1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "thread.h"
18
19#if !defined(__APPLE__)
20#include <sched.h>
21#endif
22
23#include <pthread.h>
24#include <signal.h>
25#include <sys/resource.h>
26#include <sys/time.h>
27
28#include <algorithm>
29#include <bitset>
30#include <cerrno>
31#include <iostream>
32#include <list>
33#include <sstream>
34
35#include "android-base/stringprintf.h"
36
37#include "arch/context-inl.h"
38#include "arch/context.h"
39#include "art_field-inl.h"
40#include "art_method-inl.h"
41#include "base/bit_utils.h"
42#include "base/file_utils.h"
43#include "base/memory_tool.h"
44#include "base/mutex.h"
45#include "base/systrace.h"
46#include "base/timing_logger.h"
47#include "base/to_str.h"
48#include "base/utils.h"
49#include "class_linker-inl.h"
50#include "debugger.h"
51#include "dex/descriptors_names.h"
52#include "dex/dex_file-inl.h"
53#include "dex/dex_file_annotations.h"
54#include "dex/dex_file_types.h"
55#include "entrypoints/entrypoint_utils.h"
56#include "entrypoints/quick/quick_alloc_entrypoints.h"
57#include "gc/accounting/card_table-inl.h"
58#include "gc/accounting/heap_bitmap-inl.h"
59#include "gc/allocator/rosalloc.h"
60#include "gc/heap.h"
61#include "gc/space/space-inl.h"
62#include "gc_root.h"
63#include "handle_scope-inl.h"
64#include "indirect_reference_table-inl.h"
65#include "interpreter/interpreter.h"
66#include "interpreter/shadow_frame.h"
67#include "java_frame_root_info.h"
68#include "java_vm_ext.h"
69#include "jni_internal.h"
70#include "mirror/class-inl.h"
71#include "mirror/class_loader.h"
72#include "mirror/object_array-inl.h"
73#include "mirror/stack_trace_element.h"
74#include "monitor.h"
75#include "monitor_objects_stack_visitor.h"
76#include "native_stack_dump.h"
77#include "nativehelper/scoped_local_ref.h"
78#include "nativehelper/scoped_utf_chars.h"
79#include "nth_caller_visitor.h"
80#include "oat_quick_method_header.h"
81#include "obj_ptr-inl.h"
82#include "object_lock.h"
83#include "quick/quick_method_frame_info.h"
84#include "quick_exception_handler.h"
85#include "read_barrier-inl.h"
86#include "reflection.h"
87#include "runtime.h"
88#include "runtime_callbacks.h"
89#include "scoped_thread_state_change-inl.h"
90#include "stack.h"
91#include "stack_map.h"
92#include "thread-inl.h"
93#include "thread_list.h"
94#include "verifier/method_verifier.h"
95#include "verify_object.h"
96#include "well_known_classes.h"
97
98#if ART_USE_FUTEXES
99#include "linux/futex.h"
100#include "sys/syscall.h"
101#ifndef SYS_futex
102#define SYS_futex __NR_futex
103#endif
104#endif  // ART_USE_FUTEXES
105
106namespace art {
107
108using android::base::StringAppendV;
109using android::base::StringPrintf;
110
111extern "C" NO_RETURN void artDeoptimize(Thread* self);
112
113bool Thread::is_started_ = false;
114pthread_key_t Thread::pthread_key_self_;
115ConditionVariable* Thread::resume_cond_ = nullptr;
116const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
117bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
118Thread* Thread::jit_sensitive_thread_ = nullptr;
119
120static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
121
122// For implicit overflow checks we reserve an extra piece of memory at the bottom
123// of the stack (lowest memory).  The higher portion of the memory
124// is protected against reads and the lower is available for use while
125// throwing the StackOverflow exception.
126constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
127
128static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
129
130void Thread::InitCardTable() {
131  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
132}
133
134static void UnimplementedEntryPoint() {
135  UNIMPLEMENTED(FATAL);
136}
137
138void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
139void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
140
141void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
142  CHECK(kUseReadBarrier);
143  tls32_.is_gc_marking = is_marking;
144  UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
145  ResetQuickAllocEntryPointsForThread(is_marking);
146}
147
148void Thread::InitTlsEntryPoints() {
149  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
150  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
151  uintptr_t* end = reinterpret_cast<uintptr_t*>(
152      reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
153  for (uintptr_t* it = begin; it != end; ++it) {
154    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
155  }
156  InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
157}
158
159void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
160  if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
161    // Allocation entrypoint switching is currently only implemented for X86_64.
162    is_marking = true;
163  }
164  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
165}
166
167class DeoptimizationContextRecord {
168 public:
169  DeoptimizationContextRecord(const JValue& ret_val,
170                              bool is_reference,
171                              bool from_code,
172                              ObjPtr<mirror::Throwable> pending_exception,
173                              DeoptimizationMethodType method_type,
174                              DeoptimizationContextRecord* link)
175      : ret_val_(ret_val),
176        is_reference_(is_reference),
177        from_code_(from_code),
178        pending_exception_(pending_exception.Ptr()),
179        deopt_method_type_(method_type),
180        link_(link) {}
181
182  JValue GetReturnValue() const { return ret_val_; }
183  bool IsReference() const { return is_reference_; }
184  bool GetFromCode() const { return from_code_; }
185  ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
186  DeoptimizationContextRecord* GetLink() const { return link_; }
187  mirror::Object** GetReturnValueAsGCRoot() {
188    DCHECK(is_reference_);
189    return ret_val_.GetGCRoot();
190  }
191  mirror::Object** GetPendingExceptionAsGCRoot() {
192    return reinterpret_cast<mirror::Object**>(&pending_exception_);
193  }
194  DeoptimizationMethodType GetDeoptimizationMethodType() const {
195    return deopt_method_type_;
196  }
197
198 private:
199  // The value returned by the method at the top of the stack before deoptimization.
200  JValue ret_val_;
201
202  // Indicates whether the returned value is a reference. If so, the GC will visit it.
203  const bool is_reference_;
204
205  // Whether the context was created from an explicit deoptimization in the code.
206  const bool from_code_;
207
208  // The exception that was pending before deoptimization (or null if there was no pending
209  // exception).
210  mirror::Throwable* pending_exception_;
211
212  // Whether the context was created for an (idempotent) runtime method.
213  const DeoptimizationMethodType deopt_method_type_;
214
215  // A link to the previous DeoptimizationContextRecord.
216  DeoptimizationContextRecord* const link_;
217
218  DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
219};
220
221class StackedShadowFrameRecord {
222 public:
223  StackedShadowFrameRecord(ShadowFrame* shadow_frame,
224                           StackedShadowFrameType type,
225                           StackedShadowFrameRecord* link)
226      : shadow_frame_(shadow_frame),
227        type_(type),
228        link_(link) {}
229
230  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
231  StackedShadowFrameType GetType() const { return type_; }
232  StackedShadowFrameRecord* GetLink() const { return link_; }
233
234 private:
235  ShadowFrame* const shadow_frame_;
236  const StackedShadowFrameType type_;
237  StackedShadowFrameRecord* const link_;
238
239  DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
240};
241
242void Thread::PushDeoptimizationContext(const JValue& return_value,
243                                       bool is_reference,
244                                       ObjPtr<mirror::Throwable> exception,
245                                       bool from_code,
246                                       DeoptimizationMethodType method_type) {
247  DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
248      return_value,
249      is_reference,
250      from_code,
251      exception,
252      method_type,
253      tlsPtr_.deoptimization_context_stack);
254  tlsPtr_.deoptimization_context_stack = record;
255}
256
257void Thread::PopDeoptimizationContext(JValue* result,
258                                      ObjPtr<mirror::Throwable>* exception,
259                                      bool* from_code,
260                                      DeoptimizationMethodType* method_type) {
261  AssertHasDeoptimizationContext();
262  DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
263  tlsPtr_.deoptimization_context_stack = record->GetLink();
264  result->SetJ(record->GetReturnValue().GetJ());
265  *exception = record->GetPendingException();
266  *from_code = record->GetFromCode();
267  *method_type = record->GetDeoptimizationMethodType();
268  delete record;
269}
270
271void Thread::AssertHasDeoptimizationContext() {
272  CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
273      << "No deoptimization context for thread " << *this;
274}
275
276void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
277  StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
278      sf, type, tlsPtr_.stacked_shadow_frame_record);
279  tlsPtr_.stacked_shadow_frame_record = record;
280}
281
282ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
283  StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
284  if (must_be_present) {
285    DCHECK(record != nullptr);
286  } else {
287    if (record == nullptr || record->GetType() != type) {
288      return nullptr;
289    }
290  }
291  tlsPtr_.stacked_shadow_frame_record = record->GetLink();
292  ShadowFrame* shadow_frame = record->GetShadowFrame();
293  delete record;
294  return shadow_frame;
295}
296
297class FrameIdToShadowFrame {
298 public:
299  static FrameIdToShadowFrame* Create(size_t frame_id,
300                                      ShadowFrame* shadow_frame,
301                                      FrameIdToShadowFrame* next,
302                                      size_t num_vregs) {
303    // Append a bool array at the end to keep track of what vregs are updated by the debugger.
