quick_trampoline_entrypoints.cc revision bdf7f1c3ab65ccb70f62db5ab31dba060632d458
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/enums.h"
19#include "callee_save_frame.h"
20#include "common_throws.h"
21#include "dex_file-inl.h"
22#include "dex_instruction-inl.h"
23#include "entrypoints/entrypoint_utils-inl.h"
24#include "entrypoints/runtime_asm_entrypoints.h"
25#include "gc/accounting/card_table-inl.h"
26#include "interpreter/interpreter.h"
27#include "linear_alloc.h"
28#include "method_reference.h"
29#include "mirror/class-inl.h"
30#include "mirror/dex_cache-inl.h"
31#include "mirror/method.h"
32#include "mirror/object-inl.h"
33#include "mirror/object_array-inl.h"
34#include "oat_quick_method_header.h"
35#include "quick_exception_handler.h"
36#include "runtime.h"
37#include "scoped_thread_state_change.h"
38#include "stack.h"
39#include "debugger.h"
40
41namespace art {
42
43// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
44class QuickArgumentVisitor {
45  // Number of bytes for each out register in the caller method's frame.
46  static constexpr size_t kBytesStackArgLocation = 4;
47  // Frame size in bytes of a callee-save frame for RefsAndArgs.
48  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
49      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
50#if defined(__arm__)
51  // The callee save frame is pointed to by SP.
52  // | argN       |  |
53  // | ...        |  |
54  // | arg4       |  |
55  // | arg3 spill |  |  Caller's frame
56  // | arg2 spill |  |
57  // | arg1 spill |  |
58  // | Method*    | ---
59  // | LR         |
60  // | ...        |    4x6 bytes callee saves
61  // | R3         |
62  // | R2         |
63  // | R1         |
64  // | S15        |
65  // | :          |
66  // | S0         |
67  // |            |    4x2 bytes padding
68  // | Method*    |  <- sp
69  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
70  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
71  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
72  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
73  static constexpr bool kQuickSkipOddFpRegisters = false;
74  static constexpr size_t kNumQuickGprArgs = 3;
75  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
76  static constexpr bool kGprFprLockstep = false;
77  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
78      arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
79  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
80      arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
81  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
82      arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
83  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
84    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
85  }
86#elif defined(__aarch64__)
87  // The callee save frame is pointed to by SP.
88  // | argN       |  |
89  // | ...        |  |
90  // | arg4       |  |
91  // | arg3 spill |  |  Caller's frame
92  // | arg2 spill |  |
93  // | arg1 spill |  |
94  // | Method*    | ---
95  // | LR         |
96  // | X29        |
97  // |  :         |
98  // | X20        |
99  // | X7         |
100  // | :          |
101  // | X1         |
102  // | D7         |
103  // |  :         |
104  // | D0         |
105  // |            |    padding
106  // | Method*    |  <- sp
107  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
108  static constexpr bool kAlignPairRegister = false;
109  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
110  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
111  static constexpr bool kQuickSkipOddFpRegisters = false;
112  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
113  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
114  static constexpr bool kGprFprLockstep = false;
115  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
116      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
117  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
118      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
119  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
120      arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
121  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
122    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
123  }
124#elif defined(__mips__) && !defined(__LP64__)
125  // The callee save frame is pointed to by SP.
126  // | argN       |  |
127  // | ...        |  |
128  // | arg4       |  |
129  // | arg3 spill |  |  Caller's frame
130  // | arg2 spill |  |
131  // | arg1 spill |  |
132  // | Method*    | ---
133  // | RA         |
134  // | ...        |    callee saves
135  // | A3         |    arg3
136  // | A2         |    arg2
137  // | A1         |    arg1
138  // | F15        |
139  // | F14        |    f_arg1
140  // | F13        |
141  // | F12        |    f_arg0
142  // |            |    padding
143  // | A0/Method* |  <- sp
144  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
145  static constexpr bool kAlignPairRegister = true;
146  static constexpr bool kQuickSoftFloatAbi = false;
147  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
148  static constexpr bool kQuickSkipOddFpRegisters = true;
149  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
150  static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
151                                                 // only in even numbered registers and each double
152                                                 // occupies two registers.
153  static constexpr bool kGprFprLockstep = false;
154  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
155  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
156  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
157  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
158    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
159  }
160#elif defined(__mips__) && defined(__LP64__)
161  // The callee save frame is pointed to by SP.
162  // | argN       |  |
163  // | ...        |  |
164  // | arg4       |  |
165  // | arg3 spill |  |  Caller's frame
166  // | arg2 spill |  |
167  // | arg1 spill |  |
168  // | Method*    | ---
169  // | RA         |
170  // | ...        |    callee saves
171  // | A7         |    arg7
172  // | A6         |    arg6
173  // | A5         |    arg5
174  // | A4         |    arg4
175  // | A3         |    arg3
176  // | A2         |    arg2
177  // | A1         |    arg1
178  // | F19        |    f_arg7
179  // | F18        |    f_arg6
180  // | F17        |    f_arg5
181  // | F16        |    f_arg4
182  // | F15        |    f_arg3
183  // | F14        |    f_arg2
184  // | F13        |    f_arg1
185  // | F12        |    f_arg0
186  // |            |    padding
187  // | A0/Method* |  <- sp
188  // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
189  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
190  static constexpr bool kAlignPairRegister = false;
191  static constexpr bool kQuickSoftFloatAbi = false;
192  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
193  static constexpr bool kQuickSkipOddFpRegisters = false;
194  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
195  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
196  static constexpr bool kGprFprLockstep = true;
197
198  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
199  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
200  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
201  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
202    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
203  }
204#elif defined(__i386__)
205  // The callee save frame is pointed to by SP.
206  // | argN        |  |
207  // | ...         |  |
208  // | arg4        |  |
209  // | arg3 spill  |  |  Caller's frame
210  // | arg2 spill  |  |
211  // | arg1 spill  |  |
212  // | Method*     | ---
213  // | Return      |
214  // | EBP,ESI,EDI |    callee saves
215  // | EBX         |    arg3
216  // | EDX         |    arg2
217  // | ECX         |    arg1
218  // | XMM3        |    float arg 4
219  // | XMM2        |    float arg 3
220  // | XMM1        |    float arg 2
221  // | XMM0        |    float arg 1
222  // | EAX/Method* |  <- sp
223  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
224  static constexpr bool kAlignPairRegister = false;
225  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
226  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
227  static constexpr bool kQuickSkipOddFpRegisters = false;
228  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
229  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
230  static constexpr bool kGprFprLockstep = false;
231  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
232  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
233  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
234  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
235    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
236  }
237#elif defined(__x86_64__)
238  // The callee save frame is pointed to by SP.
239  // | argN            |  |
240  // | ...             |  |
241  // | reg. arg spills |  |  Caller's frame
242  // | Method*         | ---
243  // | Return          |
244  // | R15             |    callee save
245  // | R14             |    callee save
246  // | R13             |    callee save
247  // | R12             |    callee save
248  // | R9              |    arg5
249  // | R8              |    arg4
250  // | RSI/R6          |    arg1
251  // | RBP/R5          |    callee save
252  // | RBX/R3          |    callee save
253  // | RDX/R2          |    arg2
254  // | RCX/R1          |    arg3
255  // | XMM7            |    float arg 8
256  // | XMM6            |    float arg 7
257  // | XMM5            |    float arg 6
258  // | XMM4            |    float arg 5
259  // | XMM3            |    float arg 4
260  // | XMM2            |    float arg 3
261  // | XMM1            |    float arg 2
262  // | XMM0            |    float arg 1
263  // | Padding         |
264  // | RDI/Method*     |  <- sp
265  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
266  static constexpr bool kAlignPairRegister = false;
267  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
268  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
269  static constexpr bool kQuickSkipOddFpRegisters = false;
270  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
271  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
272  static constexpr bool kGprFprLockstep = false;
273  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
274  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
275  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
276  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
277    switch (gpr_index) {
278      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
279      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
280      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
281      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
282      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
283      default:
284      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
285      return 0;
286    }
287  }
288#else
289#error "Unsupported architecture"
290#endif
291
292 public:
293  // Special handling for proxy methods. Proxy methods are instance methods so the
294  // 'this' object is the 1st argument. They also have the same frame layout as the
295  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
296  // 1st GPR.
