heap.h revision 446f9ee5031cf89b8964e29eba2c9f10a4d4aaf1
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_H_
18#define ART_RUNTIME_GC_HEAP_H_
19
20#include <iosfwd>
21#include <string>
22#include <vector>
23
24#include "allocator_type.h"
25#include "arch/instruction_set.h"
26#include "atomic.h"
27#include "base/timing_logger.h"
28#include "gc/accounting/atomic_stack.h"
29#include "gc/accounting/card_table.h"
30#include "gc/gc_cause.h"
31#include "gc/collector/garbage_collector.h"
32#include "gc/collector/gc_type.h"
33#include "gc/collector_type.h"
34#include "gc/space/large_object_space.h"
35#include "globals.h"
36#include "jni.h"
37#include "object_callbacks.h"
38#include "offsets.h"
39#include "reference_processor.h"
40#include "safe_map.h"
41#include "thread_pool.h"
42#include "verify_object.h"
43
44namespace art {
45
46class ConditionVariable;
47class Mutex;
48class StackVisitor;
49class Thread;
50class TimingLogger;
51
52namespace mirror {
53  class Class;
54  class Object;
55}  // namespace mirror
56
57namespace gc {
58
59class ReferenceProcessor;
60
61namespace accounting {
62  class HeapBitmap;
63  class ModUnionTable;
64  class RememberedSet;
65}  // namespace accounting
66
67namespace collector {
68  class ConcurrentCopying;
69  class GarbageCollector;
70  class MarkCompact;
71  class MarkSweep;
72  class SemiSpace;
73}  // namespace collector
74
75namespace allocator {
76  class RosAlloc;
77}  // namespace allocator
78
79namespace space {
80  class AllocSpace;
81  class BumpPointerSpace;
82  class ContinuousMemMapAllocSpace;
83  class DiscontinuousSpace;
84  class DlMallocSpace;
85  class ImageSpace;
86  class LargeObjectSpace;
87  class MallocSpace;
88  class RosAllocSpace;
89  class Space;
90  class SpaceTest;
91  class ZygoteSpace;
92}  // namespace space
93
94class AgeCardVisitor {
95 public:
96  uint8_t operator()(uint8_t card) const {
97    if (card == accounting::CardTable::kCardDirty) {
98      return card - 1;
99    } else {
100      return 0;
101    }
102  }
103};
104
105enum HomogeneousSpaceCompactResult {
106  // Success.
107  kSuccess,
108  // Reject due to disabled moving GC.
109  kErrorReject,
110  // System is shutting down.
111  kErrorVMShuttingDown,
112};
113
114// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
115static constexpr bool kUseRosAlloc = true;
116
117// If true, use thread-local allocation stack.
118static constexpr bool kUseThreadLocalAllocationStack = true;
119
120// The process state passed in from the activity manager, used to determine when to do trimming
121// and compaction.
122enum ProcessState {
123  kProcessStateJankPerceptible = 0,
124  kProcessStateJankImperceptible = 1,
125};
126std::ostream& operator<<(std::ostream& os, const ProcessState& process_state);
127
128class Heap {
129 public:
130  // If true, measure the total allocation time.
131  static constexpr bool kMeasureAllocationTime = false;
132  static constexpr size_t kDefaultStartingSize = kPageSize;
133  static constexpr size_t kDefaultInitialSize = 2 * MB;
134  static constexpr size_t kDefaultMaximumSize = 256 * MB;
135  static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
136  static constexpr size_t kDefaultMaxFree = 2 * MB;
137  static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
138  static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
139  static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
140  static constexpr size_t kDefaultTLABSize = 256 * KB;
141  static constexpr double kDefaultTargetUtilization = 0.5;
142  static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
143  // Primitive arrays larger than this size are put in the large object space.
144  static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize;
145  // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
146  // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
147#if USE_ART_LOW_4G_ALLOCATOR
148  static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
149      space::kLargeObjectSpaceTypeFreeList;
150#else
151  static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
152      space::kLargeObjectSpaceTypeMap;
153#endif
154  // Used so that we don't overflow the allocation time atomic integer.
155  static constexpr size_t kTimeAdjust = 1024;
156
157  // How often we allow heap trimming to happen (nanoseconds).
158  static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
159  // How long we wait after a transition request to perform a collector transition (nanoseconds).