304    uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
305    return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
306  }
307
308  static void Delete(FrameIdToShadowFrame* f) {
309    uint8_t* memory = reinterpret_cast<uint8_t*>(f);
310    delete[] memory;
311  }
312
313  size_t GetFrameId() const { return frame_id_; }
314  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
315  FrameIdToShadowFrame* GetNext() const { return next_; }
316  void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
317  bool* GetUpdatedVRegFlags() {
318    return updated_vreg_flags_;
319  }
320
321 private:
322  FrameIdToShadowFrame(size_t frame_id,
323                       ShadowFrame* shadow_frame,
324                       FrameIdToShadowFrame* next)
325      : frame_id_(frame_id),
326        shadow_frame_(shadow_frame),
327        next_(next) {}
328
329  const size_t frame_id_;
330  ShadowFrame* const shadow_frame_;
331  FrameIdToShadowFrame* next_;
332  bool updated_vreg_flags_[0];
333
334  DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
335};
336
337static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
338                                                      size_t frame_id) {
339  FrameIdToShadowFrame* found = nullptr;
340  for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
341    if (record->GetFrameId() == frame_id) {
342      if (kIsDebugBuild) {
343        // Sanity check we have at most one record for this frame.
344        CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
345        found = record;
346      } else {
347        return record;
348      }
349    }
350  }
351  return found;
352}
353
354ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
355  FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
356      tlsPtr_.frame_id_to_shadow_frame, frame_id);
357  if (record != nullptr) {
358    return record->GetShadowFrame();
359  }
360  return nullptr;
361}
362
363// Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
364bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
365  FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
366      tlsPtr_.frame_id_to_shadow_frame, frame_id);
367  CHECK(record != nullptr);
368  return record->GetUpdatedVRegFlags();
369}
370
371ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
372                                                     uint32_t num_vregs,
373                                                     ArtMethod* method,
374                                                     uint32_t dex_pc) {
375  ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
376  if (shadow_frame != nullptr) {
377    return shadow_frame;
378  }
379  VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
380  shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
381  FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
382                                                              shadow_frame,
383                                                              tlsPtr_.frame_id_to_shadow_frame,
384                                                              num_vregs);
385  for (uint32_t i = 0; i < num_vregs; i++) {
386    // Do this to clear all references for root visitors.
387    shadow_frame->SetVRegReference(i, nullptr);
388    // This flag will be changed to true if the debugger modifies the value.
389    record->GetUpdatedVRegFlags()[i] = false;
390  }
391  tlsPtr_.frame_id_to_shadow_frame = record;
392  return shadow_frame;
393}
394
395void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
396  FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
397  if (head->GetFrameId() == frame_id) {
398    tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
399    FrameIdToShadowFrame::Delete(head);
400    return;
401  }
402  FrameIdToShadowFrame* prev = head;
403  for (FrameIdToShadowFrame* record = head->GetNext();
404       record != nullptr;
405       prev = record, record = record->GetNext()) {
406    if (record->GetFrameId() == frame_id) {
407      prev->SetNext(record->GetNext());
408      FrameIdToShadowFrame::Delete(record);
409      return;
410    }
411  }
412  LOG(FATAL) << "No shadow frame for frame " << frame_id;
413  UNREACHABLE();
414}
415
416void Thread::InitTid() {
417  tls32_.tid = ::art::GetTid();
418}
419
420void Thread::InitAfterFork() {
421  // One thread (us) survived the fork, but we have a new tid so we need to
422  // update the value stashed in this Thread*.
423  InitTid();
424}
425
426void* Thread::CreateCallback(void* arg) {
427  Thread* self = reinterpret_cast<Thread*>(arg);
428  Runtime* runtime = Runtime::Current();
429  if (runtime == nullptr) {
430    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
431    return nullptr;
432  }
433  {
434    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
435    //       after self->Init().
436    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
437    // Check that if we got here we cannot be shutting down (as shutdown should never have started
438    // while threads are being born).
439    CHECK(!runtime->IsShuttingDownLocked());
440    // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
441    //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
442    //       the runtime in such a case. In case this ever changes, we need to make sure here to
443    //       delete the tmp_jni_env, as we own it at this point.
444    CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
445    self->tlsPtr_.tmp_jni_env = nullptr;
446    Runtime::Current()->EndThreadBirth();
447  }
448  {
449    ScopedObjectAccess soa(self);
450    self->InitStringEntryPoints();
451
452    // Copy peer into self, deleting global reference when done.
453    CHECK(self->tlsPtr_.jpeer != nullptr);
454    self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
455    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
456    self->tlsPtr_.jpeer = nullptr;
457    self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
458
459    ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
460    self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
461
462    runtime->GetRuntimeCallbacks()->ThreadStart(self);
463
464    // Invoke the 'run' method of our java.lang.Thread.
465    ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
466    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
467    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
468    InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
469  }
470  // Detach and delete self.
471  Runtime::Current()->GetThreadList()->Unregister(self);
472
473  return nullptr;
474}
475
476Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
477                                  ObjPtr<mirror::Object> thread_peer) {
478  ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
479  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
480  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
481  // to stop it from going away.
482  if (kIsDebugBuild) {
483    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
484    if (result != nullptr && !result->IsSuspended()) {
485      Locks::thread_list_lock_->AssertHeld(soa.Self());
486    }
487  }
488  return result;
489}
490
491Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
492                                  jobject java_thread) {
493  return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
494}
495
496static size_t FixStackSize(size_t stack_size) {
497  // A stack size of zero means "use the default".
498  if (stack_size == 0) {
499    stack_size = Runtime::Current()->GetDefaultStackSize();
500  }
501
502  // Dalvik used the bionic pthread default stack size for native threads,
503  // so include that here to support apps that expect large native stacks.
504  stack_size += 1 * MB;
505
506  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
507  if (stack_size < PTHREAD_STACK_MIN) {
508    stack_size = PTHREAD_STACK_MIN;
509  }
510
511  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
512    // It's likely that callers are trying to ensure they have at least a certain amount of
513    // stack space, so we should add our reserved space on top of what they requested, rather
514    // than implicitly take it away from them.
515    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
516  } else {
517    // If we are going to use implicit stack checks, allocate space for the protected
518    // region at the bottom of the stack.
519    stack_size += Thread::kStackOverflowImplicitCheckSize +
520        GetStackOverflowReservedBytes(kRuntimeISA);
521  }
522
523  // Some systems require the stack size to be a multiple of the system page size, so round up.
524  stack_size = RoundUp(stack_size, kPageSize);
525
526  return stack_size;
527}
528
529// Return the nearest page-aligned address below the current stack top.
530NO_INLINE
531static uint8_t* FindStackTop() {
532  return reinterpret_cast<uint8_t*>(
533      AlignDown(__builtin_frame_address(0), kPageSize));
534}
535
536// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
537// overflow is detected.  It is located right below the stack_begin_.
538ATTRIBUTE_NO_SANITIZE_ADDRESS
539void Thread::InstallImplicitProtection() {
540  uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
541  // Page containing current top of stack.
542  uint8_t* stack_top = FindStackTop();
543
544  // Try to directly protect the stack.
545  VLOG(threads) << "installing stack protected region at " << std::hex <<
546        static_cast<void*>(pregion) << " to " <<
547        static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
548  if (ProtectStack(/* fatal_on_error */ false)) {
549    // Tell the kernel that we won't be needing these pages any more.
550    // NB. madvise will probably write zeroes into the memory (on linux it does).
551    uint32_t unwanted_size = stack_top - pregion - kPageSize;
552    madvise(pregion, unwanted_size, MADV_DONTNEED);
553    return;
554  }
555
556  // There is a little complexity here that deserves a special mention.  On some
557  // architectures, the stack is created using a VM_GROWSDOWN flag
558  // to prevent memory being allocated when it's not needed.  This flag makes the
559  // kernel only allocate memory for the stack by growing down in memory.  Because we
560  // want to put an mprotected region far away from that at the stack top, we need
561  // to make sure the pages for the stack are mapped in before we call mprotect.
562  //
563  // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
564  // with a non-mapped stack (usually only the main thread).
565  //
566  // We map in the stack by reading every page from the stack bottom (highest address)
567  // to the stack top. (We then madvise this away.) This must be done by reading from the
568  // current stack pointer downwards.
569  //
570  // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
571  // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
572  // thus have to move the stack pointer. We do this portably by using a recursive function with a
573  // large stack frame size.
574
575  // (Defensively) first remove the protection on the protected region as we'll want to read
576  // and write it. Ignore errors.
577  UnprotectStack();
578
579  VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
580      static_cast<void*>(pregion);
581
582  struct RecurseDownStack {
583    // This function has an intentionally large stack size.
584#pragma GCC diagnostic push
585#pragma GCC diagnostic ignored "-Wframe-larger-than="
586    NO_INLINE
587    static void Touch(uintptr_t target) {
588      volatile size_t zero = 0;
589      // Use a large local volatile array to ensure a large frame size. Do not use anything close
590      // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
591      // there is no pragma support for this.
592      // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
593      constexpr size_t kAsanMultiplier =
594#ifdef ADDRESS_SANITIZER
595          2u;
596#else
597          1u;
598#endif
599      volatile char space[kPageSize - (kAsanMultiplier * 256)];
600      char sink ATTRIBUTE_UNUSED = space[zero];
601      if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
602        Touch(target);
603      }
604      zero *= 2;  // Try to avoid tail recursion.
605    }
606#pragma GCC diagnostic pop
607  };
608  RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
609
610  VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
611      static_cast<void*>(pregion) << " to " <<
612      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
613
614  // Protect the bottom of the stack to prevent read/write to it.