297  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
298      REQUIRES_SHARED(Locks::mutator_lock_) {
299    CHECK((*sp)->IsProxyMethod());
300    CHECK_GT(kNumQuickGprArgs, 0u);
301    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
302    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
303        GprIndexToGprOffset(kThisGprIndex);
304    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
305    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
306  }
307
308  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
309    DCHECK((*sp)->IsCalleeSaveMethod());
310    return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs);
311  }
312
313  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
314    DCHECK((*sp)->IsCalleeSaveMethod());
315    uint8_t* previous_sp =
316        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
317    return *reinterpret_cast<ArtMethod**>(previous_sp);
318  }
319
320  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
321    DCHECK((*sp)->IsCalleeSaveMethod());
322    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
323    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
324        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
325    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
326    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
327    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
328
329    if (current_code->IsOptimized()) {
330      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
331      CodeInfoEncoding encoding = code_info.ExtractEncoding();
332      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
333      DCHECK(stack_map.IsValid());
334      if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
335        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
336        return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding,
337                                           inline_info.GetDepth(encoding.inline_info_encoding)-1);
338      } else {
339        return stack_map.GetDexPc(encoding.stack_map_encoding);
340      }
341    } else {
342      return current_code->ToDexPc(*caller_sp, outer_pc);
343    }
344  }
345
346  // For the given quick ref and args quick frame, return the caller's PC.
347  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
348    DCHECK((*sp)->IsCalleeSaveMethod());
349    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
350    return *reinterpret_cast<uintptr_t*>(lr);
351  }
352
353  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
354                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
355          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
356          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
357          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
358          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
359              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
360          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
361          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
362    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
363                  "Number of Quick FPR arguments unexpected");
364    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
365                  "Double alignment unexpected");
366    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
367    // next register is even.
368    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
369                  "Number of Quick FPR arguments not even");
370    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
371  }
372
373  virtual ~QuickArgumentVisitor() {}
374
375  virtual void Visit() = 0;
376
377  Primitive::Type GetParamPrimitiveType() const {
378    return cur_type_;
379  }
380
381  uint8_t* GetParamAddress() const {
382    if (!kQuickSoftFloatAbi) {
383      Primitive::Type type = GetParamPrimitiveType();
384      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
385        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
386          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
387            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
388          }
389        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
390          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
391        }
392        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
393      }
394    }
395    if (gpr_index_ < kNumQuickGprArgs) {
396      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
397    }
398    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
399  }
400
401  bool IsSplitLongOrDouble() const {
402    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
403        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
404      return is_split_long_or_double_;
405    } else {
406      return false;  // An optimization for when GPR and FPRs are 64bit.
407    }
408  }
409
410  bool IsParamAReference() const {
411    return GetParamPrimitiveType() == Primitive::kPrimNot;
412  }
413
414  bool IsParamALongOrDouble() const {
415    Primitive::Type type = GetParamPrimitiveType();
416    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
417  }
418
419  uint64_t ReadSplitLongParam() const {
420    // The splitted long is always available through the stack.
421    return *reinterpret_cast<uint64_t*>(stack_args_
422        + stack_index_ * kBytesStackArgLocation);
423  }
424
425  void IncGprIndex() {
426    gpr_index_++;
427    if (kGprFprLockstep) {
428      fpr_index_++;
429    }
430  }
431
432  void IncFprIndex() {
433    fpr_index_++;
434    if (kGprFprLockstep) {
435      gpr_index_++;
436    }
437  }
438
439  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
440    // (a) 'stack_args_' should point to the first method's argument
441    // (b) whatever the argument type it is, the 'stack_index_' should
442    //     be moved forward along with every visiting.
443    gpr_index_ = 0;
444    fpr_index_ = 0;
445    if (kQuickDoubleRegAlignedFloatBackFilled) {
446      fpr_double_index_ = 0;
447    }
448    stack_index_ = 0;
449    if (!is_static_) {  // Handle this.
450      cur_type_ = Primitive::kPrimNot;
451      is_split_long_or_double_ = false;
452      Visit();
453      stack_index_++;
454      if (kNumQuickGprArgs > 0) {
455        IncGprIndex();
456      }
457    }
458    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
459      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
460      switch (cur_type_) {
461        case Primitive::kPrimNot:
462        case Primitive::kPrimBoolean:
463        case Primitive::kPrimByte:
464        case Primitive::kPrimChar:
465        case Primitive::kPrimShort:
466        case Primitive::kPrimInt:
467          is_split_long_or_double_ = false;
468          Visit();
469          stack_index_++;
470          if (gpr_index_ < kNumQuickGprArgs) {
471            IncGprIndex();
472          }
473          break;
474        case Primitive::kPrimFloat:
475          is_split_long_or_double_ = false;
476          Visit();
477          stack_index_++;
478          if (kQuickSoftFloatAbi) {
479            if (gpr_index_ < kNumQuickGprArgs) {
480              IncGprIndex();
481            }
482          } else {
483            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
484              IncFprIndex();
485              if (kQuickDoubleRegAlignedFloatBackFilled) {
486                // Double should not overlap with float.
487                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
488                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
489                // Float should not overlap with double.
490                if (fpr_index_ % 2 == 0) {
491                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
492                }
493              } else if (kQuickSkipOddFpRegisters) {
494                IncFprIndex();
495              }
496            }
497          }
498          break;
499        case Primitive::kPrimDouble:
500        case Primitive::kPrimLong:
501          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
502            if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
503              // Currently, this is only for ARM and MIPS, where the first available parameter
504              // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
505              // A2 (on MIPS) instead.
506              IncGprIndex();
507            }
508            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
509                ((gpr_index_ + 1) == kNumQuickGprArgs);
510            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
511              // We don't want to split this. Pass over this register.
512              gpr_index_++;
513              is_split_long_or_double_ = false;
514            }
515            Visit();
516            if (kBytesStackArgLocation == 4) {
517              stack_index_+= 2;
518            } else {
519              CHECK_EQ(kBytesStackArgLocation, 8U);
520              stack_index_++;
521            }
522            if (gpr_index_ < kNumQuickGprArgs) {
523              IncGprIndex();
524              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
525                if (gpr_index_ < kNumQuickGprArgs) {
526                  IncGprIndex();
527                }
528              }
529            }
530          } else {
531            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
532                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
533            Visit();
534            if (kBytesStackArgLocation == 4) {
535              stack_index_+= 2;
536            } else {
537              CHECK_EQ(kBytesStackArgLocation, 8U);
538              stack_index_++;
539            }
540            if (kQuickDoubleRegAlignedFloatBackFilled) {
541              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
542                fpr_double_index_ += 2;
543                // Float should not overlap with double.
544                if (fpr_index_ % 2 == 0) {
545                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
546                }
547              }
548            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
549              IncFprIndex();
550              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
551                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
552                  IncFprIndex();
553                }
554              }
555            }
556          }
557          break;
558        default:
559          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
560      }
561    }
562  }
563
564 protected:
565  const bool is_static_;
566  const char* const shorty_;
567  const uint32_t shorty_len_;
568
569 private:
570  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
571  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
572  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
573  uint32_t gpr_index_;  // Index into spilled GPRs.
574  // Index into spilled FPRs.
575  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
576  // holds a higher register number.
577  uint32_t fpr_index_;
578  // Index into spilled FPRs for aligned double.
579  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
580  // terms of singles, may be behind fpr_index.
581  uint32_t fpr_double_index_;
582  uint32_t stack_index_;  // Index into arguments on the stack.
583  // The current type of argument during VisitArguments.
584  Primitive::Type cur_type_;
585  // Does a 64bit parameter straddle the register and stack arguments?
586  bool is_split_long_or_double_;
587};
588
589// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
590// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
591extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
592    REQUIRES_SHARED(Locks::mutator_lock_) {
593  return QuickArgumentVisitor::GetProxyThisObject(sp);
594}
595
596// Visits arguments on the stack placing them into the shadow frame.
