094    case Primitive::kPrimNot: {
2095      StackReference<mirror::Object>* stack_ref =
2096          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2097      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2098      break;
2099    }
2100    case Primitive::kPrimFloat:
2101      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2102      break;
2103    case Primitive::kPrimBoolean:  // Fall-through.
2104    case Primitive::kPrimByte:     // Fall-through.
2105    case Primitive::kPrimChar:     // Fall-through.
2106    case Primitive::kPrimShort:    // Fall-through.
2107    case Primitive::kPrimInt:      // Fall-through.
2108      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2109      break;
2110    case Primitive::kPrimVoid:
2111      LOG(FATAL) << "UNREACHABLE";
2112      UNREACHABLE();
2113  }
2114}
2115
2116void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2117  // Clear out rest of the scope.
2118  jni_call_.ResetRemainingScopeSlots();
2119  if (!jni_call_.CriticalNative()) {
2120    // Install HandleScope.
2121    self->PushHandleScope(handle_scope_);
2122  }
2123}
2124
2125#if defined(__arm__) || defined(__aarch64__)
2126extern "C" const void* artFindNativeMethod();
2127#else
2128extern "C" const void* artFindNativeMethod(Thread* self);
2129#endif
2130
2131static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2132                                            uint32_t cookie,
2133                                            bool fast_native ATTRIBUTE_UNUSED,
2134                                            jobject l,
2135                                            jobject lock) {
2136  // TODO: add entrypoints for @FastNative returning objects.
2137  if (lock != nullptr) {
2138    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2139  } else {
2140    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2141  }
2142}
2143
2144static void artQuickGenericJniEndJNINonRef(Thread* self,
2145                                           uint32_t cookie,
2146                                           bool fast_native,
2147                                           jobject lock) {
2148  if (lock != nullptr) {
2149    JniMethodEndSynchronized(cookie, lock, self);
2150    // Ignore "fast_native" here because synchronized functions aren't very fast.
2151  } else {
2152    if (UNLIKELY(fast_native)) {
2153      JniMethodFastEnd(cookie, self);
2154    } else {
2155      JniMethodEnd(cookie, self);
2156    }
2157  }
2158}
2159
2160/*
2161 * Initializes an alloca region assumed to be directly below sp for a native call:
2162 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2163 * The final element on the stack is a pointer to the native code.
2164 *
2165 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2166 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2167 *
2168 * The return of this function denotes:
2169 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2170 * 2) An error, if the value is negative.
2171 */
2172extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2173    REQUIRES_SHARED(Locks::mutator_lock_) {
2174  // Note: We cannot walk the stack properly until fixed up below.
2175  ArtMethod* called = *sp;
2176  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2177  uint32_t shorty_len = 0;
2178  const char* shorty = called->GetShorty(&shorty_len);
2179  bool critical_native = called->IsCriticalNative();
2180  bool fast_native = called->IsFastNative();
2181  bool normal_native = !critical_native && !fast_native;
2182
2183  // Run the visitor and update sp.
2184  BuildGenericJniFrameVisitor visitor(self,
2185                                      called->IsStatic(),
2186                                      critical_native,
2187                                      shorty,
2188                                      shorty_len,
2189                                      &sp);
2190  {
2191    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2192    visitor.VisitArguments();
2193    // FinalizeHandleScope pushes the handle scope on the thread.
2194    visitor.FinalizeHandleScope(self);
2195  }
2196
2197  // Fix up managed-stack things in Thread. After this we can walk the stack.
2198  self->SetTopOfStack(sp);
2199
2200  self->VerifyStack();
2201
2202  uint32_t cookie;
2203  uint32_t* sp32;
2204  // Skip calling JniMethodStart for @CriticalNative.
2205  if (LIKELY(!critical_native)) {
2206    // Start JNI, save the cookie.
2207    if (called->IsSynchronized()) {
2208      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2209      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2210      if (self->IsExceptionPending()) {
2211        self->PopHandleScope();
2212        // A negative value denotes an error.
2213        return GetTwoWordFailureValue();
2214      }
2215    } else {
2216      if (fast_native) {
2217        cookie = JniMethodFastStart(self);
2218      } else {
2219        DCHECK(normal_native);
2220        cookie = JniMethodStart(self);
2221      }
2222    }
2223    sp32 = reinterpret_cast<uint32_t*>(sp);
2224    *(sp32 - 1) = cookie;
2225  }
2226
2227  // Retrieve the stored native code.
2228  void const* nativeCode = called->GetEntryPointFromJni();
2229
2230  // There are two cases for the content of nativeCode:
2231  // 1) Pointer to the native function.