160  static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
161
162  // Create a heap with the requested sizes. The possible empty
163  // image_file_names names specify Spaces to load based on
164  // ImageWriter output.
165  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
166                size_t max_free, double target_utilization,
167                double foreground_heap_growth_multiplier, size_t capacity,
168                size_t non_moving_space_capacity,
169                const std::string& original_image_file_name,
170                InstructionSet image_instruction_set,
171                CollectorType foreground_collector_type, CollectorType background_collector_type,
172                space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
173                size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
174                size_t long_pause_threshold, size_t long_gc_threshold,
175                bool ignore_max_footprint, bool use_tlab,
176                bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
177                bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
178                bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction,
179                uint64_t min_interval_homogeneous_space_compaction_by_oom);
180
181  ~Heap();
182
183  // Allocates and initializes storage for an object instance.
184  template <bool kInstrumented, typename PreFenceVisitor>
185  mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes,
186                              const PreFenceVisitor& pre_fence_visitor)
187      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
188    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
189                                                         GetCurrentAllocator(),
190                                                         pre_fence_visitor);
191  }
192
193  template <bool kInstrumented, typename PreFenceVisitor>
194  mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes,
195                                        const PreFenceVisitor& pre_fence_visitor)
196      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
197    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
198                                                         GetCurrentNonMovingAllocator(),
199                                                         pre_fence_visitor);
200  }
201
202  template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
203  ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(
204      Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator,
205      const PreFenceVisitor& pre_fence_visitor)
206      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
207
208  AllocatorType GetCurrentAllocator() const {
209    return current_allocator_;
210  }
211
212  AllocatorType GetCurrentNonMovingAllocator() const {
213    return current_non_moving_allocator_;
214  }
215
216  // Visit all of the live objects in the heap.
217  void VisitObjects(ObjectCallback callback, void* arg)
218      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
219
220  void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
221      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
222
223  void RegisterNativeAllocation(JNIEnv* env, size_t bytes);
224  void RegisterNativeFree(JNIEnv* env, size_t bytes);
225
226  // Change the allocator, updates entrypoints.
227  void ChangeAllocator(AllocatorType allocator)
228      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
229      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
230
231  // Transition the garbage collector during runtime, may copy objects from one space to another.
232  void TransitionCollector(CollectorType collector_type);
233
234  // Change the collector to be one of the possible options (MS, CMS, SS).
235  void ChangeCollector(CollectorType collector_type)
236      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
237
238  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
239  // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
240  // proper lock ordering for it.
241  void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS;
242
243  // Check sanity of all live references.
244  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
245  // Returns how many failures occured.
246  size_t VerifyHeapReferences(bool verify_referents = true)
247      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
248  bool VerifyMissingCardMarks()
249      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
250
251  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
252  // and doesn't abort on error, allowing the caller to report more
253  // meaningful diagnostics.
254  bool IsValidObjectAddress(const mirror::Object* obj) const
255      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
256
257  // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
258  // very slow.
259  bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const
260      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
261
262  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
263  // Requires the heap lock to be held.
264  bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true,
265                          bool search_live_stack = true, bool sorted = false)
266      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
267
268  // Returns true if there is any chance that the object (obj) will move.
269  bool IsMovableObject(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
270
271  // Enables us to compacting GC until objects are released.
272  void IncrementDisableMovingGC(Thread* self);
273  void DecrementDisableMovingGC(Thread* self);
274
275  // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
276  void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
277
278  // Initiates an explicit garbage collection.
279  void CollectGarbage(bool clear_soft_references);
280
281  // Does a concurrent GC, should only be called by the GC daemon thread
282  // through runtime.
283  void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
284
285  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
286  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
287  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
288                      uint64_t* counts)
289      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
290      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
291  // Implements JDWP RT_Instances.
292  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
293      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
294      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
295  // Implements JDWP OR_ReferringObjects.
296  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
297      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
298      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
299
300  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
301  // implement dalvik.system.VMRuntime.clearGrowthLimit.
302  void ClearGrowthLimit();
303
304  // Target ideal heap utilization ratio, implements
305  // dalvik.system.VMRuntime.getTargetHeapUtilization.
306  double GetTargetHeapUtilization() const {
307    return target_utilization_;
308  }
309
310  // Data structure memory usage tracking.
311  void RegisterGCAllocation(size_t bytes);
312  void RegisterGCDeAllocation(size_t bytes);
313
314  // Set the heap's private space pointers to be the same as the space based on it's type. Public
315  // due to usage by tests.