597class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
598 public:
599  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
600                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
601      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
602
603  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
604
605 private:
606  ShadowFrame* const sf_;
607  uint32_t cur_reg_;
608
609  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
610};
611
612void BuildQuickShadowFrameVisitor::Visit() {
613  Primitive::Type type = GetParamPrimitiveType();
614  switch (type) {
615    case Primitive::kPrimLong:  // Fall-through.
616    case Primitive::kPrimDouble:
617      if (IsSplitLongOrDouble()) {
618        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
619      } else {
620        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
621      }
622      ++cur_reg_;
623      break;
624    case Primitive::kPrimNot: {
625        StackReference<mirror::Object>* stack_ref =
626            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
627        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
628      }
629      break;
630    case Primitive::kPrimBoolean:  // Fall-through.
631    case Primitive::kPrimByte:     // Fall-through.
632    case Primitive::kPrimChar:     // Fall-through.
633    case Primitive::kPrimShort:    // Fall-through.
634    case Primitive::kPrimInt:      // Fall-through.
635    case Primitive::kPrimFloat:
636      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
637      break;
638    case Primitive::kPrimVoid:
639      LOG(FATAL) << "UNREACHABLE";
640      UNREACHABLE();
641  }
642  ++cur_reg_;
643}
644
645extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
646    REQUIRES_SHARED(Locks::mutator_lock_) {
647  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
648  // frame.
649  ScopedQuickEntrypointChecks sqec(self);
650
651  if (UNLIKELY(!method->IsInvokable())) {
652    method->ThrowInvocationTimeError();
653    return 0;
654  }
655
656  JValue tmp_value;
657  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
658      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
659  ManagedStack fragment;
660
661  DCHECK(!method->IsNative()) << PrettyMethod(method);
662  uint32_t shorty_len = 0;
663  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
664  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
665  DCHECK(code_item != nullptr) << PrettyMethod(method);
666  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
667
668  JValue result;
669
670  if (deopt_frame != nullptr) {
671    // Coming from partial-fragment deopt.
672
673    if (kIsDebugBuild) {
674      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
675      // of the call-stack) corresponds to the called method.
676      ShadowFrame* linked = deopt_frame;
677      while (linked->GetLink() != nullptr) {
678        linked = linked->GetLink();
679      }
680      CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
681          << PrettyMethod(linked->GetMethod());
682    }
683
684    if (VLOG_IS_ON(deopt)) {
685      // Print out the stack to verify that it was a partial-fragment deopt.
686      LOG(INFO) << "Continue-ing from deopt. Stack is:";
687      QuickExceptionHandler::DumpFramesWithType(self, true);
688    }
689
690    mirror::Throwable* pending_exception = nullptr;
691    bool from_code = false;
692    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
693
694    // Push a transition back into managed code onto the linked list in thread.
695    self->PushManagedStackFragment(&fragment);
696
697    // Ensure that the stack is still in order.
698    if (kIsDebugBuild) {
699      class DummyStackVisitor : public StackVisitor {
700       public:
701        explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
702            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
703
704        bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
705          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
706          // logic. Just always say we want to continue.
707          return true;
708        }
709      };
710      DummyStackVisitor dsv(self);
711      dsv.WalkStack();
712    }
713
714    // Restore the exception that was pending before deoptimization then interpret the
715    // deoptimized frames.
716    if (pending_exception != nullptr) {
717      self->SetException(pending_exception);
718    }
719    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
720  } else {
721    const char* old_cause = self->StartAssertNoThreadSuspension(
722        "Building interpreter shadow frame");
723    uint16_t num_regs = code_item->registers_size_;
724    // No last shadow coming from quick.
725    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
726        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
727    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
728    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
729    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
730                                                      shadow_frame, first_arg_reg);
731    shadow_frame_builder.VisitArguments();
732    const bool needs_initialization =
733        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
734    // Push a transition back into managed code onto the linked list in thread.
735    self->PushManagedStackFragment(&fragment);
736    self->PushShadowFrame(shadow_frame);
737    self->EndAssertNoThreadSuspension(old_cause);
738
739    if (needs_initialization) {
740      // Ensure static method's class is initialized.
741      StackHandleScope<1> hs(self);
742      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
743      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
744        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
745        self->PopManagedStackFragment(fragment);
746        return 0;
747      }
748    }
749
750    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
751  }
752
753  // Pop transition.
754  self->PopManagedStackFragment(fragment);
755
756  // Request a stack deoptimization if needed
757  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
758  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
759  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
760  // should be done and it knows the real return pc.
761  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
762               Dbg::IsForcedInterpreterNeededForUpcall(self, caller) &&
763               Runtime::Current()->IsDeoptimizeable(caller_pc))) {
764    // Push the context of the deoptimization stack so we can restore the return value and the
765    // exception before executing the deoptimized frames.
766    self->PushDeoptimizationContext(
767        result, shorty[0] == 'L', /* from_code */ false, self->GetException());
768
769    // Set special exception to cause deoptimization.
770    self->SetException(Thread::GetDeoptimizationException());
771  }
772
773  // No need to restore the args since the method has already been run by the interpreter.
774  return result.GetJ();
775}
776
777// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
778// to jobjects.
779class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
780 public:
781  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
782                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
783      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
784
785  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
786
787  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
788
789 private:
790  ScopedObjectAccessUnchecked* const soa_;
791  std::vector<jvalue>* const args_;
792  // References which we must update when exiting in case the GC moved the objects.
793  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
794
795  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
796};
797
798void BuildQuickArgumentVisitor::Visit() {
799  jvalue val;
800  Primitive::Type type = GetParamPrimitiveType();
801  switch (type) {
802    case Primitive::kPrimNot: {
803      StackReference<mirror::Object>* stack_ref =
804          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
805      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
806      references_.push_back(std::make_pair(val.l, stack_ref));
807      break;
808    }
809    case Primitive::kPrimLong:  // Fall-through.
810    case Primitive::kPrimDouble:
811      if (IsSplitLongOrDouble()) {
812        val.j = ReadSplitLongParam();
813      } else {
814        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
815      }
816      break;
817    case Primitive::kPrimBoolean:  // Fall-through.
818    case Primitive::kPrimByte:     // Fall-through.
819    case Primitive::kPrimChar:     // Fall-through.
820    case Primitive::kPrimShort:    // Fall-through.
821    case Primitive::kPrimInt:      // Fall-through.
822    case Primitive::kPrimFloat:
823      val.i = *reinterpret_cast<jint*>(GetParamAddress());
824      break;
825    case Primitive::kPrimVoid:
826      LOG(FATAL) << "UNREACHABLE";
827      UNREACHABLE();
828  }
829  args_->push_back(val);
830}
831
832void BuildQuickArgumentVisitor::FixupReferences() {
833  // Fixup any references which may have changed.
834  for (const auto& pair : references_) {
835    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
836    soa_->Env()->DeleteLocalRef(pair.first);
837  }
838}
839
840// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
841// which is responsible for recording callee save registers. We explicitly place into jobjects the
842// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
843// field within the proxy object, which will box the primitive arguments and deal with error cases.
844extern "C" uint64_t artQuickProxyInvokeHandler(
845    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
846    REQUIRES_SHARED(Locks::mutator_lock_) {
847  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
848  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
849  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
850  const char* old_cause =
851      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
852  // Register the top of the managed stack, making stack crawlable.
853  DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
854  self->VerifyStack();
855  // Start new JNI local reference state.
856  JNIEnvExt* env = self->GetJniEnv();
857  ScopedObjectAccessUnchecked soa(env);
858  ScopedJniEnvLocalRefState env_state(env);
859  // Create local ref. copies of proxy method and the receiver.
860  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
861
862  // Placing arguments into args vector and remove the receiver.
863  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
864  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
865                                       << PrettyMethod(non_proxy_method);
866  std::vector<jvalue> args;
867  uint32_t shorty_len = 0;
868  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
869  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
870
871  local_ref_visitor.VisitArguments();
872  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
873  args.erase(args.begin());
874
875  // Convert proxy method into expected interface method.
876  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
877  DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
878  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
879  self->EndAssertNoThreadSuspension(old_cause);
880  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
881  DCHECK(!Runtime::Current()->IsActiveTransaction());
882  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
883      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
884                                                                      interface_method));
885
886  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
887  // that performs allocations.
888  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
889  // Restore references which might have moved.