2232  // 2) Pointer to the trampoline for native code binding.
2233  // In the second case, we need to execute the binding and continue with the actual native function
2234  // pointer.
2235  DCHECK(nativeCode != nullptr);
2236  if (nativeCode == GetJniDlsymLookupStub()) {
2237#if defined(__arm__) || defined(__aarch64__)
2238    nativeCode = artFindNativeMethod();
2239#else
2240    nativeCode = artFindNativeMethod(self);
2241#endif
2242
2243    if (nativeCode == nullptr) {
2244      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2245
2246      // @CriticalNative calls do not need to call back into JniMethodEnd.
2247      if (LIKELY(!critical_native)) {
2248        // End JNI, as the assembly will move to deliver the exception.
2249        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2250        if (shorty[0] == 'L') {
2251          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2252        } else {
2253          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2254        }
2255      }
2256
2257      return GetTwoWordFailureValue();
2258    }
2259    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2260  }
2261
2262#if defined(__mips__) && !defined(__LP64__)
2263  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2264  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2265  // and load into floating-point registers.
2266  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2267  // view):
2268  // (1)
2269  //  |     DOUBLE    |     DOUBLE    | other args, if any
2270  //  |  F12  |  F13  |  F14  |  F15  |
2271  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2272  // (2)
2273  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2274  //  |  F12  |  F13  |  F14  |       |
2275  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2276  // (3)
2277  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2278  //  |  F12  |       |  F14  |  F15  |
2279  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2280  // (4)
2281  //  | FLOAT | FLOAT | other args, if any
2282  //  |  F12  |  F14  |
2283  //  |  SP+0 |  SP+4 | SP+8
2284  // As you can see, only the last case (4) is special. In all others we can just
2285  // load F12/F13 and F14/F15 in the same manner.
2286  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2287  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2288  if (nativeCode != nullptr &&
2289      shorty != nullptr &&
2290      shorty_len >= 3 &&
2291      shorty[1] == 'F' &&
2292      shorty[2] == 'F') {
2293    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2294  }
2295#endif
2296
2297  // Return native code addr(lo) and bottom of alloca address(hi).
2298  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2299                                reinterpret_cast<uintptr_t>(nativeCode));
2300}
2301
2302// Defined in quick_jni_entrypoints.cc.
2303extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2304                                    jvalue result, uint64_t result_f, ArtMethod* called,
2305                                    HandleScope* handle_scope);
2306/*
2307 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2308 * unlocking.
2309 */
2310extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2311                                                    jvalue result,
2312                                                    uint64_t result_f) {
2313  // We're here just back from a native call. We don't have the shared mutator lock at this point
2314  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2315  // anything that requires a mutator lock before that would cause problems as GC may have the
2316  // exclusive mutator lock and may be moving objects, etc.
2317  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2318  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2319  ArtMethod* called = *sp;
2320  uint32_t cookie = *(sp32 - 1);
2321  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2322  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2323}
2324
2325// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2326// for the method pointer.
2327//
2328// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2329// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2330
2331template <InvokeType type, bool access_check>
2332static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2333                                     ObjPtr<mirror::Object> this_object,
2334                                     Thread* self,
2335                                     ArtMethod** sp) {
2336  ScopedQuickEntrypointChecks sqec(self);
2337  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2338  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2339  ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2340  if (UNLIKELY(method == nullptr)) {
2341    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2342    uint32_t shorty_len;
2343    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2344    {
2345      // Remember the args in case a GC happens in FindMethodFromCode.
2346      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2347      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2348      visitor.VisitArguments();
2349      method = FindMethodFromCode<type, access_check>(method_idx,
2350                                                      &this_object,
2351                                                      caller_method,
2352                                                      self);
2353      visitor.FixupReferences();
2354    }
2355
2356    if (UNLIKELY(method == nullptr)) {
2357      CHECK(self->IsExceptionPending());
2358      return GetTwoWordFailureValue();  // Failure.
2359    }
2360  }
2361  DCHECK(!self->IsExceptionPending());
2362  const void* code = method->GetEntryPointFromQuickCompiledCode();
2363
2364  // When we return, the caller will branch to this address, so it had better not be 0!
2365  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2366                          << " location: "
2367                          << method->GetDexFile()->GetLocation();
2368
2369  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2370                                reinterpret_cast<uintptr_t>(method));
2371}
2372
2373// Explicit artInvokeCommon template function declarations to please analysis tool.
