quick_trampoline_entrypoints.cc revision f486778d50fc8afa61330df495e94f4f3ec0e238
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "callee_save_frame.h"
18#include "common_throws.h"
19#include "dex_file-inl.h"
20#include "dex_instruction-inl.h"
21#include "entrypoints/entrypoint_utils.h"
22#include "gc/accounting/card_table-inl.h"
23#include "interpreter/interpreter.h"
24#include "mirror/art_method-inl.h"
25#include "mirror/class-inl.h"
26#include "mirror/dex_cache-inl.h"
27#include "mirror/object-inl.h"
28#include "mirror/object_array-inl.h"
29#include "object_utils.h"
30#include "runtime.h"
31#include "scoped_thread_state_change.h"
32
33namespace art {
34
35// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36class QuickArgumentVisitor {
37  // Number of bytes for each out register in the caller method's frame.
38  static constexpr size_t kBytesStackArgLocation = 4;
39#if defined(__arm__)
40  // The callee save frame is pointed to by SP.
41  // | argN       |  |
42  // | ...        |  |
43  // | arg4       |  |
44  // | arg3 spill |  |  Caller's frame
45  // | arg2 spill |  |
46  // | arg1 spill |  |
47  // | Method*    | ---
48  // | LR         |
49  // | ...        |    callee saves
50  // | R3         |    arg3
51  // | R2         |    arg2
52  // | R1         |    arg1
53  // | R0         |    padding
54  // | Method*    |  <- sp
55  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
56  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
57  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
58  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
59  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8;  // Offset of first GPR arg.
60  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44;  // Offset of return address.
61  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48;  // Frame size.
62  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
63    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
64  }
65#elif defined(__aarch64__)
66  // The callee save frame is pointed to by SP.
67  // | argN       |  |
68  // | ...        |  |
69  // | arg4       |  |
70  // | arg3 spill |  |  Caller's frame
71  // | arg2 spill |  |
72  // | arg1 spill |  |
73  // | Method*    | ---
74  // | LR         |
75  // | X28        |
76  // |  :         |
77  // | X19        |
78  // | X7         |
79  // | :          |
80  // | X1         |
81  // | D15        |
82  // |  :         |
83  // | D0         |
84  // |            |    padding
85  // | Method*    |  <- sp
86  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
87  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
88  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
89  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16;  // Offset of first FPR arg.
90  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144;  // Offset of first GPR arg.
91  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296;  // Offset of return address.
92  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304;  // Frame size.
93  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
94    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
95  }
96#elif defined(__mips__)
97  // The callee save frame is pointed to by SP.
98  // | argN       |  |
99  // | ...        |  |
100  // | arg4       |  |
101  // | arg3 spill |  |  Caller's frame
102  // | arg2 spill |  |
103  // | arg1 spill |  |
104  // | Method*    | ---
105  // | RA         |
106  // | ...        |    callee saves
107  // | A3         |    arg3
108  // | A2         |    arg2
109  // | A1         |    arg1
110  // | A0/Method* |  <- sp
111  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
112  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
113  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
114  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
115  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
116  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
117  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64;  // Frame size.
118  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
119    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
120  }
121#elif defined(__i386__)
122  // The callee save frame is pointed to by SP.
123  // | argN        |  |
124  // | ...         |  |
125  // | arg4        |  |
126  // | arg3 spill  |  |  Caller's frame
127  // | arg2 spill  |  |
128  // | arg1 spill  |  |
129  // | Method*     | ---
130  // | Return      |
131  // | EBP,ESI,EDI |    callee saves
132  // | EBX         |    arg3
133  // | EDX         |    arg2
134  // | ECX         |    arg1
135  // | EAX/Method* |  <- sp
136  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
137  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
138  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
139  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
140  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
141  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28;  // Offset of return address.
142  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32;  // Frame size.
143  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
144    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
145  }
146#elif defined(__x86_64__)
147  // The callee save frame is pointed to by SP.
148  // | argN            |  |
149  // | ...             |  |
150  // | reg. arg spills |  |  Caller's frame
151  // | Method*         | ---
152  // | Return          |
153  // | R15             |    callee save
154  // | R14             |    callee save
155  // | R13             |    callee save
156  // | R12             |    callee save
157  // | R9              |    arg5
158  // | R8              |    arg4
159  // | RSI/R6          |    arg1
160  // | RBP/R5          |    callee save
161  // | RBX/R3          |    callee save
162  // | RDX/R2          |    arg2
163  // | RCX/R1          |    arg3
164  // | XMM7            |    float arg 8
165  // | XMM6            |    float arg 7
166  // | XMM5            |    float arg 6
167  // | XMM4            |    float arg 5
168  // | XMM3            |    float arg 4
169  // | XMM2            |    float arg 3
170  // | XMM1            |    float arg 2
171  // | XMM0            |    float arg 1
172  // | Padding         |
173  // | RDI/Method*     |  <- sp
174  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
175  static constexpr size_t kNumQuickGprArgs = 5;  // 3 arguments passed in GPRs.
176  static constexpr size_t kNumQuickFprArgs = 8;  // 0 arguments passed in FPRs.
177  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
178  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg.
179  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168;  // Offset of return address.
180  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176;  // Frame size.
181  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182    switch (gpr_index) {
183      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
184      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
185      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
186      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
187      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
188      default:
189        LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
190        return 0;
191    }
192  }
193#else
194#error "Unsupported architecture"
195#endif
196
197 public:
198  static mirror::ArtMethod* GetCallingMethod(mirror::ArtMethod** sp)
199      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
200    DCHECK((*sp)->IsCalleeSaveMethod());
201    byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
202    return *reinterpret_cast<mirror::ArtMethod**>(previous_sp);
203  }
204
205  // For the given quick ref and args quick frame, return the caller's PC.
206  static uintptr_t GetCallingPc(mirror::ArtMethod** sp)
207      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
208    DCHECK((*sp)->IsCalleeSaveMethod());
209    byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
210    return *reinterpret_cast<uintptr_t*>(lr);
211  }
212
213  QuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static,
214                       const char* shorty, uint32_t shorty_len)
215      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
216      is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
217      gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
218      fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
219      stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
220                  + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
221      gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
222      is_split_long_or_double_(false) {
223    DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize,
224              Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
225  }
226
227  virtual ~QuickArgumentVisitor() {}
228
229  virtual void Visit() = 0;
230
231  Primitive::Type GetParamPrimitiveType() const {
232    return cur_type_;
233  }
234
235  byte* GetParamAddress() const {
236    if (!kQuickSoftFloatAbi) {
237      Primitive::Type type = GetParamPrimitiveType();
238      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
239        if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
240          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
241        }
242        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
243      }
244    }
245    if (gpr_index_ < kNumQuickGprArgs) {
246      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
247    }
248    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
249  }
250
251  bool IsSplitLongOrDouble() const {
252    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
253      return is_split_long_or_double_;
254    } else {
255      return false;  // An optimization for when GPR and FPRs are 64bit.
256    }
257  }
258
259  bool IsParamAReference() const {
260    return GetParamPrimitiveType() == Primitive::kPrimNot;
261  }
262
263  bool IsParamALongOrDouble() const {
264    Primitive::Type type = GetParamPrimitiveType();
265    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
266  }
267
268  uint64_t ReadSplitLongParam() const {
269    DCHECK(IsSplitLongOrDouble());
270    uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
271    uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
272    return (low_half & 0xffffffffULL) | (high_half << 32);
273  }
274
275  void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
276    // This implementation doesn't support reg-spill area for hard float
277    // ABI targets such as x86_64 and aarch64. So, for those targets whose
278    // 'kQuickSoftFloatAbi' is 'false':
279    //     (a) 'stack_args_' should point to the first method's argument
280    //     (b) whatever the argument type it is, the 'stack_index_' should
281    //         be moved forward along with every visiting.
