quick_trampoline_entrypoints.cc revision badee9820fcf5dca5f8c46c3215ae1779ee7736e
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "callee_save_frame.h"
19#include "common_throws.h"
20#include "dex_file-inl.h"
21#include "dex_instruction-inl.h"
22#include "entrypoints/entrypoint_utils-inl.h"
23#include "entrypoints/runtime_asm_entrypoints.h"
24#include "gc/accounting/card_table-inl.h"
25#include "interpreter/interpreter.h"
26#include "linear_alloc.h"
27#include "method_reference.h"
28#include "mirror/class-inl.h"
29#include "mirror/dex_cache-inl.h"
30#include "mirror/method.h"
31#include "mirror/object-inl.h"
32#include "mirror/object_array-inl.h"
33#include "oat_quick_method_header.h"
34#include "quick_exception_handler.h"
35#include "runtime.h"
36#include "scoped_thread_state_change.h"
37#include "stack.h"
38#include "debugger.h"
39
40namespace art {
41
42// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
43class QuickArgumentVisitor {
44  // Number of bytes for each out register in the caller method's frame.
45  static constexpr size_t kBytesStackArgLocation = 4;
46  // Frame size in bytes of a callee-save frame for RefsAndArgs.
47  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
48      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
49#if defined(__arm__)
50  // The callee save frame is pointed to by SP.
51  // | argN       |  |
52  // | ...        |  |
53  // | arg4       |  |
54  // | arg3 spill |  |  Caller's frame
55  // | arg2 spill |  |
56  // | arg1 spill |  |
57  // | Method*    | ---
58  // | LR         |
59  // | ...        |    4x6 bytes callee saves
60  // | R3         |
61  // | R2         |
62  // | R1         |
63  // | S15        |
64  // | :          |
65  // | S0         |
66  // |            |    4x2 bytes padding
67  // | Method*    |  <- sp
68  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
69  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
70  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
71  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
72  static constexpr bool kQuickSkipOddFpRegisters = false;
73  static constexpr size_t kNumQuickGprArgs = 3;
74  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
75  static constexpr bool kGprFprLockstep = false;
76  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
77      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
78  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
79      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
80  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
81      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
82  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
83    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
84  }
85#elif defined(__aarch64__)
86  // The callee save frame is pointed to by SP.
87  // | argN       |  |
88  // | ...        |  |
89  // | arg4       |  |
90  // | arg3 spill |  |  Caller's frame
91  // | arg2 spill |  |
92  // | arg1 spill |  |
93  // | Method*    | ---
94  // | LR         |
95  // | X29        |
96  // |  :         |
97  // | X20        |
98  // | X7         |
99  // | :          |
100  // | X1         |
101  // | D7         |
102  // |  :         |
103  // | D0         |
104  // |            |    padding
105  // | Method*    |  <- sp
106  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
107  static constexpr bool kAlignPairRegister = false;
108  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
109  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
110  static constexpr bool kQuickSkipOddFpRegisters = false;
111  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
112  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
113  static constexpr bool kGprFprLockstep = false;
114  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
115      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
116  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
117      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
118  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
119      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
120  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
121    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
122  }
123#elif defined(__mips__) && !defined(__LP64__)
124  // The callee save frame is pointed to by SP.
125  // | argN       |  |
126  // | ...        |  |
127  // | arg4       |  |
128  // | arg3 spill |  |  Caller's frame
129  // | arg2 spill |  |
130  // | arg1 spill |  |
131  // | Method*    | ---
132  // | RA         |
133  // | ...        |    callee saves
134  // | A3         |    arg3
135  // | A2         |    arg2
136  // | A1         |    arg1
137  // | F15        |
138  // | F14        |    f_arg1
139  // | F13        |
140  // | F12        |    f_arg0
141  // |            |    padding
142  // | A0/Method* |  <- sp
143  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
144  static constexpr bool kAlignPairRegister = true;
145  static constexpr bool kQuickSoftFloatAbi = false;
146  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
147  static constexpr bool kQuickSkipOddFpRegisters = true;
148  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
149  static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
150                                                 // only in even numbered registers and each double
151                                                 // occupies two registers.
152  static constexpr bool kGprFprLockstep = false;
153  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
154  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
155  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
156  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
157    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
158  }
159#elif defined(__mips__) && defined(__LP64__)
160  // The callee save frame is pointed to by SP.
161  // | argN       |  |
162  // | ...        |  |
163  // | arg4       |  |
164  // | arg3 spill |  |  Caller's frame
165  // | arg2 spill |  |
166  // | arg1 spill |  |
167  // | Method*    | ---
168  // | RA         |
169  // | ...        |    callee saves
170  // | A7         |    arg7
171  // | A6         |    arg6
172  // | A5         |    arg5
173  // | A4         |    arg4
174  // | A3         |    arg3
175  // | A2         |    arg2
176  // | A1         |    arg1
177  // | F19        |    f_arg7
178  // | F18        |    f_arg6
179  // | F17        |    f_arg5
180  // | F16        |    f_arg4
181  // | F15        |    f_arg3
182  // | F14        |    f_arg2
183  // | F13        |    f_arg1
184  // | F12        |    f_arg0
185  // |            |    padding
186  // | A0/Method* |  <- sp
187  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
188  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
189  static constexpr bool kAlignPairRegister = false;
190  static constexpr bool kQuickSoftFloatAbi = false;
191  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
192  static constexpr bool kQuickSkipOddFpRegisters = false;
193  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
194  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
195  static constexpr bool kGprFprLockstep = true;
196
197  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
198  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
199  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
200  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
201    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
202  }
203#elif defined(__i386__)
204  // The callee save frame is pointed to by SP.
205  // | argN        |  |
206  // | ...         |  |
207  // | arg4        |  |
208  // | arg3 spill  |  |  Caller's frame
209  // | arg2 spill  |  |
210  // | arg1 spill  |  |
211  // | Method*     | ---
212  // | Return      |
213  // | EBP,ESI,EDI |    callee saves
214  // | EBX         |    arg3
215  // | EDX         |    arg2
216  // | ECX         |    arg1
217  // | XMM3        |    float arg 4
218  // | XMM2        |    float arg 3
219  // | XMM1        |    float arg 2
220  // | XMM0        |    float arg 1
221  // | EAX/Method* |  <- sp
222  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
223  static constexpr bool kAlignPairRegister = false;
224  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
225  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
226  static constexpr bool kQuickSkipOddFpRegisters = false;
227  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
228  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
229  static constexpr bool kGprFprLockstep = false;
230  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
231  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
232  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
233  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
234    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
235  }
236#elif defined(__x86_64__)
237  // The callee save frame is pointed to by SP.
238  // | argN            |  |
239  // | ...             |  |
240  // | reg. arg spills |  |  Caller's frame
241  // | Method*         | ---
242  // | Return          |
243  // | R15             |    callee save
244  // | R14             |    callee save
245  // | R13             |    callee save
246  // | R12             |    callee save
247  // | R9              |    arg5
248  // | R8              |    arg4
249  // | RSI/R6          |    arg1
250  // | RBP/R5          |    callee save
251  // | RBX/R3          |    callee save
252  // | RDX/R2          |    arg2
253  // | RCX/R1          |    arg3
254  // | XMM7            |    float arg 8
255  // | XMM6            |    float arg 7
256  // | XMM5            |    float arg 6
257  // | XMM4            |    float arg 5
258  // | XMM3            |    float arg 4
259  // | XMM2            |    float arg 3
260  // | XMM1            |    float arg 2
261  // | XMM0            |    float arg 1
262  // | Padding         |
263  // | RDI/Method*     |  <- sp
264  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
265  static constexpr bool kAlignPairRegister = false;
266  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
267  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
268  static constexpr bool kQuickSkipOddFpRegisters = false;
269  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
270  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
271  static constexpr bool kGprFprLockstep = false;
272  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
273  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
274  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
275  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
276    switch (gpr_index) {
277      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
278      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
279      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
280      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
281      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
282      default:
283      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
284      return 0;
285    }
286  }
287#else
288#error "Unsupported architecture"
289#endif
290
291 public:
292  // Special handling for proxy methods. Proxy methods are instance methods so the
293  // 'this' object is the 1st argument. They also have the same frame layout as the
294  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
295  // 1st GPR.