2374#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2375  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2376  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2377      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2378
2379EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2380EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2381EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2382EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2383EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2384EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2385EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2386EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2387EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2388EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2389#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2390
2391// See comments in runtime_support_asm.S
2392extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2393    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2394    REQUIRES_SHARED(Locks::mutator_lock_) {
2395  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2396}
2397
2398extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2399    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2400    REQUIRES_SHARED(Locks::mutator_lock_) {
2401  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2402}
2403
2404extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2405    uint32_t method_idx,
2406    mirror::Object* this_object ATTRIBUTE_UNUSED,
2407    Thread* self,
2408    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2409  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2410  // it doesn't cause ObjPtr alignment failure check.
2411  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2412}
2413
2414extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2415    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2416    REQUIRES_SHARED(Locks::mutator_lock_) {
2417  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2418}
2419
2420extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2421    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2422    REQUIRES_SHARED(Locks::mutator_lock_) {
2423  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2424}
2425
2426// Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
2427extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2428    REQUIRES_SHARED(Locks::mutator_lock_) {
2429  ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2430  DCHECK(!referrer->IsProxyMethod());
2431  ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2432      method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2433  DCHECK(result == nullptr ||
2434         result->GetDeclaringClass()->IsInterface() ||
2435         result->GetDeclaringClass() ==
2436             WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2437      << result->PrettyMethod();
2438  return result;
2439}
2440
2441// Determine target of interface dispatch. The interface method and this object are known non-null.
2442// The interface method is the method returned by the dex cache in the conflict trampoline.
2443extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2444                                                      mirror::Object* raw_this_object,
2445                                                      Thread* self,
2446                                                      ArtMethod** sp)
2447    REQUIRES_SHARED(Locks::mutator_lock_) {
2448  ScopedQuickEntrypointChecks sqec(self);
2449  StackHandleScope<2> hs(self);
2450  Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2451  Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2452
2453  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2454  ArtMethod* method = nullptr;
2455  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2456
2457  if (UNLIKELY(interface_method == nullptr)) {
2458    // The interface method is unresolved, so resolve it in the dex file of the caller.
2459    // Fetch the dex_method_idx of the target interface method from the caller.
2460    uint32_t dex_method_idx;
2461    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2462    const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2463    DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2464    const Instruction& instr = code_item->InstructionAt(dex_pc);
2465    Instruction::Code instr_code = instr.Opcode();
2466    DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2467           instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2468        << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2469    if (instr_code == Instruction::INVOKE_INTERFACE) {
2470      dex_method_idx = instr.VRegB_35c();
2471    } else {
2472      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2473      dex_method_idx = instr.VRegB_3rc();
2474    }
2475
2476    const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
2477    uint32_t shorty_len;
2478    const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2479                                                  &shorty_len);
2480    {
2481      // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2482      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2483      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2484      visitor.VisitArguments();
2485      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2486      interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2487          self, dex_method_idx, caller_method, kInterface);
2488      visitor.FixupReferences();
2489    }
2490
2491    if (UNLIKELY(interface_method == nullptr)) {
2492      CHECK(self->IsExceptionPending());
2493      return GetTwoWordFailureValue();  // Failure.
2494    }
2495  }
2496
2497  DCHECK(!interface_method->IsRuntimeMethod());
2498  // Look whether we have a match in the ImtConflictTable.
2499  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2500  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2501  if (LIKELY(conflict_method->IsRuntimeMethod())) {
2502    ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2503    DCHECK(current_table != nullptr);
2504    method = current_table->Lookup(interface_method, kRuntimePointerSize);
2505  } else {
2506    // It seems we aren't really a conflict method!
2507    if (kIsDebugBuild) {
2508      ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2509      CHECK_EQ(conflict_method, m)
2510          << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2511          << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2512    }
2513    method = conflict_method;
2514  }
2515  if (method != nullptr) {
2516    return GetTwoWordSuccessValue(
2517        reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2518        reinterpret_cast<uintptr_t>(method));
2519  }
2520
2521  // No match, use the IfTable.
2522  method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2523  if (UNLIKELY(method == nullptr)) {
2524    ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2525        interface_method, this_object.Get(), caller_method);
2526    return GetTwoWordFailureValue();  // Failure.
2527  }
2528
2529  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2530  // We create a new table with the new pair { interface_method, method }.
2531  DCHECK(conflict_method->IsRuntimeMethod());
2532  ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2533      cls.Get(),
2534      conflict_method,
2535      interface_method,
2536      method,
2537      /*force_new_conflict_method*/false);
2538  if (new_conflict_method != conflict_method) {
2539    // Update the IMT if we create a new conflict method. No fence needed here, as the
2540    // data is consistent.