316  void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
317      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
318  void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
319  void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
320
321  // Set target ideal heap utilization ratio, implements
322  // dalvik.system.VMRuntime.setTargetHeapUtilization.
323  void SetTargetHeapUtilization(float target);
324
325  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
326  // from the system. Doesn't allow the space to exceed its growth limit.
327  void SetIdealFootprint(size_t max_allowed_footprint);
328
329  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
330  // waited for.
331  collector::GcType WaitForGcToComplete(GcCause cause, Thread* self)
332      LOCKS_EXCLUDED(gc_complete_lock_);
333
334  // Update the heap's process state to a new value, may cause compaction to occur.
335  void UpdateProcessState(ProcessState process_state);
336
337  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
338    return continuous_spaces_;
339  }
340
341  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
342    return discontinuous_spaces_;
343  }
344
345  const collector::Iteration* GetCurrentGcIteration() const {
346    return &current_gc_iteration_;
347  }
348  collector::Iteration* GetCurrentGcIteration() {
349    return &current_gc_iteration_;
350  }
351
352  // Enable verification of object references when the runtime is sufficiently initialized.
353  void EnableObjectValidation() {
354    verify_object_mode_ = kVerifyObjectSupport;
355    if (verify_object_mode_ > kVerifyObjectModeDisabled) {
356      VerifyHeap();
357    }
358  }
359
360  // Disable object reference verification for image writing.
361  void DisableObjectValidation() {
362    verify_object_mode_ = kVerifyObjectModeDisabled;
363  }
364
365  // Other checks may be performed if we know the heap should be in a sane state.
366  bool IsObjectValidationEnabled() const {
367    return verify_object_mode_ > kVerifyObjectModeDisabled;
368  }
369
370  // Returns true if low memory mode is enabled.
371  bool IsLowMemoryMode() const {
372    return low_memory_mode_;
373  }
374
375  // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
376  // Scales heap growth, min free, and max free.
377  double HeapGrowthMultiplier() const;
378
379  // Freed bytes can be negative in cases where we copy objects from a compacted space to a
380  // free-list backed space.
381  void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
382
383  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
384  // The call is not needed if NULL is stored in the field.
385  ALWAYS_INLINE void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/,
386                                       const mirror::Object* /*new_value*/) {
387    card_table_->MarkCard(dst);
388  }
389
390  // Write barrier for array operations that update many field positions
391  ALWAYS_INLINE void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
392                                       size_t /*length TODO: element_count or byte_count?*/) {
393    card_table_->MarkCard(dst);
394  }
395
396  ALWAYS_INLINE void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
397    card_table_->MarkCard(obj);
398  }
399
400  accounting::CardTable* GetCardTable() const {
401    return card_table_.get();
402  }
403
404  void AddFinalizerReference(Thread* self, mirror::Object** object);
405
406  // Returns the number of bytes currently allocated.
407  size_t GetBytesAllocated() const {
408    return num_bytes_allocated_.LoadSequentiallyConsistent();
409  }
410
411  // Returns the number of objects currently allocated.
412  size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
413
414  // Returns the total number of objects allocated since the heap was created.
415  uint64_t GetObjectsAllocatedEver() const;
416
417  // Returns the total number of bytes allocated since the heap was created.
418  uint64_t GetBytesAllocatedEver() const;
419
420  // Returns the total number of objects freed since the heap was created.
421  uint64_t GetObjectsFreedEver() const {
422    return total_objects_freed_ever_;
423  }
424
425  // Returns the total number of bytes freed since the heap was created.
426  uint64_t GetBytesFreedEver() const {
427    return total_bytes_freed_ever_;
428  }
429
430  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
431  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
432  // were specified. Android apps start with a growth limit (small heap size) which is
433  // cleared/extended for large apps.
434  size_t GetMaxMemory() const {
435    // There is some race conditions in the allocation code that can cause bytes allocated to
436    // become larger than growth_limit_ in rare cases.
437    return std::max(GetBytesAllocated(), growth_limit_);
438  }
439
440  // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
441  // consumed by an application.
442  size_t GetTotalMemory() const;
443
444  // Returns approximately how much free memory we have until the next GC happens.
445  size_t GetFreeMemoryUntilGC() const {
446    return max_allowed_footprint_ - GetBytesAllocated();
447  }
448
449  // Returns approximately how much free memory we have until the next OOME happens.