296  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
297      SHARED_REQUIRES(Locks::mutator_lock_) {
298    CHECK((*sp)->IsProxyMethod());
299    CHECK_GT(kNumQuickGprArgs, 0u);
300    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
301    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
302        GprIndexToGprOffset(kThisGprIndex);
303    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
304    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
305  }
306
307  static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
308    DCHECK((*sp)->IsCalleeSaveMethod());
309    return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
310  }
311
312  static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
313    DCHECK((*sp)->IsCalleeSaveMethod());
314    uint8_t* previous_sp =
315        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
316    return *reinterpret_cast<ArtMethod**>(previous_sp);
317  }
318
319  static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
320    DCHECK((*sp)->IsCalleeSaveMethod());
321    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
322    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
323        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
324    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
325    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
326    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
327
328    if (current_code->IsOptimized()) {
329      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
330      CodeInfoEncoding encoding = code_info.ExtractEncoding();
331      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
332      DCHECK(stack_map.IsValid());
333      if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
334        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
335        return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding,
336                                           inline_info.GetDepth(encoding.inline_info_encoding)-1);
337      } else {
338        return stack_map.GetDexPc(encoding.stack_map_encoding);
339      }
340    } else {
341      return current_code->ToDexPc(*caller_sp, outer_pc);
342    }
343  }
344
345  // For the given quick ref and args quick frame, return the caller's PC.
346  static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
347    DCHECK((*sp)->IsCalleeSaveMethod());
348    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
349    return *reinterpret_cast<uintptr_t*>(lr);
350  }
351
352  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
353                       uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
354          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
355          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
356          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
357          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
358              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
359          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
360          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
361    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
362                  "Number of Quick FPR arguments unexpected");
363    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
364                  "Double alignment unexpected");
365    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
366    // next register is even.
367    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
368                  "Number of Quick FPR arguments not even");
369    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
370  }
371
372  virtual ~QuickArgumentVisitor() {}
373
374  virtual void Visit() = 0;
375
376  Primitive::Type GetParamPrimitiveType() const {
377    return cur_type_;
378  }
379
380  uint8_t* GetParamAddress() const {
381    if (!kQuickSoftFloatAbi) {
382      Primitive::Type type = GetParamPrimitiveType();
383      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
384        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
385          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
386            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
387          }
388        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
389          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
390        }
391        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
392      }
393    }
394    if (gpr_index_ < kNumQuickGprArgs) {
395      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
396    }
397    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
398  }
399
400  bool IsSplitLongOrDouble() const {
401    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
402        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
403      return is_split_long_or_double_;
404    } else {
405      return false;  // An optimization for when GPR and FPRs are 64bit.
406    }
407  }
408
409  bool IsParamAReference() const {
410    return GetParamPrimitiveType() == Primitive::kPrimNot;
411  }
412
413  bool IsParamALongOrDouble() const {
414    Primitive::Type type = GetParamPrimitiveType();
415    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
416  }
417
418  uint64_t ReadSplitLongParam() const {
419    // The splitted long is always available through the stack.
420    return *reinterpret_cast<uint64_t*>(stack_args_
421        + stack_index_ * kBytesStackArgLocation);
422  }
423
424  void IncGprIndex() {
425    gpr_index_++;
426    if (kGprFprLockstep) {
427      fpr_index_++;
428    }
429  }
430
431  void IncFprIndex() {
432    fpr_index_++;
433    if (kGprFprLockstep) {
434      gpr_index_++;
435    }
436  }
437
438  void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
439    // (a) 'stack_args_' should point to the first method's argument
440    // (b) whatever the argument type it is, the 'stack_index_' should
441    //     be moved forward along with every visiting.
442    gpr_index_ = 0;
443    fpr_index_ = 0;
444    if (kQuickDoubleRegAlignedFloatBackFilled) {
445      fpr_double_index_ = 0;
446    }
447    stack_index_ = 0;
448    if (!is_static_) {  // Handle this.
449      cur_type_ = Primitive::kPrimNot;
450      is_split_long_or_double_ = false;
451      Visit();
452      stack_index_++;
453      if (kNumQuickGprArgs > 0) {
454        IncGprIndex();
455      }
456    }
457    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
458      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
459      switch (cur_type_) {
460        case Primitive::kPrimNot:
461        case Primitive::kPrimBoolean:
462        case Primitive::kPrimByte:
463        case Primitive::kPrimChar:
464        case Primitive::kPrimShort:
465        case Primitive::kPrimInt:
466          is_split_long_or_double_ = false;
467          Visit();
468          stack_index_++;
469          if (gpr_index_ < kNumQuickGprArgs) {
470            IncGprIndex();
471          }
472          break;
473        case Primitive::kPrimFloat:
474          is_split_long_or_double_ = false;
475          Visit();
476          stack_index_++;
477          if (kQuickSoftFloatAbi) {
478            if (gpr_index_ < kNumQuickGprArgs) {
479              IncGprIndex();
480            }
481          } else {
482            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
483              IncFprIndex();
484              if (kQuickDoubleRegAlignedFloatBackFilled) {
485                // Double should not overlap with float.
486                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
487                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
488                // Float should not overlap with double.
489                if (fpr_index_ % 2 == 0) {
490                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
491                }
492              } else if (kQuickSkipOddFpRegisters) {
493                IncFprIndex();
494              }
495            }
496          }
497          break;
498        case Primitive::kPrimDouble:
499        case Primitive::kPrimLong:
500          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
501            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
502              // Currently, this is only for ARM and MIPS, where the first available parameter
503              // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
504              // A2 (on MIPS) instead.
505              IncGprIndex();
506            }
507            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
508                ((gpr_index_ + 1) == kNumQuickGprArgs);
509            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
510              // We don't want to split this. Pass over this register.
511              gpr_index_++;
512              is_split_long_or_double_ = false;
513            }
514            Visit();
515            if (kBytesStackArgLocation == 4) {
516              stack_index_+= 2;
517            } else {
518              CHECK_EQ(kBytesStackArgLocation, 8U);
519              stack_index_++;
520            }
521            if (gpr_index_ < kNumQuickGprArgs) {
522              IncGprIndex();
523              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
524                if (gpr_index_ < kNumQuickGprArgs) {
525                  IncGprIndex();
526                }
527              }
528            }
529          } else {
530            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
531                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
532            Visit();
533            if (kBytesStackArgLocation == 4) {
534              stack_index_+= 2;
535            } else {
536              CHECK_EQ(kBytesStackArgLocation, 8U);
537              stack_index_++;
538            }
539            if (kQuickDoubleRegAlignedFloatBackFilled) {
540              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
541                fpr_double_index_ += 2;
542                // Float should not overlap with double.
543                if (fpr_index_ % 2 == 0) {
544                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
545                }
546              }
547            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
548              IncFprIndex();
549              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
550                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
551                  IncFprIndex();
552                }
553              }
554            }
555          }
556          break;
557        default:
558          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
559      }
560    }
561  }
562
563 protected:
564  const bool is_static_;
565  const char* const shorty_;
566  const uint32_t shorty_len_;
567
568 private:
569  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
570  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
571  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
572  uint32_t gpr_index_;  // Index into spilled GPRs.
573  // Index into spilled FPRs.
574  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
575  // holds a higher register number.
576  uint32_t fpr_index_;
577  // Index into spilled FPRs for aligned double.
578  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
579  // terms of singles, may be behind fpr_index.
580  uint32_t fpr_double_index_;
581  uint32_t stack_index_;  // Index into arguments on the stack.
582  // The current type of argument during VisitArguments.
583  Primitive::Type cur_type_;
584  // Does a 64bit parameter straddle the register and stack arguments?
585  bool is_split_long_or_double_;
586};
587
588// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
589// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
590extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
591    SHARED_REQUIRES(Locks::mutator_lock_) {
592  return QuickArgumentVisitor::GetProxyThisObject(sp);
593}
594
595// Visits arguments on the stack placing them into the shadow frame.
596class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
597 public:
598  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
599                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
600      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
601
602  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
603
604 private:
605  ShadowFrame* const sf_;
606  uint32_t cur_reg_;
607
608  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
609};
610
611void BuildQuickShadowFrameVisitor::Visit() {
612  Primitive::Type type = GetParamPrimitiveType();
613  switch (type) {
614    case Primitive::kPrimLong:  // Fall-through.