282    gpr_index_ = 0;
283    fpr_index_ = 0;
284    stack_index_ = 0;
285    if (!is_static_) {  // Handle this.
286      cur_type_ = Primitive::kPrimNot;
287      is_split_long_or_double_ = false;
288      Visit();
289      if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
290        stack_index_++;
291      }
292      if (kNumQuickGprArgs > 0) {
293        gpr_index_++;
294      }
295    }
296    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
297      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
298      switch (cur_type_) {
299        case Primitive::kPrimNot:
300        case Primitive::kPrimBoolean:
301        case Primitive::kPrimByte:
302        case Primitive::kPrimChar:
303        case Primitive::kPrimShort:
304        case Primitive::kPrimInt:
305          is_split_long_or_double_ = false;
306          Visit();
307          if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
308            stack_index_++;
309          }
310          if (gpr_index_ < kNumQuickGprArgs) {
311            gpr_index_++;
312          }
313          break;
314        case Primitive::kPrimFloat:
315          is_split_long_or_double_ = false;
316          Visit();
317          if (kQuickSoftFloatAbi) {
318            if (gpr_index_ < kNumQuickGprArgs) {
319              gpr_index_++;
320            } else {
321              stack_index_++;
322            }
323          } else {
324            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
325              fpr_index_++;
326            }
327            stack_index_++;
328          }
329          break;
330        case Primitive::kPrimDouble:
331        case Primitive::kPrimLong:
332          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
333            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
334                ((gpr_index_ + 1) == kNumQuickGprArgs);
335            Visit();
336            if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
337              if (kBytesStackArgLocation == 4) {
338                stack_index_+= 2;
339              } else {
340                CHECK_EQ(kBytesStackArgLocation, 8U);
341                stack_index_++;
342              }
343            }
344            if (gpr_index_ < kNumQuickGprArgs) {
345              gpr_index_++;
346              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
347                if (gpr_index_ < kNumQuickGprArgs) {
348                  gpr_index_++;
349                } else if (kQuickSoftFloatAbi) {
350                  stack_index_++;
351                }
352              }
353            }
354          } else {
355            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
356                ((fpr_index_ + 1) == kNumQuickFprArgs);
357            Visit();
358            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
359              fpr_index_++;
360              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
361                if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
362                  fpr_index_++;
363                }
364              }
365            }
366            if (kBytesStackArgLocation == 4) {
367              stack_index_+= 2;
368            } else {
369              CHECK_EQ(kBytesStackArgLocation, 8U);
370              stack_index_++;
371            }
372          }
373          break;
374        default:
375          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
376      }
377    }
378  }
379
380 private:
381  static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
382                                             uint32_t shorty_len) {
383    if (kQuickSoftFloatAbi) {
384      CHECK_EQ(kNumQuickFprArgs, 0U);
385      return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
386          + GetBytesPerGprSpillLocation(kRuntimeISA) /* ArtMethod* */;
387    } else {
388      // For now, there is no reg-spill area for the targets with
389      // hard float ABI. So, the offset pointing to the first method's
390      // parameter ('this' for non-static methods) should be returned.
391      return GetBytesPerGprSpillLocation(kRuntimeISA);  // Skip Method*.
392    }
393  }
394
395  const bool is_static_;
396  const char* const shorty_;
397  const uint32_t shorty_len_;
398  byte* const gpr_args_;  // Address of GPR arguments in callee save frame.
399  byte* const fpr_args_;  // Address of FPR arguments in callee save frame.
400  byte* const stack_args_;  // Address of stack arguments in caller's frame.
401  uint32_t gpr_index_;  // Index into spilled GPRs.
402  uint32_t fpr_index_;  // Index into spilled FPRs.
403  uint32_t stack_index_;  // Index into arguments on the stack.
404  // The current type of argument during VisitArguments.
405  Primitive::Type cur_type_;
406  // Does a 64bit parameter straddle the register and stack arguments?
407  bool is_split_long_or_double_;
408};
409
410// Visits arguments on the stack placing them into the shadow frame.
411class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
412 public:
413  BuildQuickShadowFrameVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
414                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
415    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
416
417  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
418
419 private:
420  ShadowFrame* const sf_;
421  uint32_t cur_reg_;
422
423  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
424};
425
426void BuildQuickShadowFrameVisitor::Visit()  {
427  Primitive::Type type = GetParamPrimitiveType();
428  switch (type) {
429    case Primitive::kPrimLong:  // Fall-through.
430    case Primitive::kPrimDouble:
431      if (IsSplitLongOrDouble()) {
432        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
433      } else {
434        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
435      }
436      ++cur_reg_;
437      break;
438    case Primitive::kPrimNot: {
439        StackReference<mirror::Object>* stack_ref =
440            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
441        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
442      }
443      break;
444    case Primitive::kPrimBoolean:  // Fall-through.
445    case Primitive::kPrimByte:     // Fall-through.
446    case Primitive::kPrimChar:     // Fall-through.
447    case Primitive::kPrimShort:    // Fall-through.
448    case Primitive::kPrimInt:      // Fall-through.
449    case Primitive::kPrimFloat:
450      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
451      break;
452    case Primitive::kPrimVoid:
453      LOG(FATAL) << "UNREACHABLE";
454      break;
455  }
456  ++cur_reg_;
457}
458
459extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
460                                                mirror::ArtMethod** sp)
461    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
462  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
463  // frame.
464  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
465
466  if (method->IsAbstract()) {
467    ThrowAbstractMethodError(method);
468    return 0;
469  } else {
470    DCHECK(!method->IsNative()) << PrettyMethod(method);
471    const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame");
472    MethodHelper mh(method);
473    const DexFile::CodeItem* code_item = mh.GetCodeItem();
474    DCHECK(code_item != nullptr) << PrettyMethod(method);
475    uint16_t num_regs = code_item->registers_size_;
476    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
477    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL,  // No last shadow coming from quick.
478                                                  method, 0, memory));
479    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
480    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(),
481                                                      mh.GetShortyLength(),
482                                                      shadow_frame, first_arg_reg);
483    shadow_frame_builder.VisitArguments();
484    // Push a transition back into managed code onto the linked list in thread.
485    ManagedStack fragment;
486    self->PushManagedStackFragment(&fragment);
487    self->PushShadowFrame(shadow_frame);
488    self->EndAssertNoThreadSuspension(old_cause);
489
490    if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) {
491      // Ensure static method's class is initialized.
492      SirtRef<mirror::Class> sirt_c(self, method->GetDeclaringClass());
493      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(sirt_c, true, true)) {
494        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
495        self->PopManagedStackFragment(fragment);
496        return 0;
497      }
498    }
499
500    JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
501    // Pop transition.
502    self->PopManagedStackFragment(fragment);
503    // No need to restore the args since the method has already been run by the interpreter.
504    return result.GetJ();
505  }
506}
507
508// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
509// to jobjects.