450  size_t GetFreeMemoryUntilOOME() const {
451    return growth_limit_ - GetBytesAllocated();
452  }
453
454  // Returns how much free memory we have until we need to grow the heap to perform an allocation.
455  // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
456  size_t GetFreeMemory() const {
457    size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
458    size_t total_memory = GetTotalMemory();
459    // Make sure we don't get a negative number.
460    return total_memory - std::min(total_memory, byte_allocated);
461  }
462
463  // get the space that corresponds to an object's address. Current implementation searches all
464  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
465  // TODO: consider using faster data structure like binary tree.
466  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
467  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
468                                                              bool fail_ok) const;
469  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;
470
471  void DumpForSigQuit(std::ostream& os);
472
473  // Do a pending heap transition or trim.
474  void DoPendingTransitionOrTrim() LOCKS_EXCLUDED(heap_trim_request_lock_);
475
476  // Trim the managed and native heaps by releasing unused memory back to the OS.
477  void Trim() LOCKS_EXCLUDED(heap_trim_request_lock_);
478
479  void RevokeThreadLocalBuffers(Thread* thread);
480  void RevokeRosAllocThreadLocalBuffers(Thread* thread);
481  void RevokeAllThreadLocalBuffers();
482  void AssertThreadLocalBuffersAreRevoked(Thread* thread);
483  void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
484  void RosAllocVerification(TimingLogger* timings, const char* name)
485      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
486
487  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
488    return live_bitmap_.get();
489  }
490
491  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
492    return mark_bitmap_.get();
493  }
494
495  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
496    return live_stack_.get();
497  }
498
499  void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
500
501  // Mark and empty stack.
502  void FlushAllocStack()
503      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
504
505  // Revoke all the thread-local allocation stacks.
506  void RevokeAllThreadLocalAllocationStacks(Thread* self)
507      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
508      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_);
509
510  // Mark all the objects in the allocation stack in the specified bitmap.
511  // TODO: Refactor?
512  void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
513                      accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
514                      accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
515                      accounting::ObjectStack* stack)
516      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
517
518  // Mark the specified allocation stack as live.
519  void MarkAllocStackAsLive(accounting::ObjectStack* stack)
520      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
521
522  // Unbind any bound bitmaps.
523  void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
524
525  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
526  // Assumes there is only one image space.
527  space::ImageSpace* GetImageSpace() const;
528
529  // Permenantly disable moving garbage collection.
530  void DisableMovingGc();
531
532  space::DlMallocSpace* GetDlMallocSpace() const {
533    return dlmalloc_space_;
534  }
535
536  space::RosAllocSpace* GetRosAllocSpace() const {
537    return rosalloc_space_;
538  }
539
540  // Return the corresponding rosalloc space.
541  space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const;
542
543  space::MallocSpace* GetNonMovingSpace() const {
544    return non_moving_space_;
545  }
546
547  space::LargeObjectSpace* GetLargeObjectsSpace() const {
548    return large_object_space_;
549  }
550
551  // Returns the free list space that may contain movable objects (the
552  // one that's not the non-moving space), either rosalloc_space_ or
553  // dlmalloc_space_.
554  space::MallocSpace* GetPrimaryFreeListSpace() {
555    if (kUseRosAlloc) {
556      DCHECK(rosalloc_space_ != nullptr);
557      // reinterpret_cast is necessary as the space class hierarchy
558      // isn't known (#included) yet here.
559      return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
560    } else {
561      DCHECK(dlmalloc_space_ != nullptr);
562      return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
563    }
564  }
565
566  std::string DumpSpaces() const WARN_UNUSED;
567  void DumpSpaces(std::ostream& stream) const;
568
569  // Dump object should only be used by the signal handler.
570  void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
571  // Safe version of pretty type of which check to make sure objects are heap addresses.
572  std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS;
573  std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
574
575  // GC performance measuring
576  void DumpGcPerformanceInfo(std::ostream& os);
577
578  // Returns true if we currently care about pause times.
579  bool CareAboutPauseTimes() const {
580    return process_state_ == kProcessStateJankPerceptible;
581  }
582
583  // Thread pool.
