heap.h revision 0a9dc05e704bfd033bac2aa38a4fc6f6b8e6cf93
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_H_
18#define ART_RUNTIME_GC_HEAP_H_
19
20#include <iosfwd>
21#include <string>
22#include <vector>
23
24#include "atomic_integer.h"
25#include "base/timing_logger.h"
26#include "gc/accounting/atomic_stack.h"
27#include "gc/accounting/gc_allocator.h"
28#include "gc/accounting/card_table.h"
29#include "gc/collector/gc_type.h"
30#include "globals.h"
31#include "gtest/gtest.h"
32#include "locks.h"
33#include "offsets.h"
34#include "safe_map.h"
35#include "thread_pool.h"
36
37namespace art {
38
39class ConditionVariable;
40class Mutex;
41class StackVisitor;
42class Thread;
43class TimingLogger;
44
45namespace mirror {
46  class Class;
47  class Object;
48}  // namespace mirror
49
50namespace gc {
51namespace accounting {
52  class HeapBitmap;
53  class ModUnionTable;
54  class SpaceSetMap;
55}  // namespace accounting
56
57namespace collector {
58  class GarbageCollector;
59  class MarkSweep;
60}  // namespace collector
61
62namespace space {
63  class AllocSpace;
64  class DiscontinuousSpace;
65  class DlMallocSpace;
66  class ImageSpace;
67  class LargeObjectSpace;
68  class Space;
69  class SpaceTest;
70}  // namespace space
71
72class AgeCardVisitor {
73 public:
74  byte operator()(byte card) const {
75    if (card == accounting::CardTable::kCardDirty) {
76      return card - 1;
77    } else {
78      return 0;
79    }
80  }
81};
82
83// What caused the GC?
84enum GcCause {
85  // GC triggered by a failed allocation. Thread doing allocation is blocked waiting for GC before
86  // retrying allocation.
87  kGcCauseForAlloc,
88  // A background GC trying to ensure there is free memory ahead of allocations.
89  kGcCauseBackground,
90  // An explicit System.gc() call.
91  kGcCauseExplicit,
92};
93std::ostream& operator<<(std::ostream& os, const GcCause& policy);
94
95// How we want to sanity check the heap's correctness.
96enum HeapVerificationMode {
97  kHeapVerificationNotPermitted,  // Too early in runtime start-up for heap to be verified.
98  kNoHeapVerification,  // Production default.
99  kVerifyAllFast,  // Sanity check all heap accesses with quick(er) tests.
100  kVerifyAll  // Sanity check all heap accesses.
101};
102const HeapVerificationMode kDesiredHeapVerification = kNoHeapVerification;
103
104// This comes from ActivityManager and needs to be kept in sync.
105enum ProcessState {
106  PROCESS_STATE_PERSISTENT = 0,
107  PROCESS_STATE_PERSISTENT_UI = 1,
108  PROCESS_STATE_TOP = 2,
109  PROCESS_STATE_IMPORTANT_FOREGROUND = 3,
110  PROCESS_STATE_IMPORTANT_BACKGROUND = 4,
111  PROCESS_STATE_BACKUP = 5,
112  PROCESS_STATE_HEAVY_WEIGHT = 6,
113  PROCESS_STATE_SERVICE = 7,
114  PROCESS_STATE_RECEIVER = 8,
115  PROCESS_STATE_HOME = 9,
116  PROCESS_STATE_LAST_ACTIVITY = 10,
117  PROCESS_STATE_CACHED_ACTIVITY = 11,
118  PROCESS_STATE_CACHED_ACTIVITY_CLIENT = 12,
119  PROCESS_STATE_CACHED_EMPTY = 13,
120};
121
122class Heap {
123 public:
124  static const size_t kDefaultInitialSize = 2 * MB;
125  static const size_t kDefaultMaximumSize = 32 * MB;
126  static const size_t kDefaultMaxFree = 2 * MB;
127  static const size_t kDefaultMinFree = kDefaultMaxFree / 4;
128
129  // Default target utilization.
130  static const double kDefaultTargetUtilization;
131
132  // Used so that we don't overflow the allocation time atomic integer.
133  static const size_t kTimeAdjust = 1024;
134
135  // Create a heap with the requested sizes. The possible empty
136  // image_file_names names specify Spaces to load based on
137  // ImageWriter output.