615    case Primitive::kPrimDouble:
616      if (IsSplitLongOrDouble()) {
617        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
618      } else {
619        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
620      }
621      ++cur_reg_;
622      break;
623    case Primitive::kPrimNot: {
624        StackReference<mirror::Object>* stack_ref =
625            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
626        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
627      }
628      break;
629    case Primitive::kPrimBoolean:  // Fall-through.
630    case Primitive::kPrimByte:     // Fall-through.
631    case Primitive::kPrimChar:     // Fall-through.
632    case Primitive::kPrimShort:    // Fall-through.
633    case Primitive::kPrimInt:      // Fall-through.
634    case Primitive::kPrimFloat:
635      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
636      break;
637    case Primitive::kPrimVoid:
638      LOG(FATAL) << "UNREACHABLE";
639      UNREACHABLE();
640  }
641  ++cur_reg_;
642}
643
644extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
645    SHARED_REQUIRES(Locks::mutator_lock_) {
646  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
647  // frame.
648  ScopedQuickEntrypointChecks sqec(self);
649
650  if (UNLIKELY(!method->IsInvokable())) {
651    method->ThrowInvocationTimeError();
652    return 0;
653  }
654
655  JValue tmp_value;
656  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
657      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
658  ManagedStack fragment;
659
660  DCHECK(!method->IsNative()) << PrettyMethod(method);
661  uint32_t shorty_len = 0;
662  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
663  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
664  DCHECK(code_item != nullptr) << PrettyMethod(method);
665  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
666
667  JValue result;
668
669  if (deopt_frame != nullptr) {
670    // Coming from partial-fragment deopt.
671
672    if (kIsDebugBuild) {
673      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
674      // of the call-stack) corresponds to the called method.
675      ShadowFrame* linked = deopt_frame;
676      while (linked->GetLink() != nullptr) {
677        linked = linked->GetLink();
678      }
679      CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
680          << PrettyMethod(linked->GetMethod());
681    }
682
683    if (VLOG_IS_ON(deopt)) {
684      // Print out the stack to verify that it was a partial-fragment deopt.
685      LOG(INFO) << "Continue-ing from deopt. Stack is:";
686      QuickExceptionHandler::DumpFramesWithType(self, true);
687    }
688
689    mirror::Throwable* pending_exception = nullptr;
690    bool from_code = false;
691    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
692
693    // Push a transition back into managed code onto the linked list in thread.
694    self->PushManagedStackFragment(&fragment);
695
696    // Ensure that the stack is still in order.
697    if (kIsDebugBuild) {
698      class DummyStackVisitor : public StackVisitor {
699       public:
700        explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_)
701            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
702
703        bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
704          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
705          // logic. Just always say we want to continue.
706          return true;
707        }
708      };
709      DummyStackVisitor dsv(self);
710      dsv.WalkStack();
711    }
712
713    // Restore the exception that was pending before deoptimization then interpret the
714    // deoptimized frames.
715    if (pending_exception != nullptr) {
716      self->SetException(pending_exception);
717    }
718    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
719  } else {
720    const char* old_cause = self->StartAssertNoThreadSuspension(
721        "Building interpreter shadow frame");
722    uint16_t num_regs = code_item->registers_size_;
723    // No last shadow coming from quick.
724    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
725        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
726    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
727    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
728    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
729                                                      shadow_frame, first_arg_reg);
730    shadow_frame_builder.VisitArguments();
731    const bool needs_initialization =
732        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
733    // Push a transition back into managed code onto the linked list in thread.
734    self->PushManagedStackFragment(&fragment);
735    self->PushShadowFrame(shadow_frame);
736    self->EndAssertNoThreadSuspension(old_cause);
737
738    if (needs_initialization) {
739      // Ensure static method's class is initialized.
740      StackHandleScope<1> hs(self);
741      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
742      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
743        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
744        self->PopManagedStackFragment(fragment);
745        return 0;
746      }
747    }
748
749    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
750  }
751
752  // Pop transition.
753  self->PopManagedStackFragment(fragment);
754
755  // Request a stack deoptimization if needed
756  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
757  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
758  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
759  // should be done and it knows the real return pc.
760  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
761               Dbg::IsForcedInterpreterNeededForUpcall(self, caller) &&
762               Runtime::Current()->IsDeoptimizeable(caller_pc))) {
763    // Push the context of the deoptimization stack so we can restore the return value and the
764    // exception before executing the deoptimized frames.
765    self->PushDeoptimizationContext(
766        result, shorty[0] == 'L', /* from_code */ false, self->GetException());
767
768    // Set special exception to cause deoptimization.
769    self->SetException(Thread::GetDeoptimizationException());
770  }
771
772  // No need to restore the args since the method has already been run by the interpreter.
773  return result.GetJ();
774}
775
776// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
777// to jobjects.
778class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
779 public:
780  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
781                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
782      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
783
784  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
785
786  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
787
788 private:
789  ScopedObjectAccessUnchecked* const soa_;
790  std::vector<jvalue>* const args_;
791  // References which we must update when exiting in case the GC moved the objects.
792  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
793
794  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
795};
796
797void BuildQuickArgumentVisitor::Visit() {
798  jvalue val;
799  Primitive::Type type = GetParamPrimitiveType();
800  switch (type) {
801    case Primitive::kPrimNot: {
802      StackReference<mirror::Object>* stack_ref =
803          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
804      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
805      references_.push_back(std::make_pair(val.l, stack_ref));
806      break;
807    }
808    case Primitive::kPrimLong:  // Fall-through.
809    case Primitive::kPrimDouble:
810      if (IsSplitLongOrDouble()) {
811        val.j = ReadSplitLongParam();
812      } else {
813        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
814      }
815      break;
816    case Primitive::kPrimBoolean:  // Fall-through.
817    case Primitive::kPrimByte:     // Fall-through.
818    case Primitive::kPrimChar:     // Fall-through.
819    case Primitive::kPrimShort:    // Fall-through.
820    case Primitive::kPrimInt:      // Fall-through.
821    case Primitive::kPrimFloat:
822      val.i = *reinterpret_cast<jint*>(GetParamAddress());
823      break;
824    case Primitive::kPrimVoid:
825      LOG(FATAL) << "UNREACHABLE";
826      UNREACHABLE();
827  }
828  args_->push_back(val);
829}
830
831void BuildQuickArgumentVisitor::FixupReferences() {
832  // Fixup any references which may have changed.
833  for (const auto& pair : references_) {
834    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
835    soa_->Env()->DeleteLocalRef(pair.first);
836  }
837}
838
839// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
840// which is responsible for recording callee save registers. We explicitly place into jobjects the
841// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
842// field within the proxy object, which will box the primitive arguments and deal with error cases.
843extern "C" uint64_t artQuickProxyInvokeHandler(
844    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
845    SHARED_REQUIRES(Locks::mutator_lock_) {
846  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
847  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
848  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
849  const char* old_cause =
850      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
851  // Register the top of the managed stack, making stack crawlable.
852  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
853  self->VerifyStack();
854  // Start new JNI local reference state.
855  JNIEnvExt* env = self->GetJniEnv();
856  ScopedObjectAccessUnchecked soa(env);
857  ScopedJniEnvLocalRefState env_state(env);
858  // Create local ref. copies of proxy method and the receiver.
859  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
860
861  // Placing arguments into args vector and remove the receiver.
862  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
863  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
864                                       << PrettyMethod(non_proxy_method);
865  std::vector<jvalue> args;
866  uint32_t shorty_len = 0;
867  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
868  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
869
870  local_ref_visitor.VisitArguments();
871  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
872  args.erase(args.begin());
873
874  // Convert proxy method into expected interface method.
875  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
876  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
877  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
878  self->EndAssertNoThreadSuspension(old_cause);
879  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
880      mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
881
882  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
883  // that performs allocations.
884  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
885  // Restore references which might have moved.
886  local_ref_visitor.FixupReferences();
887  return result.GetJ();
888}
889
890// Read object references held in arguments from quick frames and place in a JNI local references,
891// so they don't get garbage collected.