615  ProtectStack(/* fatal_on_error */ true);
616
617  // Tell the kernel that we won't be needing these pages any more.
618  // NB. madvise will probably write zeroes into the memory (on linux it does).
619  uint32_t unwanted_size = stack_top - pregion - kPageSize;
620  madvise(pregion, unwanted_size, MADV_DONTNEED);
621}
622
623void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
624  CHECK(java_peer != nullptr);
625  Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
626
627  if (VLOG_IS_ON(threads)) {
628    ScopedObjectAccess soa(env);
629
630    ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
631    ObjPtr<mirror::String> java_name =
632        f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
633    std::string thread_name;
634    if (java_name != nullptr) {
635      thread_name = java_name->ToModifiedUtf8();
636    } else {
637      thread_name = "(Unnamed)";
638    }
639
640    VLOG(threads) << "Creating native thread for " << thread_name;
641    self->Dump(LOG_STREAM(INFO));
642  }
643
644  Runtime* runtime = Runtime::Current();
645
646  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
647  bool thread_start_during_shutdown = false;
648  {
649    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
650    if (runtime->IsShuttingDownLocked()) {
651      thread_start_during_shutdown = true;
652    } else {
653      runtime->StartThreadBirth();
654    }
655  }
656  if (thread_start_during_shutdown) {
657    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
658    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
659    return;
660  }
661
662  Thread* child_thread = new Thread(is_daemon);
663  // Use global JNI ref to hold peer live while child thread starts.
664  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
665  stack_size = FixStackSize(stack_size);
666
667  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
668  // to assign it.
669  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
670                    reinterpret_cast<jlong>(child_thread));
671
672  // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
673  // do not have a good way to report this on the child's side.
674  std::string error_msg;
675  std::unique_ptr<JNIEnvExt> child_jni_env_ext(
676      JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
677
678  int pthread_create_result = 0;
679  if (child_jni_env_ext.get() != nullptr) {
680    pthread_t new_pthread;
681    pthread_attr_t attr;
682    child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
683    CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
684    CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
685                       "PTHREAD_CREATE_DETACHED");
686    CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
687    pthread_create_result = pthread_create(&new_pthread,
688                                           &attr,
689                                           Thread::CreateCallback,
690                                           child_thread);
691    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
692
693    if (pthread_create_result == 0) {
694      // pthread_create started the new thread. The child is now responsible for managing the
695      // JNIEnvExt we created.
696      // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
697      //       between the threads.
698      child_jni_env_ext.release();
699      return;
700    }
701  }
702
703  // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
704  {
705    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
706    runtime->EndThreadBirth();
707  }
708  // Manually delete the global reference since Thread::Init will not have been run.
709  env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
710  child_thread->tlsPtr_.jpeer = nullptr;
711  delete child_thread;
712  child_thread = nullptr;
713  // TODO: remove from thread group?
714  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
715  {
716    std::string msg(child_jni_env_ext.get() == nullptr ?
717        StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
718        StringPrintf("pthread_create (%s stack) failed: %s",
719                                 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
720    ScopedObjectAccess soa(env);
721    soa.Self()->ThrowOutOfMemoryError(msg.c_str());
722  }
723}
724
725bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
726  // This function does all the initialization that must be run by the native thread it applies to.
727  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
728  // we can handshake with the corresponding native thread when it's ready.) Check this native
729  // thread hasn't been through here already...
730  CHECK(Thread::Current() == nullptr);
731
732  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
733  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
734  tlsPtr_.pthread_self = pthread_self();
735  CHECK(is_started_);
736
737  SetUpAlternateSignalStack();
738  if (!InitStackHwm()) {
739    return false;
740  }
741  InitCpu();
742  InitTlsEntryPoints();
743  RemoveSuspendTrigger();
744  InitCardTable();
745  InitTid();
746  interpreter::InitInterpreterTls(this);
747
748#ifdef ART_TARGET_ANDROID
749  __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
750#else
751  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
752#endif
753  DCHECK_EQ(Thread::Current(), this);
754
755  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
756
757  if (jni_env_ext != nullptr) {
758    DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
759    DCHECK_EQ(jni_env_ext->GetSelf(), this);
760    tlsPtr_.jni_env = jni_env_ext;
761  } else {
762    std::string error_msg;
763    tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
764    if (tlsPtr_.jni_env == nullptr) {
765      LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
766      return false;
767    }
768  }
769
770  thread_list->Register(this);
771  return true;
772}
773
774template <typename PeerAction>
775Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
776  Runtime* runtime = Runtime::Current();
777  if (runtime == nullptr) {
778    LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
779        ((thread_name != nullptr) ? thread_name : "(Unnamed)");
780    return nullptr;
781  }
782  Thread* self;
783  {
784    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
785    if (runtime->IsShuttingDownLocked()) {
786      LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
787          ((thread_name != nullptr) ? thread_name : "(Unnamed)");
788      return nullptr;
789    } else {
790      Runtime::Current()->StartThreadBirth();
791      self = new Thread(as_daemon);
792      bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
793      Runtime::Current()->EndThreadBirth();
794      if (!init_success) {
795        delete self;
796        return nullptr;
797      }
798    }
799  }
800
801  self->InitStringEntryPoints();
802
803  CHECK_NE(self->GetState(), kRunnable);
804  self->SetState(kNative);
805
806  // Run the action that is acting on the peer.
807  if (!peer_action(self)) {
808    runtime->GetThreadList()->Unregister(self);
809    // Unregister deletes self, no need to do this here.
810    return nullptr;
811  }
812
813  if (VLOG_IS_ON(threads)) {
814    if (thread_name != nullptr) {
815      VLOG(threads) << "Attaching thread " << thread_name;
816    } else {
817      VLOG(threads) << "Attaching unnamed thread.";
818    }
819    ScopedObjectAccess soa(self);
820    self->Dump(LOG_STREAM(INFO));
821  }
822
823  {
824    ScopedObjectAccess soa(self);
825    runtime->GetRuntimeCallbacks()->ThreadStart(self);
826  }
827
828  return self;
829}
830
831Thread* Thread::Attach(const char* thread_name,
832                       bool as_daemon,
833                       jobject thread_group,
834                       bool create_peer) {
835  auto create_peer_action = [&](Thread* self) {
836    // If we're the main thread, ClassLinker won't be created until after we're attached,
837    // so that thread needs a two-stage attach. Regular threads don't need this hack.
838    // In the compiler, all threads need this hack, because no-one's going to be getting
839    // a native peer!
840    if (create_peer) {
841      self->CreatePeer(thread_name, as_daemon, thread_group);
842      if (self->IsExceptionPending()) {
843        // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
844        // it.
845        {
846          ScopedObjectAccess soa(self);
847          LOG(ERROR) << "Exception creating thread peer:";
848          LOG(ERROR) << self->GetException()->Dump();
849          self->ClearException();
850        }
851        return false;
852      }
853    } else {
854      // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
855      if (thread_name != nullptr) {
856        self->tlsPtr_.name->assign(thread_name);
857        ::art::SetThreadName(thread_name);
858      } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
859        LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
860      }
861    }
862    return true;
863  };
864  return Attach(thread_name, as_daemon, create_peer_action);
865}
866
867Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
868  auto set_peer_action = [&](Thread* self) {
869    // Install the given peer.
870    {
871      DCHECK(self == Thread::Current());
872      ScopedObjectAccess soa(self);
873      self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
874    }
875    self->GetJniEnv()->SetLongField(thread_peer,
876                                    WellKnownClasses::java_lang_Thread_nativePeer,
877                                    reinterpret_cast<jlong>(self));
878    return true;
879  };
880  return Attach(thread_name, as_daemon, set_peer_action);
881}
882
883void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
884  Runtime* runtime = Runtime::Current();
885  CHECK(runtime->IsStarted());
886  JNIEnv* env = tlsPtr_.jni_env;
887
888  if (thread_group == nullptr) {
889    thread_group = runtime->GetMainThreadGroup();
890  }
891  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
892  // Add missing null check in case of OOM b/18297817
893  if (name != nullptr && thread_name.get() == nullptr) {
894    CHECK(IsExceptionPending());
895    return;
896  }
897  jint thread_priority = GetNativePriority();
898  jboolean thread_is_daemon = as_daemon;
899
900  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
901  if (peer.get() == nullptr) {
902    CHECK(IsExceptionPending());
903    return;
904  }
905  {
906    ScopedObjectAccess soa(this);
907    tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
908  }
909  env->CallNonvirtualVoidMethod(peer.get(),
910                                WellKnownClasses::java_lang_Thread,
911                                WellKnownClasses::java_lang_Thread_init,
912                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
913  if (IsExceptionPending()) {
914    return;
915  }
916
917  Thread* self = this;
918  DCHECK_EQ(self, Thread::Current());
919  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
920                    reinterpret_cast<jlong>(self));
921
922  ScopedObjectAccess soa(self);
923  StackHandleScope<1> hs(self);
924  MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
925  if (peer_thread_name == nullptr) {
926    // The Thread constructor should have set the Thread.name to a
927    // non-null value. However, because we can run without code
928    // available (in the compiler, in tests), we manually assign the
929    // fields the constructor should have set.