510class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
511 public:
512  BuildQuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
513                            uint32_t shorty_len, ScopedObjectAccessUnchecked* soa,
514                            std::vector<jvalue>* args) :
515    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
516
517  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
518
519  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
520
521 private:
522  ScopedObjectAccessUnchecked* const soa_;
523  std::vector<jvalue>* const args_;
524  // References which we must update when exiting in case the GC moved the objects.
525  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
526
527  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
528};
529
530void BuildQuickArgumentVisitor::Visit() {
531  jvalue val;
532  Primitive::Type type = GetParamPrimitiveType();
533  switch (type) {
534    case Primitive::kPrimNot: {
535      StackReference<mirror::Object>* stack_ref =
536          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
537      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
538      references_.push_back(std::make_pair(val.l, stack_ref));
539      break;
540    }
541    case Primitive::kPrimLong:  // Fall-through.
542    case Primitive::kPrimDouble:
543      if (IsSplitLongOrDouble()) {
544        val.j = ReadSplitLongParam();
545      } else {
546        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
547      }
548      break;
549    case Primitive::kPrimBoolean:  // Fall-through.
550    case Primitive::kPrimByte:     // Fall-through.
551    case Primitive::kPrimChar:     // Fall-through.
552    case Primitive::kPrimShort:    // Fall-through.
553    case Primitive::kPrimInt:      // Fall-through.
554    case Primitive::kPrimFloat:
555      val.i = *reinterpret_cast<jint*>(GetParamAddress());
556      break;
557    case Primitive::kPrimVoid:
558      LOG(FATAL) << "UNREACHABLE";
559      val.j = 0;
560      break;
561  }
562  args_->push_back(val);
563}
564
565void BuildQuickArgumentVisitor::FixupReferences() {
566  // Fixup any references which may have changed.
567  for (const auto& pair : references_) {
568    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
569    soa_->Env()->DeleteLocalRef(pair.first);
570  }
571}
572
573// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
574// which is responsible for recording callee save registers. We explicitly place into jobjects the
575// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
576// field within the proxy object, which will box the primitive arguments and deal with error cases.
577extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
578                                               mirror::Object* receiver,
579                                               Thread* self, mirror::ArtMethod** sp)
580    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
581  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
582  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
583  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
584  const char* old_cause =
585      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
586  // Register the top of the managed stack, making stack crawlable.
587  DCHECK_EQ(*sp, proxy_method) << PrettyMethod(proxy_method);
588  self->SetTopOfStack(sp, 0);
589  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
590            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
591      << PrettyMethod(proxy_method);
592  self->VerifyStack();
593  // Start new JNI local reference state.
594  JNIEnvExt* env = self->GetJniEnv();
595  ScopedObjectAccessUnchecked soa(env);
596  ScopedJniEnvLocalRefState env_state(env);
597  // Create local ref. copies of proxy method and the receiver.
598  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
599
600  // Placing arguments into args vector and remove the receiver.
601  MethodHelper proxy_mh(proxy_method);
602  DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method);
603  std::vector<jvalue> args;
604  BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(),
605                                              proxy_mh.GetShortyLength(), &soa, &args);
606
607  local_ref_visitor.VisitArguments();
608  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
609  args.erase(args.begin());
610
611  // Convert proxy method into expected interface method.
612  mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
613  DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
614  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
615  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
616
617  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
618  // that performs allocations.
619  self->EndAssertNoThreadSuspension(old_cause);
620  JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(),
621                                               rcvr_jobj, interface_method_jobj, args);
622  // Restore references which might have moved.
623  local_ref_visitor.FixupReferences();
624  return result.GetJ();
625}
626
627// Read object references held in arguments from quick frames and place in a JNI local references,
628// so they don't get garbage collected.
629class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
630 public:
631  RememberForGcArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty,
632                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
633    QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
634
635  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
636
637  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
638
639 private:
640  ScopedObjectAccessUnchecked* const soa_;
641  // References which we must update when exiting in case the GC moved the objects.
642  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
643  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
644};
645
646void RememberForGcArgumentVisitor::Visit() {
647  if (IsParamAReference()) {
648    StackReference<mirror::Object>* stack_ref =
649        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
650    jobject reference =
651        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
652    references_.push_back(std::make_pair(reference, stack_ref));
653  }
654}
655
656void RememberForGcArgumentVisitor::FixupReferences() {
657  // Fixup any references which may have changed.
658  for (const auto& pair : references_) {
659    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
660    soa_->Env()->DeleteLocalRef(pair.first);
661  }
662}
663
664
665// Lazily resolve a method for quick. Called by stub code.
666extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
667                                                    mirror::Object* receiver,
668                                                    Thread* self, mirror::ArtMethod** sp)
669    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
670  FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
671  // Start new JNI local reference state
672  JNIEnvExt* env = self->GetJniEnv();
673  ScopedObjectAccessUnchecked soa(env);
674  ScopedJniEnvLocalRefState env_state(env);
675  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
676
677  // Compute details about the called method (avoid GCs)
678  ClassLinker* linker = Runtime::Current()->GetClassLinker();
679  mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
680  InvokeType invoke_type;
681  const DexFile* dex_file;
682  uint32_t dex_method_idx;
683  if (called->IsRuntimeMethod()) {
684    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
685    const DexFile::CodeItem* code;
686    {
687      MethodHelper mh(caller);
688      dex_file = &mh.GetDexFile();
689      code = mh.GetCodeItem();
690    }
691    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
692    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
693    Instruction::Code instr_code = instr->Opcode();
694    bool is_range;
695    switch (instr_code) {
696      case Instruction::INVOKE_DIRECT:
697        invoke_type = kDirect;
698        is_range = false;
699        break;
700      case Instruction::INVOKE_DIRECT_RANGE:
701        invoke_type = kDirect;
702        is_range = true;
703        break;
704      case Instruction::INVOKE_STATIC:
705        invoke_type = kStatic;
706        is_range = false;
707        break;
708      case Instruction::INVOKE_STATIC_RANGE:
709        invoke_type = kStatic;
710        is_range = true;
711        break;
712      case Instruction::INVOKE_SUPER:
713        invoke_type = kSuper;
714        is_range = false;
715        break;
716      case Instruction::INVOKE_SUPER_RANGE:
717        invoke_type = kSuper;
718        is_range = true;
719        break;
720      case Instruction::INVOKE_VIRTUAL:
721        invoke_type = kVirtual;
722        is_range = false;
723        break;
724      case Instruction::INVOKE_VIRTUAL_RANGE:
725        invoke_type = kVirtual;
726        is_range = true;
727        break;
728      case Instruction::INVOKE_INTERFACE:
729        invoke_type = kInterface;
730        is_range = false;
731        break;
732      case Instruction::INVOKE_INTERFACE_RANGE:
733        invoke_type = kInterface;
734        is_range = true;
735        break;
736      default:
737        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
738        // Avoid used uninitialized warnings.
739        invoke_type = kDirect;
740        is_range = false;
741    }
742    dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
743
744  } else {
745    invoke_type = kStatic;
746    dex_file = &MethodHelper(called).GetDexFile();
747    dex_method_idx = called->GetDexMethodIndex();
748  }
749  uint32_t shorty_len;
750  const char* shorty =
751      dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
752  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
753  visitor.VisitArguments();
754  self->EndAssertNoThreadSuspension(old_cause);
755  bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
756  // Resolve method filling in dex cache.