890  local_ref_visitor.FixupReferences();
891  return result.GetJ();
892}
893
894// Read object references held in arguments from quick frames and place in a JNI local references,
895// so they don't get garbage collected.
896class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
897 public:
898  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
899                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
900      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
901
902  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
903
904  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
905
906 private:
907  ScopedObjectAccessUnchecked* const soa_;
908  // References which we must update when exiting in case the GC moved the objects.
909  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
910
911  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
912};
913
914void RememberForGcArgumentVisitor::Visit() {
915  if (IsParamAReference()) {
916    StackReference<mirror::Object>* stack_ref =
917        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
918    jobject reference =
919        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
920    references_.push_back(std::make_pair(reference, stack_ref));
921  }
922}
923
924void RememberForGcArgumentVisitor::FixupReferences() {
925  // Fixup any references which may have changed.
926  for (const auto& pair : references_) {
927    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
928    soa_->Env()->DeleteLocalRef(pair.first);
929  }
930}
931
932// Lazily resolve a method for quick. Called by stub code.
933extern "C" const void* artQuickResolutionTrampoline(
934    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
935    REQUIRES_SHARED(Locks::mutator_lock_) {
936  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
937  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
938  // does not have the same stack layout as the callee-save method).
939  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
940  // Start new JNI local reference state
941  JNIEnvExt* env = self->GetJniEnv();
942  ScopedObjectAccessUnchecked soa(env);
943  ScopedJniEnvLocalRefState env_state(env);
944  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
945
946  // Compute details about the called method (avoid GCs)
947  ClassLinker* linker = Runtime::Current()->GetClassLinker();
948  InvokeType invoke_type;
949  MethodReference called_method(nullptr, 0);
950  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
951  ArtMethod* caller = nullptr;
952  if (!called_method_known_on_entry) {
953    caller = QuickArgumentVisitor::GetCallingMethod(sp);
954    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
955    const DexFile::CodeItem* code;
956    called_method.dex_file = caller->GetDexFile();
957    code = caller->GetCodeItem();
958    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
959    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
960    Instruction::Code instr_code = instr->Opcode();
961    bool is_range;
962    switch (instr_code) {
963      case Instruction::INVOKE_DIRECT:
964        invoke_type = kDirect;
965        is_range = false;
966        break;
967      case Instruction::INVOKE_DIRECT_RANGE:
968        invoke_type = kDirect;
969        is_range = true;
970        break;
971      case Instruction::INVOKE_STATIC:
972        invoke_type = kStatic;
973        is_range = false;
974        break;
975      case Instruction::INVOKE_STATIC_RANGE:
976        invoke_type = kStatic;
977        is_range = true;
978        break;
979      case Instruction::INVOKE_SUPER:
980        invoke_type = kSuper;
981        is_range = false;
982        break;
983      case Instruction::INVOKE_SUPER_RANGE:
984        invoke_type = kSuper;
985        is_range = true;
986        break;
987      case Instruction::INVOKE_VIRTUAL:
988        invoke_type = kVirtual;
989        is_range = false;
990        break;
991      case Instruction::INVOKE_VIRTUAL_RANGE:
992        invoke_type = kVirtual;
993        is_range = true;
994        break;
995      case Instruction::INVOKE_INTERFACE:
996        invoke_type = kInterface;
997        is_range = false;
998        break;
999      case Instruction::INVOKE_INTERFACE_RANGE:
1000        invoke_type = kInterface;
1001        is_range = true;
1002        break;
1003      default:
1004        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1005        UNREACHABLE();
1006    }
1007    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1008  } else {
1009    invoke_type = kStatic;
1010    called_method.dex_file = called->GetDexFile();
1011    called_method.dex_method_index = called->GetDexMethodIndex();
1012  }
1013  uint32_t shorty_len;
1014  const char* shorty =
1015      called_method.dex_file->GetMethodShorty(
1016          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1017  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1018  visitor.VisitArguments();
1019  self->EndAssertNoThreadSuspension(old_cause);
1020  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1021  // Resolve method filling in dex cache.
1022  if (!called_method_known_on_entry) {
1023    StackHandleScope<1> hs(self);
1024    mirror::Object* dummy = nullptr;
1025    HandleWrapper<mirror::Object> h_receiver(
1026        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1027    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1028    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1029        self, called_method.dex_method_index, caller, invoke_type);
1030  }
1031  const void* code = nullptr;
1032  if (LIKELY(!self->IsExceptionPending())) {
1033    // Incompatible class change should have been handled in resolve method.
1034    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1035        << PrettyMethod(called) << " " << invoke_type;
1036    if (virtual_or_interface || invoke_type == kSuper) {
1037      // Refine called method based on receiver for kVirtual/kInterface, and
1038      // caller for kSuper.
1039      ArtMethod* orig_called = called;
1040      if (invoke_type == kVirtual) {
1041        CHECK(receiver != nullptr) << invoke_type;
1042        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1043      } else if (invoke_type == kInterface) {
1044        CHECK(receiver != nullptr) << invoke_type;
1045        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1046      } else {
1047        DCHECK_EQ(invoke_type, kSuper);
1048        CHECK(caller != nullptr) << invoke_type;
1049        StackHandleScope<2> hs(self);
1050        Handle<mirror::DexCache> dex_cache(
1051            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1052        Handle<mirror::ClassLoader> class_loader(
1053            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1054        // TODO Maybe put this into a mirror::Class function.
1055        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1056            called_method.dex_method_index, dex_cache, class_loader);
1057        if (ref_class->IsInterface()) {
1058          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1059        } else {
1060          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1061              called->GetMethodIndex(), kRuntimePointerSize);
1062        }
1063      }
1064
1065      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
1066                               << PrettyTypeOf(receiver) << " "
1067                               << invoke_type << " " << orig_called->GetVtableIndex();
1068
1069      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1070      // of the sharpened method avoiding dirtying the dex cache if possible.
1071      // Note, called_method.dex_method_index references the dex method before the
1072      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1073      // about the name and signature.
1074      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1075      if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
1076        // Calling from one dex file to another, need to compute the method index appropriate to
1077        // the caller's dex file. Since we get here only if the original called was a runtime
1078        // method, we've got the correct dex_file and a dex_method_idx from above.
1079        DCHECK(!called_method_known_on_entry);
1080        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1081        const DexFile* caller_dex_file = called_method.dex_file;
1082        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1083        update_dex_cache_method_index =
1084            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1085                                                     caller_method_name_and_sig_index);
1086      }
1087      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1088          (caller->GetDexCacheResolvedMethod(
1089              update_dex_cache_method_index, kRuntimePointerSize) != called)) {
1090        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
1091                                          called,
1092                                          kRuntimePointerSize);
1093      }
1094    } else if (invoke_type == kStatic) {
1095      const auto called_dex_method_idx = called->GetDexMethodIndex();
1096      // For static invokes, we may dispatch to the static method in the superclass but resolve
1097      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1098      // resolved method for the super class dex method index if we are in the same dex file.
1099      // b/19175856
1100      if (called->GetDexFile() == called_method.dex_file &&
1101          called_method.dex_method_index != called_dex_method_idx) {
1102        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
1103                                                 called,
1104                                                 kRuntimePointerSize);
1105      }
1106    }
1107
1108    // Ensure that the called method's class is initialized.
1109    StackHandleScope<1> hs(soa.Self());
1110    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1111    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1112    if (LIKELY(called_class->IsInitialized())) {
1113      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1114        // If we are single-stepping or the called method is deoptimized (by a
1115        // breakpoint, for example), then we have to execute the called method
1116        // with the interpreter.
1117        code = GetQuickToInterpreterBridge();
1118      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1119        // If the caller is deoptimized (by a breakpoint, for example), we have to
1120        // continue its execution with interpreter when returning from the called
1121        // method. Because we do not want to execute the called method with the
1122        // interpreter, we wrap its execution into the instrumentation stubs.
1123        // When the called method returns, it will execute the instrumentation
1124        // exit hook that will determine the need of the interpreter with a call
1125        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1126        // it is needed.