138  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
139                size_t max_free, double target_utilization, size_t capacity,
140                const std::string& original_image_file_name, bool concurrent_gc,
141                size_t num_gc_threads);
142
143  ~Heap();
144
145  // Allocates and initializes storage for an object instance.
146  mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes)
147      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
148
149  void RegisterNativeAllocation(int bytes)
150      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
151  void RegisterNativeFree(int bytes) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
152
153  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
154  void VerifyObjectImpl(const mirror::Object* o);
155  void VerifyObject(const mirror::Object* o) {
156    if (o != NULL && this != NULL && verify_object_mode_ > kNoHeapVerification) {
157      VerifyObjectImpl(o);
158    }
159  }
160
161  // Check sanity of all live references.
162  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
163  bool VerifyHeapReferences()
164      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
165  bool VerifyMissingCardMarks()
166      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_)
167      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
168
169  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
170  // and doesn't abort on error, allowing the caller to report more
171  // meaningful diagnostics.
172  bool IsHeapAddress(const mirror::Object* obj);
173
174  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
175  // Requires the heap lock to be held.
176  bool IsLiveObjectLocked(const mirror::Object* obj)
177      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
178
179  // Initiates an explicit garbage collection.
180  void CollectGarbage(bool clear_soft_references) LOCKS_EXCLUDED(Locks::mutator_lock_);
181
182  // Does a concurrent GC, should only be called by the GC daemon thread
183  // through runtime.
184  void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
185
186  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
187  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
188  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
189                      uint64_t* counts)
190      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
191      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
192  // Implements JDWP RT_Instances.
193  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
194      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
195      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
196  // Implements JDWP OR_ReferringObjects.
197  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
198      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
199      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
200
201  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
202  // implement dalvik.system.VMRuntime.clearGrowthLimit.
203  void ClearGrowthLimit();
204
205  // Target ideal heap utilization ratio, implements
206  // dalvik.system.VMRuntime.getTargetHeapUtilization.
207  double GetTargetHeapUtilization() const {
208    return target_utilization_;
209  }
210
211  // Data structure memory usage tracking.
212  void RegisterGCAllocation(size_t bytes);
213  void RegisterGCDeAllocation(size_t bytes);
214
215  // Set target ideal heap utilization ratio, implements
216  // dalvik.system.VMRuntime.setTargetHeapUtilization.
217  void SetTargetHeapUtilization(float target);
218
219  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
220  // from the system. Doesn't allow the space to exceed its growth limit.
221  void SetIdealFootprint(size_t max_allowed_footprint);
222
223  // Blocks the caller until the garbage collector becomes idle and returns
224  // true if we waited for the GC to complete.
225  collector::GcType WaitForConcurrentGcToComplete(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);
226
227  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
228    return continuous_spaces_;
229  }
230
231  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
232    return discontinuous_spaces_;
233  }
234
235  void SetReferenceOffsets(MemberOffset reference_referent_offset,
236                           MemberOffset reference_queue_offset,
237                           MemberOffset reference_queueNext_offset,
238                           MemberOffset reference_pendingNext_offset,
239                           MemberOffset finalizer_reference_zombie_offset);
240
241  mirror::Object* GetReferenceReferent(mirror::Object* reference);
242  void ClearReferenceReferent(mirror::Object* reference) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
243
244  // Returns true if the reference object has not yet been enqueued.
245  bool IsEnqueuable(const mirror::Object* ref);
246  void EnqueueReference(mirror::Object* ref, mirror::Object** list) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
247  void EnqueuePendingReference(mirror::Object* ref, mirror::Object** list)
248      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
249  mirror::Object* DequeuePendingReference(mirror::Object** list) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
250
251  MemberOffset GetReferencePendingNextOffset() {
252    DCHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
253    return reference_pendingNext_offset_;
254  }
255
256  MemberOffset GetFinalizerReferenceZombieOffset() {
257    DCHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
258    return finalizer_reference_zombie_offset_;
259  }
260
261  // Enable verification of object references when the runtime is sufficiently initialized.
262  void EnableObjectValidation() {
263    verify_object_mode_ = kDesiredHeapVerification;
264    if (verify_object_mode_ > kNoHeapVerification) {
265      VerifyHeap();
266    }
267  }
268
269  // Disable object reference verification for image writing.
270  void DisableObjectValidation() {
271    verify_object_mode_ = kHeapVerificationNotPermitted;
272  }
273
274  // Other checks may be performed if we know the heap should be in a sane state.