757  if (called->IsRuntimeMethod()) {
758    SirtRef<mirror::Object> sirt_receiver(soa.Self(), virtual_or_interface ? receiver : nullptr);
759    called = linker->ResolveMethod(dex_method_idx, caller, invoke_type);
760    receiver = sirt_receiver.get();
761  }
762  const void* code = NULL;
763  if (LIKELY(!self->IsExceptionPending())) {
764    // Incompatible class change should have been handled in resolve method.
765    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
766        << PrettyMethod(called) << " " << invoke_type;
767    if (virtual_or_interface) {
768      // Refine called method based on receiver.
769      CHECK(receiver != nullptr) << invoke_type;
770
771      mirror::ArtMethod* orig_called = called;
772      if (invoke_type == kVirtual) {
773        called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
774      } else {
775        called = receiver->GetClass()->FindVirtualMethodForInterface(called);
776      }
777
778      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
779                               << PrettyTypeOf(receiver) << " "
780                               << invoke_type << " " << orig_called->GetVtableIndex();
781
782      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
783      // of the sharpened method.
784      if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) {
785        caller->GetDexCacheResolvedMethods()->Set<false>(called->GetDexMethodIndex(), called);
786      } else {
787        // Calling from one dex file to another, need to compute the method index appropriate to
788        // the caller's dex file. Since we get here only if the original called was a runtime
789        // method, we've got the correct dex_file and a dex_method_idx from above.
790        DCHECK(&MethodHelper(caller).GetDexFile() == dex_file);
791        uint32_t method_index =
792            MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
793        if (method_index != DexFile::kDexNoIndex) {
794          caller->GetDexCacheResolvedMethods()->Set<false>(method_index, called);
795        }
796      }
797    }
798    // Ensure that the called method's class is initialized.
799    SirtRef<mirror::Class> called_class(soa.Self(), called->GetDeclaringClass());
800    linker->EnsureInitialized(called_class, true, true);
801    if (LIKELY(called_class->IsInitialized())) {
802      code = called->GetEntryPointFromQuickCompiledCode();
803    } else if (called_class->IsInitializing()) {
804      if (invoke_type == kStatic) {
805        // Class is still initializing, go to oat and grab code (trampoline must be left in place
806        // until class is initialized to stop races between threads).
807        code = linker->GetQuickOatCodeFor(called);
808      } else {
809        // No trampoline for non-static methods.
810        code = called->GetEntryPointFromQuickCompiledCode();
811      }
812    } else {
813      DCHECK(called_class->IsErroneous());
814    }
815  }
816  CHECK_EQ(code == NULL, self->IsExceptionPending());
817  // Fixup any locally saved objects may have moved during a GC.
818  visitor.FixupReferences();
819  // Place called method in callee-save frame to be placed as first argument to quick method.
820  *sp = called;
821  return code;
822}
823
824
825
826/*
827 * This class uses a couple of observations to unite the different calling conventions through
828 * a few constants.
829 *
830 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
831 *    possible alignment.
832 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
833 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
834 *    when we have to split things
835 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
836 *    and we can use Int handling directly.
837 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
838 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
839 *    extension should be compatible with Aarch64, which mandates copying the available bits
840 *    into LSB and leaving the rest unspecified.
841 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
842 *    the stack.
843 * 6) There is only little endian.
844 *
845 *
846 * Actual work is supposed to be done in a delegate of the template type. The interface is as
847 * follows:
848 *
849 * void PushGpr(uintptr_t):   Add a value for the next GPR
850 *
851 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
852 *                            padding, that is, think the architecture is 32b and aligns 64b.
853 *
854 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
855 *                            split this if necessary. The current state will have aligned, if
856 *                            necessary.
857 *
858 * void PushStack(uintptr_t): Push a value to the stack.
859 *
860 * uintptr_t PushSirt(mirror::Object* ref): Add a reference to the Sirt. This _will_ have nullptr,
861 *                                          as this might be important for null initialization.
862 *                                          Must return the jobject, that is, the reference to the
863 *                                          entry in the Sirt (nullptr if necessary).
864 *
865 */
866template <class T> class BuildGenericJniFrameStateMachine {
867 public:
868#if defined(__arm__)
869  // TODO: These are all dummy values!
870  static constexpr bool kNativeSoftFloatAbi = true;
871  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
872  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
873
874  static constexpr size_t kRegistersNeededForLong = 2;
875  static constexpr size_t kRegistersNeededForDouble = 2;
876  static constexpr bool kMultiRegistersAligned = true;
877  static constexpr bool kMultiRegistersWidened = false;
878  static constexpr bool kAlignLongOnStack = true;
879  static constexpr bool kAlignDoubleOnStack = true;
880#elif defined(__aarch64__)
881  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
882  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
883  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
884
885  static constexpr size_t kRegistersNeededForLong = 1;
886  static constexpr size_t kRegistersNeededForDouble = 1;
887  static constexpr bool kMultiRegistersAligned = false;
888  static constexpr bool kMultiRegistersWidened = false;
889  static constexpr bool kAlignLongOnStack = false;
890  static constexpr bool kAlignDoubleOnStack = false;
891#elif defined(__mips__)
892  // TODO: These are all dummy values!
893  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
894  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
895  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
896
897  static constexpr size_t kRegistersNeededForLong = 2;
898  static constexpr size_t kRegistersNeededForDouble = 2;
899  static constexpr bool kMultiRegistersAligned = true;
900  static constexpr bool kMultiRegistersWidened = true;
901  static constexpr bool kAlignLongOnStack = false;
902  static constexpr bool kAlignDoubleOnStack = false;
903#elif defined(__i386__)
904  // TODO: Check these!
905  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
906  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
907  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
908
909  static constexpr size_t kRegistersNeededForLong = 2;
910  static constexpr size_t kRegistersNeededForDouble = 2;
911  static constexpr bool kMultiRegistersAligned = false;       // x86 not using regs, anyways
912  static constexpr bool kMultiRegistersWidened = false;
913  static constexpr bool kAlignLongOnStack = false;
914  static constexpr bool kAlignDoubleOnStack = false;
915#elif defined(__x86_64__)
916  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
917  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
918  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
919
920  static constexpr size_t kRegistersNeededForLong = 1;
921  static constexpr size_t kRegistersNeededForDouble = 1;
922  static constexpr bool kMultiRegistersAligned = false;
923  static constexpr bool kMultiRegistersWidened = false;
924  static constexpr bool kAlignLongOnStack = false;
925  static constexpr bool kAlignDoubleOnStack = false;
926#else
927#error "Unsupported architecture"
928#endif
929
930 public:
931  explicit BuildGenericJniFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs),
932                                                           fpr_index_(kNumNativeFprArgs),
933                                                           stack_entries_(0),
934                                                           delegate_(delegate) {
935    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
936    // the next register is even; counting down is just to make the compiler happy...
