quick_trampoline_entrypoints.cc revision ac141397dc29189ad2b2df41f8d4312246beec60
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/enums.h"
19#include "callee_save_frame.h"
20#include "common_throws.h"
21#include "dex_file-inl.h"
22#include "dex_instruction-inl.h"
23#include "entrypoints/entrypoint_utils-inl.h"
24#include "entrypoints/runtime_asm_entrypoints.h"
25#include "gc/accounting/card_table-inl.h"
26#include "imt_conflict_table.h"
27#include "imtable-inl.h"
28#include "interpreter/interpreter.h"
29#include "linear_alloc.h"
30#include "method_handles.h"
31#include "method_reference.h"
32#include "mirror/class-inl.h"
33#include "mirror/dex_cache-inl.h"
34#include "mirror/method.h"
35#include "mirror/method_handle_impl.h"
36#include "mirror/object-inl.h"
37#include "mirror/object_array-inl.h"
38#include "oat_quick_method_header.h"
39#include "quick_exception_handler.h"
40#include "runtime.h"
41#include "scoped_thread_state_change-inl.h"
42#include "stack.h"
43#include "debugger.h"
44#include "well_known_classes.h"
45
46namespace art {
47
48// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
49class QuickArgumentVisitor {
50  // Number of bytes for each out register in the caller method's frame.
51  static constexpr size_t kBytesStackArgLocation = 4;
52  // Frame size in bytes of a callee-save frame for RefsAndArgs.
53  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
54      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
55#if defined(__arm__)
56  // The callee save frame is pointed to by SP.
57  // | argN       |  |
58  // | ...        |  |
59  // | arg4       |  |
60  // | arg3 spill |  |  Caller's frame
61  // | arg2 spill |  |
62  // | arg1 spill |  |
63  // | Method*    | ---
64  // | LR         |
65  // | ...        |    4x6 bytes callee saves
66  // | R3         |
67  // | R2         |
68  // | R1         |
69  // | S15        |
70  // | :          |
71  // | S0         |
72  // |            |    4x2 bytes padding
73  // | Method*    |  <- sp
74  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
75  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
76  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
77  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
78  static constexpr bool kQuickSkipOddFpRegisters = false;
79  static constexpr size_t kNumQuickGprArgs = 3;
80  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
81  static constexpr bool kGprFprLockstep = false;
82  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
83      arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
84  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
85      arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
86  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
87      arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
88  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
89    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
90  }
91#elif defined(__aarch64__)
92  // The callee save frame is pointed to by SP.
93  // | argN       |  |
94  // | ...        |  |
95  // | arg4       |  |
96  // | arg3 spill |  |  Caller's frame
97  // | arg2 spill |  |
98  // | arg1 spill |  |
99  // | Method*    | ---
100  // | LR         |
101  // | X29        |
102  // |  :         |
103  // | X20        |
104  // | X7         |
105  // | :          |
106  // | X1         |
107  // | D7         |
108  // |  :         |
109  // | D0         |
110  // |            |    padding
111  // | Method*    |  <- sp
112  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
113  static constexpr bool kAlignPairRegister = false;
114  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
115  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
116  static constexpr bool kQuickSkipOddFpRegisters = false;
117  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
118  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
119  static constexpr bool kGprFprLockstep = false;
120  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
121      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
122  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
123      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
124  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
125      arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
126  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
127    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
128  }
129#elif defined(__mips__) && !defined(__LP64__)
130  // The callee save frame is pointed to by SP.
131  // | argN       |  |
132  // | ...        |  |
133  // | arg4       |  |
134  // | arg3 spill |  |  Caller's frame
135  // | arg2 spill |  |
136  // | arg1 spill |  |
137  // | Method*    | ---
138  // | RA         |
139  // | ...        |    callee saves
140  // | T1         |    arg5
141  // | T0         |    arg4
142  // | A3         |    arg3
143  // | A2         |    arg2
144  // | A1         |    arg1
145  // | F19        |
146  // | F18        |    f_arg5
147  // | F17        |
148  // | F16        |    f_arg4
149  // | F15        |
150  // | F14        |    f_arg3
151  // | F13        |
152  // | F12        |    f_arg2
153  // | F11        |
154  // | F10        |    f_arg1
155  // | F9         |
156  // | F8         |    f_arg0
157  // |            |    padding
158  // | A0/Method* |  <- sp
159  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
160  static constexpr bool kAlignPairRegister = true;
161  static constexpr bool kQuickSoftFloatAbi = false;
162  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
163  static constexpr bool kQuickSkipOddFpRegisters = true;
164  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
165  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
166                                                  // passed only in even numbered registers and each
167                                                  // double occupies two registers.
168  static constexpr bool kGprFprLockstep = false;
169  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
170  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
171  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
172  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
173    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
174  }
175#elif defined(__mips__) && defined(__LP64__)
176  // The callee save frame is pointed to by SP.
177  // | argN       |  |
178  // | ...        |  |
179  // | arg4       |  |
180  // | arg3 spill |  |  Caller's frame
181  // | arg2 spill |  |
182  // | arg1 spill |  |
183  // | Method*    | ---
184  // | RA         |
185  // | ...        |    callee saves
186  // | A7         |    arg7
187  // | A6         |    arg6
188  // | A5         |    arg5
189  // | A4         |    arg4
190  // | A3         |    arg3
191  // | A2         |    arg2
192  // | A1         |    arg1
193  // | F19        |    f_arg7
194  // | F18        |    f_arg6
195  // | F17        |    f_arg5
196  // | F16        |    f_arg4
197  // | F15        |    f_arg3
198  // | F14        |    f_arg2
199  // | F13        |    f_arg1
200  // | F12        |    f_arg0
201  // |            |    padding
202  // | A0/Method* |  <- sp
203  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
204  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
205  static constexpr bool kAlignPairRegister = false;
206  static constexpr bool kQuickSoftFloatAbi = false;
207  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
208  static constexpr bool kQuickSkipOddFpRegisters = false;
209  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
210  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
211  static constexpr bool kGprFprLockstep = true;
212
213  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
214  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
215  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
216  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
217    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
218  }
219#elif defined(__i386__)
220  // The callee save frame is pointed to by SP.
221  // | argN        |  |
222  // | ...         |  |
223  // | arg4        |  |
224  // | arg3 spill  |  |  Caller's frame
225  // | arg2 spill  |  |
226  // | arg1 spill  |  |
227  // | Method*     | ---
228  // | Return      |
229  // | EBP,ESI,EDI |    callee saves
230  // | EBX         |    arg3
231  // | EDX         |    arg2
232  // | ECX         |    arg1
233  // | XMM3        |    float arg 4
234  // | XMM2        |    float arg 3
235  // | XMM1        |    float arg 2
236  // | XMM0        |    float arg 1
237  // | EAX/Method* |  <- sp
238  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
239  static constexpr bool kAlignPairRegister = false;
240  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
241  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
242  static constexpr bool kQuickSkipOddFpRegisters = false;
243  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
244  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
245  static constexpr bool kGprFprLockstep = false;
246  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
247  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
248  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
249  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
250    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
251  }
252#elif defined(__x86_64__)
253  // The callee save frame is pointed to by SP.
254  // | argN            |  |
255  // | ...             |  |
256  // | reg. arg spills |  |  Caller's frame
257  // | Method*         | ---
258  // | Return          |
259  // | R15             |    callee save
260  // | R14             |    callee save
261  // | R13             |    callee save
262  // | R12             |    callee save
263  // | R9              |    arg5
264  // | R8              |    arg4
265  // | RSI/R6          |    arg1
266  // | RBP/R5          |    callee save
267  // | RBX/R3          |    callee save
268  // | RDX/R2          |    arg2
269  // | RCX/R1          |    arg3
270  // | XMM7            |    float arg 8
271  // | XMM6            |    float arg 7
272  // | XMM5            |    float arg 6
273  // | XMM4            |    float arg 5
274  // | XMM3            |    float arg 4
275  // | XMM2            |    float arg 3
276  // | XMM1            |    float arg 2
277  // | XMM0            |    float arg 1
278  // | Padding         |
279  // | RDI/Method*     |  <- sp
280  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
281  static constexpr bool kAlignPairRegister = false;
282  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
283  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
284  static constexpr bool kQuickSkipOddFpRegisters = false;
285  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
286  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
287  static constexpr bool kGprFprLockstep = false;
288  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
289  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
290  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
291  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
292    switch (gpr_index) {
293      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
294      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
295      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
296      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
297      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
298      default:
299      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
300      return 0;
301    }
302  }
303#else
304#error "Unsupported architecture"
305#endif
306
307 public:
308  // Special handling for proxy methods. Proxy methods are instance methods so the
309  // 'this' object is the 1st argument. They also have the same frame layout as the
310  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
311  // 1st GPR.