1127        code = GetQuickInstrumentationEntryPoint();
1128      } else {
1129        code = called->GetEntryPointFromQuickCompiledCode();
1130      }
1131    } else if (called_class->IsInitializing()) {
1132      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1133        // If we are single-stepping or the called method is deoptimized (by a
1134        // breakpoint, for example), then we have to execute the called method
1135        // with the interpreter.
1136        code = GetQuickToInterpreterBridge();
1137      } else if (invoke_type == kStatic) {
1138        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1139        // until class is initialized to stop races between threads).
1140        code = linker->GetQuickOatCodeFor(called);
1141      } else {
1142        // No trampoline for non-static methods.
1143        code = called->GetEntryPointFromQuickCompiledCode();
1144      }
1145    } else {
1146      DCHECK(called_class->IsErroneous());
1147    }
1148  }
1149  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1150  // Fixup any locally saved objects may have moved during a GC.
1151  visitor.FixupReferences();
1152  // Place called method in callee-save frame to be placed as first argument to quick method.
1153  *sp = called;
1154
1155  return code;
1156}
1157
1158/*
1159 * This class uses a couple of observations to unite the different calling conventions through
1160 * a few constants.
1161 *
1162 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1163 *    possible alignment.
1164 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1165 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1166 *    when we have to split things
1167 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1168 *    and we can use Int handling directly.
1169 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1170 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1171 *    extension should be compatible with Aarch64, which mandates copying the available bits
1172 *    into LSB and leaving the rest unspecified.
1173 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1174 *    the stack.
1175 * 6) There is only little endian.
1176 *
1177 *
1178 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1179 * follows:
1180 *
1181 * void PushGpr(uintptr_t):   Add a value for the next GPR
1182 *
1183 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1184 *                            padding, that is, think the architecture is 32b and aligns 64b.
1185 *
1186 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1187 *                            split this if necessary. The current state will have aligned, if
1188 *                            necessary.
1189 *
1190 * void PushStack(uintptr_t): Push a value to the stack.
1191 *
1192 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1193 *                                          as this might be important for null initialization.
1194 *                                          Must return the jobject, that is, the reference to the
1195 *                                          entry in the HandleScope (nullptr if necessary).
1196 *
1197 */
1198template<class T> class BuildNativeCallFrameStateMachine {
1199 public:
1200#if defined(__arm__)
1201  // TODO: These are all dummy values!
1202  static constexpr bool kNativeSoftFloatAbi = true;
1203  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1204  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1205
1206  static constexpr size_t kRegistersNeededForLong = 2;
1207  static constexpr size_t kRegistersNeededForDouble = 2;
1208  static constexpr bool kMultiRegistersAligned = true;
1209  static constexpr bool kMultiFPRegistersWidened = false;
1210  static constexpr bool kMultiGPRegistersWidened = false;
1211  static constexpr bool kAlignLongOnStack = true;
1212  static constexpr bool kAlignDoubleOnStack = true;
1213#elif defined(__aarch64__)
1214  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1215  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1216  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1217
1218  static constexpr size_t kRegistersNeededForLong = 1;
1219  static constexpr size_t kRegistersNeededForDouble = 1;
1220  static constexpr bool kMultiRegistersAligned = false;
1221  static constexpr bool kMultiFPRegistersWidened = false;
1222  static constexpr bool kMultiGPRegistersWidened = false;
1223  static constexpr bool kAlignLongOnStack = false;
1224  static constexpr bool kAlignDoubleOnStack = false;
1225#elif defined(__mips__) && !defined(__LP64__)
1226  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1227  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1228  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1229
1230  static constexpr size_t kRegistersNeededForLong = 2;
1231  static constexpr size_t kRegistersNeededForDouble = 2;
1232  static constexpr bool kMultiRegistersAligned = true;
1233  static constexpr bool kMultiFPRegistersWidened = true;
1234  static constexpr bool kMultiGPRegistersWidened = false;
1235  static constexpr bool kAlignLongOnStack = true;
1236  static constexpr bool kAlignDoubleOnStack = true;
1237#elif defined(__mips__) && defined(__LP64__)
1238  // Let the code prepare GPRs only and we will load the FPRs with same data.
1239  static constexpr bool kNativeSoftFloatAbi = true;
1240  static constexpr size_t kNumNativeGprArgs = 8;
1241  static constexpr size_t kNumNativeFprArgs = 0;
1242
1243  static constexpr size_t kRegistersNeededForLong = 1;
1244  static constexpr size_t kRegistersNeededForDouble = 1;
1245  static constexpr bool kMultiRegistersAligned = false;
1246  static constexpr bool kMultiFPRegistersWidened = false;
1247  static constexpr bool kMultiGPRegistersWidened = true;
1248  static constexpr bool kAlignLongOnStack = false;
1249  static constexpr bool kAlignDoubleOnStack = false;
1250#elif defined(__i386__)
1251  // TODO: Check these!
1252  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1253  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1254  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1255
1256  static constexpr size_t kRegistersNeededForLong = 2;
1257  static constexpr size_t kRegistersNeededForDouble = 2;
1258  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1259  static constexpr bool kMultiFPRegistersWidened = false;
1260  static constexpr bool kMultiGPRegistersWidened = false;
1261  static constexpr bool kAlignLongOnStack = false;
1262  static constexpr bool kAlignDoubleOnStack = false;
1263#elif defined(__x86_64__)
1264  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1265  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1266  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1267
1268  static constexpr size_t kRegistersNeededForLong = 1;
1269  static constexpr size_t kRegistersNeededForDouble = 1;
1270  static constexpr bool kMultiRegistersAligned = false;
1271  static constexpr bool kMultiFPRegistersWidened = false;
1272  static constexpr bool kMultiGPRegistersWidened = false;
1273  static constexpr bool kAlignLongOnStack = false;
1274  static constexpr bool kAlignDoubleOnStack = false;
1275#else
1276#error "Unsupported architecture"
1277#endif
1278
1279 public:
1280  explicit BuildNativeCallFrameStateMachine(T* delegate)
1281      : gpr_index_(kNumNativeGprArgs),
1282        fpr_index_(kNumNativeFprArgs),
1283        stack_entries_(0),
1284        delegate_(delegate) {
1285    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1286    // the next register is even; counting down is just to make the compiler happy...
1287    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1288    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1289  }
1290
1291  virtual ~BuildNativeCallFrameStateMachine() {}
1292
1293  bool HavePointerGpr() const {
1294    return gpr_index_ > 0;
1295  }
1296
1297  void AdvancePointer(const void* val) {
1298    if (HavePointerGpr()) {
1299      gpr_index_--;
1300      PushGpr(reinterpret_cast<uintptr_t>(val));
1301    } else {
1302      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1303      PushStack(reinterpret_cast<uintptr_t>(val));
1304      gpr_index_ = 0;
1305    }
1306  }
1307
1308  bool HaveHandleScopeGpr() const {
1309    return gpr_index_ > 0;
1310  }
1311
1312  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1313    uintptr_t handle = PushHandle(ptr);
1314    if (HaveHandleScopeGpr()) {
1315      gpr_index_--;
1316      PushGpr(handle);
1317    } else {
1318      stack_entries_++;
1319      PushStack(handle);
1320      gpr_index_ = 0;
1321    }
1322  }
1323
1324  bool HaveIntGpr() const {
1325    return gpr_index_ > 0;
1326  }
1327
1328  void AdvanceInt(uint32_t val) {
1329    if (HaveIntGpr()) {
1330      gpr_index_--;
1331      if (kMultiGPRegistersWidened) {
1332        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1333        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1334      } else {
1335        PushGpr(val);
1336      }
1337    } else {
1338      stack_entries_++;
1339      if (kMultiGPRegistersWidened) {
1340        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1341        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1342      } else {
1343        PushStack(val);
1344      }
1345      gpr_index_ = 0;
1346    }
1347  }
1348
1349  bool HaveLongGpr() const {
1350    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1351  }
1352
1353  bool LongGprNeedsPadding() const {
1354    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1355        kAlignLongOnStack &&                  // and when it needs alignment
1356        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1357  }
1358
1359  bool LongStackNeedsPadding() const {
1360    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1361        kAlignLongOnStack &&                  // and when it needs 8B alignment
1362        (stack_entries_ & 1) == 1;            // counter is odd
1363  }
1364
1365  void AdvanceLong(uint64_t val) {
1366    if (HaveLongGpr()) {
1367      if (LongGprNeedsPadding()) {
1368        PushGpr(0);
1369        gpr_index_--;
1370      }
1371      if (kRegistersNeededForLong == 1) {
1372        PushGpr(static_cast<uintptr_t>(val));
1373      } else {
1374        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1375        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1376      }
1377      gpr_index_ -= kRegistersNeededForLong;
1378    } else {
1379      if (LongStackNeedsPadding()) {
1380        PushStack(0);
1381        stack_entries_++;
1382      }
1383      if (kRegistersNeededForLong == 1) {
1384        PushStack(static_cast<uintptr_t>(val));
1385        stack_entries_++;
1386      } else {
1387        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1388        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1389        stack_entries_ += 2;
1390      }
1391      gpr_index_ = 0;
1392    }
1393  }
1394
1395  bool HaveFloatFpr() const {
1396    return fpr_index_ > 0;
1397  }
1398
1399  void AdvanceFloat(float val) {
1400    if (kNativeSoftFloatAbi) {
1401      AdvanceInt(bit_cast<uint32_t, float>(val));
1402    } else {
1403      if (HaveFloatFpr()) {
1404        fpr_index_--;
1405        if (kRegistersNeededForDouble == 1) {
1406          if (kMultiFPRegistersWidened) {
1407            PushFpr8(bit_cast<uint64_t, double>(val));
1408          } else {
1409            // No widening, just use the bits.