892class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
893 public:
894  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
895                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
896      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
897
898  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
899
900  void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
901
902 private:
903  ScopedObjectAccessUnchecked* const soa_;
904  // References which we must update when exiting in case the GC moved the objects.
905  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
906
907  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
908};
909
910void RememberForGcArgumentVisitor::Visit() {
911  if (IsParamAReference()) {
912    StackReference<mirror::Object>* stack_ref =
913        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
914    jobject reference =
915        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
916    references_.push_back(std::make_pair(reference, stack_ref));
917  }
918}
919
920void RememberForGcArgumentVisitor::FixupReferences() {
921  // Fixup any references which may have changed.
922  for (const auto& pair : references_) {
923    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
924    soa_->Env()->DeleteLocalRef(pair.first);
925  }
926}
927
928// Lazily resolve a method for quick. Called by stub code.
929extern "C" const void* artQuickResolutionTrampoline(
930    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
931    SHARED_REQUIRES(Locks::mutator_lock_) {
932  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
933  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
934  // does not have the same stack layout as the callee-save method).
935  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
936  // Start new JNI local reference state
937  JNIEnvExt* env = self->GetJniEnv();
938  ScopedObjectAccessUnchecked soa(env);
939  ScopedJniEnvLocalRefState env_state(env);
940  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
941
942  // Compute details about the called method (avoid GCs)
943  ClassLinker* linker = Runtime::Current()->GetClassLinker();
944  InvokeType invoke_type;
945  MethodReference called_method(nullptr, 0);
946  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
947  ArtMethod* caller = nullptr;
948  if (!called_method_known_on_entry) {
949    caller = QuickArgumentVisitor::GetCallingMethod(sp);
950    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
951    const DexFile::CodeItem* code;
952    called_method.dex_file = caller->GetDexFile();
953    code = caller->GetCodeItem();
954    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
955    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
956    Instruction::Code instr_code = instr->Opcode();
957    bool is_range;
958    switch (instr_code) {
959      case Instruction::INVOKE_DIRECT:
960        invoke_type = kDirect;
961        is_range = false;
962        break;
963      case Instruction::INVOKE_DIRECT_RANGE:
964        invoke_type = kDirect;
965        is_range = true;
966        break;
967      case Instruction::INVOKE_STATIC:
968        invoke_type = kStatic;
969        is_range = false;
970        break;
971      case Instruction::INVOKE_STATIC_RANGE:
972        invoke_type = kStatic;
973        is_range = true;
974        break;
975      case Instruction::INVOKE_SUPER:
976        invoke_type = kSuper;
977        is_range = false;
978        break;
979      case Instruction::INVOKE_SUPER_RANGE:
980        invoke_type = kSuper;
981        is_range = true;
982        break;
983      case Instruction::INVOKE_VIRTUAL:
984        invoke_type = kVirtual;
985        is_range = false;
986        break;
987      case Instruction::INVOKE_VIRTUAL_RANGE:
988        invoke_type = kVirtual;
989        is_range = true;
990        break;
991      case Instruction::INVOKE_INTERFACE:
992        invoke_type = kInterface;
993        is_range = false;
994        break;
995      case Instruction::INVOKE_INTERFACE_RANGE:
996        invoke_type = kInterface;
997        is_range = true;
998        break;
999      default:
1000        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1001        UNREACHABLE();
1002    }
1003    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1004  } else {
1005    invoke_type = kStatic;
1006    called_method.dex_file = called->GetDexFile();
1007    called_method.dex_method_index = called->GetDexMethodIndex();
1008  }
1009  uint32_t shorty_len;
1010  const char* shorty =
1011      called_method.dex_file->GetMethodShorty(
1012          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1013  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1014  visitor.VisitArguments();
1015  self->EndAssertNoThreadSuspension(old_cause);
1016  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1017  // Resolve method filling in dex cache.
1018  if (!called_method_known_on_entry) {
1019    StackHandleScope<1> hs(self);
1020    mirror::Object* dummy = nullptr;
1021    HandleWrapper<mirror::Object> h_receiver(
1022        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1023    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1024    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1025        self, called_method.dex_method_index, caller, invoke_type);
1026  }
1027  const void* code = nullptr;
1028  if (LIKELY(!self->IsExceptionPending())) {
1029    // Incompatible class change should have been handled in resolve method.
1030    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1031        << PrettyMethod(called) << " " << invoke_type;
1032    if (virtual_or_interface || invoke_type == kSuper) {
1033      // Refine called method based on receiver for kVirtual/kInterface, and
1034      // caller for kSuper.
1035      ArtMethod* orig_called = called;
1036      if (invoke_type == kVirtual) {
1037        CHECK(receiver != nullptr) << invoke_type;
1038        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
1039      } else if (invoke_type == kInterface) {
1040        CHECK(receiver != nullptr) << invoke_type;
1041        called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
1042      } else {
1043        DCHECK_EQ(invoke_type, kSuper);
1044        CHECK(caller != nullptr) << invoke_type;
1045        StackHandleScope<2> hs(self);
1046        Handle<mirror::DexCache> dex_cache(
1047            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1048        Handle<mirror::ClassLoader> class_loader(
1049            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1050        // TODO Maybe put this into a mirror::Class function.
1051        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1052            called_method.dex_method_index, dex_cache, class_loader);
1053        if (ref_class->IsInterface()) {
1054          called = ref_class->FindVirtualMethodForInterfaceSuper(called, sizeof(void*));
1055        } else {
1056          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1057              called->GetMethodIndex(), sizeof(void*));
1058        }
1059      }
1060
1061      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
1062                               << PrettyTypeOf(receiver) << " "
1063                               << invoke_type << " " << orig_called->GetVtableIndex();
1064
1065      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1066      // of the sharpened method avoiding dirtying the dex cache if possible.
1067      // Note, called_method.dex_method_index references the dex method before the
1068      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1069      // about the name and signature.
1070      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1071      if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) {
1072        // Calling from one dex file to another, need to compute the method index appropriate to
1073        // the caller's dex file. Since we get here only if the original called was a runtime
1074        // method, we've got the correct dex_file and a dex_method_idx from above.
1075        DCHECK(!called_method_known_on_entry);
1076        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1077        const DexFile* caller_dex_file = called_method.dex_file;
1078        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1079        update_dex_cache_method_index =
1080            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1081                                                     caller_method_name_and_sig_index);
1082      }
1083      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1084          (caller->GetDexCacheResolvedMethod(
1085              update_dex_cache_method_index, sizeof(void*)) != called)) {
1086        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
1087      }
1088    } else if (invoke_type == kStatic) {
1089      const auto called_dex_method_idx = called->GetDexMethodIndex();
1090      // For static invokes, we may dispatch to the static method in the superclass but resolve
1091      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1092      // resolved method for the super class dex method index if we are in the same dex file.
1093      // b/19175856
1094      if (called->GetDexFile() == called_method.dex_file &&
1095          called_method.dex_method_index != called_dex_method_idx) {
1096        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
1097      }
1098    }
1099
1100    // Ensure that the called method's class is initialized.
1101    StackHandleScope<1> hs(soa.Self());
1102    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1103    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1104    if (LIKELY(called_class->IsInitialized())) {
1105      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1106        // If we are single-stepping or the called method is deoptimized (by a
1107        // breakpoint, for example), then we have to execute the called method
1108        // with the interpreter.
1109        code = GetQuickToInterpreterBridge();
1110      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1111        // If the caller is deoptimized (by a breakpoint, for example), we have to
1112        // continue its execution with interpreter when returning from the called
1113        // method. Because we do not want to execute the called method with the
1114        // interpreter, we wrap its execution into the instrumentation stubs.
1115        // When the called method returns, it will execute the instrumentation
1116        // exit hook that will determine the need of the interpreter with a call
1117        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1118        // it is needed.
1119        code = GetQuickInstrumentationEntryPoint();
1120      } else {
1121        code = called->GetEntryPointFromQuickCompiledCode();
1122      }
1123    } else if (called_class->IsInitializing()) {
1124      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1125        // If we are single-stepping or the called method is deoptimized (by a
1126        // breakpoint, for example), then we have to execute the called method
1127        // with the interpreter.
1128        code = GetQuickToInterpreterBridge();
1129      } else if (invoke_type == kStatic) {
1130        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1131        // until class is initialized to stop races between threads).