937    CHECK_EQ(kNumNativeGprArgs % 2, 0U);
938    CHECK_EQ(kNumNativeFprArgs % 2, 0U);
939  }
940
941  virtual ~BuildGenericJniFrameStateMachine() {}
942
943  bool HavePointerGpr() {
944    return gpr_index_ > 0;
945  }
946
947  void AdvancePointer(void* val) {
948    if (HavePointerGpr()) {
949      gpr_index_--;
950      PushGpr(reinterpret_cast<uintptr_t>(val));
951    } else {
952      stack_entries_++;         // TODO: have a field for pointer length as multiple of 32b
953      PushStack(reinterpret_cast<uintptr_t>(val));
954      gpr_index_ = 0;
955    }
956  }
957
958
959  bool HaveSirtGpr() {
960    return gpr_index_ > 0;
961  }
962
963  void AdvanceSirt(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
964    uintptr_t sirtRef = PushSirt(ptr);
965    if (HaveSirtGpr()) {
966      gpr_index_--;
967      PushGpr(sirtRef);
968    } else {
969      stack_entries_++;
970      PushStack(sirtRef);
971      gpr_index_ = 0;
972    }
973  }
974
975
976  bool HaveIntGpr() {
977    return gpr_index_ > 0;
978  }
979
980  void AdvanceInt(uint32_t val) {
981    if (HaveIntGpr()) {
982      gpr_index_--;
983      PushGpr(val);
984    } else {
985      stack_entries_++;
986      PushStack(val);
987      gpr_index_ = 0;
988    }
989  }
990
991
992  bool HaveLongGpr() {
993    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
994  }
995
996  bool LongGprNeedsPadding() {
997    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
998        kAlignLongOnStack &&                  // and when it needs alignment
999        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1000  }
1001
1002  bool LongStackNeedsPadding() {
1003    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1004        kAlignLongOnStack &&                  // and when it needs 8B alignment
1005        (stack_entries_ & 1) == 1;            // counter is odd
1006  }
1007
1008  void AdvanceLong(uint64_t val) {
1009    if (HaveLongGpr()) {
1010      if (LongGprNeedsPadding()) {
1011        PushGpr(0);
1012        gpr_index_--;
1013      }
1014      if (kRegistersNeededForLong == 1) {
1015        PushGpr(static_cast<uintptr_t>(val));
1016      } else {
1017        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1018        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1019      }
1020      gpr_index_ -= kRegistersNeededForLong;
1021    } else {
1022      if (LongStackNeedsPadding()) {
1023        PushStack(0);
1024        stack_entries_++;
1025      }
1026      if (kRegistersNeededForLong == 1) {
1027        PushStack(static_cast<uintptr_t>(val));
1028        stack_entries_++;
1029      } else {
1030        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1031        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1032        stack_entries_ += 2;
1033      }
1034      gpr_index_ = 0;
1035    }
1036  }
1037
1038
1039  bool HaveFloatFpr() {
1040    return fpr_index_ > 0;
1041  }
1042
1043  template <typename U, typename V> V convert(U in) {
1044    CHECK_LE(sizeof(U), sizeof(V));
1045    union { U u; V v; } tmp;
1046    tmp.u = in;
1047    return tmp.v;
1048  }
1049
1050  void AdvanceFloat(float val) {
1051    if (kNativeSoftFloatAbi) {
1052      AdvanceInt(convert<float, uint32_t>(val));
1053    } else {
1054      if (HaveFloatFpr()) {
1055        fpr_index_--;
1056        if (kRegistersNeededForDouble == 1) {
1057          if (kMultiRegistersWidened) {
1058            PushFpr8(convert<double, uint64_t>(val));
1059          } else {
1060            // No widening, just use the bits.
1061            PushFpr8(convert<float, uint64_t>(val));
1062          }
1063        } else {
1064          PushFpr4(val);
1065        }
1066      } else {
1067        stack_entries_++;
1068        if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1069          // Need to widen before storing: Note the "double" in the template instantiation.
1070          PushStack(convert<double, uintptr_t>(val));
1071        } else {
1072          PushStack(convert<float, uintptr_t>(val));
1073        }
1074        fpr_index_ = 0;
1075      }
1076    }
1077  }
1078
1079
1080  bool HaveDoubleFpr() {
1081    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1082  }
1083
1084  bool DoubleFprNeedsPadding() {
1085    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1086        kAlignDoubleOnStack &&                  // and when it needs alignment
1087        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1088  }
1089
1090  bool DoubleStackNeedsPadding() {
1091    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1092        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1093        (stack_entries_ & 1) == 1;              // counter is odd
1094  }
1095
1096  void AdvanceDouble(uint64_t val) {
1097    if (kNativeSoftFloatAbi) {
1098      AdvanceLong(val);
1099    } else {
1100      if (HaveDoubleFpr()) {
1101        if (DoubleFprNeedsPadding()) {
1102          PushFpr4(0);
1103          fpr_index_--;
1104        }
1105        PushFpr8(val);
1106        fpr_index_ -= kRegistersNeededForDouble;
1107      } else {
1108        if (DoubleStackNeedsPadding()) {
1109          PushStack(0);
1110          stack_entries_++;
1111        }
1112        if (kRegistersNeededForDouble == 1) {
1113          PushStack(static_cast<uintptr_t>(val));
1114          stack_entries_++;
1115        } else {
1116          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1117          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1118          stack_entries_ += 2;
1119        }
1120        fpr_index_ = 0;
1121      }
1122    }
1123  }
1124
1125  uint32_t getStackEntries() {
1126    return stack_entries_;
1127  }
1128
1129  uint32_t getNumberOfUsedGprs() {
1130    return kNumNativeGprArgs - gpr_index_;
1131  }
1132
1133  uint32_t getNumberOfUsedFprs() {
1134    return kNumNativeFprArgs - fpr_index_;
1135  }
1136
1137 private:
1138  void PushGpr(uintptr_t val) {
1139    delegate_->PushGpr(val);
1140  }
1141  void PushFpr4(float val) {
1142    delegate_->PushFpr4(val);
1143  }
1144  void PushFpr8(uint64_t val) {
1145    delegate_->PushFpr8(val);
1146  }
1147  void PushStack(uintptr_t val) {
1148    delegate_->PushStack(val);
1149  }
1150  uintptr_t PushSirt(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1151    return delegate_->PushSirt(ref);
1152  }
1153
1154  uint32_t gpr_index_;      // Number of free GPRs
1155  uint32_t fpr_index_;      // Number of free FPRs
1156  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1157                            // extended
1158  T* delegate_;             // What Push implementation gets called
1159};
1160
1161class ComputeGenericJniFrameSize FINAL {
1162 public:
1163  ComputeGenericJniFrameSize() : num_sirt_references_(0), num_stack_entries_(0) {}
1164
1165  uint32_t GetStackSize() {
1166    return num_stack_entries_ * sizeof(uintptr_t);
1167  }
1168
1169  // WARNING: After this, *sp won't be pointing to the method anymore!
1170  void ComputeLayout(mirror::ArtMethod*** m, bool is_static, const char* shorty, uint32_t shorty_len,
1171                     void* sp, StackIndirectReferenceTable** table, uint32_t* sirt_entries,
1172                     uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr,
1173                     void** code_return, size_t* overall_size)
1174      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1175    ComputeAll(is_static, shorty, shorty_len);
1176
1177    mirror::ArtMethod* method = **m;
1178
1179    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1180
1181    // First, fix up the layout of the callee-save frame.
1182    // We have to squeeze in the Sirt, and relocate the method pointer.
1183
1184    // "Free" the slot for the method.
1185    sp8 += kPointerSize;
1186
1187    // Add the Sirt.