584  void CreateThreadPool();
585  void DeleteThreadPool();
586  ThreadPool* GetThreadPool() {
587    return thread_pool_.get();
588  }
589  size_t GetParallelGCThreadCount() const {
590    return parallel_gc_threads_;
591  }
592  size_t GetConcGCThreadCount() const {
593    return conc_gc_threads_;
594  }
595  accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
596  void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
597
598  accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
599  void AddRememberedSet(accounting::RememberedSet* remembered_set);
600  // Also deletes the remebered set.
601  void RemoveRememberedSet(space::Space* space);
602
603  bool IsCompilingBoot() const;
604  bool HasImageSpace() const;
605
606  ReferenceProcessor* GetReferenceProcessor() {
607    return &reference_processor_;
608  }
609
610  bool HasZygoteSpace() const {
611    return zygote_space_ != nullptr;
612  }
613
614 private:
615  // Compact source space to target space.
616  void Compact(space::ContinuousMemMapAllocSpace* target_space,
617               space::ContinuousMemMapAllocSpace* source_space,
618               GcCause gc_cause)
619      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
620
621  void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_);
622
623  // Create a mem map with a preferred base address.
624  static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
625                                              size_t capacity, std::string* out_error_str);
626
627  bool SupportHSpaceCompaction() const {
628    // Returns true if we can do hspace compaction
629    return main_space_backup_ != nullptr;
630  }
631
632  static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
633    return
634        allocator_type != kAllocatorTypeBumpPointer &&
635        allocator_type != kAllocatorTypeTLAB;
636  }
637  static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
638    return AllocatorHasAllocationStack(allocator_type);
639  }
640  static bool IsMovingGc(CollectorType collector_type) {
641    return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS ||
642        collector_type == kCollectorTypeCC || collector_type == kCollectorTypeMC ||
643        collector_type == kCollectorTypeHomogeneousSpaceCompact;
644  }
645  bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const
646      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
647  ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
648                                       mirror::Object** obj)
649      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
650
651  accounting::ObjectStack* GetMarkStack() {
652    return mark_stack_.get();
653  }
654
655  // We don't force this to be inlined since it is a slow path.
656  template <bool kInstrumented, typename PreFenceVisitor>
657  mirror::Object* AllocLargeObject(Thread* self, mirror::Class** klass, size_t byte_count,
658                                   const PreFenceVisitor& pre_fence_visitor)
659      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
660
661  // Handles Allocate()'s slow allocation path with GC involved after
662  // an initial allocation attempt failed.
663  mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes,
664                                         size_t* bytes_allocated, size_t* usable_size,
665                                         mirror::Class** klass)
666      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
667      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
668
669  // Allocate into a specific space.
670  mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c,
671                               size_t bytes)
672      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
673
674  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
675  // wrong space.
676  void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
677
678  // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
679  // that the switch statement is constant optimized in the entrypoints.
680  template <const bool kInstrumented, const bool kGrow>
681  ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type,
682                                              size_t alloc_size, size_t* bytes_allocated,
683                                              size_t* usable_size)
684      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
685
686  void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
687      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
688
689  template <bool kGrow>
690  ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size);
691
692  // Returns true if the address passed in is within the address range of a continuous space.
693  bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const
694      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
695
696  // Run the finalizers.
697  void RunFinalization(JNIEnv* env);
698
699  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
700  // waited for.
701  collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
702      EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);
703
704  void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
705      LOCKS_EXCLUDED(heap_trim_request_lock_);
706  void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
707  void RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj)
708      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
709  void RequestConcurrentGC(Thread* self)
710      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
711  bool IsGCRequestPending() const;
712
713  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
714  // which type of Gc was actually ran.
715  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
716                                           bool clear_soft_references)
717      LOCKS_EXCLUDED(gc_complete_lock_,
718                     Locks::heap_bitmap_lock_,
719                     Locks::thread_suspend_count_lock_);
720
721  void PreGcVerification(collector::GarbageCollector* gc)
722      LOCKS_EXCLUDED(Locks::mutator_lock_);
723  void PreGcVerificationPaused(collector::GarbageCollector* gc)
724      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
725  void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
726      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
727  void PreSweepingGcVerification(collector::GarbageCollector* gc)
728      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
729  void PostGcVerification(collector::GarbageCollector* gc)
730      LOCKS_EXCLUDED(Locks::mutator_lock_);
731  void PostGcVerificationPaused(collector::GarbageCollector* gc)
732      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
733
734  // Update the watermark for the native allocated bytes based on the current number of native
735  // bytes allocated and the target utilization ratio.