312  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
313      REQUIRES_SHARED(Locks::mutator_lock_) {
314    CHECK((*sp)->IsProxyMethod());
315    CHECK_GT(kNumQuickGprArgs, 0u);
316    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
317    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
318        GprIndexToGprOffset(kThisGprIndex);
319    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
320    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
321  }
322
323  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
324    DCHECK((*sp)->IsCalleeSaveMethod());
325    return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs);
326  }
327
328  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
329    DCHECK((*sp)->IsCalleeSaveMethod());
330    uint8_t* previous_sp =
331        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
332    return *reinterpret_cast<ArtMethod**>(previous_sp);
333  }
334
335  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
336    DCHECK((*sp)->IsCalleeSaveMethod());
337    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
338    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
339        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
340    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
341    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
342    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
343
344    if (current_code->IsOptimized()) {
345      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
346      CodeInfoEncoding encoding = code_info.ExtractEncoding();
347      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
348      DCHECK(stack_map.IsValid());
349      if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
350        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
351        return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding,
352                                           inline_info.GetDepth(encoding.inline_info_encoding)-1);
353      } else {
354        return stack_map.GetDexPc(encoding.stack_map_encoding);
355      }
356    } else {
357      return current_code->ToDexPc(*caller_sp, outer_pc);
358    }
359  }
360
361  // For the given quick ref and args quick frame, return the caller's PC.
362  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
363    DCHECK((*sp)->IsCalleeSaveMethod());
364    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
365    return *reinterpret_cast<uintptr_t*>(lr);
366  }
367
368  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
369                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
370          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
371          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
372          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
373          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
374              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
375          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
376          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
377    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
378                  "Number of Quick FPR arguments unexpected");
379    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
380                  "Double alignment unexpected");
381    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
382    // next register is even.
383    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
384                  "Number of Quick FPR arguments not even");
385    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
386  }
387
388  virtual ~QuickArgumentVisitor() {}
389
390  virtual void Visit() = 0;
391
392  Primitive::Type GetParamPrimitiveType() const {
393    return cur_type_;
394  }
395
396  uint8_t* GetParamAddress() const {
397    if (!kQuickSoftFloatAbi) {
398      Primitive::Type type = GetParamPrimitiveType();
399      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
400        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
401          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
402            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
403          }
404        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
405          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
406        }
407        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
408      }
409    }
410    if (gpr_index_ < kNumQuickGprArgs) {
411      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
412    }
413    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
414  }
415
416  bool IsSplitLongOrDouble() const {
417    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
418        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
419      return is_split_long_or_double_;
420    } else {
421      return false;  // An optimization for when GPR and FPRs are 64bit.
422    }
423  }
424
425  bool IsParamAReference() const {
426    return GetParamPrimitiveType() == Primitive::kPrimNot;
427  }
428
429  bool IsParamALongOrDouble() const {
430    Primitive::Type type = GetParamPrimitiveType();
431    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
432  }
433
434  uint64_t ReadSplitLongParam() const {
435    // The splitted long is always available through the stack.
436    return *reinterpret_cast<uint64_t*>(stack_args_
437        + stack_index_ * kBytesStackArgLocation);
438  }
439
440  void IncGprIndex() {
441    gpr_index_++;
442    if (kGprFprLockstep) {
443      fpr_index_++;
444    }
445  }
446
447  void IncFprIndex() {
448    fpr_index_++;
449    if (kGprFprLockstep) {
450      gpr_index_++;
451    }
452  }
453
454  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
455    // (a) 'stack_args_' should point to the first method's argument
456    // (b) whatever the argument type it is, the 'stack_index_' should
457    //     be moved forward along with every visiting.
458    gpr_index_ = 0;
459    fpr_index_ = 0;
460    if (kQuickDoubleRegAlignedFloatBackFilled) {
461      fpr_double_index_ = 0;
462    }
463    stack_index_ = 0;
464    if (!is_static_) {  // Handle this.
465      cur_type_ = Primitive::kPrimNot;
466      is_split_long_or_double_ = false;
467      Visit();
468      stack_index_++;
469      if (kNumQuickGprArgs > 0) {
470        IncGprIndex();
471      }
472    }
473    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
474      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
475      switch (cur_type_) {
476        case Primitive::kPrimNot:
477        case Primitive::kPrimBoolean:
478        case Primitive::kPrimByte:
479        case Primitive::kPrimChar:
480        case Primitive::kPrimShort:
481        case Primitive::kPrimInt:
482          is_split_long_or_double_ = false;
483          Visit();
484          stack_index_++;
485          if (gpr_index_ < kNumQuickGprArgs) {
486            IncGprIndex();
487          }
488          break;
489        case Primitive::kPrimFloat:
490          is_split_long_or_double_ = false;
491          Visit();
492          stack_index_++;
493          if (kQuickSoftFloatAbi) {
494            if (gpr_index_ < kNumQuickGprArgs) {
495              IncGprIndex();
496            }
497          } else {
498            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
499              IncFprIndex();
500              if (kQuickDoubleRegAlignedFloatBackFilled) {
501                // Double should not overlap with float.
502                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
503                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
504                // Float should not overlap with double.
505                if (fpr_index_ % 2 == 0) {
506                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
507                }
508              } else if (kQuickSkipOddFpRegisters) {
509                IncFprIndex();
510              }
511            }
512          }
513          break;
514        case Primitive::kPrimDouble:
515        case Primitive::kPrimLong:
516          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
517            if (cur_type_ == Primitive::kPrimLong &&
518#if defined(__mips__) && !defined(__LP64__)
519                (gpr_index_ == 0 || gpr_index_ == 2) &&
520#else
521                gpr_index_ == 0 &&
522#endif
523                kAlignPairRegister) {
524              // Currently, this is only for ARM and MIPS, where we align long parameters with
525              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
526              // R2 (on ARM) or A2(T0) (on MIPS) instead.
527              IncGprIndex();
528            }
529            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
530                ((gpr_index_ + 1) == kNumQuickGprArgs);
531            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
532              // We don't want to split this. Pass over this register.
533              gpr_index_++;
534              is_split_long_or_double_ = false;
535            }
536            Visit();
537            if (kBytesStackArgLocation == 4) {
538              stack_index_+= 2;
539            } else {
540              CHECK_EQ(kBytesStackArgLocation, 8U);
541              stack_index_++;
542            }
543            if (gpr_index_ < kNumQuickGprArgs) {
544              IncGprIndex();
545              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
546                if (gpr_index_ < kNumQuickGprArgs) {
547                  IncGprIndex();
548                }
549              }
550            }
551          } else {
552            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
553                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
554            Visit();
555            if (kBytesStackArgLocation == 4) {
556              stack_index_+= 2;
557            } else {
558              CHECK_EQ(kBytesStackArgLocation, 8U);
559              stack_index_++;
560            }
561            if (kQuickDoubleRegAlignedFloatBackFilled) {
562              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
563                fpr_double_index_ += 2;
564                // Float should not overlap with double.
565                if (fpr_index_ % 2 == 0) {
566                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
567                }
568              }
569            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
570              IncFprIndex();
571              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
572                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
573                  IncFprIndex();
574                }
575              }
576            }
577          }
578          break;
579        default:
580          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
581      }
582    }
583  }
584
585 protected:
586  const bool is_static_;
587  const char* const shorty_;
588  const uint32_t shorty_len_;
589
590 private:
591  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
592  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
593  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
594  uint32_t gpr_index_;  // Index into spilled GPRs.
595  // Index into spilled FPRs.
596  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
597  // holds a higher register number.
598  uint32_t fpr_index_;
599  // Index into spilled FPRs for aligned double.
600  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
601  // terms of singles, may be behind fpr_index.
602  uint32_t fpr_double_index_;
603  uint32_t stack_index_;  // Index into arguments on the stack.
604  // The current type of argument during VisitArguments.
605  Primitive::Type cur_type_;
606  // Does a 64bit parameter straddle the register and stack arguments?
607  bool is_split_long_or_double_;
608};
609
610// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
611// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
612extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
613    REQUIRES_SHARED(Locks::mutator_lock_) {
614  return QuickArgumentVisitor::GetProxyThisObject(sp);
615}
616
617// Visits arguments on the stack placing them into the shadow frame.
618class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
619 public:
620  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
621                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
622      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
623
624  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
625
626 private:
627  ShadowFrame* const sf_;
628  uint32_t cur_reg_;
629
630  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
631};
632
633void BuildQuickShadowFrameVisitor::Visit() {
634  Primitive::Type type = GetParamPrimitiveType();
635  switch (type) {
636    case Primitive::kPrimLong:  // Fall-through.
637    case Primitive::kPrimDouble:
638      if (IsSplitLongOrDouble()) {
639        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
640      } else {
641        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
642      }
643      ++cur_reg_;
644      break;
645    case Primitive::kPrimNot: {
646        StackReference<mirror::Object>* stack_ref =
647            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
648        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
649      }
650      break;
651    case Primitive::kPrimBoolean:  // Fall-through.
652    case Primitive::kPrimByte:     // Fall-through.
653    case Primitive::kPrimChar:     // Fall-through.
654    case Primitive::kPrimShort:    // Fall-through.
655    case Primitive::kPrimInt:      // Fall-through.
656    case Primitive::kPrimFloat:
657      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
658      break;
659    case Primitive::kPrimVoid:
660      LOG(FATAL) << "UNREACHABLE";
661      UNREACHABLE();
662  }
663  ++cur_reg_;
664}
665
666extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
667    REQUIRES_SHARED(Locks::mutator_lock_) {
668  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
669  // frame.