1188    *sirt_entries = num_sirt_references_;
1189    size_t sirt_size = StackIndirectReferenceTable::GetAlignedSirtSize(num_sirt_references_);
1190    sp8 -= sirt_size;
1191    *table = reinterpret_cast<StackIndirectReferenceTable*>(sp8);
1192    (*table)->SetNumberOfReferences(num_sirt_references_);
1193
1194    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1195    sp8 -= kPointerSize;
1196    uint8_t* method_pointer = sp8;
1197    *(reinterpret_cast<mirror::ArtMethod**>(method_pointer)) = method;
1198    *m = reinterpret_cast<mirror::ArtMethod**>(method_pointer);
1199
1200    // Reference cookie and padding
1201    sp8 -= 8;
1202    // Store Sirt size
1203    *reinterpret_cast<uint32_t*>(sp8) = static_cast<uint32_t>(sirt_size & 0xFFFFFFFF);
1204
1205    // Next comes the native call stack.
1206    sp8 -= GetStackSize();
1207    // Now align the call stack below. This aligns by 16, as AArch64 seems to require.
1208    uintptr_t mask = ~0x0F;
1209    sp8 = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(sp8) & mask);
1210    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1211
1212    // put fprs and gprs below
1213    // Assumption is OK right now, as we have soft-float arm
1214    size_t fregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeFprArgs;
1215    sp8 -= fregs * sizeof(uintptr_t);
1216    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1217    size_t iregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeGprArgs;
1218    sp8 -= iregs * sizeof(uintptr_t);
1219    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1220
1221    // reserve space for the code pointer
1222    sp8 -= kPointerSize;
1223    *code_return = reinterpret_cast<void*>(sp8);
1224
1225    *overall_size = reinterpret_cast<uint8_t*>(sp) - sp8;
1226
1227    // The new SP is stored at the end of the alloca, so it can be immediately popped
1228    sp8 = reinterpret_cast<uint8_t*>(sp) - 5 * KB;
1229    *(reinterpret_cast<uint8_t**>(sp8)) = method_pointer;
1230  }
1231
1232  void ComputeSirtOffset() { }  // nothing to do, static right now
1233
1234  void ComputeAll(bool is_static, const char* shorty, uint32_t shorty_len)
1235      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1236    BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize> sm(this);
1237
1238    // JNIEnv
1239    sm.AdvancePointer(nullptr);
1240
1241    // Class object or this as first argument
1242    sm.AdvanceSirt(reinterpret_cast<mirror::Object*>(0x12345678));
1243
1244    for (uint32_t i = 1; i < shorty_len; ++i) {
1245      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1246      switch (cur_type_) {
1247        case Primitive::kPrimNot:
1248          sm.AdvanceSirt(reinterpret_cast<mirror::Object*>(0x12345678));
1249          break;
1250
1251        case Primitive::kPrimBoolean:
1252        case Primitive::kPrimByte:
1253        case Primitive::kPrimChar:
1254        case Primitive::kPrimShort:
1255        case Primitive::kPrimInt:
1256          sm.AdvanceInt(0);
1257          break;
1258        case Primitive::kPrimFloat:
1259          sm.AdvanceFloat(0);
1260          break;
1261        case Primitive::kPrimDouble:
1262          sm.AdvanceDouble(0);
1263          break;
1264        case Primitive::kPrimLong:
1265          sm.AdvanceLong(0);
1266          break;
1267        default:
1268          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1269      }
1270    }
1271
1272    num_stack_entries_ = sm.getStackEntries();
1273  }
1274
1275  void PushGpr(uintptr_t /* val */) {
1276    // not optimizing registers, yet
1277  }
1278
1279  void PushFpr4(float /* val */) {
1280    // not optimizing registers, yet
1281  }
1282
1283  void PushFpr8(uint64_t /* val */) {
1284    // not optimizing registers, yet
1285  }
1286
1287  void PushStack(uintptr_t /* val */) {
1288    // counting is already done in the superclass
1289  }
1290
1291  uintptr_t PushSirt(mirror::Object* /* ptr */) {
1292    num_sirt_references_++;
1293    return reinterpret_cast<uintptr_t>(nullptr);
1294  }
1295
1296 private:
1297  uint32_t num_sirt_references_;
1298  uint32_t num_stack_entries_;
1299};
1300
1301// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1302// of transitioning into native code.
1303class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1304 public:
1305  BuildGenericJniFrameVisitor(mirror::ArtMethod*** sp, bool is_static, const char* shorty,
1306                              uint32_t shorty_len, Thread* self) :
1307      QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), sm_(this) {
1308    ComputeGenericJniFrameSize fsc;
1309    fsc.ComputeLayout(sp, is_static, shorty, shorty_len, *sp, &sirt_, &sirt_expected_refs_,
1310                      &cur_stack_arg_, &cur_gpr_reg_, &cur_fpr_reg_, &code_return_,
1311                      &alloca_used_size_);
1312    sirt_number_of_references_ = 0;
1313    cur_sirt_entry_ = reinterpret_cast<StackReference<mirror::Object>*>(GetFirstSirtEntry());
1314
1315    // jni environment is always first argument
1316    sm_.AdvancePointer(self->GetJniEnv());
1317
1318    if (is_static) {
1319      sm_.AdvanceSirt((**sp)->GetDeclaringClass());
1320    }
1321  }
1322
1323  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1324
1325  void FinalizeSirt(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1326
1327  jobject GetFirstSirtEntry() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1328    return reinterpret_cast<jobject>(sirt_->GetStackReference(0));
1329  }
1330
1331  void PushGpr(uintptr_t val) {
1332    *cur_gpr_reg_ = val;
1333    cur_gpr_reg_++;
1334  }
1335
1336  void PushFpr4(float val) {
1337    *cur_fpr_reg_ = val;
1338    cur_fpr_reg_++;
1339  }
1340
1341  void PushFpr8(uint64_t val) {
1342    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1343    *tmp = val;
1344    cur_fpr_reg_ += 2;
1345  }
1346
1347  void PushStack(uintptr_t val) {
1348    *cur_stack_arg_ = val;
1349    cur_stack_arg_++;
1350  }
1351
1352  uintptr_t PushSirt(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1353    uintptr_t tmp;
1354    if (ref == nullptr) {
1355      *cur_sirt_entry_ = StackReference<mirror::Object>();
1356      tmp = reinterpret_cast<uintptr_t>(nullptr);
1357    } else {
1358      *cur_sirt_entry_ = StackReference<mirror::Object>::FromMirrorPtr(ref);
1359      tmp = reinterpret_cast<uintptr_t>(cur_sirt_entry_);
1360    }
1361    cur_sirt_entry_++;
1362    sirt_number_of_references_++;
1363    return tmp;
1364  }
1365
1366  // Size of the part of the alloca that we actually need.
1367  size_t GetAllocaUsedSize() {
1368    return alloca_used_size_;
1369  }
1370
1371  void* GetCodeReturn() {
1372    return code_return_;
1373  }
1374
1375 private:
1376  uint32_t sirt_number_of_references_;
1377  StackReference<mirror::Object>* cur_sirt_entry_;
1378  StackIndirectReferenceTable* sirt_;
1379  uint32_t sirt_expected_refs_;
1380  uintptr_t* cur_gpr_reg_;
1381  uint32_t* cur_fpr_reg_;
1382  uintptr_t* cur_stack_arg_;
1383  // StackReference<mirror::Object>* top_of_sirt_;
1384  void* code_return_;
1385  size_t alloca_used_size_;
1386
1387  BuildGenericJniFrameStateMachine<BuildGenericJniFrameVisitor> sm_;
1388
1389  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1390};
1391
1392void BuildGenericJniFrameVisitor::Visit() {
1393  Primitive::Type type = GetParamPrimitiveType();
1394  switch (type) {
1395    case Primitive::kPrimLong: {
1396      jlong long_arg;
1397      if (IsSplitLongOrDouble()) {
1398        long_arg = ReadSplitLongParam();
1399      } else {
1400        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1401      }
1402      sm_.AdvanceLong(long_arg);
1403      break;
1404    }
1405    case Primitive::kPrimDouble: {
1406      uint64_t double_arg;
1407      if (IsSplitLongOrDouble()) {
1408        // Read into union so that we don't case to a double.