736  void UpdateMaxNativeFootprint();
737
738  // Find a collector based on GC type.
739  collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
740
741  // Create a new alloc space and compact default alloc space to it.
742  HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact();
743
744  // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
745  void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
746                             size_t capacity);
747
748  // Create a malloc space based on a mem map. Does not set the space as default.
749  space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
750                                                  size_t growth_limit, size_t capacity,
751                                                  const char* name, bool can_move_objects);
752
753  // Given the current contents of the alloc space, increase the allowed heap footprint to match
754  // the target utilization ratio.  This should only be called immediately after a full garbage
755  // collection.
756  void GrowForUtilization(collector::GarbageCollector* collector_ran);
757
758  size_t GetPercentFree();
759
760  static void VerificationCallback(mirror::Object* obj, void* arg)
761      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
762
763  // Swap the allocation stack with the live stack.
764  void SwapStacks(Thread* self);
765
766  // Clear cards and update the mod union table.
767  void ProcessCards(TimingLogger* timings, bool use_rem_sets);
768
769  // Signal the heap trim daemon that there is something to do, either a heap transition or heap
770  // trim.
771  void SignalHeapTrimDaemon(Thread* self);
772
773  // Push an object onto the allocation stack.
774  void PushOnAllocationStack(Thread* self, mirror::Object** obj)
775      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
776  void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj)
777      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
778  void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj)
779      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
780
781  // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
782  // sweep GC, false for other GC types.
783  bool IsGcConcurrent() const ALWAYS_INLINE {
784    return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC;
785  }
786
787  // All-known continuous spaces, where objects lie within fixed bounds.
788  std::vector<space::ContinuousSpace*> continuous_spaces_;
789
790  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
791  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;
792
793  // All-known alloc spaces, where objects may be or have been allocated.
794  std::vector<space::AllocSpace*> alloc_spaces_;
795
796  // A space where non-movable objects are allocated, when compaction is enabled it contains
797  // Classes, ArtMethods, ArtFields, and non moving objects.
798  space::MallocSpace* non_moving_space_;
799
800  // Space which we use for the kAllocatorTypeROSAlloc.
801  space::RosAllocSpace* rosalloc_space_;
802
803  // Space which we use for the kAllocatorTypeDlMalloc.
804  space::DlMallocSpace* dlmalloc_space_;
805
806  // The main space is the space which the GC copies to and from on process state updates. This
807  // space is typically either the dlmalloc_space_ or the rosalloc_space_.
808  space::MallocSpace* main_space_;
809
810  // The large object space we are currently allocating into.
811  space::LargeObjectSpace* large_object_space_;
812
813  // The card table, dirtied by the write barrier.
814  std::unique_ptr<accounting::CardTable> card_table_;
815
816  // A mod-union table remembers all of the references from the it's space to other spaces.
817  AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
818      mod_union_tables_;
819
820  // A remembered set remembers all of the references from the it's space to the target space.
821  AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
822      remembered_sets_;
823
824  // The current collector type.
825  CollectorType collector_type_;
826  // Which collector we use when the app is in the foreground.
827  CollectorType foreground_collector_type_;
828  // Which collector we will use when the app is notified of a transition to background.
829  CollectorType background_collector_type_;
830  // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
831  CollectorType desired_collector_type_;
832
833  // Lock which guards heap trim requests.
834  Mutex* heap_trim_request_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
835  // When we want to perform the next heap trim (nano seconds).
836  uint64_t last_trim_time_ GUARDED_BY(heap_trim_request_lock_);
837  // When we want to perform the next heap transition (nano seconds) or heap trim.
838  uint64_t heap_transition_or_trim_target_time_ GUARDED_BY(heap_trim_request_lock_);
839  // If we have a heap trim request pending.
840  bool heap_trim_request_pending_ GUARDED_BY(heap_trim_request_lock_);
841
842  // How many GC threads we may use for paused parts of garbage collection.
843  const size_t parallel_gc_threads_;
844
845  // How many GC threads we may use for unpaused parts of garbage collection.
846  const size_t conc_gc_threads_;
847
848  // Boolean for if we are in low memory mode.
849  const bool low_memory_mode_;
850
851  // If we get a pause longer than long pause log threshold, then we print out the GC after it
852  // finishes.
853  const size_t long_pause_log_threshold_;
854
855  // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
856  const size_t long_gc_log_threshold_;
857
858  // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
859  // useful for benchmarking since it reduces time spent in GC to a low %.