670  ScopedQuickEntrypointChecks sqec(self);
671
672  if (UNLIKELY(!method->IsInvokable())) {
673    method->ThrowInvocationTimeError();
674    return 0;
675  }
676
677  JValue tmp_value;
678  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
679      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
680  ManagedStack fragment;
681
682  DCHECK(!method->IsNative()) << method->PrettyMethod();
683  uint32_t shorty_len = 0;
684  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
685  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
686  DCHECK(code_item != nullptr) << method->PrettyMethod();
687  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
688
689  JValue result;
690
691  if (deopt_frame != nullptr) {
692    // Coming from partial-fragment deopt.
693
694    if (kIsDebugBuild) {
695      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
696      // of the call-stack) corresponds to the called method.
697      ShadowFrame* linked = deopt_frame;
698      while (linked->GetLink() != nullptr) {
699        linked = linked->GetLink();
700      }
701      CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
702          << ArtMethod::PrettyMethod(linked->GetMethod());
703    }
704
705    if (VLOG_IS_ON(deopt)) {
706      // Print out the stack to verify that it was a partial-fragment deopt.
707      LOG(INFO) << "Continue-ing from deopt. Stack is:";
708      QuickExceptionHandler::DumpFramesWithType(self, true);
709    }
710
711    ObjPtr<mirror::Throwable> pending_exception;
712    bool from_code = false;
713    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
714
715    // Push a transition back into managed code onto the linked list in thread.
716    self->PushManagedStackFragment(&fragment);
717
718    // Ensure that the stack is still in order.
719    if (kIsDebugBuild) {
720      class DummyStackVisitor : public StackVisitor {
721       public:
722        explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
723            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
724
725        bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
726          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
727          // logic. Just always say we want to continue.
728          return true;
729        }
730      };
731      DummyStackVisitor dsv(self);
732      dsv.WalkStack();
733    }
734
735    // Restore the exception that was pending before deoptimization then interpret the
736    // deoptimized frames.
737    if (pending_exception != nullptr) {
738      self->SetException(pending_exception);
739    }
740    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
741  } else {
742    const char* old_cause = self->StartAssertNoThreadSuspension(
743        "Building interpreter shadow frame");
744    uint16_t num_regs = code_item->registers_size_;
745    // No last shadow coming from quick.
746    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
747        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
748    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
749    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
750    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
751                                                      shadow_frame, first_arg_reg);
752    shadow_frame_builder.VisitArguments();
753    const bool needs_initialization =
754        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
755    // Push a transition back into managed code onto the linked list in thread.
756    self->PushManagedStackFragment(&fragment);
757    self->PushShadowFrame(shadow_frame);
758    self->EndAssertNoThreadSuspension(old_cause);
759
760    if (needs_initialization) {
761      // Ensure static method's class is initialized.
762      StackHandleScope<1> hs(self);
763      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
764      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
765        DCHECK(Thread::Current()->IsExceptionPending())
766            << shadow_frame->GetMethod()->PrettyMethod();
767        self->PopManagedStackFragment(fragment);
768        return 0;
769      }
770    }
771
772    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
773  }
774
775  // Pop transition.
776  self->PopManagedStackFragment(fragment);
777
778  // Request a stack deoptimization if needed
779  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
780  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
781  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
782  // should be done and it knows the real return pc.
783  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
784               Dbg::IsForcedInterpreterNeededForUpcall(self, caller) &&
785               Runtime::Current()->IsDeoptimizeable(caller_pc))) {
786    // Push the context of the deoptimization stack so we can restore the return value and the
787    // exception before executing the deoptimized frames.
788    self->PushDeoptimizationContext(
789        result, shorty[0] == 'L', /* from_code */ false, self->GetException());
790
791    // Set special exception to cause deoptimization.
792    self->SetException(Thread::GetDeoptimizationException());
793  }
794
795  // No need to restore the args since the method has already been run by the interpreter.
796  return result.GetJ();
797}
798
799// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
800// to jobjects.
801class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
802 public:
803  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
804                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
805      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
806
807  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
808
809  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
810
811 private:
812  ScopedObjectAccessUnchecked* const soa_;
813  std::vector<jvalue>* const args_;
814  // References which we must update when exiting in case the GC moved the objects.
815  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
816
817  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
818};
819
820void BuildQuickArgumentVisitor::Visit() {
821  jvalue val;
822  Primitive::Type type = GetParamPrimitiveType();
823  switch (type) {
824    case Primitive::kPrimNot: {
825      StackReference<mirror::Object>* stack_ref =
826          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
827      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
828      references_.push_back(std::make_pair(val.l, stack_ref));
829      break;
830    }
831    case Primitive::kPrimLong:  // Fall-through.
832    case Primitive::kPrimDouble:
833      if (IsSplitLongOrDouble()) {
834        val.j = ReadSplitLongParam();
835      } else {
836        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
837      }
838      break;
839    case Primitive::kPrimBoolean:  // Fall-through.
840    case Primitive::kPrimByte:     // Fall-through.
841    case Primitive::kPrimChar:     // Fall-through.
842    case Primitive::kPrimShort:    // Fall-through.
843    case Primitive::kPrimInt:      // Fall-through.
844    case Primitive::kPrimFloat:
845      val.i = *reinterpret_cast<jint*>(GetParamAddress());
846      break;
847    case Primitive::kPrimVoid:
848      LOG(FATAL) << "UNREACHABLE";
849      UNREACHABLE();
850  }
851  args_->push_back(val);
852}
853
854void BuildQuickArgumentVisitor::FixupReferences() {
855  // Fixup any references which may have changed.
856  for (const auto& pair : references_) {
857    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
858    soa_->Env()->DeleteLocalRef(pair.first);
859  }
860}
861
862// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
863// which is responsible for recording callee save registers. We explicitly place into jobjects the
864// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
865// field within the proxy object, which will box the primitive arguments and deal with error cases.
866extern "C" uint64_t artQuickProxyInvokeHandler(
867    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
868    REQUIRES_SHARED(Locks::mutator_lock_) {
869  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
870  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
871  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
872  const char* old_cause =
873      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
874  // Register the top of the managed stack, making stack crawlable.
875  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
876  self->VerifyStack();
877  // Start new JNI local reference state.
878  JNIEnvExt* env = self->GetJniEnv();
879  ScopedObjectAccessUnchecked soa(env);
880  ScopedJniEnvLocalRefState env_state(env);
881  // Create local ref. copies of proxy method and the receiver.
882  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
883
884  // Placing arguments into args vector and remove the receiver.
885  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
886  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
887                                       << non_proxy_method->PrettyMethod();
888  std::vector<jvalue> args;
889  uint32_t shorty_len = 0;
890  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
891  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
892
893  local_ref_visitor.VisitArguments();
894  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
895  args.erase(args.begin());
896
897  // Convert proxy method into expected interface method.
898  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
899  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
900  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
901  self->EndAssertNoThreadSuspension(old_cause);
902  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
903  DCHECK(!Runtime::Current()->IsActiveTransaction());
904  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
905      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
906                                                                      interface_method));
907
908  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
909  // that performs allocations.
910  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
911  // Restore references which might have moved.
912  local_ref_visitor.FixupReferences();
913  return result.GetJ();
914}
915
916// Read object references held in arguments from quick frames and place in a JNI local references,
917// so they don't get garbage collected.
918class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
919 public:
920  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
921                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
922      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
923
924  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
925
926  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
927
928 private:
929  ScopedObjectAccessUnchecked* const soa_;
930  // References which we must update when exiting in case the GC moved the objects.
931  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
932
933  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
934};
935
936void RememberForGcArgumentVisitor::Visit() {
937  if (IsParamAReference()) {
938    StackReference<mirror::Object>* stack_ref =
939        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
940    jobject reference =
941        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
942    references_.push_back(std::make_pair(reference, stack_ref));
943  }
944}
945
946void RememberForGcArgumentVisitor::FixupReferences() {
947  // Fixup any references which may have changed.
948  for (const auto& pair : references_) {
949    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
950    soa_->Env()->DeleteLocalRef(pair.first);
951  }
952}
953
954// Lazily resolve a method for quick. Called by stub code.
955extern "C" const void* artQuickResolutionTrampoline(
956    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
957    REQUIRES_SHARED(Locks::mutator_lock_) {
958  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
959  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
960  // does not have the same stack layout as the callee-save method).