1409        double_arg = ReadSplitLongParam();
1410      } else {
1411        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1412      }
1413      sm_.AdvanceDouble(double_arg);
1414      break;
1415    }
1416    case Primitive::kPrimNot: {
1417      StackReference<mirror::Object>* stack_ref =
1418          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1419      sm_.AdvanceSirt(stack_ref->AsMirrorPtr());
1420      break;
1421    }
1422    case Primitive::kPrimFloat:
1423      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1424      break;
1425    case Primitive::kPrimBoolean:  // Fall-through.
1426    case Primitive::kPrimByte:     // Fall-through.
1427    case Primitive::kPrimChar:     // Fall-through.
1428    case Primitive::kPrimShort:    // Fall-through.
1429    case Primitive::kPrimInt:      // Fall-through.
1430      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1431      break;
1432    case Primitive::kPrimVoid:
1433      LOG(FATAL) << "UNREACHABLE";
1434      break;
1435  }
1436}
1437
1438void BuildGenericJniFrameVisitor::FinalizeSirt(Thread* self) {
1439  // Initialize padding entries.
1440  while (sirt_number_of_references_ < sirt_expected_refs_) {
1441    *cur_sirt_entry_ = StackReference<mirror::Object>();
1442    cur_sirt_entry_++;
1443    sirt_number_of_references_++;
1444  }
1445  sirt_->SetNumberOfReferences(sirt_expected_refs_);
1446  DCHECK_NE(sirt_expected_refs_, 0U);
1447  // Install Sirt.
1448  self->PushSirt(sirt_);
1449}
1450
1451extern "C" void* artFindNativeMethod();
1452
1453uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1454  if (lock != nullptr) {
1455    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1456  } else {
1457    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1458  }
1459}
1460
1461void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1462  if (lock != nullptr) {
1463    JniMethodEndSynchronized(cookie, lock, self);
1464  } else {
1465    JniMethodEnd(cookie, self);
1466  }
1467}
1468
1469/*
1470 * Initializes an alloca region assumed to be directly below sp for a native call:
1471 * Create a Sirt and call stack and fill a mini stack with values to be pushed to registers.
1472 * The final element on the stack is a pointer to the native code.
1473 *
1474 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1475 * We need to fix this, as the Sirt needs to go into the callee-save frame.
1476 *
1477 * The return of this function denotes:
1478 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1479 * 2) An error, if the value is negative.
1480 */
1481extern "C" ssize_t artQuickGenericJniTrampoline(Thread* self, mirror::ArtMethod** sp)
1482    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1483  mirror::ArtMethod* called = *sp;
1484  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1485
1486  // run the visitor
1487  MethodHelper mh(called);
1488
1489  BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), mh.GetShorty(), mh.GetShortyLength(),
1490                                      self);
1491  visitor.VisitArguments();
1492  visitor.FinalizeSirt(self);
1493
1494  // fix up managed-stack things in Thread
1495  self->SetTopOfStack(sp, 0);
1496
1497  self->VerifyStack();
1498
1499  // Start JNI, save the cookie.
1500  uint32_t cookie;
1501  if (called->IsSynchronized()) {
1502    cookie = JniMethodStartSynchronized(visitor.GetFirstSirtEntry(), self);
1503    if (self->IsExceptionPending()) {
1504      self->PopSirt();
1505      // A negative value denotes an error.
1506      return -1;
1507    }
1508  } else {
1509    cookie = JniMethodStart(self);
1510  }
1511  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1512  *(sp32 - 1) = cookie;
1513
1514  // Retrieve the stored native code.
1515  const void* nativeCode = called->GetNativeMethod();
1516
1517  // There are two cases for the content of nativeCode:
1518  // 1) Pointer to the native function.
1519  // 2) Pointer to the trampoline for native code binding.
1520  // In the second case, we need to execute the binding and continue with the actual native function
1521  // pointer.
1522  DCHECK(nativeCode != nullptr);
1523  if (nativeCode == GetJniDlsymLookupStub()) {
1524    nativeCode = artFindNativeMethod();
1525
1526    if (nativeCode == nullptr) {
1527      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1528
1529      // End JNI, as the assembly will move to deliver the exception.
1530      jobject lock = called->IsSynchronized() ? visitor.GetFirstSirtEntry() : nullptr;
1531      if (mh.GetShorty()[0] == 'L') {
1532        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1533      } else {
1534        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1535      }
1536
1537      return -1;
1538    }
1539    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1540  }
1541
1542  // Store the native code pointer in the stack at the right location.
1543  uintptr_t* code_pointer = reinterpret_cast<uintptr_t*>(visitor.GetCodeReturn());
1544  *code_pointer = reinterpret_cast<uintptr_t>(nativeCode);
1545
1546  // 5K reserved, window_size + frame pointer used.
1547  size_t window_size = visitor.GetAllocaUsedSize();
1548  return (5 * KB) - window_size - kPointerSize;
1549}
1550
1551/*
1552 * Is called after the native JNI code. Responsible for cleanup (SIRT, saved state) and
1553 * unlocking.
1554 */
1555extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, mirror::ArtMethod** sp,
1556                                                    jvalue result, uint64_t result_f)
1557    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1558  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1559  mirror::ArtMethod* called = *sp;
1560  uint32_t cookie = *(sp32 - 1);
1561
1562  jobject lock = nullptr;
1563  if (called->IsSynchronized()) {
1564    StackIndirectReferenceTable* table =
1565        reinterpret_cast<StackIndirectReferenceTable*>(
1566            reinterpret_cast<uint8_t*>(sp) + kPointerSize);
1567    lock = reinterpret_cast<jobject>(table->GetStackReference(0));
1568  }
1569
1570  MethodHelper mh(called);
1571  char return_shorty_char = mh.GetShorty()[0];
1572
1573  if (return_shorty_char == 'L') {
1574    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1575  } else {
1576    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1577
1578    switch (return_shorty_char) {
1579      case 'F':  // Fall-through.
1580      case 'D':
1581        return result_f;
1582      case 'Z':
1583        return result.z;
1584      case 'B':
1585        return result.b;
1586      case 'C':
1587        return result.c;
1588      case 'S':
1589        return result.s;
1590      case 'I':
1591        return result.i;
1592      case 'J':
1593        return result.j;
1594      case 'V':
1595        return 0;
1596      default:
1597        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1598        return 0;
1599    }
1600  }
1601}
1602
1603template<InvokeType type, bool access_check>
1604static uint64_t artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1605                                mirror::ArtMethod* caller_method,
1606                                Thread* self, mirror::ArtMethod** sp);
1607
1608template<InvokeType type, bool access_check>
1609static uint64_t artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1610                                mirror::ArtMethod* caller_method,
1611                                Thread* self, mirror::ArtMethod** sp) {
1612  mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1613                                             type);
1614  if (UNLIKELY(method == nullptr)) {
1615    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1616    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1617    uint32_t shorty_len;
1618    const char* shorty =
1619        dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1620    {
1621      // Remember the args in case a GC happens in FindMethodFromCode.