930    if (runtime->IsActiveTransaction()) {
931      InitPeer<true>(soa,
932                     tlsPtr_.opeer,
933                     thread_is_daemon,
934                     thread_group,
935                     thread_name.get(),
936                     thread_priority);
937    } else {
938      InitPeer<false>(soa,
939                      tlsPtr_.opeer,
940                      thread_is_daemon,
941                      thread_group,
942                      thread_name.get(),
943                      thread_priority);
944    }
945    peer_thread_name.Assign(GetThreadName());
946  }
947  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
948  if (peer_thread_name != nullptr) {
949    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
950  }
951}
952
953jobject Thread::CreateCompileTimePeer(JNIEnv* env,
954                                      const char* name,
955                                      bool as_daemon,
956                                      jobject thread_group) {
957  Runtime* runtime = Runtime::Current();
958  CHECK(!runtime->IsStarted());
959
960  if (thread_group == nullptr) {
961    thread_group = runtime->GetMainThreadGroup();
962  }
963  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
964  // Add missing null check in case of OOM b/18297817
965  if (name != nullptr && thread_name.get() == nullptr) {
966    CHECK(Thread::Current()->IsExceptionPending());
967    return nullptr;
968  }
969  jint thread_priority = GetNativePriority();
970  jboolean thread_is_daemon = as_daemon;
971
972  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
973  if (peer.get() == nullptr) {
974    CHECK(Thread::Current()->IsExceptionPending());
975    return nullptr;
976  }
977
978  // We cannot call Thread.init, as it will recursively ask for currentThread.
979
980  // The Thread constructor should have set the Thread.name to a
981  // non-null value. However, because we can run without code
982  // available (in the compiler, in tests), we manually assign the
983  // fields the constructor should have set.
984  ScopedObjectAccessUnchecked soa(Thread::Current());
985  if (runtime->IsActiveTransaction()) {
986    InitPeer<true>(soa,
987                   soa.Decode<mirror::Object>(peer.get()),
988                   thread_is_daemon,
989                   thread_group,
990                   thread_name.get(),
991                   thread_priority);
992  } else {
993    InitPeer<false>(soa,
994                    soa.Decode<mirror::Object>(peer.get()),
995                    thread_is_daemon,
996                    thread_group,
997                    thread_name.get(),
998                    thread_priority);
999  }
1000
1001  return peer.release();
1002}
1003
1004template<bool kTransactionActive>
1005void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1006                      ObjPtr<mirror::Object> peer,
1007                      jboolean thread_is_daemon,
1008                      jobject thread_group,
1009                      jobject thread_name,
1010                      jint thread_priority) {
1011  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1012      SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1013  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1014      SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1015  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1016      SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1017  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1018      SetInt<kTransactionActive>(peer, thread_priority);
1019}
1020
1021void Thread::SetThreadName(const char* name) {
1022  tlsPtr_.name->assign(name);
1023  ::art::SetThreadName(name);
1024  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1025}
1026
1027static void GetThreadStack(pthread_t thread,
1028                           void** stack_base,
1029                           size_t* stack_size,
1030                           size_t* guard_size) {
1031#if defined(__APPLE__)
1032  *stack_size = pthread_get_stacksize_np(thread);
1033  void* stack_addr = pthread_get_stackaddr_np(thread);
1034
1035  // Check whether stack_addr is the base or end of the stack.
1036  // (On Mac OS 10.7, it's the end.)
1037  int stack_variable;
1038  if (stack_addr > &stack_variable) {
1039    *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1040  } else {
1041    *stack_base = stack_addr;
1042  }
1043
1044  // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1045  pthread_attr_t attributes;
1046  CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1047  CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1048  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1049#else
1050  pthread_attr_t attributes;
1051  CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1052  CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1053  CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1054  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1055
1056#if defined(__GLIBC__)
1057  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1058  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1059  // will be broken because we'll die long before we get close to 2GB.
1060  bool is_main_thread = (::art::GetTid() == getpid());
1061  if (is_main_thread) {
1062    rlimit stack_limit;
1063    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1064      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1065    }
1066    if (stack_limit.rlim_cur == RLIM_INFINITY) {
1067      size_t old_stack_size = *stack_size;
1068
1069      // Use the kernel default limit as our size, and adjust the base to match.
1070      *stack_size = 8 * MB;
1071      *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1072
1073      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1074                    << " to " << PrettySize(*stack_size)
1075                    << " with base " << *stack_base;
1076    }
1077  }
1078#endif
1079
1080#endif
1081}
1082
1083bool Thread::InitStackHwm() {
1084  void* read_stack_base;
1085  size_t read_stack_size;
1086  size_t read_guard_size;
1087  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1088
1089  tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1090  tlsPtr_.stack_size = read_stack_size;
1091
1092  // The minimum stack size we can cope with is the overflow reserved bytes (typically
1093  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1094  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1095  // between 8K and 12K.
1096  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1097    + 4 * KB;
1098  if (read_stack_size <= min_stack) {
1099    // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1100    LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1101                               __LINE__,
1102                               ::android::base::ERROR,
1103                               "Attempt to attach a thread with a too-small stack");
1104    return false;
1105  }
1106
1107  // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1108  VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1109                                read_stack_base,
1110                                PrettySize(read_stack_size).c_str(),
1111                                PrettySize(read_guard_size).c_str());
1112
1113  // Set stack_end_ to the bottom of the stack saving space of stack overflows
1114
1115  Runtime* runtime = Runtime::Current();
1116  bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1117
1118  // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1119  // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1120  // stack_begin to 0.
1121  const bool valgrind_on_arm =
1122      (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kArm64) &&
1123      kMemoryToolIsValgrind &&
1124      RUNNING_ON_MEMORY_TOOL != 0;
1125  if (valgrind_on_arm) {
1126    tlsPtr_.stack_begin = nullptr;
1127  }
1128
1129  ResetDefaultStackEnd();
1130
1131  // Install the protected region if we are doing implicit overflow checks.
1132  if (implicit_stack_check && !valgrind_on_arm) {
1133    // The thread might have protected region at the bottom.  We need
1134    // to install our own region so we need to move the limits
1135    // of the stack to make room for it.
1136
1137    tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1138    tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1139    tlsPtr_.stack_size -= read_guard_size;
1140
1141    InstallImplicitProtection();
1142  }
1143
1144  // Sanity check.
1145  CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1146
1147  return true;
1148}
1149
1150void Thread::ShortDump(std::ostream& os) const {
1151  os << "Thread[";
1152  if (GetThreadId() != 0) {
1153    // If we're in kStarting, we won't have a thin lock id or tid yet.
1154    os << GetThreadId()
1155       << ",tid=" << GetTid() << ',';
1156  }
1157  os << GetState()
1158     << ",Thread*=" << this
1159     << ",peer=" << tlsPtr_.opeer
1160     << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1161     << "]";
1162}
1163
1164void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1165                  bool force_dump_stack) const {
1166  DumpState(os);
1167  DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1168}
1169
1170mirror::String* Thread::GetThreadName() const {
1171  ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1172  if (tlsPtr_.opeer == nullptr) {
1173    return nullptr;
1174  }
1175  ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1176  return name == nullptr ? nullptr : name->AsString();
1177}
1178
1179void Thread::GetThreadName(std::string& name) const {
1180  name.assign(*tlsPtr_.name);
1181}
1182
1183uint64_t Thread::GetCpuMicroTime() const {
1184#if defined(__linux__)
1185  clockid_t cpu_clock_id;
1186  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1187  timespec now;
1188  clock_gettime(cpu_clock_id, &now);
1189  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1190#else  // __APPLE__
1191  UNIMPLEMENTED(WARNING);
1192  return -1;
1193#endif
1194}
1195
1196// Attempt to rectify locks so that we dump thread list with required locks before exiting.
1197static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1198  LOG(ERROR) << *thread << " suspend count already zero.";
1199  Locks::thread_suspend_count_lock_->Unlock(self);
1200  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1201    Locks::mutator_lock_->SharedTryLock(self);
1202    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1203      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1204    }
1205  }
1206  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1207    Locks::thread_list_lock_->TryLock(self);
1208    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1209      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1210    }
1211  }
1212  std::ostringstream ss;
1213  Runtime::Current()->GetThreadList()->Dump(ss);
1214  LOG(FATAL) << ss.str();
1215}
1216
1217bool Thread::ModifySuspendCountInternal(Thread* self,
1218                                        int delta,
1219                                        AtomicInteger* suspend_barrier,
1220                                        SuspendReason reason) {
1221  if (kIsDebugBuild) {
1222    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1223          << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1224    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1225    Locks::thread_suspend_count_lock_->AssertHeld(self);
1226    if (this != self && !IsSuspended()) {
1227      Locks::thread_list_lock_->AssertHeld(self);
1228    }
1229  }
1230  // User code suspensions need to be checked more closely since they originate from code outside of
1231  // the runtime's control.
1232  if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1233    Locks::user_code_suspension_lock_->AssertHeld(self);
1234    if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1235      LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1236      return false;
1237    }
1238  }
1239  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1240    UnsafeLogFatalForSuspendCount(self, this);
1241    return false;
1242  }
1243
1244  if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1245    // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1246    // deadlock. b/31683379.
1247    return false;
1248  }
1249
1250  uint16_t flags = kSuspendRequest;
1251  if (delta > 0 && suspend_barrier != nullptr) {
1252    uint32_t available_barrier = kMaxSuspendBarriers;
1253    for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1254      if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1255        available_barrier = i;
1256        break;
1257      }
1258    }
1259    if (available_barrier == kMaxSuspendBarriers) {
1260      // No barrier spaces available, we can't add another.