961  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
962  // Start new JNI local reference state
963  JNIEnvExt* env = self->GetJniEnv();
964  ScopedObjectAccessUnchecked soa(env);
965  ScopedJniEnvLocalRefState env_state(env);
966  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
967
968  // Compute details about the called method (avoid GCs)
969  ClassLinker* linker = Runtime::Current()->GetClassLinker();
970  InvokeType invoke_type;
971  MethodReference called_method(nullptr, 0);
972  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
973  ArtMethod* caller = nullptr;
974  if (!called_method_known_on_entry) {
975    caller = QuickArgumentVisitor::GetCallingMethod(sp);
976    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
977    const DexFile::CodeItem* code;
978    called_method.dex_file = caller->GetDexFile();
979    code = caller->GetCodeItem();
980    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
981    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
982    Instruction::Code instr_code = instr->Opcode();
983    bool is_range;
984    switch (instr_code) {
985      case Instruction::INVOKE_DIRECT:
986        invoke_type = kDirect;
987        is_range = false;
988        break;
989      case Instruction::INVOKE_DIRECT_RANGE:
990        invoke_type = kDirect;
991        is_range = true;
992        break;
993      case Instruction::INVOKE_STATIC:
994        invoke_type = kStatic;
995        is_range = false;
996        break;
997      case Instruction::INVOKE_STATIC_RANGE:
998        invoke_type = kStatic;
999        is_range = true;
1000        break;
1001      case Instruction::INVOKE_SUPER:
1002        invoke_type = kSuper;
1003        is_range = false;
1004        break;
1005      case Instruction::INVOKE_SUPER_RANGE:
1006        invoke_type = kSuper;
1007        is_range = true;
1008        break;
1009      case Instruction::INVOKE_VIRTUAL:
1010        invoke_type = kVirtual;
1011        is_range = false;
1012        break;
1013      case Instruction::INVOKE_VIRTUAL_RANGE:
1014        invoke_type = kVirtual;
1015        is_range = true;
1016        break;
1017      case Instruction::INVOKE_INTERFACE:
1018        invoke_type = kInterface;
1019        is_range = false;
1020        break;
1021      case Instruction::INVOKE_INTERFACE_RANGE:
1022        invoke_type = kInterface;
1023        is_range = true;
1024        break;
1025      default:
1026        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1027        UNREACHABLE();
1028    }
1029    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1030  } else {
1031    invoke_type = kStatic;
1032    called_method.dex_file = called->GetDexFile();
1033    called_method.dex_method_index = called->GetDexMethodIndex();
1034  }
1035  uint32_t shorty_len;
1036  const char* shorty =
1037      called_method.dex_file->GetMethodShorty(
1038          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1039  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1040  visitor.VisitArguments();
1041  self->EndAssertNoThreadSuspension(old_cause);
1042  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1043  // Resolve method filling in dex cache.
1044  if (!called_method_known_on_entry) {
1045    StackHandleScope<1> hs(self);
1046    mirror::Object* dummy = nullptr;
1047    HandleWrapper<mirror::Object> h_receiver(
1048        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1049    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1050    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1051        self, called_method.dex_method_index, caller, invoke_type);
1052  }
1053  const void* code = nullptr;
1054  if (LIKELY(!self->IsExceptionPending())) {
1055    // Incompatible class change should have been handled in resolve method.
1056    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1057        << called->PrettyMethod() << " " << invoke_type;
1058    if (virtual_or_interface || invoke_type == kSuper) {
1059      // Refine called method based on receiver for kVirtual/kInterface, and
1060      // caller for kSuper.
1061      ArtMethod* orig_called = called;
1062      if (invoke_type == kVirtual) {
1063        CHECK(receiver != nullptr) << invoke_type;
1064        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1065      } else if (invoke_type == kInterface) {
1066        CHECK(receiver != nullptr) << invoke_type;
1067        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1068      } else {
1069        DCHECK_EQ(invoke_type, kSuper);
1070        CHECK(caller != nullptr) << invoke_type;
1071        StackHandleScope<2> hs(self);
1072        Handle<mirror::DexCache> dex_cache(
1073            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1074        Handle<mirror::ClassLoader> class_loader(
1075            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1076        // TODO Maybe put this into a mirror::Class function.
1077        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1078            called_method.dex_method_index, dex_cache, class_loader);
1079        if (ref_class->IsInterface()) {
1080          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1081        } else {
1082          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1083              called->GetMethodIndex(), kRuntimePointerSize);
1084        }
1085      }
1086
1087      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1088                               << mirror::Object::PrettyTypeOf(receiver) << " "
1089                               << invoke_type << " " << orig_called->GetVtableIndex();
1090
1091      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1092      // of the sharpened method avoiding dirtying the dex cache if possible.
1093      // Note, called_method.dex_method_index references the dex method before the
1094      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1095      // about the name and signature.
1096      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1097      if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
1098        // Calling from one dex file to another, need to compute the method index appropriate to
1099        // the caller's dex file. Since we get here only if the original called was a runtime
1100        // method, we've got the correct dex_file and a dex_method_idx from above.
1101        DCHECK(!called_method_known_on_entry);
1102        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1103        const DexFile* caller_dex_file = called_method.dex_file;
1104        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1105        update_dex_cache_method_index =
1106            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1107                                                     caller_method_name_and_sig_index);
1108      }
1109      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1110          (caller->GetDexCacheResolvedMethod(
1111              update_dex_cache_method_index, kRuntimePointerSize) != called)) {
1112        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
1113                                          called,
1114                                          kRuntimePointerSize);
1115      }
1116    } else if (invoke_type == kStatic) {
1117      const auto called_dex_method_idx = called->GetDexMethodIndex();
1118      // For static invokes, we may dispatch to the static method in the superclass but resolve
1119      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1120      // resolved method for the super class dex method index if we are in the same dex file.
1121      // b/19175856
1122      if (called->GetDexFile() == called_method.dex_file &&
1123          called_method.dex_method_index != called_dex_method_idx) {
1124        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
1125                                                 called,
1126                                                 kRuntimePointerSize);
1127      }
1128    }
1129
1130    // Ensure that the called method's class is initialized.
1131    StackHandleScope<1> hs(soa.Self());
1132    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1133    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1134    if (LIKELY(called_class->IsInitialized())) {
1135      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1136        // If we are single-stepping or the called method is deoptimized (by a
1137        // breakpoint, for example), then we have to execute the called method
1138        // with the interpreter.
1139        code = GetQuickToInterpreterBridge();
1140      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1141        // If the caller is deoptimized (by a breakpoint, for example), we have to
1142        // continue its execution with interpreter when returning from the called
1143        // method. Because we do not want to execute the called method with the
1144        // interpreter, we wrap its execution into the instrumentation stubs.
1145        // When the called method returns, it will execute the instrumentation
1146        // exit hook that will determine the need of the interpreter with a call
1147        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1148        // it is needed.
1149        code = GetQuickInstrumentationEntryPoint();
1150      } else {
1151        code = called->GetEntryPointFromQuickCompiledCode();
1152      }
1153    } else if (called_class->IsInitializing()) {
1154      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1155        // If we are single-stepping or the called method is deoptimized (by a
1156        // breakpoint, for example), then we have to execute the called method
1157        // with the interpreter.
1158        code = GetQuickToInterpreterBridge();
1159      } else if (invoke_type == kStatic) {
1160        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1161        // until class is initialized to stop races between threads).
1162        code = linker->GetQuickOatCodeFor(called);
1163      } else {
1164        // No trampoline for non-static methods.
1165        code = called->GetEntryPointFromQuickCompiledCode();
1166      }
1167    } else {
1168      DCHECK(called_class->IsErroneous());
1169    }
1170  }
1171  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1172  // Fixup any locally saved objects may have moved during a GC.
1173  visitor.FixupReferences();
1174  // Place called method in callee-save frame to be placed as first argument to quick method.
1175  *sp = called;
1176
1177  return code;
1178}
1179
1180/*
1181 * This class uses a couple of observations to unite the different calling conventions through
1182 * a few constants.
1183 *
1184 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1185 *    possible alignment.
1186 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1187 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1188 *    when we have to split things
1189 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1190 *    and we can use Int handling directly.
1191 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1192 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1193 *    extension should be compatible with Aarch64, which mandates copying the available bits
1194 *    into LSB and leaving the rest unspecified.
1195 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1196 *    the stack.
1197 * 6) There is only little endian.
1198 *
1199 *
1200 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1201 * follows:
1202 *
1203 * void PushGpr(uintptr_t):   Add a value for the next GPR
1204 *
1205 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1206 *                            padding, that is, think the architecture is 32b and aligns 64b.
1207 *
1208 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1209 *                            split this if necessary. The current state will have aligned, if
1210 *                            necessary.
1211 *
1212 * void PushStack(uintptr_t): Push a value to the stack.
1213 *
1214 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1215 *                                          as this might be important for null initialization.
1216 *                                          Must return the jobject, that is, the reference to the
1217 *                                          entry in the HandleScope (nullptr if necessary).
1218 *
1219 */
1220template<class T> class BuildNativeCallFrameStateMachine {
1221 public:
1222#if defined(__arm__)
1223  // TODO: These are all dummy values!
1224  static constexpr bool kNativeSoftFloatAbi = true;
1225  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1226  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1227
1228  static constexpr size_t kRegistersNeededForLong = 2;
1229  static constexpr size_t kRegistersNeededForDouble = 2;
1230  static constexpr bool kMultiRegistersAligned = true;
1231  static constexpr bool kMultiFPRegistersWidened = false;
1232  static constexpr bool kMultiGPRegistersWidened = false;
1233  static constexpr bool kAlignLongOnStack = true;
1234  static constexpr bool kAlignDoubleOnStack = true;
1235#elif defined(__aarch64__)
1236  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1237  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1238  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1239
1240  static constexpr size_t kRegistersNeededForLong = 1;
1241  static constexpr size_t kRegistersNeededForDouble = 1;
1242  static constexpr bool kMultiRegistersAligned = false;
1243  static constexpr bool kMultiFPRegistersWidened = false;
1244  static constexpr bool kMultiGPRegistersWidened = false;
1245  static constexpr bool kAlignLongOnStack = false;
1246  static constexpr bool kAlignDoubleOnStack = false;
1247#elif defined(__mips__) && !defined(__LP64__)
1248  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1249  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1250  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1251
1252  static constexpr size_t kRegistersNeededForLong = 2;
1253  static constexpr size_t kRegistersNeededForDouble = 2;
1254  static constexpr bool kMultiRegistersAligned = true;
1255  static constexpr bool kMultiFPRegistersWidened = true;
1256  static constexpr bool kMultiGPRegistersWidened = false;
1257  static constexpr bool kAlignLongOnStack = true;
1258  static constexpr bool kAlignDoubleOnStack = true;
1259#elif defined(__mips__) && defined(__LP64__)
1260  // Let the code prepare GPRs only and we will load the FPRs with same data.