1410            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1411          }
1412        } else {
1413          PushFpr4(val);
1414        }
1415      } else {
1416        stack_entries_++;
1417        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1418          // Need to widen before storing: Note the "double" in the template instantiation.
1419          // Note: We need to jump through those hoops to make the compiler happy.
1420          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1421          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1422        } else {
1423          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1424        }
1425        fpr_index_ = 0;
1426      }
1427    }
1428  }
1429
1430  bool HaveDoubleFpr() const {
1431    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1432  }
1433
1434  bool DoubleFprNeedsPadding() const {
1435    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1436        kAlignDoubleOnStack &&                  // and when it needs alignment
1437        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1438  }
1439
1440  bool DoubleStackNeedsPadding() const {
1441    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1442        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1443        (stack_entries_ & 1) == 1;              // counter is odd
1444  }
1445
1446  void AdvanceDouble(uint64_t val) {
1447    if (kNativeSoftFloatAbi) {
1448      AdvanceLong(val);
1449    } else {
1450      if (HaveDoubleFpr()) {
1451        if (DoubleFprNeedsPadding()) {
1452          PushFpr4(0);
1453          fpr_index_--;
1454        }
1455        PushFpr8(val);
1456        fpr_index_ -= kRegistersNeededForDouble;
1457      } else {
1458        if (DoubleStackNeedsPadding()) {
1459          PushStack(0);
1460          stack_entries_++;
1461        }
1462        if (kRegistersNeededForDouble == 1) {
1463          PushStack(static_cast<uintptr_t>(val));
1464          stack_entries_++;
1465        } else {
1466          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1467          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1468          stack_entries_ += 2;
1469        }
1470        fpr_index_ = 0;
1471      }
1472    }
1473  }
1474
1475  uint32_t GetStackEntries() const {
1476    return stack_entries_;
1477  }
1478
1479  uint32_t GetNumberOfUsedGprs() const {
1480    return kNumNativeGprArgs - gpr_index_;
1481  }
1482
1483  uint32_t GetNumberOfUsedFprs() const {
1484    return kNumNativeFprArgs - fpr_index_;
1485  }
1486
1487 private:
1488  void PushGpr(uintptr_t val) {
1489    delegate_->PushGpr(val);
1490  }
1491  void PushFpr4(float val) {
1492    delegate_->PushFpr4(val);
1493  }
1494  void PushFpr8(uint64_t val) {
1495    delegate_->PushFpr8(val);
1496  }
1497  void PushStack(uintptr_t val) {
1498    delegate_->PushStack(val);
1499  }
1500  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1501    return delegate_->PushHandle(ref);
1502  }
1503
1504  uint32_t gpr_index_;      // Number of free GPRs
1505  uint32_t fpr_index_;      // Number of free FPRs
1506  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1507                            // extended
1508  T* const delegate_;             // What Push implementation gets called
1509};
1510
1511// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1512// in subclasses.
1513//
1514// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1515// them with handles.
1516class ComputeNativeCallFrameSize {
1517 public:
1518  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1519
1520  virtual ~ComputeNativeCallFrameSize() {}
1521
1522  uint32_t GetStackSize() const {
1523    return num_stack_entries_ * sizeof(uintptr_t);
1524  }
1525
1526  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1527    sp8 -= GetStackSize();
1528    // Align by kStackAlignment.
1529    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1530    return sp8;
1531  }
1532
1533  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1534      const {
1535    // Assumption is OK right now, as we have soft-float arm
1536    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1537    sp8 -= fregs * sizeof(uintptr_t);
1538    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1539    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1540    sp8 -= iregs * sizeof(uintptr_t);
1541    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1542    return sp8;
1543  }
1544
1545  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1546                            uint32_t** start_fpr) const {
1547    // Native call stack.
1548    sp8 = LayoutCallStack(sp8);
1549    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1550
1551    // Put fprs and gprs below.
1552    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1553
1554    // Return the new bottom.
1555    return sp8;
1556  }
1557
1558  virtual void WalkHeader(
1559      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1560      REQUIRES_SHARED(Locks::mutator_lock_) {
1561  }
1562
1563  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1564    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1565
1566    WalkHeader(&sm);
1567
1568    for (uint32_t i = 1; i < shorty_len; ++i) {
1569      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1570      switch (cur_type_) {
1571        case Primitive::kPrimNot:
1572          // TODO: fix abuse of mirror types.
1573          sm.AdvanceHandleScope(
1574              reinterpret_cast<mirror::Object*>(0x12345678));
1575          break;
1576
1577        case Primitive::kPrimBoolean:
1578        case Primitive::kPrimByte:
1579        case Primitive::kPrimChar:
1580        case Primitive::kPrimShort:
1581        case Primitive::kPrimInt:
1582          sm.AdvanceInt(0);
1583          break;
1584        case Primitive::kPrimFloat:
1585          sm.AdvanceFloat(0);
1586          break;
1587        case Primitive::kPrimDouble:
1588          sm.AdvanceDouble(0);
1589          break;
1590        case Primitive::kPrimLong:
1591          sm.AdvanceLong(0);
1592          break;
1593        default:
1594          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1595          UNREACHABLE();
1596      }
1597    }
1598
1599    num_stack_entries_ = sm.GetStackEntries();
1600  }
1601
1602  void PushGpr(uintptr_t /* val */) {
1603    // not optimizing registers, yet
1604  }
1605
1606  void PushFpr4(float /* val */) {
1607    // not optimizing registers, yet
1608  }
1609
1610  void PushFpr8(uint64_t /* val */) {
1611    // not optimizing registers, yet
1612  }
1613
1614  void PushStack(uintptr_t /* val */) {
1615    // counting is already done in the superclass
1616  }
1617
1618  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1619    return reinterpret_cast<uintptr_t>(nullptr);
1620  }
1621
1622 protected:
1623  uint32_t num_stack_entries_;
1624};
1625
1626class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1627 public:
1628  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1629
1630  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1631  // is at *m = sp. Will update to point to the bottom of the save frame.
1632  //
1633  // Note: assumes ComputeAll() has been run before.
1634  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1635      REQUIRES_SHARED(Locks::mutator_lock_) {
1636    ArtMethod* method = **m;
1637
1638    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1639
1640    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1641
1642    // First, fix up the layout of the callee-save frame.
1643    // We have to squeeze in the HandleScope, and relocate the method pointer.
1644
1645    // "Free" the slot for the method.
1646    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1647
1648    // Under the callee saves put handle scope and new method stack reference.
1649    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1650    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1651
1652    sp8 -= scope_and_method;
1653    // Align by kStackAlignment.
1654    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1655
1656    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1657    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1658                                        num_handle_scope_references_);
1659
1660    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1661    uint8_t* method_pointer = sp8;
1662    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1663    *new_method_ref = method;
1664    *m = new_method_ref;
1665  }
1666
1667  // Adds space for the cookie. Note: may leave stack unaligned.