860  const bool ignore_max_footprint_;
861
862  // Lock which guards zygote space creation.
863  Mutex zygote_creation_lock_;
864
865  // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
866  // zygote space creation.
867  space::ZygoteSpace* zygote_space_;
868
869  // Minimum allocation size of large object.
870  size_t large_object_threshold_;
871
872  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
873  // completes.
874  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
875  std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
876
877  // Reference processor;
878  ReferenceProcessor reference_processor_;
879
880  // True while the garbage collector is running.
881  volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
882
883  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
884  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
885  collector::GcType next_gc_type_;
886
887  // Maximum size that the heap can reach.
888  const size_t capacity_;
889
890  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
891  // programs it is "cleared" making it the same as capacity.
892  size_t growth_limit_;
893
894  // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating
895  // a GC should be triggered.
896  size_t max_allowed_footprint_;
897
898  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
899  size_t native_footprint_gc_watermark_;
900
901  // Whether or not we need to run finalizers in the next native allocation.
902  bool native_need_to_run_finalization_;
903
904  // Whether or not we currently care about pause times.
905  ProcessState process_state_;
906
907  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
908  // it completes ahead of an allocation failing.
909  size_t concurrent_start_bytes_;
910
911  // Since the heap was created, how many bytes have been freed.
912  uint64_t total_bytes_freed_ever_;
913
914  // Since the heap was created, how many objects have been freed.
915  uint64_t total_objects_freed_ever_;
916
917  // Number of bytes allocated.  Adjusted after each allocation and free.
918  Atomic<size_t> num_bytes_allocated_;
919
920  // Bytes which are allocated and managed by native code but still need to be accounted for.
921  Atomic<size_t> native_bytes_allocated_;
922
923  // Info related to the current or previous GC iteration.
924  collector::Iteration current_gc_iteration_;
925
926  // Heap verification flags.
927  const bool verify_missing_card_marks_;
928  const bool verify_system_weaks_;
929  const bool verify_pre_gc_heap_;
930  const bool verify_pre_sweeping_heap_;
931  const bool verify_post_gc_heap_;
932  const bool verify_mod_union_table_;
933  bool verify_pre_gc_rosalloc_;
934  bool verify_pre_sweeping_rosalloc_;
935  bool verify_post_gc_rosalloc_;
936
937  // RAII that temporarily disables the rosalloc verification during
938  // the zygote fork.
939  class ScopedDisableRosAllocVerification {
940   private:
941    Heap* const heap_;
942    const bool orig_verify_pre_gc_;
943    const bool orig_verify_pre_sweeping_;
944    const bool orig_verify_post_gc_;
945
946   public:
947    explicit ScopedDisableRosAllocVerification(Heap* heap)
948        : heap_(heap),
949          orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
950          orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
951          orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
952      heap_->verify_pre_gc_rosalloc_ = false;
953      heap_->verify_pre_sweeping_rosalloc_ = false;
954      heap_->verify_post_gc_rosalloc_ = false;
955    }
956    ~ScopedDisableRosAllocVerification() {
957      heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
958      heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
959      heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
960    }
961  };
962
963  // Parallel GC data structures.
964  std::unique_ptr<ThreadPool> thread_pool_;
965
966  // The nanosecond time at which the last GC ended.
967  uint64_t last_gc_time_ns_;
968
969  // How many bytes were allocated at the end of the last GC.
970  uint64_t last_gc_size_;
971
972  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
973  // and the start of the current one.
974  uint64_t allocation_rate_;
975
976  // For a GC cycle, a bitmap that is set corresponding to the
977  std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
978  std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
979
980  // Mark stack that we reuse to avoid re-allocating the mark stack.
981  std::unique_ptr<accounting::ObjectStack> mark_stack_;
982
983  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
984  // to use the live bitmap as the old mark bitmap.
985  const size_t max_allocation_stack_size_;
986  std::unique_ptr<accounting::ObjectStack> allocation_stack_;
987
988  // Second allocation stack so that we can process allocation with the heap unlocked.
989  std::unique_ptr<accounting::ObjectStack> live_stack_;
990
991  // Allocator type.
992  AllocatorType current_allocator_;
993  const AllocatorType current_non_moving_allocator_;
994
995  // Which GCs we run in order when we an allocation fails.
996  std::vector<collector::GcType> gc_plan_;
997
998  // Bump pointer spaces.