275  bool IsObjectValidationEnabled() const {
276    return kDesiredHeapVerification > kNoHeapVerification &&
277        verify_object_mode_ > kHeapVerificationNotPermitted;
278  }
279
280  void RecordFree(size_t freed_objects, size_t freed_bytes);
281
282  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
283  // The call is not needed if NULL is stored in the field.
284  void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/, const mirror::Object* /*new_value*/) {
285    card_table_->MarkCard(dst);
286  }
287
288  // Write barrier for array operations that update many field positions
289  void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
290                         size_t /*length TODO: element_count or byte_count?*/) {
291    card_table_->MarkCard(dst);
292  }
293
294  accounting::CardTable* GetCardTable() const {
295    return card_table_.get();
296  }
297
298  void AddFinalizerReference(Thread* self, mirror::Object* object);
299
300  // Returns the number of bytes currently allocated.
301  size_t GetBytesAllocated() const {
302    return num_bytes_allocated_;
303  }
304
305  // Returns the number of objects currently allocated.
306  size_t GetObjectsAllocated() const;
307
308  // Returns the total number of objects allocated since the heap was created.
309  size_t GetObjectsAllocatedEver() const;
310
311  // Returns the total number of bytes allocated since the heap was created.
312  size_t GetBytesAllocatedEver() const;
313
314  // Returns the total number of objects freed since the heap was created.
315  size_t GetObjectsFreedEver() const {
316    return total_objects_freed_ever_;
317  }
318
319  // Returns the total number of bytes freed since the heap was created.
320  size_t GetBytesFreedEver() const {
321    return total_bytes_freed_ever_;
322  }
323
324  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
325  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
326  // were specified. Android apps start with a growth limit (small heap size) which is
327  // cleared/extended for large apps.
328  int64_t GetMaxMemory() const {
329    return growth_limit_;
330  }
331
332  // Implements java.lang.Runtime.totalMemory, returning the amount of memory consumed by an
333  // application.
334  int64_t GetTotalMemory() const {
335    // TODO: we use the footprint limit here which is conservative wrt number of pages really used.
336    //       We could implement a more accurate count across all spaces.
337    return max_allowed_footprint_;
338  }
339
340  // Implements java.lang.Runtime.freeMemory.
341  int64_t GetFreeMemory() const {
342    return GetTotalMemory() - num_bytes_allocated_;
343  }
344
345  // Get the space that corresponds to an object's address. Current implementation searches all
346  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
347  // TODO: consider using faster data structure like binary tree.
348  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
349  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
350                                                              bool fail_ok) const;
351  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;
352
353  void DumpForSigQuit(std::ostream& os);
354
355  size_t Trim();
356
357  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
358    return live_bitmap_.get();
359  }
360
361  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
362    return mark_bitmap_.get();
363  }
364
365  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
366    return live_stack_.get();
367  }
368
369  void PreZygoteFork() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
370
371  // Mark and empty stack.
372  void FlushAllocStack()
373      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
374
375  // Mark all the objects in the allocation stack in the specified bitmap.
376  void MarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects,
377                      accounting::ObjectStack* stack)
378      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
379
380  // Unmark all the objects in the allocation stack in the specified bitmap.
381  void UnMarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects,
382                        accounting::ObjectStack* stack)
383      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
384
385  // Update and mark mod union table based on gc type.
386  void UpdateAndMarkModUnion(collector::MarkSweep* mark_sweep, base::NewTimingLogger& timings,
387                             collector::GcType gc_type)
388      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
389
390  // Update process state to let the heap know which type of GC to do.
391  void UpdateProcessState(ProcessState process_state);
392
393  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
394  // Assumes there is only one image space.
395  space::ImageSpace* GetImageSpace() const;
396
397  space::DlMallocSpace* GetAllocSpace() const {
398    return alloc_space_;
399  }
400
401  space::LargeObjectSpace* GetLargeObjectsSpace() const {
402    return large_object_space_;
403  }
404
405  void DumpSpaces();
406
407  // GC performance measuring
408  void DumpGcPerformanceInfo(std::ostream& os);
409
410  // Thread pool.
411  void CreateThreadPool();
412  void DeleteThreadPool();
413  ThreadPool* GetThreadPool() {
414    return thread_pool_.get();
415  }
416
417 private:
418  // Allocates uninitialized storage. Passing in a null space tries to place the object in the
419  // large object space.