1668  void LayoutCookie(uint8_t** sp) const {
1669    // Reference cookie and padding
1670    *sp -= 8;
1671  }
1672
1673  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1674  // Returns the new bottom. Note: this may be unaligned.
1675  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1676      REQUIRES_SHARED(Locks::mutator_lock_) {
1677    // First, fix up the layout of the callee-save frame.
1678    // We have to squeeze in the HandleScope, and relocate the method pointer.
1679    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1680
1681    // The bottom of the callee-save frame is now where the method is, *m.
1682    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1683
1684    // Add space for cookie.
1685    LayoutCookie(&sp8);
1686
1687    return sp8;
1688  }
1689
1690  // WARNING: After this, *sp won't be pointing to the method anymore!
1691  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1692                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1693                         uint32_t** start_fpr)
1694      REQUIRES_SHARED(Locks::mutator_lock_) {
1695    Walk(shorty, shorty_len);
1696
1697    // JNI part.
1698    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1699
1700    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1701
1702    // Return the new bottom.
1703    return sp8;
1704  }
1705
1706  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1707
1708  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1709  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1710      REQUIRES_SHARED(Locks::mutator_lock_);
1711
1712 private:
1713  uint32_t num_handle_scope_references_;
1714};
1715
1716uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1717  num_handle_scope_references_++;
1718  return reinterpret_cast<uintptr_t>(nullptr);
1719}
1720
1721void ComputeGenericJniFrameSize::WalkHeader(
1722    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1723  // JNIEnv
1724  sm->AdvancePointer(nullptr);
1725
1726  // Class object or this as first argument
1727  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1728}
1729
1730// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1731// the template requirements of BuildGenericJniFrameStateMachine.
1732class FillNativeCall {
1733 public:
1734  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1735      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1736
1737  virtual ~FillNativeCall() {}
1738
1739  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1740    cur_gpr_reg_ = gpr_regs;
1741    cur_fpr_reg_ = fpr_regs;
1742    cur_stack_arg_ = stack_args;
1743  }
1744
1745  void PushGpr(uintptr_t val) {
1746    *cur_gpr_reg_ = val;
1747    cur_gpr_reg_++;
1748  }
1749
1750  void PushFpr4(float val) {
1751    *cur_fpr_reg_ = val;
1752    cur_fpr_reg_++;
1753  }
1754
1755  void PushFpr8(uint64_t val) {
1756    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1757    *tmp = val;
1758    cur_fpr_reg_ += 2;
1759  }
1760
1761  void PushStack(uintptr_t val) {
1762    *cur_stack_arg_ = val;
1763    cur_stack_arg_++;
1764  }
1765
1766  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1767    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1768    UNREACHABLE();
1769  }
1770
1771 private:
1772  uintptr_t* cur_gpr_reg_;
1773  uint32_t* cur_fpr_reg_;
1774  uintptr_t* cur_stack_arg_;
1775};
1776
1777// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1778// of transitioning into native code.
1779class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1780 public:
1781  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1782                              ArtMethod*** sp)
1783     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1784       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1785    ComputeGenericJniFrameSize fsc;
1786    uintptr_t* start_gpr_reg;
1787    uint32_t* start_fpr_reg;
1788    uintptr_t* start_stack_arg;
1789    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1790                                             &handle_scope_,
1791                                             &start_stack_arg,
1792                                             &start_gpr_reg, &start_fpr_reg);
1793
1794    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1795
1796    // jni environment is always first argument
1797    sm_.AdvancePointer(self->GetJniEnv());
1798
1799    if (is_static) {
1800      sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1801    }
1802  }
1803
1804  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1805
1806  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1807
1808  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1809    return handle_scope_->GetHandle(0).GetReference();
1810  }
1811
1812  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1813    return handle_scope_->GetHandle(0).ToJObject();
1814  }
1815
1816  void* GetBottomOfUsedArea() const {
1817    return bottom_of_used_area_;
1818  }
1819
1820 private:
1821  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1822  class FillJniCall FINAL : public FillNativeCall {
1823   public:
1824    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1825                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1826                                             handle_scope_(handle_scope), cur_entry_(0) {}
1827
1828    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
1829
1830    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1831      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1832      handle_scope_ = scope;
1833      cur_entry_ = 0U;
1834    }
1835
1836    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
1837      // Initialize padding entries.
1838      size_t expected_slots = handle_scope_->NumberOfReferences();
1839      while (cur_entry_ < expected_slots) {
1840        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1841      }
1842      DCHECK_NE(cur_entry_, 0U);
1843    }
1844
1845   private:
1846    HandleScope* handle_scope_;
1847    size_t cur_entry_;
1848  };
1849
1850  HandleScope* handle_scope_;
1851  FillJniCall jni_call_;
1852  void* bottom_of_used_area_;
1853
1854  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1855
1856  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1857};
1858
1859uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1860  uintptr_t tmp;
1861  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1862  h.Assign(ref);
1863  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1864  cur_entry_++;
1865  return tmp;
1866}
1867
1868void BuildGenericJniFrameVisitor::Visit() {
1869  Primitive::Type type = GetParamPrimitiveType();
1870  switch (type) {
1871    case Primitive::kPrimLong: {
1872      jlong long_arg;
1873      if (IsSplitLongOrDouble()) {
1874        long_arg = ReadSplitLongParam();
1875      } else {
1876        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1877      }
1878      sm_.AdvanceLong(long_arg);
1879      break;
1880    }
1881    case Primitive::kPrimDouble: {
1882      uint64_t double_arg;
1883      if (IsSplitLongOrDouble()) {
1884        // Read into union so that we don't case to a double.
1885        double_arg = ReadSplitLongParam();
1886      } else {
1887        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1888      }
1889      sm_.AdvanceDouble(double_arg);
1890      break;
1891    }
1892    case Primitive::kPrimNot: {
1893      StackReference<mirror::Object>* stack_ref =
1894          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1895      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1896      break;
1897    }
1898    case Primitive::kPrimFloat:
1899      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1900      break;
1901    case Primitive::kPrimBoolean:  // Fall-through.
1902    case Primitive::kPrimByte:     // Fall-through.
1903    case Primitive::kPrimChar:     // Fall-through.
1904    case Primitive::kPrimShort:    // Fall-through.
1905    case Primitive::kPrimInt:      // Fall-through.
1906      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1907      break;
1908    case Primitive::kPrimVoid:
1909      LOG(FATAL) << "UNREACHABLE";
1910      UNREACHABLE();
1911  }
1912}
1913
1914void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1915  // Clear out rest of the scope.
1916  jni_call_.ResetRemainingScopeSlots();
1917  // Install HandleScope.
1918  self->PushHandleScope(handle_scope_);
1919}
1920
1921#if defined(__arm__) || defined(__aarch64__)
1922extern "C" void* artFindNativeMethod();
1923#else
1924extern "C" void* artFindNativeMethod(Thread* self);
1925#endif
1926
1927uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1928  if (lock != nullptr) {
1929    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1930  } else {
1931    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1932  }
1933}
1934
1935void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1936  if (lock != nullptr) {
1937    JniMethodEndSynchronized(cookie, lock, self);
1938  } else {
1939    JniMethodEnd(cookie, self);
1940  }
1941}
1942
1943/*
1944 * Initializes an alloca region assumed to be directly below sp for a native call:
1945 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1946 * The final element on the stack is a pointer to the native code.
1947 *
1948 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1949 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1950 *
1951 * The return of this function denotes:
1952 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1953 * 2) An error, if the value is negative.
1954 */
1955extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1956    REQUIRES_SHARED(Locks::mutator_lock_) {
1957  ArtMethod* called = *sp;
1958  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1959  uint32_t shorty_len = 0;
1960  const char* shorty = called->GetShorty(&shorty_len);
1961
1962  // Run the visitor and update sp.
1963  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1964  visitor.VisitArguments();
1965  visitor.FinalizeHandleScope(self);
1966
1967  // Fix up managed-stack things in Thread.
1968  self->SetTopOfStack(sp);
1969
1970  self->VerifyStack();
1971
1972  // Start JNI, save the cookie.