1261      return false;
1262    }
1263    tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1264    flags |= kActiveSuspendBarrier;
1265  }
1266
1267  tls32_.suspend_count += delta;
1268  switch (reason) {
1269    case SuspendReason::kForDebugger:
1270      tls32_.debug_suspend_count += delta;
1271      break;
1272    case SuspendReason::kForUserCode:
1273      tls32_.user_code_suspend_count += delta;
1274      break;
1275    case SuspendReason::kInternal:
1276      break;
1277  }
1278
1279  if (tls32_.suspend_count == 0) {
1280    AtomicClearFlag(kSuspendRequest);
1281  } else {
1282    // Two bits might be set simultaneously.
1283    tls32_.state_and_flags.as_atomic_int.FetchAndBitwiseOrSequentiallyConsistent(flags);
1284    TriggerSuspend();
1285  }
1286  return true;
1287}
1288
1289bool Thread::PassActiveSuspendBarriers(Thread* self) {
1290  // Grab the suspend_count lock and copy the current set of
1291  // barriers. Then clear the list and the flag. The ModifySuspendCount
1292  // function requires the lock so we prevent a race between setting
1293  // the kActiveSuspendBarrier flag and clearing it.
1294  AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1295  {
1296    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1297    if (!ReadFlag(kActiveSuspendBarrier)) {
1298      // quick exit test: the barriers have already been claimed - this is
1299      // possible as there may be a race to claim and it doesn't matter
1300      // who wins.
1301      // All of the callers of this function (except the SuspendAllInternal)
1302      // will first test the kActiveSuspendBarrier flag without lock. Here
1303      // double-check whether the barrier has been passed with the
1304      // suspend_count lock.
1305      return false;
1306    }
1307
1308    for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1309      pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1310      tlsPtr_.active_suspend_barriers[i] = nullptr;
1311    }
1312    AtomicClearFlag(kActiveSuspendBarrier);
1313  }
1314
1315  uint32_t barrier_count = 0;
1316  for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1317    AtomicInteger* pending_threads = pass_barriers[i];
1318    if (pending_threads != nullptr) {
1319      bool done = false;
1320      do {
1321        int32_t cur_val = pending_threads->LoadRelaxed();
1322        CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1323        // Reduce value by 1.
1324        done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1325#if ART_USE_FUTEXES
1326        if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1327          futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1328        }
1329#endif
1330      } while (!done);
1331      ++barrier_count;
1332    }
1333  }
1334  CHECK_GT(barrier_count, 0U);
1335  return true;
1336}
1337
1338void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1339  CHECK(ReadFlag(kActiveSuspendBarrier));
1340  bool clear_flag = true;
1341  for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1342    AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1343    if (ptr == target) {
1344      tlsPtr_.active_suspend_barriers[i] = nullptr;
1345    } else if (ptr != nullptr) {
1346      clear_flag = false;
1347    }
1348  }
1349  if (LIKELY(clear_flag)) {
1350    AtomicClearFlag(kActiveSuspendBarrier);
1351  }
1352}
1353
1354void Thread::RunCheckpointFunction() {
1355  // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1356  // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1357  Closure* checkpoint;
1358  {
1359    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1360    checkpoint = tlsPtr_.checkpoint_function;
1361    if (!checkpoint_overflow_.empty()) {
1362      // Overflow list not empty, copy the first one out and continue.
1363      tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1364      checkpoint_overflow_.pop_front();
1365    } else {
1366      // No overflow checkpoints. Clear the kCheckpointRequest flag
1367      tlsPtr_.checkpoint_function = nullptr;
1368      AtomicClearFlag(kCheckpointRequest);
1369    }
1370  }
1371  // Outside the lock, run the checkpoint function.
1372  ScopedTrace trace("Run checkpoint function");
1373  CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1374  checkpoint->Run(this);
1375}
1376
1377void Thread::RunEmptyCheckpoint() {
1378  DCHECK_EQ(Thread::Current(), this);
1379  AtomicClearFlag(kEmptyCheckpointRequest);
1380  Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1381}
1382
1383bool Thread::RequestCheckpoint(Closure* function) {
1384  union StateAndFlags old_state_and_flags;
1385  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1386  if (old_state_and_flags.as_struct.state != kRunnable) {
1387    return false;  // Fail, thread is suspended and so can't run a checkpoint.
1388  }
1389
1390  // We must be runnable to request a checkpoint.
1391  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1392  union StateAndFlags new_state_and_flags;
1393  new_state_and_flags.as_int = old_state_and_flags.as_int;
1394  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1395  bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1396      old_state_and_flags.as_int, new_state_and_flags.as_int);
1397  if (success) {
1398    // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1399    if (tlsPtr_.checkpoint_function == nullptr) {
1400      tlsPtr_.checkpoint_function = function;
1401    } else {
1402      checkpoint_overflow_.push_back(function);
1403    }
1404    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1405    TriggerSuspend();
1406  }
1407  return success;
1408}
1409
1410bool Thread::RequestEmptyCheckpoint() {
1411  union StateAndFlags old_state_and_flags;
1412  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1413  if (old_state_and_flags.as_struct.state != kRunnable) {
1414    // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1415    // heap access (eg. the read barrier).
1416    return false;
1417  }
1418
1419  // We must be runnable to request a checkpoint.
1420  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1421  union StateAndFlags new_state_and_flags;
1422  new_state_and_flags.as_int = old_state_and_flags.as_int;
1423  new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1424  bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1425      old_state_and_flags.as_int, new_state_and_flags.as_int);
1426  if (success) {
1427    TriggerSuspend();
1428  }
1429  return success;
1430}
1431
1432class BarrierClosure : public Closure {
1433 public:
1434  explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1435
1436  void Run(Thread* self) OVERRIDE {
1437    wrapped_->Run(self);
1438    barrier_.Pass(self);
1439  }
1440
1441  void Wait(Thread* self, ThreadState suspend_state) {
1442    if (suspend_state != ThreadState::kRunnable) {
1443      barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1444    } else {
1445      barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1446    }
1447  }
1448
1449 private:
1450  Closure* wrapped_;
1451  Barrier barrier_;
1452};
1453
1454// RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
1455bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1456  Thread* self = Thread::Current();
1457  if (this == Thread::Current()) {
1458    Locks::thread_list_lock_->AssertExclusiveHeld(self);
1459    // Unlock the tll before running so that the state is the same regardless of thread.
1460    Locks::thread_list_lock_->ExclusiveUnlock(self);
1461    // Asked to run on this thread. Just run.
1462    function->Run(this);
1463    return true;
1464  }
1465
1466  // The current thread is not this thread.
1467
1468  if (GetState() == ThreadState::kTerminated) {
1469    Locks::thread_list_lock_->ExclusiveUnlock(self);
1470    return false;
1471  }
1472
1473  struct ScopedThreadListLockUnlock {
1474    explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1475        : self_thread(self_in) {
1476      Locks::thread_list_lock_->AssertHeld(self_thread);
1477      Locks::thread_list_lock_->Unlock(self_thread);
1478    }
1479
1480    ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1481      Locks::thread_list_lock_->AssertNotHeld(self_thread);
1482      Locks::thread_list_lock_->Lock(self_thread);
1483    }
1484
1485    Thread* self_thread;
1486  };
1487
1488  for (;;) {
1489    Locks::thread_list_lock_->AssertExclusiveHeld(self);
1490    // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1491    // suspend-count lock for too long.
1492    if (GetState() == ThreadState::kRunnable) {
1493      BarrierClosure barrier_closure(function);
1494      bool installed = false;
1495      {
1496        MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1497        installed = RequestCheckpoint(&barrier_closure);
1498      }
1499      if (installed) {
1500        // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1501        // reacquire it since we don't know if 'this' hasn't been deleted yet.
1502        Locks::thread_list_lock_->ExclusiveUnlock(self);
1503        ScopedThreadStateChange sts(self, suspend_state);
1504        barrier_closure.Wait(self, suspend_state);
1505        return true;
1506      }
1507      // Fall-through.
1508    }
1509
1510    // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1511    // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1512    //       certain situations.
1513    {
1514      MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1515
1516      if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1517        // Just retry the loop.
1518        sched_yield();
1519        continue;
1520      }
1521    }
1522
1523    {
1524      // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1525      // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1526      ScopedThreadListLockUnlock stllu(self);
1527      {
1528        ScopedThreadStateChange sts(self, suspend_state);
1529        while (GetState() == ThreadState::kRunnable) {
1530          // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1531          // moves us to suspended.
1532          sched_yield();
1533        }
1534      }
1535
1536      function->Run(this);
1537    }
1538
1539    {
1540      MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1541
1542      DCHECK_NE(GetState(), ThreadState::kRunnable);
1543      bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1544      DCHECK(updated);
1545    }
1546
1547    {
1548      // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1549      // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1550      MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1551      Thread::resume_cond_->Broadcast(self);
1552    }
1553
1554    // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1555    Locks::thread_list_lock_->ExclusiveUnlock(self);
1556
1557    return true;  // We're done, break out of the loop.
1558  }
1559}
1560
1561Closure* Thread::GetFlipFunction() {
1562  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1563  Closure* func;
1564  do {
1565    func = atomic_func->LoadRelaxed();
1566    if (func == nullptr) {
1567      return nullptr;
1568    }
1569  } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1570  DCHECK(func != nullptr);
1571  return func;
1572}
1573
1574void Thread::SetFlipFunction(Closure* function) {
1575  CHECK(function != nullptr);
1576  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1577  atomic_func->StoreSequentiallyConsistent(function);
1578}
1579
1580void Thread::FullSuspendCheck() {
1581  ScopedTrace trace(__FUNCTION__);
1582  VLOG(threads) << this << " self-suspending";
1583  // Make thread appear suspended to other threads, release mutator_lock_.