1261  static constexpr bool kNativeSoftFloatAbi = true;
1262  static constexpr size_t kNumNativeGprArgs = 8;
1263  static constexpr size_t kNumNativeFprArgs = 0;
1264
1265  static constexpr size_t kRegistersNeededForLong = 1;
1266  static constexpr size_t kRegistersNeededForDouble = 1;
1267  static constexpr bool kMultiRegistersAligned = false;
1268  static constexpr bool kMultiFPRegistersWidened = false;
1269  static constexpr bool kMultiGPRegistersWidened = true;
1270  static constexpr bool kAlignLongOnStack = false;
1271  static constexpr bool kAlignDoubleOnStack = false;
1272#elif defined(__i386__)
1273  // TODO: Check these!
1274  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1275  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1276  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1277
1278  static constexpr size_t kRegistersNeededForLong = 2;
1279  static constexpr size_t kRegistersNeededForDouble = 2;
1280  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1281  static constexpr bool kMultiFPRegistersWidened = false;
1282  static constexpr bool kMultiGPRegistersWidened = false;
1283  static constexpr bool kAlignLongOnStack = false;
1284  static constexpr bool kAlignDoubleOnStack = false;
1285#elif defined(__x86_64__)
1286  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1287  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1288  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1289
1290  static constexpr size_t kRegistersNeededForLong = 1;
1291  static constexpr size_t kRegistersNeededForDouble = 1;
1292  static constexpr bool kMultiRegistersAligned = false;
1293  static constexpr bool kMultiFPRegistersWidened = false;
1294  static constexpr bool kMultiGPRegistersWidened = false;
1295  static constexpr bool kAlignLongOnStack = false;
1296  static constexpr bool kAlignDoubleOnStack = false;
1297#else
1298#error "Unsupported architecture"
1299#endif
1300
1301 public:
1302  explicit BuildNativeCallFrameStateMachine(T* delegate)
1303      : gpr_index_(kNumNativeGprArgs),
1304        fpr_index_(kNumNativeFprArgs),
1305        stack_entries_(0),
1306        delegate_(delegate) {
1307    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1308    // the next register is even; counting down is just to make the compiler happy...
1309    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1310    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1311  }
1312
1313  virtual ~BuildNativeCallFrameStateMachine() {}
1314
1315  bool HavePointerGpr() const {
1316    return gpr_index_ > 0;
1317  }
1318
1319  void AdvancePointer(const void* val) {
1320    if (HavePointerGpr()) {
1321      gpr_index_--;
1322      PushGpr(reinterpret_cast<uintptr_t>(val));
1323    } else {
1324      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1325      PushStack(reinterpret_cast<uintptr_t>(val));
1326      gpr_index_ = 0;
1327    }
1328  }
1329
1330  bool HaveHandleScopeGpr() const {
1331    return gpr_index_ > 0;
1332  }
1333
1334  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1335    uintptr_t handle = PushHandle(ptr);
1336    if (HaveHandleScopeGpr()) {
1337      gpr_index_--;
1338      PushGpr(handle);
1339    } else {
1340      stack_entries_++;
1341      PushStack(handle);
1342      gpr_index_ = 0;
1343    }
1344  }
1345
1346  bool HaveIntGpr() const {
1347    return gpr_index_ > 0;
1348  }
1349
1350  void AdvanceInt(uint32_t val) {
1351    if (HaveIntGpr()) {
1352      gpr_index_--;
1353      if (kMultiGPRegistersWidened) {
1354        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1355        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1356      } else {
1357        PushGpr(val);
1358      }
1359    } else {
1360      stack_entries_++;
1361      if (kMultiGPRegistersWidened) {
1362        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1363        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1364      } else {
1365        PushStack(val);
1366      }
1367      gpr_index_ = 0;
1368    }
1369  }
1370
1371  bool HaveLongGpr() const {
1372    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1373  }
1374
1375  bool LongGprNeedsPadding() const {
1376    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1377        kAlignLongOnStack &&                  // and when it needs alignment
1378        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1379  }
1380
1381  bool LongStackNeedsPadding() const {
1382    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1383        kAlignLongOnStack &&                  // and when it needs 8B alignment
1384        (stack_entries_ & 1) == 1;            // counter is odd
1385  }
1386
1387  void AdvanceLong(uint64_t val) {
1388    if (HaveLongGpr()) {
1389      if (LongGprNeedsPadding()) {
1390        PushGpr(0);
1391        gpr_index_--;
1392      }
1393      if (kRegistersNeededForLong == 1) {
1394        PushGpr(static_cast<uintptr_t>(val));
1395      } else {
1396        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1397        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1398      }
1399      gpr_index_ -= kRegistersNeededForLong;
1400    } else {
1401      if (LongStackNeedsPadding()) {
1402        PushStack(0);
1403        stack_entries_++;
1404      }
1405      if (kRegistersNeededForLong == 1) {
1406        PushStack(static_cast<uintptr_t>(val));
1407        stack_entries_++;
1408      } else {
1409        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1410        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1411        stack_entries_ += 2;
1412      }
1413      gpr_index_ = 0;
1414    }
1415  }
1416
1417  bool HaveFloatFpr() const {
1418    return fpr_index_ > 0;
1419  }
1420
1421  void AdvanceFloat(float val) {
1422    if (kNativeSoftFloatAbi) {
1423      AdvanceInt(bit_cast<uint32_t, float>(val));
1424    } else {
1425      if (HaveFloatFpr()) {
1426        fpr_index_--;
1427        if (kRegistersNeededForDouble == 1) {
1428          if (kMultiFPRegistersWidened) {
1429            PushFpr8(bit_cast<uint64_t, double>(val));
1430          } else {
1431            // No widening, just use the bits.
1432            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1433          }
1434        } else {
1435          PushFpr4(val);
1436        }
1437      } else {
1438        stack_entries_++;
1439        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1440          // Need to widen before storing: Note the "double" in the template instantiation.
1441          // Note: We need to jump through those hoops to make the compiler happy.
1442          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1443          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1444        } else {
1445          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1446        }
1447        fpr_index_ = 0;
1448      }
1449    }
1450  }
1451
1452  bool HaveDoubleFpr() const {
1453    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1454  }
1455
1456  bool DoubleFprNeedsPadding() const {
1457    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1458        kAlignDoubleOnStack &&                  // and when it needs alignment
1459        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1460  }
1461
1462  bool DoubleStackNeedsPadding() const {
1463    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1464        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1465        (stack_entries_ & 1) == 1;              // counter is odd
1466  }
1467
1468  void AdvanceDouble(uint64_t val) {
1469    if (kNativeSoftFloatAbi) {
1470      AdvanceLong(val);
1471    } else {
1472      if (HaveDoubleFpr()) {
1473        if (DoubleFprNeedsPadding()) {
1474          PushFpr4(0);
1475          fpr_index_--;
1476        }
1477        PushFpr8(val);
1478        fpr_index_ -= kRegistersNeededForDouble;
1479      } else {
1480        if (DoubleStackNeedsPadding()) {
1481          PushStack(0);
1482          stack_entries_++;
1483        }
1484        if (kRegistersNeededForDouble == 1) {
1485          PushStack(static_cast<uintptr_t>(val));
1486          stack_entries_++;
1487        } else {
1488          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1489          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1490          stack_entries_ += 2;
1491        }
1492        fpr_index_ = 0;
1493      }
1494    }
1495  }
1496
1497  uint32_t GetStackEntries() const {
1498    return stack_entries_;
1499  }
1500
1501  uint32_t GetNumberOfUsedGprs() const {
1502    return kNumNativeGprArgs - gpr_index_;
1503  }
1504
1505  uint32_t GetNumberOfUsedFprs() const {
1506    return kNumNativeFprArgs - fpr_index_;
1507  }
1508
1509 private:
1510  void PushGpr(uintptr_t val) {
1511    delegate_->PushGpr(val);
1512  }
1513  void PushFpr4(float val) {
1514    delegate_->PushFpr4(val);
1515  }
1516  void PushFpr8(uint64_t val) {
1517    delegate_->PushFpr8(val);
1518  }
1519  void PushStack(uintptr_t val) {
1520    delegate_->PushStack(val);
1521  }
1522  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1523    return delegate_->PushHandle(ref);
1524  }
1525
1526  uint32_t gpr_index_;      // Number of free GPRs
1527  uint32_t fpr_index_;      // Number of free FPRs
1528  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1529                            // extended
1530  T* const delegate_;             // What Push implementation gets called
1531};
1532
1533// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1534// in subclasses.
1535//
1536// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1537// them with handles.
1538class ComputeNativeCallFrameSize {
1539 public:
1540  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1541
1542  virtual ~ComputeNativeCallFrameSize() {}
1543
1544  uint32_t GetStackSize() const {
1545    return num_stack_entries_ * sizeof(uintptr_t);
1546  }
1547
1548  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1549    sp8 -= GetStackSize();
1550    // Align by kStackAlignment.