1973  uint32_t cookie;
1974  if (called->IsSynchronized()) {
1975    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1976    if (self->IsExceptionPending()) {
1977      self->PopHandleScope();
1978      // A negative value denotes an error.
1979      return GetTwoWordFailureValue();
1980    }
1981  } else {
1982    cookie = JniMethodStart(self);
1983  }
1984  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1985  *(sp32 - 1) = cookie;
1986
1987  // Retrieve the stored native code.
1988  void* nativeCode = called->GetEntryPointFromJni();
1989
1990  // There are two cases for the content of nativeCode:
1991  // 1) Pointer to the native function.
1992  // 2) Pointer to the trampoline for native code binding.
1993  // In the second case, we need to execute the binding and continue with the actual native function
1994  // pointer.
1995  DCHECK(nativeCode != nullptr);
1996  if (nativeCode == GetJniDlsymLookupStub()) {
1997#if defined(__arm__) || defined(__aarch64__)
1998    nativeCode = artFindNativeMethod();
1999#else
2000    nativeCode = artFindNativeMethod(self);
2001#endif
2002
2003    if (nativeCode == nullptr) {
2004      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2005
2006      // End JNI, as the assembly will move to deliver the exception.
2007      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2008      if (shorty[0] == 'L') {
2009        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
2010      } else {
2011        artQuickGenericJniEndJNINonRef(self, cookie, lock);
2012      }
2013
2014      return GetTwoWordFailureValue();
2015    }
2016    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2017  }
2018
2019  // Return native code addr(lo) and bottom of alloca address(hi).
2020  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2021                                reinterpret_cast<uintptr_t>(nativeCode));
2022}
2023
2024// Defined in quick_jni_entrypoints.cc.
2025extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2026                                    jvalue result, uint64_t result_f, ArtMethod* called,
2027                                    HandleScope* handle_scope);
2028/*
2029 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2030 * unlocking.
2031 */
2032extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2033                                                    jvalue result,
2034                                                    uint64_t result_f) {
2035  // We're here just back from a native call. We don't have the shared mutator lock at this point
2036  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2037  // anything that requires a mutator lock before that would cause problems as GC may have the
2038  // exclusive mutator lock and may be moving objects, etc.
2039  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2040  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2041  ArtMethod* called = *sp;
2042  uint32_t cookie = *(sp32 - 1);
2043  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2044  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2045}
2046
2047// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2048// for the method pointer.
2049//
2050// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2051// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2052
2053template<InvokeType type, bool access_check>
2054static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
2055                                     ArtMethod** sp) {
2056  ScopedQuickEntrypointChecks sqec(self);
2057  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2058  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2059  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2060  if (UNLIKELY(method == nullptr)) {
2061    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2062    uint32_t shorty_len;
2063    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2064    {
2065      // Remember the args in case a GC happens in FindMethodFromCode.
2066      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2067      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2068      visitor.VisitArguments();
2069      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
2070                                                      self);
2071      visitor.FixupReferences();
2072    }
2073
2074    if (UNLIKELY(method == nullptr)) {
2075      CHECK(self->IsExceptionPending());
2076      return GetTwoWordFailureValue();  // Failure.
2077    }
2078  }
2079  DCHECK(!self->IsExceptionPending());
2080  const void* code = method->GetEntryPointFromQuickCompiledCode();
2081
2082  // When we return, the caller will branch to this address, so it had better not be 0!
2083  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2084                          << " location: "
2085                          << method->GetDexFile()->GetLocation();
2086
2087  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2088                                reinterpret_cast<uintptr_t>(method));
2089}
2090
2091// Explicit artInvokeCommon template function declarations to please analysis tool.
2092#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2093  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2094  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2095      uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2096
2097EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2098EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2099EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2100EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2101EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2102EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2103EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2104EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2105EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2106EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2107#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2108
2109// See comments in runtime_support_asm.S
2110extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2111    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2112    REQUIRES_SHARED(Locks::mutator_lock_) {
2113  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2114}
2115
2116extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2117    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2118    REQUIRES_SHARED(Locks::mutator_lock_) {
2119  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2120}
2121
2122extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2123    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2124    REQUIRES_SHARED(Locks::mutator_lock_) {
2125  return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2126}
2127
2128extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2129    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2130    REQUIRES_SHARED(Locks::mutator_lock_) {
2131  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2132}
2133
2134extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2135    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2136    REQUIRES_SHARED(Locks::mutator_lock_) {
2137  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2138}
2139
2140// Determine target of interface dispatch. This object is known non-null. First argument
2141// is there for consistency but should not be used, as some architectures overwrite it
2142// in the assembly trampoline.
2143extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2144                                                      mirror::Object* this_object,
2145                                                      Thread* self,
2146                                                      ArtMethod** sp)
2147    REQUIRES_SHARED(Locks::mutator_lock_) {
2148  ScopedQuickEntrypointChecks sqec(self);
2149  StackHandleScope<1> hs(self);
2150  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2151
2152  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2153
2154  // Fetch the dex_method_idx of the target interface method from the caller.
2155  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2156
2157  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2158  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2159  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2160  Instruction::Code instr_code = instr->Opcode();
2161  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2162        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2163      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2164  uint32_t dex_method_idx;
2165  if (instr_code == Instruction::INVOKE_INTERFACE) {
2166    dex_method_idx = instr->VRegB_35c();
2167  } else {
2168    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2169    dex_method_idx = instr->VRegB_3rc();
2170  }
2171
2172  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2173      dex_method_idx, kRuntimePointerSize);
2174  DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2175  ArtMethod* method = nullptr;
2176  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2177
2178  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2179    // If the dex cache already resolved the interface method, look whether we have
2180    // a match in the ImtConflictTable.
2181    ArtMethod* conflict_method = imt->Get(interface_method->GetImtIndex(), kRuntimePointerSize);
2182    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2183      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2184      DCHECK(current_table != nullptr);
2185      method = current_table->Lookup(interface_method, kRuntimePointerSize);
2186    } else {
2187      // It seems we aren't really a conflict method!
2188      method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2189    }
2190    if (method != nullptr) {
2191      return GetTwoWordSuccessValue(
2192          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2193          reinterpret_cast<uintptr_t>(method));
2194    }
2195
2196    // No match, use the IfTable.
2197    method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2198    if (UNLIKELY(method == nullptr)) {
2199      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2200          interface_method, this_object, caller_method);
2201      return GetTwoWordFailureValue();  // Failure.
2202    }
2203  } else {
2204    // The dex cache did not resolve the method, look it up in the dex file
2205    // of the caller,
2206    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2207    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2208        ->GetDexFile();
2209    uint32_t shorty_len;
2210    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2211                                                   &shorty_len);
2212    {
2213      // Remember the args in case a GC happens in FindMethodFromCode.
2214      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2215      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2216      visitor.VisitArguments();
2217      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2218                                                     self);
2219      visitor.FixupReferences();
2220    }
2221
2222    if (UNLIKELY(method == nullptr)) {
2223      CHECK(self->IsExceptionPending());
2224      return GetTwoWordFailureValue();  // Failure.
2225    }
2226    interface_method =
2227        caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
2228    DCHECK(!interface_method->IsRuntimeMethod());
2229  }
2230
2231  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2232  // We create a new table with the new pair { interface_method, method }.
2233  uint32_t imt_index = interface_method->GetImtIndex();
2234  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2235  if (conflict_method->IsRuntimeMethod()) {
2236    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2237        cls.Get(),
2238        conflict_method,
2239        interface_method,
2240        method,
2241        /*force_new_conflict_method*/false);
2242    if (new_conflict_method != conflict_method) {
2243      // Update the IMT if we create a new conflict method. No fence needed here, as the
2244      // data is consistent.
2245      imt->Set(imt_index,
2246               new_conflict_method,
2247               kRuntimePointerSize);
2248    }
2249  }
2250
2251  const void* code = method->GetEntryPointFromQuickCompiledCode();
2252
2253  // When we return, the caller will branch to this address, so it had better not be 0!
2254  DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2255                          << " location: " << method->GetDexFile()->GetLocation();
2256
2257  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2258                                reinterpret_cast<uintptr_t>(method));
2259}
2260
2261}  // namespace art
2262