420  mirror::Object* Allocate(Thread* self, space::AllocSpace* space, size_t num_bytes)
421      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
422      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
423
424  // Try to allocate a number of bytes, this function never does any GCs.
425  mirror::Object* TryToAllocate(Thread* self, space::AllocSpace* space, size_t alloc_size, bool grow)
426      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
427      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
428
429  // Pushes a list of cleared references out to the managed heap.
430  void EnqueueClearedReferences(mirror::Object** cleared_references);
431
432  void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
433  void RequestConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
434  bool IsGCRequestPending() const;
435
436  void RecordAllocation(size_t size, mirror::Object* object)
437      LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_)
438      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
439
440  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
441  // which type of Gc was actually ran.
442  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
443                                           bool clear_soft_references)
444      LOCKS_EXCLUDED(gc_complete_lock_,
445                     Locks::heap_bitmap_lock_,
446                     Locks::thread_suspend_count_lock_);
447
448  void PreGcVerification(collector::GarbageCollector* gc);
449  void PreSweepingGcVerification(collector::GarbageCollector* gc)
450      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
451  void PostGcVerification(collector::GarbageCollector* gc);
452
453  // Update the watermark for the native allocated bytes based on the current number of native
454  // bytes allocated and the target utilization ratio.
455  void UpdateMaxNativeFootprint();
456
457  // Given the current contents of the alloc space, increase the allowed heap footprint to match
458  // the target utilization ratio.  This should only be called immediately after a full garbage
459  // collection.
460  void GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration);
461
462  size_t GetPercentFree();
463
464  void AddContinuousSpace(space::ContinuousSpace* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
465  void AddDiscontinuousSpace(space::DiscontinuousSpace* space)
466      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
467
468  // No thread saftey analysis since we call this everywhere and it is impossible to find a proper
469  // lock ordering for it.
470  void VerifyObjectBody(const mirror::Object *obj) NO_THREAD_SAFETY_ANALYSIS;
471
472  static void VerificationCallback(mirror::Object* obj, void* arg)
473      SHARED_LOCKS_REQUIRED(GlobalSychronization::heap_bitmap_lock_);
474
475  // Swap the allocation stack with the live stack.
476  void SwapStacks();
477
478  // Clear cards and update the mod union table.
479  void ProcessCards(base::NewTimingLogger& timings);
480
481  // All-known continuous spaces, where objects lie within fixed bounds.
482  std::vector<space::ContinuousSpace*> continuous_spaces_;
483
484  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
485  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;
486
487  // The allocation space we are currently allocating into.
488  space::DlMallocSpace* alloc_space_;
489
490  // The large object space we are currently allocating into.
491  space::LargeObjectSpace* large_object_space_;
492
493  // The card table, dirtied by the write barrier.
494  UniquePtr<accounting::CardTable> card_table_;
495
496  // The mod-union table remembers all of the references from the image space to the alloc /
497  // zygote spaces to allow the card table to be cleared.
498  UniquePtr<accounting::ModUnionTable> image_mod_union_table_;
499
500  // This table holds all of the references from the zygote space to the alloc space.
501  UniquePtr<accounting::ModUnionTable> zygote_mod_union_table_;
502
503  // What kind of concurrency behavior is the runtime after? True for concurrent mark sweep GC,
504  // false for stop-the-world mark sweep.
505  const bool concurrent_gc_;
506
507  // How many GC threads we may use for garbage collection.
508  const bool num_gc_threads_;
509
510  // If we have a zygote space.
511  bool have_zygote_space_;
512
513  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
514  // completes.
515  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
516  UniquePtr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
517
518  // Mutex held when adding references to reference queues.
519  // TODO: move to a UniquePtr, currently annotalysis is confused that UniquePtr isn't lockable.
520  Mutex* reference_queue_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
521
522  // True while the garbage collector is running.
523  volatile bool is_gc_running_ GUARDED_BY(gc_complete_lock_);
524
525  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
526  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
527  collector::GcType next_gc_type_;
528
529  // Maximum size that the heap can reach.
530  const size_t capacity_;
531  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
532  // programs it is "cleared" making it the same as capacity.
533  size_t growth_limit_;
534  // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating
535  // a GC should be triggered.
536  size_t max_allowed_footprint_;
537  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
538  size_t native_footprint_gc_watermark_;
539  // The watermark at which a GC is performed inside of registerNativeAllocation.