1584  // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1585  ScopedThreadSuspension(this, kSuspended);
1586  VLOG(threads) << this << " self-reviving";
1587}
1588
1589static std::string GetSchedulerGroupName(pid_t tid) {
1590  // /proc/<pid>/cgroup looks like this:
1591  // 2:devices:/
1592  // 1:cpuacct,cpu:/
1593  // We want the third field from the line whose second field contains the "cpu" token.
1594  std::string cgroup_file;
1595  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1596    return "";
1597  }
1598  std::vector<std::string> cgroup_lines;
1599  Split(cgroup_file, '\n', &cgroup_lines);
1600  for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1601    std::vector<std::string> cgroup_fields;
1602    Split(cgroup_lines[i], ':', &cgroup_fields);
1603    std::vector<std::string> cgroups;
1604    Split(cgroup_fields[1], ',', &cgroups);
1605    for (size_t j = 0; j < cgroups.size(); ++j) {
1606      if (cgroups[j] == "cpu") {
1607        return cgroup_fields[2].substr(1);  // Skip the leading slash.
1608      }
1609    }
1610  }
1611  return "";
1612}
1613
1614
1615void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1616  std::string group_name;
1617  int priority;
1618  bool is_daemon = false;
1619  Thread* self = Thread::Current();
1620
1621  // If flip_function is not null, it means we have run a checkpoint
1622  // before the thread wakes up to execute the flip function and the
1623  // thread roots haven't been forwarded.  So the following access to
1624  // the roots (opeer or methods in the frames) would be bad. Run it
1625  // here. TODO: clean up.
1626  if (thread != nullptr) {
1627    ScopedObjectAccessUnchecked soa(self);
1628    Thread* this_thread = const_cast<Thread*>(thread);
1629    Closure* flip_func = this_thread->GetFlipFunction();
1630    if (flip_func != nullptr) {
1631      flip_func->Run(this_thread);
1632    }
1633  }
1634
1635  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1636  // cause ScopedObjectAccessUnchecked to deadlock.
1637  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1638    ScopedObjectAccessUnchecked soa(self);
1639    priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1640        ->GetInt(thread->tlsPtr_.opeer);
1641    is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1642        ->GetBoolean(thread->tlsPtr_.opeer);
1643
1644    ObjPtr<mirror::Object> thread_group =
1645        jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1646            ->GetObject(thread->tlsPtr_.opeer);
1647
1648    if (thread_group != nullptr) {
1649      ArtField* group_name_field =
1650          jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1651      ObjPtr<mirror::String> group_name_string =
1652          group_name_field->GetObject(thread_group)->AsString();
1653      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1654    }
1655  } else {
1656    priority = GetNativePriority();
1657  }
1658
1659  std::string scheduler_group_name(GetSchedulerGroupName(tid));
1660  if (scheduler_group_name.empty()) {
1661    scheduler_group_name = "default";
1662  }
1663
1664  if (thread != nullptr) {
1665    os << '"' << *thread->tlsPtr_.name << '"';
1666    if (is_daemon) {
1667      os << " daemon";
1668    }
1669    os << " prio=" << priority
1670       << " tid=" << thread->GetThreadId()
1671       << " " << thread->GetState();
1672    if (thread->IsStillStarting()) {
1673      os << " (still starting up)";
1674    }
1675    os << "\n";
1676  } else {
1677    os << '"' << ::art::GetThreadName(tid) << '"'
1678       << " prio=" << priority
1679       << " (not attached)\n";
1680  }
1681
1682  if (thread != nullptr) {
1683    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1684    os << "  | group=\"" << group_name << "\""
1685       << " sCount=" << thread->tls32_.suspend_count
1686       << " dsCount=" << thread->tls32_.debug_suspend_count
1687       << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1688       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1689       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1690  }
1691
1692  os << "  | sysTid=" << tid
1693     << " nice=" << getpriority(PRIO_PROCESS, tid)
1694     << " cgrp=" << scheduler_group_name;
1695  if (thread != nullptr) {
1696    int policy;
1697    sched_param sp;
1698#if !defined(__APPLE__)
1699    // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1700    policy = sched_getscheduler(tid);
1701    if (policy == -1) {
1702      PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1703    }
1704    int sched_getparam_result = sched_getparam(tid, &sp);
1705    if (sched_getparam_result == -1) {
1706      PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1707      sp.sched_priority = -1;
1708    }
1709#else
1710    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1711                       __FUNCTION__);
1712#endif
1713    os << " sched=" << policy << "/" << sp.sched_priority
1714       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1715  }
1716  os << "\n";
1717
1718  // Grab the scheduler stats for this thread.
1719  std::string scheduler_stats;
1720  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1721    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1722  } else {
1723    scheduler_stats = "0 0 0";
1724  }
1725
1726  char native_thread_state = '?';
1727  int utime = 0;
1728  int stime = 0;
1729  int task_cpu = 0;
1730  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1731
1732  os << "  | state=" << native_thread_state
1733     << " schedstat=( " << scheduler_stats << " )"
1734     << " utm=" << utime
1735     << " stm=" << stime
1736     << " core=" << task_cpu
1737     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1738  if (thread != nullptr) {
1739    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1740        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1741        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1742    // Dump the held mutexes.
1743    os << "  | held mutexes=";
1744    for (size_t i = 0; i < kLockLevelCount; ++i) {
1745      if (i != kMonitorLock) {
1746        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1747        if (mutex != nullptr) {
1748          os << " \"" << mutex->GetName() << "\"";
1749          if (mutex->IsReaderWriterMutex()) {
1750            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1751            if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1752              os << "(exclusive held)";
1753            } else {
1754              os << "(shared held)";
1755            }
1756          }
1757        }
1758      }
1759    }
1760    os << "\n";
1761  }
1762}
1763
1764void Thread::DumpState(std::ostream& os) const {
1765  Thread::DumpState(os, this, GetTid());
1766}
1767
1768struct StackDumpVisitor : public MonitorObjectsStackVisitor {
1769  StackDumpVisitor(std::ostream& os_in,
1770                   Thread* thread_in,
1771                   Context* context,
1772                   bool can_allocate,
1773                   bool check_suspended = true,
1774                   bool dump_locks = true)
1775      REQUIRES_SHARED(Locks::mutator_lock_)
1776      : MonitorObjectsStackVisitor(thread_in,
1777                                   context,
1778                                   check_suspended,
1779                                   can_allocate && dump_locks),
1780        os(os_in),
1781        last_method(nullptr),
1782        last_line_number(0),
1783        repetition_count(0) {}
1784
1785  virtual ~StackDumpVisitor() {
1786    if (frame_count == 0) {
1787      os << "  (no managed stack frames)\n";
1788    }
1789  }
1790
1791  static constexpr size_t kMaxRepetition = 3u;
1792
1793  VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
1794      OVERRIDE
1795      REQUIRES_SHARED(Locks::mutator_lock_) {
1796    m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1797    ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1798    ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1799    int line_number = -1;
1800    if (dex_cache != nullptr) {  // be tolerant of bad input
1801      const DexFile* dex_file = dex_cache->GetDexFile();
1802      line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1803    }
1804    if (line_number == last_line_number && last_method == m) {
1805      ++repetition_count;
1806    } else {
1807      if (repetition_count >= kMaxRepetition) {
1808        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1809      }
1810      repetition_count = 0;
1811      last_line_number = line_number;
1812      last_method = m;
1813    }
1814
1815    if (repetition_count >= kMaxRepetition) {
1816      // Skip visiting=printing anything.
1817      return VisitMethodResult::kSkipMethod;
1818    }
1819
1820    os << "  at " << m->PrettyMethod(false);
1821    if (m->IsNative()) {
1822      os << "(Native method)";
1823    } else {
1824      const char* source_file(m->GetDeclaringClassSourceFile());
1825      os << "(" << (source_file != nullptr ? source_file : "unavailable")
1826                       << ":" << line_number << ")";
1827    }
1828    os << "\n";
1829    // Go and visit locks.
1830    return VisitMethodResult::kContinueMethod;
1831  }
1832
1833  VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
1834    return VisitMethodResult::kContinueMethod;
1835  }
1836
1837  void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
1838      OVERRIDE
1839      REQUIRES_SHARED(Locks::mutator_lock_) {
1840    PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
1841  }
1842  void VisitSleepingObject(mirror::Object* obj)
1843      OVERRIDE
1844      REQUIRES_SHARED(Locks::mutator_lock_) {
1845    PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
1846  }
1847  void VisitBlockedOnObject(mirror::Object* obj,
1848                            ThreadState state,
1849                            uint32_t owner_tid)
1850      OVERRIDE
1851      REQUIRES_SHARED(Locks::mutator_lock_) {
1852    const char* msg;
1853    switch (state) {
1854      case kBlocked:
1855        msg = "  - waiting to lock ";
1856        break;
1857
1858      case kWaitingForLockInflation:
1859        msg = "  - waiting for lock inflation of ";
1860        break;
1861
1862      default:
1863        LOG(FATAL) << "Unreachable";
1864        UNREACHABLE();
1865    }
1866    PrintObject(obj, msg, owner_tid);
1867  }
1868  void VisitLockedObject(mirror::Object* obj)
1869      OVERRIDE
1870      REQUIRES_SHARED(Locks::mutator_lock_) {
1871    PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
1872  }
1873
1874  void PrintObject(mirror::Object* obj,
1875                   const char* msg,
1876                   uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
1877    if (obj == nullptr) {
1878      os << msg << "an unknown object";
1879    } else {
1880      if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
1881          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1882        // Getting the identity hashcode here would result in lock inflation and suspension of the
1883        // current thread, which isn't safe if this is the only runnable thread.