2541    imt->Set(imt_index,
2542             new_conflict_method,
2543             kRuntimePointerSize);
2544  }
2545
2546  const void* code = method->GetEntryPointFromQuickCompiledCode();
2547
2548  // When we return, the caller will branch to this address, so it had better not be 0!
2549  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2550                          << " location: " << method->GetDexFile()->GetLocation();
2551
2552  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2553                                reinterpret_cast<uintptr_t>(method));
2554}
2555
2556// Returns shorty type so the caller can determine how to put |result|
2557// into expected registers. The shorty type is static so the compiler
2558// could call different flavors of this code path depending on the
2559// shorty type though this would require different entry points for
2560// each type.
2561extern "C" uintptr_t artInvokePolymorphic(
2562    JValue* result,
2563    mirror::Object* raw_receiver,
2564    Thread* self,
2565    ArtMethod** sp)
2566    REQUIRES_SHARED(Locks::mutator_lock_) {
2567  ScopedQuickEntrypointChecks sqec(self);
2568  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2569
2570  // Start new JNI local reference state
2571  JNIEnvExt* env = self->GetJniEnv();
2572  ScopedObjectAccessUnchecked soa(env);
2573  ScopedJniEnvLocalRefState env_state(env);
2574  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2575
2576  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2577  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2578  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2579  const DexFile::CodeItem* code = caller_method->GetCodeItem();
2580  const Instruction& inst = code->InstructionAt(dex_pc);
2581  DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2582         inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2583  const DexFile* dex_file = caller_method->GetDexFile();
2584  const uint32_t proto_idx = inst.VRegH();
2585  const char* shorty = dex_file->GetShorty(proto_idx);
2586  const size_t shorty_length = strlen(shorty);
2587  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2588  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2589  gc_visitor.VisitArguments();
2590
2591  // Wrap raw_receiver in a Handle for safety.
2592  StackHandleScope<3> hs(self);
2593  Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2594  raw_receiver = nullptr;
2595  self->EndAssertNoThreadSuspension(old_cause);
2596
2597  // Resolve method.
2598  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2599  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2600      self, inst.VRegB(), caller_method, kVirtual);
2601
2602  if (UNLIKELY(receiver_handle.IsNull())) {
2603    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2604    return static_cast<uintptr_t>('V');
2605  }
2606
2607  // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996).
2608  DCHECK_EQ(resolved_method->GetDeclaringClass(),
2609            WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle));
2610
2611  Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2612      ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get()))));
2613
2614  Handle<mirror::MethodType> method_type(
2615      hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2616
2617  // This implies we couldn't resolve one or more types in this method handle.
2618  if (UNLIKELY(method_type.IsNull())) {
2619    CHECK(self->IsExceptionPending());
2620    return static_cast<uintptr_t>('V');
2621  }
2622
2623  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2624  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2625
2626  // Fix references before constructing the shadow frame.
2627  gc_visitor.FixupReferences();
2628
2629  // Construct shadow frame placing arguments consecutively from |first_arg|.
2630  const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2631  const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2632  const size_t first_arg = 0;
2633  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2634      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2635  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2636  ScopedStackedShadowFramePusher
2637      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2638  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2639                                                    kMethodIsStatic,
2640                                                    shorty,
2641                                                    strlen(shorty),
2642                                                    shadow_frame,
2643                                                    first_arg);
2644  shadow_frame_builder.VisitArguments();
2645
2646  // Push a transition back into managed code onto the linked list in thread.
2647  ManagedStack fragment;
2648  self->PushManagedStackFragment(&fragment);
2649
2650  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2651  // consecutive order.
2652  RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2653  bool isExact = (jni::EncodeArtMethod(resolved_method) ==
2654                  WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact);
2655  bool success = false;
2656  if (isExact) {
2657    success = MethodHandleInvokeExact(self,
2658                                      *shadow_frame,
2659                                      method_handle,
2660                                      method_type,
2661                                      &operands,
2662                                      result);
2663  } else {
2664    success = MethodHandleInvoke(self,
2665                                 *shadow_frame,
2666                                 method_handle,
2667                                 method_type,
2668                                 &operands,
2669                                 result);
2670  }
2671  DCHECK(success || self->IsExceptionPending());
2672
2673  // Pop transition record.
2674  self->PopManagedStackFragment(fragment);
2675
2676  return static_cast<uintptr_t>(shorty[0]);
2677}
2678
2679}  // namespace art
2680