1132        code = linker->GetQuickOatCodeFor(called);
1133      } else {
1134        // No trampoline for non-static methods.
1135        code = called->GetEntryPointFromQuickCompiledCode();
1136      }
1137    } else {
1138      DCHECK(called_class->IsErroneous());
1139    }
1140  }
1141  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1142  // Fixup any locally saved objects may have moved during a GC.
1143  visitor.FixupReferences();
1144  // Place called method in callee-save frame to be placed as first argument to quick method.
1145  *sp = called;
1146
1147  return code;
1148}
1149
1150/*
1151 * This class uses a couple of observations to unite the different calling conventions through
1152 * a few constants.
1153 *
1154 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1155 *    possible alignment.
1156 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1157 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1158 *    when we have to split things
1159 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1160 *    and we can use Int handling directly.
1161 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1162 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1163 *    extension should be compatible with Aarch64, which mandates copying the available bits
1164 *    into LSB and leaving the rest unspecified.
1165 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1166 *    the stack.
1167 * 6) There is only little endian.
1168 *
1169 *
1170 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1171 * follows:
1172 *
1173 * void PushGpr(uintptr_t):   Add a value for the next GPR
1174 *
1175 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1176 *                            padding, that is, think the architecture is 32b and aligns 64b.
1177 *
1178 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1179 *                            split this if necessary. The current state will have aligned, if
1180 *                            necessary.
1181 *
1182 * void PushStack(uintptr_t): Push a value to the stack.
1183 *
1184 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1185 *                                          as this might be important for null initialization.
1186 *                                          Must return the jobject, that is, the reference to the
1187 *                                          entry in the HandleScope (nullptr if necessary).
1188 *
1189 */
1190template<class T> class BuildNativeCallFrameStateMachine {
1191 public:
1192#if defined(__arm__)
1193  // TODO: These are all dummy values!
1194  static constexpr bool kNativeSoftFloatAbi = true;
1195  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1196  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1197
1198  static constexpr size_t kRegistersNeededForLong = 2;
1199  static constexpr size_t kRegistersNeededForDouble = 2;
1200  static constexpr bool kMultiRegistersAligned = true;
1201  static constexpr bool kMultiFPRegistersWidened = false;
1202  static constexpr bool kMultiGPRegistersWidened = false;
1203  static constexpr bool kAlignLongOnStack = true;
1204  static constexpr bool kAlignDoubleOnStack = true;
1205#elif defined(__aarch64__)
1206  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1207  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1208  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1209
1210  static constexpr size_t kRegistersNeededForLong = 1;
1211  static constexpr size_t kRegistersNeededForDouble = 1;
1212  static constexpr bool kMultiRegistersAligned = false;
1213  static constexpr bool kMultiFPRegistersWidened = false;
1214  static constexpr bool kMultiGPRegistersWidened = false;
1215  static constexpr bool kAlignLongOnStack = false;
1216  static constexpr bool kAlignDoubleOnStack = false;
1217#elif defined(__mips__) && !defined(__LP64__)
1218  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1219  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1220  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1221
1222  static constexpr size_t kRegistersNeededForLong = 2;
1223  static constexpr size_t kRegistersNeededForDouble = 2;
1224  static constexpr bool kMultiRegistersAligned = true;
1225  static constexpr bool kMultiFPRegistersWidened = true;
1226  static constexpr bool kMultiGPRegistersWidened = false;
1227  static constexpr bool kAlignLongOnStack = true;
1228  static constexpr bool kAlignDoubleOnStack = true;
1229#elif defined(__mips__) && defined(__LP64__)
1230  // Let the code prepare GPRs only and we will load the FPRs with same data.
1231  static constexpr bool kNativeSoftFloatAbi = true;
1232  static constexpr size_t kNumNativeGprArgs = 8;
1233  static constexpr size_t kNumNativeFprArgs = 0;
1234
1235  static constexpr size_t kRegistersNeededForLong = 1;
1236  static constexpr size_t kRegistersNeededForDouble = 1;
1237  static constexpr bool kMultiRegistersAligned = false;
1238  static constexpr bool kMultiFPRegistersWidened = false;
1239  static constexpr bool kMultiGPRegistersWidened = true;
1240  static constexpr bool kAlignLongOnStack = false;
1241  static constexpr bool kAlignDoubleOnStack = false;
1242#elif defined(__i386__)
1243  // TODO: Check these!
1244  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1245  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1246  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1247
1248  static constexpr size_t kRegistersNeededForLong = 2;
1249  static constexpr size_t kRegistersNeededForDouble = 2;
1250  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1251  static constexpr bool kMultiFPRegistersWidened = false;
1252  static constexpr bool kMultiGPRegistersWidened = false;
1253  static constexpr bool kAlignLongOnStack = false;
1254  static constexpr bool kAlignDoubleOnStack = false;
1255#elif defined(__x86_64__)
1256  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1257  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1258  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1259
1260  static constexpr size_t kRegistersNeededForLong = 1;
1261  static constexpr size_t kRegistersNeededForDouble = 1;
1262  static constexpr bool kMultiRegistersAligned = false;
1263  static constexpr bool kMultiFPRegistersWidened = false;
1264  static constexpr bool kMultiGPRegistersWidened = false;
1265  static constexpr bool kAlignLongOnStack = false;
1266  static constexpr bool kAlignDoubleOnStack = false;
1267#else
1268#error "Unsupported architecture"
1269#endif
1270
1271 public:
1272  explicit BuildNativeCallFrameStateMachine(T* delegate)
1273      : gpr_index_(kNumNativeGprArgs),
1274        fpr_index_(kNumNativeFprArgs),
1275        stack_entries_(0),
1276        delegate_(delegate) {
1277    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1278    // the next register is even; counting down is just to make the compiler happy...
1279    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1280    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1281  }
1282
1283  virtual ~BuildNativeCallFrameStateMachine() {}
1284
1285  bool HavePointerGpr() const {
1286    return gpr_index_ > 0;
1287  }
1288
1289  void AdvancePointer(const void* val) {
1290    if (HavePointerGpr()) {
1291      gpr_index_--;
1292      PushGpr(reinterpret_cast<uintptr_t>(val));
1293    } else {
1294      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1295      PushStack(reinterpret_cast<uintptr_t>(val));
1296      gpr_index_ = 0;
1297    }
1298  }
1299
1300  bool HaveHandleScopeGpr() const {
1301    return gpr_index_ > 0;
1302  }
1303
1304  void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1305    uintptr_t handle = PushHandle(ptr);
1306    if (HaveHandleScopeGpr()) {
1307      gpr_index_--;
1308      PushGpr(handle);
1309    } else {
1310      stack_entries_++;
1311      PushStack(handle);
1312      gpr_index_ = 0;
1313    }
1314  }
1315
1316  bool HaveIntGpr() const {
1317    return gpr_index_ > 0;
1318  }
1319
1320  void AdvanceInt(uint32_t val) {
1321    if (HaveIntGpr()) {
1322      gpr_index_--;
1323      if (kMultiGPRegistersWidened) {
1324        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1325        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1326      } else {
1327        PushGpr(val);
1328      }
1329    } else {
1330      stack_entries_++;
1331      if (kMultiGPRegistersWidened) {
1332        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1333        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1334      } else {
1335        PushStack(val);
1336      }
1337      gpr_index_ = 0;
1338    }
1339  }
1340
1341  bool HaveLongGpr() const {
1342    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1343  }
1344
1345  bool LongGprNeedsPadding() const {
1346    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1347        kAlignLongOnStack &&                  // and when it needs alignment
1348        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1349  }
1350
1351  bool LongStackNeedsPadding() const {
1352    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1353        kAlignLongOnStack &&                  // and when it needs 8B alignment
1354        (stack_entries_ & 1) == 1;            // counter is odd
1355  }
1356
1357  void AdvanceLong(uint64_t val) {
1358    if (HaveLongGpr()) {
1359      if (LongGprNeedsPadding()) {
1360        PushGpr(0);
1361        gpr_index_--;
1362      }
1363      if (kRegistersNeededForLong == 1) {
1364        PushGpr(static_cast<uintptr_t>(val));
1365      } else {
1366        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1367        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1368      }
1369      gpr_index_ -= kRegistersNeededForLong;
1370    } else {
1371      if (LongStackNeedsPadding()) {
1372        PushStack(0);
1373        stack_entries_++;
1374      }
1375      if (kRegistersNeededForLong == 1) {
1376        PushStack(static_cast<uintptr_t>(val));
1377        stack_entries_++;
1378      } else {
1379        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1380        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1381        stack_entries_ += 2;
1382      }
1383      gpr_index_ = 0;
1384    }
1385  }
1386
1387  bool HaveFloatFpr() const {
1388    return fpr_index_ > 0;
1389  }
1390
1391  void AdvanceFloat(float val) {
1392    if (kNativeSoftFloatAbi) {
1393      AdvanceInt(bit_cast<uint32_t, float>(val));
1394    } else {
1395      if (HaveFloatFpr()) {
1396        fpr_index_--;
1397        if (kRegistersNeededForDouble == 1) {
1398          if (kMultiFPRegistersWidened) {
1399            PushFpr8(bit_cast<uint64_t, double>(val));
1400          } else {
1401            // No widening, just use the bits.