1884        os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
1885                                  reinterpret_cast<intptr_t>(obj),
1886                                  obj->PrettyTypeOf().c_str());
1887      } else {
1888        // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
1889        // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
1890        // suspension and move pretty_object.
1891        const std::string pretty_type(obj->PrettyTypeOf());
1892        os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
1893      }
1894    }
1895    if (owner_tid != ThreadList::kInvalidThreadId) {
1896      os << " held by thread " << owner_tid;
1897    }
1898    os << "\n";
1899  }
1900
1901  std::ostream& os;
1902  ArtMethod* last_method;
1903  int last_line_number;
1904  size_t repetition_count;
1905};
1906
1907static bool ShouldShowNativeStack(const Thread* thread)
1908    REQUIRES_SHARED(Locks::mutator_lock_) {
1909  ThreadState state = thread->GetState();
1910
1911  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1912  if (state > kWaiting && state < kStarting) {
1913    return true;
1914  }
1915
1916  // In an Object.wait variant or Thread.sleep? That's not interesting.
1917  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1918    return false;
1919  }
1920
1921  // Threads with no managed stack frames should be shown.
1922  if (!thread->HasManagedStack()) {
1923    return true;
1924  }
1925
1926  // In some other native method? That's interesting.
1927  // We don't just check kNative because native methods will be in state kSuspended if they're
1928  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1929  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1930  ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1931  return current_method != nullptr && current_method->IsNative();
1932}
1933
1934void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1935  // If flip_function is not null, it means we have run a checkpoint
1936  // before the thread wakes up to execute the flip function and the
1937  // thread roots haven't been forwarded.  So the following access to
1938  // the roots (locks or methods in the frames) would be bad. Run it
1939  // here. TODO: clean up.
1940  {
1941    Thread* this_thread = const_cast<Thread*>(this);
1942    Closure* flip_func = this_thread->GetFlipFunction();
1943    if (flip_func != nullptr) {
1944      flip_func->Run(this_thread);
1945    }
1946  }
1947
1948  // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1949  // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1950  // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1951  // thread.
1952  StackHandleScope<1> scope(Thread::Current());
1953  Handle<mirror::Throwable> exc;
1954  bool have_exception = false;
1955  if (IsExceptionPending()) {
1956    exc = scope.NewHandle(GetException());
1957    const_cast<Thread*>(this)->ClearException();
1958    have_exception = true;
1959  }
1960
1961  std::unique_ptr<Context> context(Context::Create());
1962  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1963                          !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1964  dumper.WalkStack();
1965
1966  if (have_exception) {
1967    const_cast<Thread*>(this)->SetException(exc.Get());
1968  }
1969}
1970
1971void Thread::DumpStack(std::ostream& os,
1972                       bool dump_native_stack,
1973                       BacktraceMap* backtrace_map,
1974                       bool force_dump_stack) const {
1975  // TODO: we call this code when dying but may not have suspended the thread ourself. The
1976  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1977  //       the race with the thread_suspend_count_lock_).
1978  bool dump_for_abort = (gAborting > 0);
1979  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1980  if (!kIsDebugBuild) {
1981    // We always want to dump the stack for an abort, however, there is no point dumping another
1982    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1983    safe_to_dump = (safe_to_dump || dump_for_abort);
1984  }
1985  if (safe_to_dump || force_dump_stack) {
1986    // If we're currently in native code, dump that stack before dumping the managed stack.
1987    if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1988      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1989      ArtMethod* method =
1990          GetCurrentMethod(nullptr,
1991                           /*check_suspended*/ !force_dump_stack,
1992                           /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1993      DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1994    }
1995    DumpJavaStack(os,
1996                  /*check_suspended*/ !force_dump_stack,
1997                  /*dump_locks*/ !force_dump_stack);
1998  } else {
1999    os << "Not able to dump stack of thread that isn't suspended";
2000  }
2001}
2002
2003void Thread::ThreadExitCallback(void* arg) {
2004  Thread* self = reinterpret_cast<Thread*>(arg);
2005  if (self->tls32_.thread_exit_check_count == 0) {
2006    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2007        "going to use a pthread_key_create destructor?): " << *self;
2008    CHECK(is_started_);
2009#ifdef ART_TARGET_ANDROID
2010    __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2011#else
2012    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2013#endif
2014    self->tls32_.thread_exit_check_count = 1;
2015  } else {
2016    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2017  }
2018}
2019
2020void Thread::Startup() {
2021  CHECK(!is_started_);
2022  is_started_ = true;
2023  {
2024    // MutexLock to keep annotalysis happy.
2025    //
2026    // Note we use null for the thread because Thread::Current can
2027    // return garbage since (is_started_ == true) and
2028    // Thread::pthread_key_self_ is not yet initialized.
2029    // This was seen on glibc.
2030    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2031    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2032                                         *Locks::thread_suspend_count_lock_);
2033  }
2034
2035  // Allocate a TLS slot.
2036  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2037                     "self key");
2038
2039  // Double-check the TLS slot allocation.
2040  if (pthread_getspecific(pthread_key_self_) != nullptr) {
2041    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2042  }
2043}
2044
2045void Thread::FinishStartup() {
2046  Runtime* runtime = Runtime::Current();
2047  CHECK(runtime->IsStarted());
2048
2049  // Finish attaching the main thread.
2050  ScopedObjectAccess soa(Thread::Current());
2051  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2052  Thread::Current()->AssertNoPendingException();
2053
2054  Runtime::Current()->GetClassLinker()->RunRootClinits();
2055
2056  // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2057  // threads, this is done in Thread.start() on the Java side.
2058  Thread::Current()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2059  Thread::Current()->AssertNoPendingException();
2060}
2061
2062void Thread::Shutdown() {
2063  CHECK(is_started_);
2064  is_started_ = false;
2065  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2066  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2067  if (resume_cond_ != nullptr) {
2068    delete resume_cond_;
2069    resume_cond_ = nullptr;
2070  }
2071}
2072
2073void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2074  ScopedLocalRef<jobject> thread_jobject(
2075      soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2076  ScopedLocalRef<jobject> thread_group_jobject_scoped(
2077      soa.Env(), nullptr);
2078  jobject thread_group_jobject = thread_group;
2079  if (thread_group == nullptr || kIsDebugBuild) {
2080    // There is always a group set. Retrieve it.
2081    thread_group_jobject_scoped.reset(
2082        soa.Env()->GetObjectField(thread_jobject.get(),
2083                                  WellKnownClasses::java_lang_Thread_group));
2084    thread_group_jobject = thread_group_jobject_scoped.get();
2085    if (kIsDebugBuild && thread_group != nullptr) {
2086      CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2087    }
2088  }
2089  soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2090                                      WellKnownClasses::java_lang_ThreadGroup,
2091                                      WellKnownClasses::java_lang_ThreadGroup_add,
2092                                      thread_jobject.get());
2093}
2094
2095Thread::Thread(bool daemon)
2096    : tls32_(daemon),
2097      wait_monitor_(nullptr),
2098      custom_tls_(nullptr),
2099      can_call_into_java_(true) {
2100  wait_mutex_ = new Mutex("a thread wait mutex");
2101  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2102  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2103  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2104
2105  static_assert((sizeof(Thread) % 4) == 0U,
2106                "art::Thread has a size which is not a multiple of 4.");
2107  tls32_.state_and_flags.as_struct.flags = 0;
2108  tls32_.state_and_flags.as_struct.state = kNative;
2109  tls32_.interrupted.StoreRelaxed(false);
2110  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2111  std::fill(tlsPtr_.rosalloc_runs,
2112            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2113            gc::allocator::RosAlloc::GetDedicatedFullRun());
2114  tlsPtr_.checkpoint_function = nullptr;
2115  for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2116    tlsPtr_.active_suspend_barriers[i] = nullptr;
2117  }
2118  tlsPtr_.flip_function = nullptr;
2119  tlsPtr_.thread_local_mark_stack = nullptr;
2120  tls32_.is_transitioning_to_runnable = false;
2121}
2122
2123bool Thread::IsStillStarting() const {
2124  // You might think you can check whether the state is kStarting, but for much of thread startup,
2125  // the thread is in kNative; it might also be in kVmWait.
2126  // You might think you can check whether the peer is null, but the peer is actually created and
2127  // assigned fairly early on, and needs to be.
2128  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2129  // this thread _ever_ entered kRunnable".