1551    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1552    return sp8;
1553  }
1554
1555  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1556      const {
1557    // Assumption is OK right now, as we have soft-float arm
1558    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1559    sp8 -= fregs * sizeof(uintptr_t);
1560    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1561    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1562    sp8 -= iregs * sizeof(uintptr_t);
1563    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1564    return sp8;
1565  }
1566
1567  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1568                            uint32_t** start_fpr) const {
1569    // Native call stack.
1570    sp8 = LayoutCallStack(sp8);
1571    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1572
1573    // Put fprs and gprs below.
1574    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1575
1576    // Return the new bottom.
1577    return sp8;
1578  }
1579
1580  virtual void WalkHeader(
1581      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1582      REQUIRES_SHARED(Locks::mutator_lock_) {
1583  }
1584
1585  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1586    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1587
1588    WalkHeader(&sm);
1589
1590    for (uint32_t i = 1; i < shorty_len; ++i) {
1591      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1592      switch (cur_type_) {
1593        case Primitive::kPrimNot:
1594          // TODO: fix abuse of mirror types.
1595          sm.AdvanceHandleScope(
1596              reinterpret_cast<mirror::Object*>(0x12345678));
1597          break;
1598
1599        case Primitive::kPrimBoolean:
1600        case Primitive::kPrimByte:
1601        case Primitive::kPrimChar:
1602        case Primitive::kPrimShort:
1603        case Primitive::kPrimInt:
1604          sm.AdvanceInt(0);
1605          break;
1606        case Primitive::kPrimFloat:
1607          sm.AdvanceFloat(0);
1608          break;
1609        case Primitive::kPrimDouble:
1610          sm.AdvanceDouble(0);
1611          break;
1612        case Primitive::kPrimLong:
1613          sm.AdvanceLong(0);
1614          break;
1615        default:
1616          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1617          UNREACHABLE();
1618      }
1619    }
1620
1621    num_stack_entries_ = sm.GetStackEntries();
1622  }
1623
1624  void PushGpr(uintptr_t /* val */) {
1625    // not optimizing registers, yet
1626  }
1627
1628  void PushFpr4(float /* val */) {
1629    // not optimizing registers, yet
1630  }
1631
1632  void PushFpr8(uint64_t /* val */) {
1633    // not optimizing registers, yet
1634  }
1635
1636  void PushStack(uintptr_t /* val */) {
1637    // counting is already done in the superclass
1638  }
1639
1640  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1641    return reinterpret_cast<uintptr_t>(nullptr);
1642  }
1643
1644 protected:
1645  uint32_t num_stack_entries_;
1646};
1647
1648class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1649 public:
1650  explicit ComputeGenericJniFrameSize(bool critical_native)
1651    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1652
1653  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1654  // is at *m = sp. Will update to point to the bottom of the save frame.
1655  //
1656  // Note: assumes ComputeAll() has been run before.
1657  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1658      REQUIRES_SHARED(Locks::mutator_lock_) {
1659    ArtMethod* method = **m;
1660
1661    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1662
1663    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1664
1665    // First, fix up the layout of the callee-save frame.
1666    // We have to squeeze in the HandleScope, and relocate the method pointer.
1667
1668    // "Free" the slot for the method.
1669    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1670
1671    // Under the callee saves put handle scope and new method stack reference.
1672    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1673    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1674
1675    sp8 -= scope_and_method;
1676    // Align by kStackAlignment.
1677    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1678
1679    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1680    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1681                                        num_handle_scope_references_);
1682
1683    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1684    uint8_t* method_pointer = sp8;
1685    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1686    *new_method_ref = method;
1687    *m = new_method_ref;
1688  }
1689
1690  // Adds space for the cookie. Note: may leave stack unaligned.
1691  void LayoutCookie(uint8_t** sp) const {
1692    // Reference cookie and padding
1693    *sp -= 8;
1694  }
1695
1696  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1697  // Returns the new bottom. Note: this may be unaligned.
1698  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1699      REQUIRES_SHARED(Locks::mutator_lock_) {
1700    // First, fix up the layout of the callee-save frame.
1701    // We have to squeeze in the HandleScope, and relocate the method pointer.
1702    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1703
1704    // The bottom of the callee-save frame is now where the method is, *m.
1705    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1706
1707    // Add space for cookie.
1708    LayoutCookie(&sp8);
1709
1710    return sp8;
1711  }
1712
1713  // WARNING: After this, *sp won't be pointing to the method anymore!
1714  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1715                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1716                         uint32_t** start_fpr)
1717      REQUIRES_SHARED(Locks::mutator_lock_) {
1718    Walk(shorty, shorty_len);
1719
1720    // JNI part.
1721    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1722
1723    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1724
1725    // Return the new bottom.
1726    return sp8;
1727  }
1728
1729  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1730
1731  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1732  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1733      REQUIRES_SHARED(Locks::mutator_lock_);
1734
1735 private:
1736  uint32_t num_handle_scope_references_;
1737  const bool critical_native_;
1738};
1739
1740uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1741  num_handle_scope_references_++;
1742  return reinterpret_cast<uintptr_t>(nullptr);
1743}
1744
1745void ComputeGenericJniFrameSize::WalkHeader(
1746    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1747  // First 2 parameters are always excluded for @CriticalNative.
1748  if (UNLIKELY(critical_native_)) {
1749    return;
1750  }
1751
1752  // JNIEnv
1753  sm->AdvancePointer(nullptr);
1754
1755  // Class object or this as first argument
1756  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1757}
1758
1759// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1760// the template requirements of BuildGenericJniFrameStateMachine.
1761class FillNativeCall {
1762 public:
1763  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1764      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1765
1766  virtual ~FillNativeCall() {}
1767
1768  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1769    cur_gpr_reg_ = gpr_regs;
1770    cur_fpr_reg_ = fpr_regs;
1771    cur_stack_arg_ = stack_args;
1772  }
1773
1774  void PushGpr(uintptr_t val) {
1775    *cur_gpr_reg_ = val;
1776    cur_gpr_reg_++;
1777  }
1778
1779  void PushFpr4(float val) {
1780    *cur_fpr_reg_ = val;
1781    cur_fpr_reg_++;
1782  }
1783
1784  void PushFpr8(uint64_t val) {
1785    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1786    *tmp = val;
1787    cur_fpr_reg_ += 2;
1788  }
1789
1790  void PushStack(uintptr_t val) {
1791    *cur_stack_arg_ = val;
1792    cur_stack_arg_++;
1793  }
1794
1795  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1796    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1797    UNREACHABLE();
1798  }
1799
1800 private:
1801  uintptr_t* cur_gpr_reg_;
1802  uint32_t* cur_fpr_reg_;
1803  uintptr_t* cur_stack_arg_;
1804};
1805
1806// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1807// of transitioning into native code.
1808class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1809 public:
1810  BuildGenericJniFrameVisitor(Thread* self,
1811                              bool is_static,
1812                              bool critical_native,
1813                              const char* shorty,
1814                              uint32_t shorty_len,
1815                              ArtMethod*** sp)
1816     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1817       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1818       sm_(&jni_call_) {
1819    ComputeGenericJniFrameSize fsc(critical_native);
1820    uintptr_t* start_gpr_reg;
1821    uint32_t* start_fpr_reg;
1822    uintptr_t* start_stack_arg;
1823    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1824                                             &handle_scope_,
1825                                             &start_stack_arg,
1826                                             &start_gpr_reg, &start_fpr_reg);
1827
1828    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1829
1830    // First 2 parameters are always excluded for CriticalNative methods.
1831    if (LIKELY(!critical_native)) {
1832      // jni environment is always first argument
1833      sm_.AdvancePointer(self->GetJniEnv());
1834
1835      if (is_static) {
1836        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1837      }  // else "this" reference is already handled by QuickArgumentVisitor.
1838    }
1839  }
1840
1841  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1842
1843  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1844
1845  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1846    return handle_scope_->GetHandle(0).GetReference();
1847  }
1848
1849  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1850    return handle_scope_->GetHandle(0).ToJObject();
1851  }
1852
1853  void* GetBottomOfUsedArea() const {
1854    return bottom_of_used_area_;
1855  }
1856
1857 private:
1858  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1859  class FillJniCall FINAL : public FillNativeCall {
1860   public:
1861    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1862                HandleScope* handle_scope, bool critical_native)
1863      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1864                       handle_scope_(handle_scope),
1865        cur_entry_(0),
1866        critical_native_(critical_native) {}
1867
1868    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
1869
1870    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1871      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1872      handle_scope_ = scope;
1873      cur_entry_ = 0U;
1874    }
1875
1876    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
1877      // Initialize padding entries.
1878      size_t expected_slots = handle_scope_->NumberOfReferences();
1879      while (cur_entry_ < expected_slots) {
1880        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1881      }
1882
1883      if (!critical_native_) {
1884        // Non-critical natives have at least the self class (jclass) or this (jobject).