1402            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1403          }
1404        } else {
1405          PushFpr4(val);
1406        }
1407      } else {
1408        stack_entries_++;
1409        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1410          // Need to widen before storing: Note the "double" in the template instantiation.
1411          // Note: We need to jump through those hoops to make the compiler happy.
1412          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1413          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1414        } else {
1415          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1416        }
1417        fpr_index_ = 0;
1418      }
1419    }
1420  }
1421
1422  bool HaveDoubleFpr() const {
1423    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1424  }
1425
1426  bool DoubleFprNeedsPadding() const {
1427    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1428        kAlignDoubleOnStack &&                  // and when it needs alignment
1429        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1430  }
1431
1432  bool DoubleStackNeedsPadding() const {
1433    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1434        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1435        (stack_entries_ & 1) == 1;              // counter is odd
1436  }
1437
1438  void AdvanceDouble(uint64_t val) {
1439    if (kNativeSoftFloatAbi) {
1440      AdvanceLong(val);
1441    } else {
1442      if (HaveDoubleFpr()) {
1443        if (DoubleFprNeedsPadding()) {
1444          PushFpr4(0);
1445          fpr_index_--;
1446        }
1447        PushFpr8(val);
1448        fpr_index_ -= kRegistersNeededForDouble;
1449      } else {
1450        if (DoubleStackNeedsPadding()) {
1451          PushStack(0);
1452          stack_entries_++;
1453        }
1454        if (kRegistersNeededForDouble == 1) {
1455          PushStack(static_cast<uintptr_t>(val));
1456          stack_entries_++;
1457        } else {
1458          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1459          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1460          stack_entries_ += 2;
1461        }
1462        fpr_index_ = 0;
1463      }
1464    }
1465  }
1466
1467  uint32_t GetStackEntries() const {
1468    return stack_entries_;
1469  }
1470
1471  uint32_t GetNumberOfUsedGprs() const {
1472    return kNumNativeGprArgs - gpr_index_;
1473  }
1474
1475  uint32_t GetNumberOfUsedFprs() const {
1476    return kNumNativeFprArgs - fpr_index_;
1477  }
1478
1479 private:
1480  void PushGpr(uintptr_t val) {
1481    delegate_->PushGpr(val);
1482  }
1483  void PushFpr4(float val) {
1484    delegate_->PushFpr4(val);
1485  }
1486  void PushFpr8(uint64_t val) {
1487    delegate_->PushFpr8(val);
1488  }
1489  void PushStack(uintptr_t val) {
1490    delegate_->PushStack(val);
1491  }
1492  uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
1493    return delegate_->PushHandle(ref);
1494  }
1495
1496  uint32_t gpr_index_;      // Number of free GPRs
1497  uint32_t fpr_index_;      // Number of free FPRs
1498  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1499                            // extended
1500  T* const delegate_;             // What Push implementation gets called
1501};
1502
1503// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1504// in subclasses.
1505//
1506// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1507// them with handles.
1508class ComputeNativeCallFrameSize {
1509 public:
1510  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1511
1512  virtual ~ComputeNativeCallFrameSize() {}
1513
1514  uint32_t GetStackSize() const {
1515    return num_stack_entries_ * sizeof(uintptr_t);
1516  }
1517
1518  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1519    sp8 -= GetStackSize();
1520    // Align by kStackAlignment.
1521    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1522    return sp8;
1523  }
1524
1525  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1526      const {
1527    // Assumption is OK right now, as we have soft-float arm
1528    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1529    sp8 -= fregs * sizeof(uintptr_t);
1530    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1531    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1532    sp8 -= iregs * sizeof(uintptr_t);
1533    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1534    return sp8;
1535  }
1536
1537  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1538                            uint32_t** start_fpr) const {
1539    // Native call stack.
1540    sp8 = LayoutCallStack(sp8);
1541    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1542
1543    // Put fprs and gprs below.
1544    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1545
1546    // Return the new bottom.
1547    return sp8;
1548  }
1549
1550  virtual void WalkHeader(
1551      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1552      SHARED_REQUIRES(Locks::mutator_lock_) {
1553  }
1554
1555  void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
1556    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1557
1558    WalkHeader(&sm);
1559
1560    for (uint32_t i = 1; i < shorty_len; ++i) {
1561      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1562      switch (cur_type_) {
1563        case Primitive::kPrimNot:
1564          // TODO: fix abuse of mirror types.
1565          sm.AdvanceHandleScope(
1566              reinterpret_cast<mirror::Object*>(0x12345678));
1567          break;
1568
1569        case Primitive::kPrimBoolean:
1570        case Primitive::kPrimByte:
1571        case Primitive::kPrimChar:
1572        case Primitive::kPrimShort:
1573        case Primitive::kPrimInt:
1574          sm.AdvanceInt(0);
1575          break;
1576        case Primitive::kPrimFloat:
1577          sm.AdvanceFloat(0);
1578          break;
1579        case Primitive::kPrimDouble:
1580          sm.AdvanceDouble(0);
1581          break;
1582        case Primitive::kPrimLong:
1583          sm.AdvanceLong(0);
1584          break;
1585        default:
1586          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1587          UNREACHABLE();
1588      }
1589    }
1590
1591    num_stack_entries_ = sm.GetStackEntries();
1592  }
1593
1594  void PushGpr(uintptr_t /* val */) {
1595    // not optimizing registers, yet
1596  }
1597
1598  void PushFpr4(float /* val */) {
1599    // not optimizing registers, yet
1600  }
1601
1602  void PushFpr8(uint64_t /* val */) {
1603    // not optimizing registers, yet
1604  }
1605
1606  void PushStack(uintptr_t /* val */) {
1607    // counting is already done in the superclass
1608  }
1609
1610  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1611    return reinterpret_cast<uintptr_t>(nullptr);
1612  }
1613
1614 protected:
1615  uint32_t num_stack_entries_;
1616};
1617
1618class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1619 public:
1620  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1621
1622  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1623  // is at *m = sp. Will update to point to the bottom of the save frame.
1624  //
1625  // Note: assumes ComputeAll() has been run before.
1626  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1627      SHARED_REQUIRES(Locks::mutator_lock_) {
1628    ArtMethod* method = **m;
1629
1630    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1631
1632    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1633
1634    // First, fix up the layout of the callee-save frame.
1635    // We have to squeeze in the HandleScope, and relocate the method pointer.
1636
1637    // "Free" the slot for the method.
1638    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1639
1640    // Under the callee saves put handle scope and new method stack reference.
1641    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1642    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1643
1644    sp8 -= scope_and_method;
1645    // Align by kStackAlignment.
1646    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1647
1648    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1649    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1650                                        num_handle_scope_references_);
1651
1652    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1653    uint8_t* method_pointer = sp8;
1654    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1655    *new_method_ref = method;
1656    *m = new_method_ref;
1657  }
1658
1659  // Adds space for the cookie. Note: may leave stack unaligned.
1660  void LayoutCookie(uint8_t** sp) const {
1661    // Reference cookie and padding
1662    *sp -= 8;
1663  }
1664
1665  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1666  // Returns the new bottom. Note: this may be unaligned.
1667  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1668      SHARED_REQUIRES(Locks::mutator_lock_) {
1669    // First, fix up the layout of the callee-save frame.