1622      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1623      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1624      visitor.VisitArguments();
1625      method = FindMethodFromCode<type, access_check>(method_idx, this_object, caller_method, self);
1626      visitor.FixupReferences();
1627    }
1628
1629    if (UNLIKELY(method == NULL)) {
1630      CHECK(self->IsExceptionPending());
1631      return 0;  // failure
1632    }
1633  }
1634  DCHECK(!self->IsExceptionPending());
1635  const void* code = method->GetEntryPointFromQuickCompiledCode();
1636
1637  // When we return, the caller will branch to this address, so it had better not be 0!
1638  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
1639      << MethodHelper(method).GetDexFile().GetLocation();
1640#ifdef __LP64__
1641  UNIMPLEMENTED(FATAL);
1642  return 0;
1643#else
1644  uint32_t method_uint = reinterpret_cast<uint32_t>(method);
1645  uint64_t code_uint = reinterpret_cast<uint32_t>(code);
1646  uint64_t result = ((code_uint << 32) | method_uint);
1647  return result;
1648#endif
1649}
1650
1651// Explicit artInvokeCommon template function declarations to please analysis tool.
1652#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1653  template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1654  uint64_t artInvokeCommon<type, access_check>(uint32_t method_idx,                             \
1655                                               mirror::Object* this_object,                     \
1656                                               mirror::ArtMethod* caller_method,                \
1657                                               Thread* self, mirror::ArtMethod** sp)            \
1658
1659EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1660EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1661EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1662EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1663EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1664EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1665EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1666EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1667EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1668EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1669#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1670
1671
1672// See comments in runtime_support_asm.S
1673extern "C" uint64_t artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,
1674                                                                mirror::Object* this_object,
1675                                                                mirror::ArtMethod* caller_method,
1676                                                                Thread* self,
1677                                                                mirror::ArtMethod** sp)
1678    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1679  return artInvokeCommon<kInterface, true>(method_idx, this_object, caller_method, self, sp);
1680}
1681
1682
1683extern "C" uint64_t artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,
1684                                                             mirror::Object* this_object,
1685                                                             mirror::ArtMethod* caller_method,
1686                                                             Thread* self,
1687                                                             mirror::ArtMethod** sp)
1688    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1689  return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, self, sp);
1690}
1691
1692extern "C" uint64_t artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,
1693                                                             mirror::Object* this_object,
1694                                                             mirror::ArtMethod* caller_method,
1695                                                             Thread* self,
1696                                                             mirror::ArtMethod** sp)
1697    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1698  return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, self, sp);
1699}
1700
1701extern "C" uint64_t artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,
1702                                                            mirror::Object* this_object,
1703                                                            mirror::ArtMethod* caller_method,
1704                                                            Thread* self,
1705                                                            mirror::ArtMethod** sp)
1706    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1707  return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, self, sp);
1708}
1709
1710extern "C" uint64_t artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,
1711                                                              mirror::Object* this_object,
1712                                                              mirror::ArtMethod* caller_method,
1713                                                              Thread* self,
1714                                                              mirror::ArtMethod** sp)
1715    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1716  return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, self, sp);
1717}
1718
1719// Determine target of interface dispatch. This object is known non-null.
1720extern "C" uint64_t artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1721                                                 mirror::Object* this_object,
1722                                                 mirror::ArtMethod* caller_method,
1723                                                 Thread* self, mirror::ArtMethod** sp)
1724    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1725  mirror::ArtMethod* method;
1726  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1727    method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1728    if (UNLIKELY(method == NULL)) {
1729      FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1730      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1731                                                                 caller_method);
1732      return 0;  // Failure.
1733    }
1734  } else {
1735    FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1736    DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1737    // Determine method index from calling dex instruction.
1738#if defined(__arm__)
1739    // On entry the stack pointed by sp is:
1740    // | argN       |  |
1741    // | ...        |  |
1742    // | arg4       |  |
1743    // | arg3 spill |  |  Caller's frame
1744    // | arg2 spill |  |
1745    // | arg1 spill |  |
1746    // | Method*    | ---
1747    // | LR         |
1748    // | ...        |    callee saves
1749    // | R3         |    arg3
1750    // | R2         |    arg2
1751    // | R1         |    arg1
1752    // | R0         |
1753    // | Method*    |  <- sp
1754    DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1755    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + kPointerSize);
1756    uintptr_t caller_pc = regs[10];
1757#elif defined(__i386__)
1758    // On entry the stack pointed by sp is:
1759    // | argN        |  |
1760    // | ...         |  |
1761    // | arg4        |  |
1762    // | arg3 spill  |  |  Caller's frame
1763    // | arg2 spill  |  |
1764    // | arg1 spill  |  |
1765    // | Method*     | ---
1766    // | Return      |
1767    // | EBP,ESI,EDI |    callee saves
1768    // | EBX         |    arg3
1769    // | EDX         |    arg2
1770    // | ECX         |    arg1
1771    // | EAX/Method* |  <- sp
1772    DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1773    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
1774    uintptr_t caller_pc = regs[7];
1775#elif defined(__mips__)
1776    // On entry the stack pointed by sp is:
1777    // | argN       |  |
1778    // | ...        |  |
1779    // | arg4       |  |
1780    // | arg3 spill |  |  Caller's frame
1781    // | arg2 spill |  |
1782    // | arg1 spill |  |
1783    // | Method*    | ---
1784    // | RA         |
1785    // | ...        |    callee saves
1786    // | A3         |    arg3
1787    // | A2         |    arg2
1788    // | A1         |    arg1
1789    // | A0/Method* |  <- sp
1790    DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
1791    uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
1792    uintptr_t caller_pc = regs[15];
1793#else
1794    UNIMPLEMENTED(FATAL);
1795    uintptr_t caller_pc = 0;
1796#endif
1797    uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1798    const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem();
1799    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1800    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1801    Instruction::Code instr_code = instr->Opcode();
1802    CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1803          instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1804        << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1805    uint32_t dex_method_idx;
1806    if (instr_code == Instruction::INVOKE_INTERFACE) {
1807      dex_method_idx = instr->VRegB_35c();
1808    } else {
1809      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1810      dex_method_idx = instr->VRegB_3rc();
1811    }
1812
1813    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1814    uint32_t shorty_len;
1815    const char* shorty =
1816        dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
1817    {
1818      // Remember the args in case a GC happens in FindMethodFromCode.
1819      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1820      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1821      visitor.VisitArguments();
1822      method = FindMethodFromCode<kInterface, false>(dex_method_idx, this_object, caller_method,
1823                                                     self);
1824      visitor.FixupReferences();
1825    }
1826
1827    if (UNLIKELY(method == nullptr)) {
1828      CHECK(self->IsExceptionPending());
1829      return 0;  // Failure.
1830    }
1831  }
1832  const void* code = method->GetEntryPointFromQuickCompiledCode();
1833
1834  // When we return, the caller will branch to this address, so it had better not be 0!
1835  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: "
1836      << MethodHelper(method).GetDexFile().GetLocation();
1837#ifdef __LP64__
1838  UNIMPLEMENTED(FATAL);
1839  return 0;
1840#else
1841  uint32_t method_uint = reinterpret_cast<uint32_t>(method);
1842  uint64_t code_uint = reinterpret_cast<uint32_t>(code);
1843  uint64_t result = ((code_uint << 32) | method_uint);
1844  return result;
1845#endif
1846}
1847
1848}  // namespace art
1849