1885        DCHECK_NE(cur_entry_, 0U);
1886      }
1887    }
1888
1889    bool CriticalNative() const {
1890      return critical_native_;
1891    }
1892
1893   private:
1894    HandleScope* handle_scope_;
1895    size_t cur_entry_;
1896    const bool critical_native_;
1897  };
1898
1899  HandleScope* handle_scope_;
1900  FillJniCall jni_call_;
1901  void* bottom_of_used_area_;
1902
1903  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1904
1905  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1906};
1907
1908uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1909  uintptr_t tmp;
1910  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1911  h.Assign(ref);
1912  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1913  cur_entry_++;
1914  return tmp;
1915}
1916
1917void BuildGenericJniFrameVisitor::Visit() {
1918  Primitive::Type type = GetParamPrimitiveType();
1919  switch (type) {
1920    case Primitive::kPrimLong: {
1921      jlong long_arg;
1922      if (IsSplitLongOrDouble()) {
1923        long_arg = ReadSplitLongParam();
1924      } else {
1925        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1926      }
1927      sm_.AdvanceLong(long_arg);
1928      break;
1929    }
1930    case Primitive::kPrimDouble: {
1931      uint64_t double_arg;
1932      if (IsSplitLongOrDouble()) {
1933        // Read into union so that we don't case to a double.
1934        double_arg = ReadSplitLongParam();
1935      } else {
1936        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1937      }
1938      sm_.AdvanceDouble(double_arg);
1939      break;
1940    }
1941    case Primitive::kPrimNot: {
1942      StackReference<mirror::Object>* stack_ref =
1943          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1944      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1945      break;
1946    }
1947    case Primitive::kPrimFloat:
1948      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1949      break;
1950    case Primitive::kPrimBoolean:  // Fall-through.
1951    case Primitive::kPrimByte:     // Fall-through.
1952    case Primitive::kPrimChar:     // Fall-through.
1953    case Primitive::kPrimShort:    // Fall-through.
1954    case Primitive::kPrimInt:      // Fall-through.
1955      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1956      break;
1957    case Primitive::kPrimVoid:
1958      LOG(FATAL) << "UNREACHABLE";
1959      UNREACHABLE();
1960  }
1961}
1962
1963void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1964  // Clear out rest of the scope.
1965  jni_call_.ResetRemainingScopeSlots();
1966  if (!jni_call_.CriticalNative()) {
1967    // Install HandleScope.
1968    self->PushHandleScope(handle_scope_);
1969  }
1970}
1971
1972#if defined(__arm__) || defined(__aarch64__)
1973extern "C" void* artFindNativeMethod();
1974#else
1975extern "C" void* artFindNativeMethod(Thread* self);
1976#endif
1977
1978static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
1979                                            uint32_t cookie,
1980                                            bool fast_native ATTRIBUTE_UNUSED,
1981                                            jobject l,
1982                                            jobject lock) {
1983  // TODO: add entrypoints for @FastNative returning objects.
1984  if (lock != nullptr) {
1985    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1986  } else {
1987    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1988  }
1989}
1990
1991static void artQuickGenericJniEndJNINonRef(Thread* self,
1992                                           uint32_t cookie,
1993                                           bool fast_native,
1994                                           jobject lock) {
1995  if (lock != nullptr) {
1996    JniMethodEndSynchronized(cookie, lock, self);
1997    // Ignore "fast_native" here because synchronized functions aren't very fast.
1998  } else {
1999    if (UNLIKELY(fast_native)) {
2000      JniMethodFastEnd(cookie, self);
2001    } else {
2002      JniMethodEnd(cookie, self);
2003    }
2004  }
2005}
2006
2007/*
2008 * Initializes an alloca region assumed to be directly below sp for a native call:
2009 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2010 * The final element on the stack is a pointer to the native code.
2011 *
2012 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2013 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2014 *
2015 * The return of this function denotes:
2016 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2017 * 2) An error, if the value is negative.
2018 */
2019extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2020    REQUIRES_SHARED(Locks::mutator_lock_) {
2021  ArtMethod* called = *sp;
2022  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2023  uint32_t shorty_len = 0;
2024  const char* shorty = called->GetShorty(&shorty_len);
2025  bool critical_native = called->IsAnnotatedWithCriticalNative();
2026  bool fast_native = called->IsAnnotatedWithFastNative();
2027  bool normal_native = !critical_native && !fast_native;
2028
2029  // Run the visitor and update sp.
2030  BuildGenericJniFrameVisitor visitor(self,
2031                                      called->IsStatic(),
2032                                      critical_native,
2033                                      shorty,
2034                                      shorty_len,
2035                                      &sp);
2036  {
2037    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2038    visitor.VisitArguments();
2039    // FinalizeHandleScope pushes the handle scope on the thread.
2040    visitor.FinalizeHandleScope(self);
2041  }
2042
2043  // Fix up managed-stack things in Thread.
2044  self->SetTopOfStack(sp);
2045
2046  self->VerifyStack();
2047
2048  uint32_t cookie;
2049  uint32_t* sp32;
2050  // Skip calling JniMethodStart for @CriticalNative.
2051  if (LIKELY(!critical_native)) {
2052    // Start JNI, save the cookie.
2053    if (called->IsSynchronized()) {
2054      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2055      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2056      if (self->IsExceptionPending()) {
2057        self->PopHandleScope();
2058        // A negative value denotes an error.
2059        return GetTwoWordFailureValue();
2060      }
2061    } else {
2062      if (fast_native) {
2063        cookie = JniMethodFastStart(self);
2064      } else {
2065        DCHECK(normal_native);
2066        cookie = JniMethodStart(self);
2067      }
2068    }
2069    sp32 = reinterpret_cast<uint32_t*>(sp);
2070    *(sp32 - 1) = cookie;
2071  }
2072
2073  // Retrieve the stored native code.
2074  void* nativeCode = called->GetEntryPointFromJni();
2075
2076  // There are two cases for the content of nativeCode:
2077  // 1) Pointer to the native function.
2078  // 2) Pointer to the trampoline for native code binding.
2079  // In the second case, we need to execute the binding and continue with the actual native function
2080  // pointer.
2081  DCHECK(nativeCode != nullptr);
2082  if (nativeCode == GetJniDlsymLookupStub()) {
2083#if defined(__arm__) || defined(__aarch64__)
2084    nativeCode = artFindNativeMethod();
2085#else
2086    nativeCode = artFindNativeMethod(self);
2087#endif
2088
2089    if (nativeCode == nullptr) {
2090      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2091
2092      // @CriticalNative calls do not need to call back into JniMethodEnd.
2093      if (LIKELY(!critical_native)) {
2094        // End JNI, as the assembly will move to deliver the exception.
2095        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2096        if (shorty[0] == 'L') {
2097          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2098        } else {
2099          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2100        }
2101      }
2102
2103      return GetTwoWordFailureValue();
2104    }
2105    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2106  }
2107
2108#if defined(__mips__) && !defined(__LP64__)
2109  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2110  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2111  // and load into floating-point registers.
2112  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2113  // view):
2114  // (1)
2115  //  |     DOUBLE    |     DOUBLE    | other args, if any
2116  //  |  F12  |  F13  |  F14  |  F15  |
2117  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2118  // (2)
2119  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2120  //  |  F12  |  F13  |  F14  |       |
2121  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2122  // (3)
2123  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2124  //  |  F12  |       |  F14  |  F15  |
2125  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2126  // (4)
2127  //  | FLOAT | FLOAT | other args, if any
2128  //  |  F12  |  F14  |
2129  //  |  SP+0 |  SP+4 | SP+8
2130  // As you can see, only the last case (4) is special. In all others we can just
2131  // load F12/F13 and F14/F15 in the same manner.
2132  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2133  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2134  if (nativeCode != nullptr &&
2135      shorty != nullptr &&
2136      shorty_len >= 3 &&
2137      shorty[1] == 'F' &&
2138      shorty[2] == 'F') {
2139    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2140  }
2141#endif
2142
2143  // Return native code addr(lo) and bottom of alloca address(hi).
2144  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2145                                reinterpret_cast<uintptr_t>(nativeCode));
2146}
2147
2148// Defined in quick_jni_entrypoints.cc.
2149extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2150                                    jvalue result, uint64_t result_f, ArtMethod* called,
2151                                    HandleScope* handle_scope);
2152/*
2153 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2154 * unlocking.
2155 */
2156extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2157                                                    jvalue result,
2158                                                    uint64_t result_f) {
2159  // We're here just back from a native call. We don't have the shared mutator lock at this point
2160  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2161  // anything that requires a mutator lock before that would cause problems as GC may have the
2162  // exclusive mutator lock and may be moving objects, etc.
2163  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2164  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2165  ArtMethod* called = *sp;
2166  uint32_t cookie = *(sp32 - 1);
2167  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2168  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2169}
2170
2171// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2172// for the method pointer.
2173//
2174// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2175// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2176
2177template<InvokeType type, bool access_check>
2178static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2179                                     ObjPtr<mirror::Object> this_object,
2180                                     Thread* self,
2181                                     ArtMethod** sp) {
2182  ScopedQuickEntrypointChecks sqec(self);
2183  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2184  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2185  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2186  if (UNLIKELY(method == nullptr)) {
2187    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2188    uint32_t shorty_len;
2189    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2190    {
2191      // Remember the args in case a GC happens in FindMethodFromCode.
2192      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2193      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2194      visitor.VisitArguments();
2195      method = FindMethodFromCode<type, access_check>(method_idx,
2196                                                      &this_object,
2197                                                      caller_method,
2198                                                      self);
2199      visitor.FixupReferences();
2200    }
2201
2202    if (UNLIKELY(method == nullptr)) {
2203      CHECK(self->IsExceptionPending());
2204      return GetTwoWordFailureValue();  // Failure.