1670    // We have to squeeze in the HandleScope, and relocate the method pointer.
1671    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1672
1673    // The bottom of the callee-save frame is now where the method is, *m.
1674    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1675
1676    // Add space for cookie.
1677    LayoutCookie(&sp8);
1678
1679    return sp8;
1680  }
1681
1682  // WARNING: After this, *sp won't be pointing to the method anymore!
1683  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1684                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1685                         uint32_t** start_fpr)
1686      SHARED_REQUIRES(Locks::mutator_lock_) {
1687    Walk(shorty, shorty_len);
1688
1689    // JNI part.
1690    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1691
1692    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1693
1694    // Return the new bottom.
1695    return sp8;
1696  }
1697
1698  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1699
1700  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1701  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1702      SHARED_REQUIRES(Locks::mutator_lock_);
1703
1704 private:
1705  uint32_t num_handle_scope_references_;
1706};
1707
1708uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1709  num_handle_scope_references_++;
1710  return reinterpret_cast<uintptr_t>(nullptr);
1711}
1712
1713void ComputeGenericJniFrameSize::WalkHeader(
1714    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1715  // JNIEnv
1716  sm->AdvancePointer(nullptr);
1717
1718  // Class object or this as first argument
1719  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1720}
1721
1722// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1723// the template requirements of BuildGenericJniFrameStateMachine.
1724class FillNativeCall {
1725 public:
1726  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1727      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1728
1729  virtual ~FillNativeCall() {}
1730
1731  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1732    cur_gpr_reg_ = gpr_regs;
1733    cur_fpr_reg_ = fpr_regs;
1734    cur_stack_arg_ = stack_args;
1735  }
1736
1737  void PushGpr(uintptr_t val) {
1738    *cur_gpr_reg_ = val;
1739    cur_gpr_reg_++;
1740  }
1741
1742  void PushFpr4(float val) {
1743    *cur_fpr_reg_ = val;
1744    cur_fpr_reg_++;
1745  }
1746
1747  void PushFpr8(uint64_t val) {
1748    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1749    *tmp = val;
1750    cur_fpr_reg_ += 2;
1751  }
1752
1753  void PushStack(uintptr_t val) {
1754    *cur_stack_arg_ = val;
1755    cur_stack_arg_++;
1756  }
1757
1758  virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
1759    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1760    UNREACHABLE();
1761  }
1762
1763 private:
1764  uintptr_t* cur_gpr_reg_;
1765  uint32_t* cur_fpr_reg_;
1766  uintptr_t* cur_stack_arg_;
1767};
1768
1769// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1770// of transitioning into native code.
1771class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1772 public:
1773  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1774                              ArtMethod*** sp)
1775     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1776       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1777    ComputeGenericJniFrameSize fsc;
1778    uintptr_t* start_gpr_reg;
1779    uint32_t* start_fpr_reg;
1780    uintptr_t* start_stack_arg;
1781    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1782                                             &handle_scope_,
1783                                             &start_stack_arg,
1784                                             &start_gpr_reg, &start_fpr_reg);
1785
1786    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1787
1788    // jni environment is always first argument
1789    sm_.AdvancePointer(self->GetJniEnv());
1790
1791    if (is_static) {
1792      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1793    }
1794  }
1795
1796  void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
1797
1798  void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
1799
1800  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1801    return handle_scope_->GetHandle(0).GetReference();
1802  }
1803
1804  jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
1805    return handle_scope_->GetHandle(0).ToJObject();
1806  }
1807
1808  void* GetBottomOfUsedArea() const {
1809    return bottom_of_used_area_;
1810  }
1811
1812 private:
1813  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1814  class FillJniCall FINAL : public FillNativeCall {
1815   public:
1816    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1817                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1818                                             handle_scope_(handle_scope), cur_entry_(0) {}
1819
1820    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
1821
1822    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1823      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1824      handle_scope_ = scope;
1825      cur_entry_ = 0U;
1826    }
1827
1828    void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
1829      // Initialize padding entries.
1830      size_t expected_slots = handle_scope_->NumberOfReferences();
1831      while (cur_entry_ < expected_slots) {
1832        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1833      }
1834      DCHECK_NE(cur_entry_, 0U);
1835    }
1836
1837   private:
1838    HandleScope* handle_scope_;
1839    size_t cur_entry_;
1840  };
1841
1842  HandleScope* handle_scope_;
1843  FillJniCall jni_call_;
1844  void* bottom_of_used_area_;
1845
1846  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1847
1848  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1849};
1850
1851uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1852  uintptr_t tmp;
1853  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1854  h.Assign(ref);
1855  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1856  cur_entry_++;
1857  return tmp;
1858}
1859
1860void BuildGenericJniFrameVisitor::Visit() {
1861  Primitive::Type type = GetParamPrimitiveType();
1862  switch (type) {
1863    case Primitive::kPrimLong: {
1864      jlong long_arg;
1865      if (IsSplitLongOrDouble()) {
1866        long_arg = ReadSplitLongParam();
1867      } else {
1868        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1869      }
1870      sm_.AdvanceLong(long_arg);
1871      break;
1872    }
1873    case Primitive::kPrimDouble: {
1874      uint64_t double_arg;
1875      if (IsSplitLongOrDouble()) {
1876        // Read into union so that we don't case to a double.
1877        double_arg = ReadSplitLongParam();
1878      } else {
1879        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1880      }
1881      sm_.AdvanceDouble(double_arg);
1882      break;
1883    }
1884    case Primitive::kPrimNot: {
1885      StackReference<mirror::Object>* stack_ref =
1886          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1887      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1888      break;
1889    }
1890    case Primitive::kPrimFloat:
1891      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1892      break;
1893    case Primitive::kPrimBoolean:  // Fall-through.
1894    case Primitive::kPrimByte:     // Fall-through.
1895    case Primitive::kPrimChar:     // Fall-through.
1896    case Primitive::kPrimShort:    // Fall-through.
1897    case Primitive::kPrimInt:      // Fall-through.
1898      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1899      break;
1900    case Primitive::kPrimVoid:
1901      LOG(FATAL) << "UNREACHABLE";
1902      UNREACHABLE();
1903  }
1904}
1905
1906void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1907  // Clear out rest of the scope.
1908  jni_call_.ResetRemainingScopeSlots();
1909  // Install HandleScope.
1910  self->PushHandleScope(handle_scope_);
1911}
1912
1913#if defined(__arm__) || defined(__aarch64__)
1914extern "C" void* artFindNativeMethod();
1915#else
1916extern "C" void* artFindNativeMethod(Thread* self);
1917#endif
1918
1919uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1920  if (lock != nullptr) {
1921    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1922  } else {
1923    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1924  }
1925}
1926
1927void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1928  if (lock != nullptr) {
1929    JniMethodEndSynchronized(cookie, lock, self);
1930  } else {
1931    JniMethodEnd(cookie, self);
1932  }
1933}
1934
1935/*
1936 * Initializes an alloca region assumed to be directly below sp for a native call:
1937 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1938 * The final element on the stack is a pointer to the native code.
1939 *
1940 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1941 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1942 *
1943 * The return of this function denotes:
1944 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1945 * 2) An error, if the value is negative.
1946 */
1947extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1948    SHARED_REQUIRES(Locks::mutator_lock_) {
1949  ArtMethod* called = *sp;
1950  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1951  uint32_t shorty_len = 0;
1952  const char* shorty = called->GetShorty(&shorty_len);
1953
1954  // Run the visitor and update sp.
1955  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1956  visitor.VisitArguments();
1957  visitor.FinalizeHandleScope(self);
1958
1959  // Fix up managed-stack things in Thread.
1960  self->SetTopOfStack(sp);
1961
1962  self->VerifyStack();
1963
1964  // Start JNI, save the cookie.
1965  uint32_t cookie;
1966  if (called->IsSynchronized()) {
1967    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1968    if (self->IsExceptionPending()) {
1969      self->PopHandleScope();
1970      // A negative value denotes an error.
1971      return GetTwoWordFailureValue();
1972    }
1973  } else {
1974    cookie = JniMethodStart(self);
1975  }
1976  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1977  *(sp32 - 1) = cookie;
1978
1979  // Retrieve the stored native code.