999  space::BumpPointerSpace* bump_pointer_space_;
1000  // Temp space is the space which the semispace collector copies to.
1001  space::BumpPointerSpace* temp_space_;
1002
1003  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
1004  // utilization, regardless of target utilization ratio.
1005  size_t min_free_;
1006
1007  // The ideal maximum free size, when we grow the heap for utilization.
1008  size_t max_free_;
1009
1010  // Target ideal heap utilization ratio
1011  double target_utilization_;
1012
1013  // How much more we grow the heap when we are a foreground app instead of background.
1014  double foreground_heap_growth_multiplier_;
1015
1016  // Total time which mutators are paused or waiting for GC to complete.
1017  uint64_t total_wait_time_;
1018
1019  // Total number of objects allocated in microseconds.
1020  AtomicInteger total_allocation_time_;
1021
1022  // The current state of heap verification, may be enabled or disabled.
1023  VerifyObjectMode verify_object_mode_;
1024
1025  // Compacting GC disable count, prevents compacting GC from running iff > 0.
1026  size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
1027
1028  std::vector<collector::GarbageCollector*> garbage_collectors_;
1029  collector::SemiSpace* semi_space_collector_;
1030  collector::MarkCompact* mark_compact_collector_;
1031  collector::ConcurrentCopying* concurrent_copying_collector_;
1032
1033  const bool running_on_valgrind_;
1034  const bool use_tlab_;
1035
1036  // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
1037  // Use unique_ptr since the space is only added during the homogeneous compaction phase.
1038  std::unique_ptr<space::MallocSpace> main_space_backup_;
1039
1040  // Minimal interval allowed between two homogeneous space compactions caused by OOM.
1041  uint64_t min_interval_homogeneous_space_compaction_by_oom_;
1042
1043  // Times of the last homogeneous space compaction caused by OOM.
1044  uint64_t last_time_homogeneous_space_compaction_by_oom_;
1045
1046  // Saved OOMs by homogeneous space compaction.
1047  Atomic<size_t> count_delayed_oom_;
1048
1049  // Count for requested homogeneous space compaction.
1050  Atomic<size_t> count_requested_homogeneous_space_compaction_;
1051
1052  // Count for ignored homogeneous space compaction.
1053  Atomic<size_t> count_ignored_homogeneous_space_compaction_;
1054
1055  // Count for performed homogeneous space compaction.
1056  Atomic<size_t> count_performed_homogeneous_space_compaction_;
1057
1058  // Whether or not we use homogeneous space compaction to avoid OOM errors.
1059  bool use_homogeneous_space_compaction_for_oom_;
1060
1061  friend class collector::GarbageCollector;
1062  friend class collector::MarkCompact;
1063  friend class collector::MarkSweep;
1064  friend class collector::SemiSpace;
1065  friend class ReferenceQueue;
1066  friend class VerifyReferenceCardVisitor;
1067  friend class VerifyReferenceVisitor;
1068  friend class VerifyObjectVisitor;
1069  friend class ScopedHeapFill;
1070  friend class ScopedHeapLock;
1071  friend class space::SpaceTest;
1072
1073  class AllocationTimer {
1074   private:
1075    Heap* heap_;
1076    mirror::Object** allocated_obj_ptr_;
1077    uint64_t allocation_start_time_;
1078   public:
1079    AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr);
1080    ~AllocationTimer();
1081  };
1082
1083  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
1084};
1085
1086// ScopedHeapFill changes the bytes allocated counter to be equal to the growth limit. This
1087// causes the next allocation to perform a GC and possibly an OOM. It can be used to ensure that a
1088// GC happens in specific methods such as ThrowIllegalMonitorStateExceptionF in Monitor::Wait.
1089class ScopedHeapFill {
1090 public:
1091  explicit ScopedHeapFill(Heap* heap)
1092      : heap_(heap),
1093        delta_(heap_->GetMaxMemory() - heap_->GetBytesAllocated()) {
1094    heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(delta_);
1095  }
1096  ~ScopedHeapFill() {
1097    heap_->num_bytes_allocated_.FetchAndSubSequentiallyConsistent(delta_);
1098  }
1099
1100 private:
1101  Heap* const heap_;
1102  const int64_t delta_;
1103};
1104
1105}  // namespace gc
1106}  // namespace art
1107
1108#endif  // ART_RUNTIME_GC_HEAP_H_
1109