2205    }
2206  }
2207  DCHECK(!self->IsExceptionPending());
2208  const void* code = method->GetEntryPointFromQuickCompiledCode();
2209
2210  // When we return, the caller will branch to this address, so it had better not be 0!
2211  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2212                          << " location: "
2213                          << method->GetDexFile()->GetLocation();
2214
2215  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2216                                reinterpret_cast<uintptr_t>(method));
2217}
2218
2219// Explicit artInvokeCommon template function declarations to please analysis tool.
2220#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2221  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2222  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2223      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2224
2225EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2226EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2227EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2228EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2229EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2230EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2231EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2232EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2233EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2234EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2235#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2236
2237// See comments in runtime_support_asm.S
2238extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2239    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2240    REQUIRES_SHARED(Locks::mutator_lock_) {
2241  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2242}
2243
2244extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2245    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2246    REQUIRES_SHARED(Locks::mutator_lock_) {
2247  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2248}
2249
2250extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2251    uint32_t method_idx,
2252    mirror::Object* this_object ATTRIBUTE_UNUSED,
2253    Thread* self,
2254    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2255  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2256  // it doesn't cause ObjPtr alignment failure check.
2257  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2258}
2259
2260extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2261    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2262    REQUIRES_SHARED(Locks::mutator_lock_) {
2263  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2264}
2265
2266extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2267    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2268    REQUIRES_SHARED(Locks::mutator_lock_) {
2269  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2270}
2271
2272// Determine target of interface dispatch. This object is known non-null. First argument
2273// is there for consistency but should not be used, as some architectures overwrite it
2274// in the assembly trampoline.
2275extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2276                                                      mirror::Object* raw_this_object,
2277                                                      Thread* self,
2278                                                      ArtMethod** sp)
2279    REQUIRES_SHARED(Locks::mutator_lock_) {
2280  ObjPtr<mirror::Object> this_object(raw_this_object);
2281  ScopedQuickEntrypointChecks sqec(self);
2282  StackHandleScope<1> hs(self);
2283  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2284
2285  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2286
2287  // Fetch the dex_method_idx of the target interface method from the caller.
2288  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2289
2290  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2291  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2292  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2293  Instruction::Code instr_code = instr->Opcode();
2294  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2295        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2296      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2297  uint32_t dex_method_idx;
2298  if (instr_code == Instruction::INVOKE_INTERFACE) {
2299    dex_method_idx = instr->VRegB_35c();
2300  } else {
2301    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2302    dex_method_idx = instr->VRegB_3rc();
2303  }
2304
2305  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2306      dex_method_idx, kRuntimePointerSize);
2307  DCHECK(interface_method != nullptr) << dex_method_idx << " " << caller_method->PrettyMethod();
2308  ArtMethod* method = nullptr;
2309  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2310
2311  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2312    // If the dex cache already resolved the interface method, look whether we have
2313    // a match in the ImtConflictTable.
2314    ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method),
2315                                          kRuntimePointerSize);
2316    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2317      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2318      DCHECK(current_table != nullptr);
2319      method = current_table->Lookup(interface_method, kRuntimePointerSize);
2320    } else {
2321      // It seems we aren't really a conflict method!
2322      method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2323    }
2324    if (method != nullptr) {
2325      return GetTwoWordSuccessValue(
2326          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2327          reinterpret_cast<uintptr_t>(method));
2328    }
2329
2330    // No match, use the IfTable.
2331    method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2332    if (UNLIKELY(method == nullptr)) {
2333      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2334          interface_method, this_object, caller_method);
2335      return GetTwoWordFailureValue();  // Failure.
2336    }
2337  } else {
2338    // The dex cache did not resolve the method, look it up in the dex file
2339    // of the caller,
2340    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2341    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2342        ->GetDexFile();
2343    uint32_t shorty_len;
2344    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2345                                                   &shorty_len);
2346    {
2347      // Remember the args in case a GC happens in FindMethodFromCode.
2348      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2349      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2350      visitor.VisitArguments();
2351      method = FindMethodFromCode<kInterface, false>(dex_method_idx,
2352                                                     &this_object,
2353                                                     caller_method,
2354                                                     self);
2355      visitor.FixupReferences();
2356    }
2357
2358    if (UNLIKELY(method == nullptr)) {
2359      CHECK(self->IsExceptionPending());
2360      return GetTwoWordFailureValue();  // Failure.
2361    }
2362    interface_method =
2363        caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
2364    DCHECK(!interface_method->IsRuntimeMethod());
2365  }
2366
2367  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2368  // We create a new table with the new pair { interface_method, method }.
2369  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2370  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2371  if (conflict_method->IsRuntimeMethod()) {
2372    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2373        cls.Get(),
2374        conflict_method,
2375        interface_method,
2376        method,
2377        /*force_new_conflict_method*/false);
2378    if (new_conflict_method != conflict_method) {
2379      // Update the IMT if we create a new conflict method. No fence needed here, as the
2380      // data is consistent.
2381      imt->Set(imt_index,
2382               new_conflict_method,
2383               kRuntimePointerSize);
2384    }
2385  }
2386
2387  const void* code = method->GetEntryPointFromQuickCompiledCode();
2388
2389  // When we return, the caller will branch to this address, so it had better not be 0!
2390  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2391                          << " location: " << method->GetDexFile()->GetLocation();
2392
2393  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2394                                reinterpret_cast<uintptr_t>(method));
2395}
2396
2397// Returns shorty type so the caller can determine how to put |result|
2398// into expected registers. The shorty type is static so the compiler
2399// could call different flavors of this code path depending on the
2400// shorty type though this would require different entry points for
2401// each type.
2402extern "C" uintptr_t artInvokePolymorphic(
2403    JValue* result,
2404    mirror::Object* raw_method_handle,
2405    Thread* self,
2406    ArtMethod** sp)
2407    REQUIRES_SHARED(Locks::mutator_lock_) {
2408  ScopedQuickEntrypointChecks sqec(self);
2409  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2410
2411  // Start new JNI local reference state
2412  JNIEnvExt* env = self->GetJniEnv();
2413  ScopedObjectAccessUnchecked soa(env);
2414  ScopedJniEnvLocalRefState env_state(env);
2415  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2416
2417  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2418  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2419  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2420  const DexFile::CodeItem* code = caller_method->GetCodeItem();
2421  const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
2422  DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2423         inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2424  const DexFile* dex_file = caller_method->GetDexFile();
2425  const uint32_t proto_idx = inst->VRegH();
2426  const char* shorty = dex_file->GetShorty(proto_idx);
2427  const size_t shorty_length = strlen(shorty);
2428  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2429  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2430  gc_visitor.Visit();
2431
2432  // Wrap raw_method_handle in a Handle for safety.
2433  StackHandleScope<5> hs(self);
2434  Handle<mirror::MethodHandleImpl> method_handle(
2435      hs.NewHandle(ObjPtr<mirror::MethodHandleImpl>::DownCast(MakeObjPtr(raw_method_handle))));
2436  raw_method_handle = nullptr;
2437  self->EndAssertNoThreadSuspension(old_cause);
2438
2439  // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
2440  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2441  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self,
2442                                                                                   inst->VRegB(),
2443                                                                                   caller_method,
2444                                                                                   kVirtual);
2445  DCHECK((resolved_method ==
2446          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
2447         (resolved_method ==
2448          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
2449  if (UNLIKELY(method_handle.IsNull())) {
2450    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2451    return static_cast<uintptr_t>('V');
2452  }
2453
2454  Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
2455  Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
2456      *dex_file, proto_idx,
2457      hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
2458      hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
2459  // This implies we couldn't resolve one or more types in this method handle.
2460  if (UNLIKELY(method_type.IsNull())) {
2461    CHECK(self->IsExceptionPending());
2462    return static_cast<uintptr_t>('V');
2463  }
2464
2465  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
2466  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2467
2468  // Fix references before constructing the shadow frame.
2469  gc_visitor.FixupReferences();
2470
2471  // Construct shadow frame placing arguments consecutively from |first_arg|.
2472  const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2473  const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
2474  const size_t first_arg = 0;
2475  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2476      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2477  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2478  ScopedStackedShadowFramePusher
2479      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2480  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2481                                                    kMethodIsStatic,
2482                                                    shorty,
2483                                                    strlen(shorty),
2484                                                    shadow_frame,
2485                                                    first_arg);
2486  shadow_frame_builder.VisitArguments();
2487
2488  // Push a transition back into managed code onto the linked list in thread.
2489  ManagedStack fragment;
2490  self->PushManagedStackFragment(&fragment);
2491
2492  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2493  // consecutive order.
2494  uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
2495  uint32_t first_callee_arg = first_arg + 1;
2496  const bool do_assignability_check = false;
2497  if (!DoInvokePolymorphic<true /* is_range */, do_assignability_check>(self,
2498                                                                        resolved_method,
2499                                                                        *shadow_frame,
2500                                                                        method_handle,
2501                                                                        method_type,
2502                                                                        unused_args,
2503                                                                        first_callee_arg,
2504                                                                        result)) {
2505    DCHECK(self->IsExceptionPending());
2506  }
2507
2508  // Pop transition record.
2509  self->PopManagedStackFragment(fragment);
2510
2511  return static_cast<uintptr_t>(shorty[0]);
2512}
2513
2514}  // namespace art
2515