1980  void* nativeCode = called->GetEntryPointFromJni();
1981
1982  // There are two cases for the content of nativeCode:
1983  // 1) Pointer to the native function.
1984  // 2) Pointer to the trampoline for native code binding.
1985  // In the second case, we need to execute the binding and continue with the actual native function
1986  // pointer.
1987  DCHECK(nativeCode != nullptr);
1988  if (nativeCode == GetJniDlsymLookupStub()) {
1989#if defined(__arm__) || defined(__aarch64__)
1990    nativeCode = artFindNativeMethod();
1991#else
1992    nativeCode = artFindNativeMethod(self);
1993#endif
1994
1995    if (nativeCode == nullptr) {
1996      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1997
1998      // End JNI, as the assembly will move to deliver the exception.
1999      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2000      if (shorty[0] == 'L') {
2001        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
2002      } else {
2003        artQuickGenericJniEndJNINonRef(self, cookie, lock);
2004      }
2005
2006      return GetTwoWordFailureValue();
2007    }
2008    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2009  }
2010
2011  // Return native code addr(lo) and bottom of alloca address(hi).
2012  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2013                                reinterpret_cast<uintptr_t>(nativeCode));
2014}
2015
2016// Defined in quick_jni_entrypoints.cc.
2017extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2018                                    jvalue result, uint64_t result_f, ArtMethod* called,
2019                                    HandleScope* handle_scope);
2020/*
2021 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2022 * unlocking.
2023 */
2024extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2025                                                    jvalue result,
2026                                                    uint64_t result_f) {
2027  // We're here just back from a native call. We don't have the shared mutator lock at this point
2028  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2029  // anything that requires a mutator lock before that would cause problems as GC may have the
2030  // exclusive mutator lock and may be moving objects, etc.
2031  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2032  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2033  ArtMethod* called = *sp;
2034  uint32_t cookie = *(sp32 - 1);
2035  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2036  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2037}
2038
2039// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2040// for the method pointer.
2041//
2042// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2043// to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
2044
2045template<InvokeType type, bool access_check>
2046static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
2047                                     ArtMethod** sp) {
2048  ScopedQuickEntrypointChecks sqec(self);
2049  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
2050  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2051  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2052  if (UNLIKELY(method == nullptr)) {
2053    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2054    uint32_t shorty_len;
2055    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2056    {
2057      // Remember the args in case a GC happens in FindMethodFromCode.
2058      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2059      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2060      visitor.VisitArguments();
2061      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
2062                                                      self);
2063      visitor.FixupReferences();
2064    }
2065
2066    if (UNLIKELY(method == nullptr)) {
2067      CHECK(self->IsExceptionPending());
2068      return GetTwoWordFailureValue();  // Failure.
2069    }
2070  }
2071  DCHECK(!self->IsExceptionPending());
2072  const void* code = method->GetEntryPointFromQuickCompiledCode();
2073
2074  // When we return, the caller will branch to this address, so it had better not be 0!
2075  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2076                          << " location: "
2077                          << method->GetDexFile()->GetLocation();
2078
2079  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2080                                reinterpret_cast<uintptr_t>(method));
2081}
2082
2083// Explicit artInvokeCommon template function declarations to please analysis tool.
2084#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2085  template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
2086  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2087      uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2088
2089EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2090EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2091EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2092EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2093EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2094EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2095EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2096EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2097EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2098EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2099#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2100
2101// See comments in runtime_support_asm.S
2102extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2103    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2104    SHARED_REQUIRES(Locks::mutator_lock_) {
2105  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2106}
2107
2108extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2109    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2110    SHARED_REQUIRES(Locks::mutator_lock_) {
2111  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2112}
2113
2114extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2115    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2116    SHARED_REQUIRES(Locks::mutator_lock_) {
2117  return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2118}
2119
2120extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2121    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2122    SHARED_REQUIRES(Locks::mutator_lock_) {
2123  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2124}
2125
2126extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2127    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2128    SHARED_REQUIRES(Locks::mutator_lock_) {
2129  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2130}
2131
2132// Determine target of interface dispatch. This object is known non-null. First argument
2133// is there for consistency but should not be used, as some architectures overwrite it
2134// in the assembly trampoline.
2135extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2136                                                      mirror::Object* this_object,
2137                                                      Thread* self,
2138                                                      ArtMethod** sp)
2139    SHARED_REQUIRES(Locks::mutator_lock_) {
2140  ScopedQuickEntrypointChecks sqec(self);
2141  StackHandleScope<1> hs(self);
2142  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2143
2144  // The optimizing compiler currently does not inline methods that have an interface
2145  // invocation. We use the outer method directly to avoid fetching a stack map, which is
2146  // more expensive.
2147  ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
2148  DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
2149
2150  // Fetch the dex_method_idx of the target interface method from the caller.
2151  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2152
2153  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2154  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2155  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2156  Instruction::Code instr_code = instr->Opcode();
2157  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2158        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2159      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2160  uint32_t dex_method_idx;
2161  if (instr_code == Instruction::INVOKE_INTERFACE) {
2162    dex_method_idx = instr->VRegB_35c();
2163  } else {
2164    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2165    dex_method_idx = instr->VRegB_3rc();
2166  }
2167
2168  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2169      dex_method_idx, sizeof(void*));
2170  DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2171  ArtMethod* method = nullptr;
2172  ImTable* imt = cls->GetImt(sizeof(void*));
2173
2174  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2175    // If the dex cache already resolved the interface method, look whether we have
2176    // a match in the ImtConflictTable.
2177    uint32_t imt_index = interface_method->GetDexMethodIndex();
2178    ArtMethod* conflict_method = imt->Get(imt_index % ImTable::kSize, sizeof(void*));
2179    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2180      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
2181      DCHECK(current_table != nullptr);
2182      method = current_table->Lookup(interface_method, sizeof(void*));
2183    } else {
2184      // It seems we aren't really a conflict method!
2185      method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2186    }
2187    if (method != nullptr) {
2188      return GetTwoWordSuccessValue(
2189          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2190          reinterpret_cast<uintptr_t>(method));
2191    }
2192
2193    // No match, use the IfTable.
2194    method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2195    if (UNLIKELY(method == nullptr)) {
2196      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2197          interface_method, this_object, caller_method);
2198      return GetTwoWordFailureValue();  // Failure.
2199    }
2200  } else {
2201    // The dex cache did not resolve the method, look it up in the dex file
2202    // of the caller,
2203    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2204    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2205        ->GetDexFile();
2206    uint32_t shorty_len;
2207    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2208                                                   &shorty_len);
2209    {
2210      // Remember the args in case a GC happens in FindMethodFromCode.
2211      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2212      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2213      visitor.VisitArguments();
2214      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2215                                                     self);
2216      visitor.FixupReferences();
2217    }
2218
2219    if (UNLIKELY(method == nullptr)) {
2220      CHECK(self->IsExceptionPending());
2221      return GetTwoWordFailureValue();  // Failure.
2222    }
2223    interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, sizeof(void*));
2224    DCHECK(!interface_method->IsRuntimeMethod());
2225  }
2226
2227  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2228  // We create a new table with the new pair { interface_method, method }.
2229  uint32_t imt_index = interface_method->GetDexMethodIndex();
2230  ArtMethod* conflict_method = imt->Get(imt_index % ImTable::kSize, sizeof(void*));
2231  if (conflict_method->IsRuntimeMethod()) {
2232    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2233        cls.Get(),
2234        conflict_method,
2235        interface_method,
2236        method,
2237        /*force_new_conflict_method*/false);
2238    if (new_conflict_method != conflict_method) {
2239      // Update the IMT if we create a new conflict method. No fence needed here, as the
2240      // data is consistent.
2241      imt->Set(imt_index % ImTable::kSize,
2242               new_conflict_method,
2243               sizeof(void*));
2244    }
2245  }
2246
2247  const void* code = method->GetEntryPointFromQuickCompiledCode();
2248
2249  // When we return, the caller will branch to this address, so it had better not be 0!
2250  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2251                          << " location: " << method->GetDexFile()->GetLocation();
2252
2253  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2254                                reinterpret_cast<uintptr_t>(method));
2255}
2256
2257}  // namespace art
2258