540  size_t native_footprint_limit_;
541
542  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
543  // it completes ahead of an allocation failing.
544  size_t concurrent_start_bytes_;
545
546  // Since the heap was created, how many bytes have been freed.
547  size_t total_bytes_freed_ever_;
548
549  // Since the heap was created, how many objects have been freed.
550  size_t total_objects_freed_ever_;
551
552  // Primitive objects larger than this size are put in the large object space.
553  const size_t large_object_threshold_;
554
555  // Number of bytes allocated.  Adjusted after each allocation and free.
556  AtomicInteger num_bytes_allocated_;
557
558  // Bytes which are allocated and managed by native code but still need to be accounted for.
559  AtomicInteger native_bytes_allocated_;
560
561  // Current process state, updated by activity manager.
562  ProcessState process_state_;
563
564  // Data structure GC overhead.
565  AtomicInteger gc_memory_overhead_;
566
567  // Heap verification flags.
568  const bool verify_missing_card_marks_;
569  const bool verify_system_weaks_;
570  const bool verify_pre_gc_heap_;
571  const bool verify_post_gc_heap_;
572  const bool verify_mod_union_table_;
573
574  // Parallel GC data structures.
575  UniquePtr<ThreadPool> thread_pool_;
576
577  // Sticky mark bits GC has some overhead, so if we have less a few megabytes of AllocSpace then
578  // it's probably better to just do a partial GC.
579  const size_t min_alloc_space_size_for_sticky_gc_;
580
581  // Minimum remaining size for sticky GC. Since sticky GC doesn't free up as much memory as a
582  // normal GC, it is important to not use it when we are almost out of memory.
583  const size_t min_remaining_space_for_sticky_gc_;
584
585  // The last time a heap trim occurred.
586  uint64_t last_trim_time_ms_;
587
588  // The nanosecond time at which the last GC ended.
589  uint64_t last_gc_time_ns_;
590
591  // How many bytes were allocated at the end of the last GC.
592  uint64_t last_gc_size_;
593
594  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
595  // and the start of the current one.
596  uint64_t allocation_rate_;
597
598  // For a GC cycle, a bitmap that is set corresponding to the
599  UniquePtr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
600  UniquePtr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
601
602  // Mark stack that we reuse to avoid re-allocating the mark stack.
603  UniquePtr<accounting::ObjectStack> mark_stack_;
604
605  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
606  // to use the live bitmap as the old mark bitmap.
607  const size_t max_allocation_stack_size_;
608  bool is_allocation_stack_sorted_;
609  UniquePtr<accounting::ObjectStack> allocation_stack_;
610
611  // Second allocation stack so that we can process allocation with the heap unlocked.
612  UniquePtr<accounting::ObjectStack> live_stack_;
613
614  // offset of java.lang.ref.Reference.referent
615  MemberOffset reference_referent_offset_;
616
617  // offset of java.lang.ref.Reference.queue
618  MemberOffset reference_queue_offset_;
619
620  // offset of java.lang.ref.Reference.queueNext
621  MemberOffset reference_queueNext_offset_;
622
623  // offset of java.lang.ref.Reference.pendingNext
624  MemberOffset reference_pendingNext_offset_;
625
626  // offset of java.lang.ref.FinalizerReference.zombie
627  MemberOffset finalizer_reference_zombie_offset_;
628
629  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
630  // utilization, regardless of target utilization ratio.
631  size_t min_free_;
632
633  // The ideal maximum free size, when we grow the heap for utilization.
634  size_t max_free_;
635
636  // Target ideal heap utilization ratio
637  double target_utilization_;
638
639  // Total time which mutators are paused or waiting for GC to complete.
640  uint64_t total_wait_time_;
641
642  // Total number of objects allocated in microseconds.
643  const bool measure_allocation_time_;
644  AtomicInteger total_allocation_time_;
645
646  // The current state of heap verification, may be enabled or disabled.
647  HeapVerificationMode verify_object_mode_;
648
649  std::vector<collector::MarkSweep*> mark_sweep_collectors_;
650
651  friend class collector::MarkSweep;
652  friend class VerifyReferenceCardVisitor;
653  friend class VerifyReferenceVisitor;
654  friend class VerifyObjectVisitor;
655  friend class ScopedHeapLock;
656  friend class space::SpaceTest;
657
658  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
659};
660
661}  // namespace gc
662}  // namespace art
663
664#endif  // ART_RUNTIME_GC_HEAP_H_
665