2130  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2131      (*tlsPtr_.name == kThreadNameDuringStartup);
2132}
2133
2134void Thread::AssertPendingException() const {
2135  CHECK(IsExceptionPending()) << "Pending exception expected.";
2136}
2137
2138void Thread::AssertPendingOOMException() const {
2139  AssertPendingException();
2140  auto* e = GetException();
2141  CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2142      << e->Dump();
2143}
2144
2145void Thread::AssertNoPendingException() const {
2146  if (UNLIKELY(IsExceptionPending())) {
2147    ScopedObjectAccess soa(Thread::Current());
2148    LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2149  }
2150}
2151
2152void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2153  if (UNLIKELY(IsExceptionPending())) {
2154    ScopedObjectAccess soa(Thread::Current());
2155    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2156        << GetException()->Dump();
2157  }
2158}
2159
2160class MonitorExitVisitor : public SingleRootVisitor {
2161 public:
2162  explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2163
2164  // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
2165  void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2166      OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2167    if (self_->HoldsLock(entered_monitor)) {
2168      LOG(WARNING) << "Calling MonitorExit on object "
2169                   << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2170                   << " left locked by native thread "
2171                   << *Thread::Current() << " which is detaching";
2172      entered_monitor->MonitorExit(self_);
2173    }
2174  }
2175
2176 private:
2177  Thread* const self_;
2178};
2179
2180void Thread::Destroy() {
2181  Thread* self = this;
2182  DCHECK_EQ(self, Thread::Current());
2183
2184  if (tlsPtr_.jni_env != nullptr) {
2185    {
2186      ScopedObjectAccess soa(self);
2187      MonitorExitVisitor visitor(self);
2188      // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2189      tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2190    }
2191    // Release locally held global references which releasing may require the mutator lock.
2192    if (tlsPtr_.jpeer != nullptr) {
2193      // If pthread_create fails we don't have a jni env here.
2194      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2195      tlsPtr_.jpeer = nullptr;
2196    }
2197    if (tlsPtr_.class_loader_override != nullptr) {
2198      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2199      tlsPtr_.class_loader_override = nullptr;
2200    }
2201  }
2202
2203  if (tlsPtr_.opeer != nullptr) {
2204    ScopedObjectAccess soa(self);
2205    // We may need to call user-supplied managed code, do this before final clean-up.
2206    HandleUncaughtExceptions(soa);
2207    RemoveFromThreadGroup(soa);
2208    Runtime* runtime = Runtime::Current();
2209    if (runtime != nullptr) {
2210      runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2211    }
2212
2213    // this.nativePeer = 0;
2214    if (Runtime::Current()->IsActiveTransaction()) {
2215      jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2216          ->SetLong<true>(tlsPtr_.opeer, 0);
2217    } else {
2218      jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2219          ->SetLong<false>(tlsPtr_.opeer, 0);
2220    }
2221
2222    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2223    // who is waiting.
2224    ObjPtr<mirror::Object> lock =
2225        jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2226    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2227    if (lock != nullptr) {
2228      StackHandleScope<1> hs(self);
2229      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2230      ObjectLock<mirror::Object> locker(self, h_obj);
2231      locker.NotifyAll();
2232    }
2233    tlsPtr_.opeer = nullptr;
2234  }
2235
2236  {
2237    ScopedObjectAccess soa(self);
2238    Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2239    if (kUseReadBarrier) {
2240      Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2241    }
2242  }
2243}
2244
2245Thread::~Thread() {
2246  CHECK(tlsPtr_.class_loader_override == nullptr);
2247  CHECK(tlsPtr_.jpeer == nullptr);
2248  CHECK(tlsPtr_.opeer == nullptr);
2249  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2250  if (initialized) {
2251    delete tlsPtr_.jni_env;
2252    tlsPtr_.jni_env = nullptr;
2253  }
2254  CHECK_NE(GetState(), kRunnable);
2255  CHECK(!ReadFlag(kCheckpointRequest));
2256  CHECK(!ReadFlag(kEmptyCheckpointRequest));
2257  CHECK(tlsPtr_.checkpoint_function == nullptr);
2258  CHECK_EQ(checkpoint_overflow_.size(), 0u);
2259  CHECK(tlsPtr_.flip_function == nullptr);
2260  CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2261
2262  // Make sure we processed all deoptimization requests.
2263  CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2264  CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2265      "Not all deoptimized frames have been consumed by the debugger.";
2266
2267  // We may be deleting a still born thread.
2268  SetStateUnsafe(kTerminated);
2269
2270  delete wait_cond_;
2271  delete wait_mutex_;
2272
2273  if (tlsPtr_.long_jump_context != nullptr) {
2274    delete tlsPtr_.long_jump_context;
2275  }
2276
2277  if (initialized) {
2278    CleanupCpu();
2279  }
2280
2281  if (tlsPtr_.single_step_control != nullptr) {
2282    delete tlsPtr_.single_step_control;
2283  }
2284  delete tlsPtr_.instrumentation_stack;
2285  delete tlsPtr_.name;
2286  delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2287
2288  Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2289
2290  TearDownAlternateSignalStack();
2291}
2292
2293void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2294  if (!IsExceptionPending()) {
2295    return;
2296  }
2297  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2298  ScopedThreadStateChange tsc(this, kNative);
2299
2300  // Get and clear the exception.
2301  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2302  tlsPtr_.jni_env->ExceptionClear();
2303
2304  // Call the Thread instance's dispatchUncaughtException(Throwable)
2305  tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2306      WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2307      exception.get());
2308
2309  // If the dispatchUncaughtException threw, clear that exception too.
2310  tlsPtr_.jni_env->ExceptionClear();
2311}
2312
2313void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2314  // this.group.removeThread(this);
2315  // group can be null if we're in the compiler or a test.
2316  ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2317      ->GetObject(tlsPtr_.opeer);
2318  if (ogroup != nullptr) {
2319    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2320    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2321    ScopedThreadStateChange tsc(soa.Self(), kNative);
2322    tlsPtr_.jni_env->CallVoidMethod(group.get(),
2323                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
2324                                    peer.get());
2325  }
2326}
2327
2328bool Thread::HandleScopeContains(jobject obj) const {
2329  StackReference<mirror::Object>* hs_entry =
2330      reinterpret_cast<StackReference<mirror::Object>*>(obj);
2331  for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2332    if (cur->Contains(hs_entry)) {
2333      return true;
2334    }
2335  }
2336  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2337  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2338}
2339
2340void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2341  BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2342      visitor, RootInfo(kRootNativeStack, thread_id));
2343  for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2344    cur->VisitRoots(buffered_visitor);
2345  }
2346}
2347
2348ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2349  if (obj == nullptr) {
2350    return nullptr;
2351  }
2352  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2353  IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2354  ObjPtr<mirror::Object> result;
2355  bool expect_null = false;
2356  // The "kinds" below are sorted by the frequency we expect to encounter them.
2357  if (kind == kLocal) {
2358    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2359    // Local references do not need a read barrier.
2360    result = locals.Get<kWithoutReadBarrier>(ref);
2361  } else if (kind == kHandleScopeOrInvalid) {
2362    // TODO: make stack indirect reference table lookup more efficient.
2363    // Check if this is a local reference in the handle scope.
2364    if (LIKELY(HandleScopeContains(obj))) {
2365      // Read from handle scope.
2366      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2367      VerifyObject(result);
2368    } else {
2369      tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2370      expect_null = true;
2371      result = nullptr;
2372    }
2373  } else if (kind == kGlobal) {
2374    result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2375  } else {
2376    DCHECK_EQ(kind, kWeakGlobal);
2377    result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2378    if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2379      // This is a special case where it's okay to return null.
2380      expect_null = true;
2381      result = nullptr;
2382    }
2383  }
2384
2385  if (UNLIKELY(!expect_null && result == nullptr)) {
2386    tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
2387                                   ToStr<IndirectRefKind>(kind).c_str(), obj);
2388  }
2389  return result;
2390}
2391
2392bool Thread::IsJWeakCleared(jweak obj) const {
2393  CHECK(obj != nullptr);
2394  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2395  IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2396  CHECK_EQ(kind, kWeakGlobal);
2397  return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2398}
2399
2400// Implements java.lang.Thread.interrupted.
2401bool Thread::Interrupted() {
2402  DCHECK_EQ(Thread::Current(), this);
2403  // No other thread can concurrently reset the interrupted flag.
2404  bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
2405  if (interrupted) {
2406    tls32_.interrupted.StoreSequentiallyConsistent(false);
2407  }
2408  return interrupted;
2409}
2410
2411// Implements java.lang.Thread.isInterrupted.
2412bool Thread::IsInterrupted() {
2413  return tls32_.interrupted.LoadSequentiallyConsistent();
2414}
2415
2416void Thread::Interrupt(Thread* self) {
2417  MutexLock mu(self, *wait_mutex_);
2418  if (tls32_.interrupted.LoadSequentiallyConsistent()) {
2419    return;
2420  }
2421  tls32_.interrupted.StoreSequentiallyConsistent(true);
2422  NotifyLocked(self);
2423}
2424
2425void Thread::Notify() {
2426  Thread* self = Thread::Current();
2427  MutexLock mu(self, *wait_mutex_);
2428  NotifyLocked(self);
2429}
2430
2431void Thread::NotifyLocked(Thread* self) {
2432  if (wait_monitor_ != nullptr) {
2433    wait_cond_->Signal(self);
2434  }
2435}
2436
2437void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2438  if (tlsPtr_.class_loader_override != nullptr) {
2439    GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2440  }
2441  tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2442}
2443
2444using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2445
2446// Counts the stack trace depth and also fetches the first max_saved_frames frames.
2447class FetchStackTraceVisitor : public StackVisitor {
2448 public:
2449  explicit FetchStackTraceVisitor(Thread* thread,
2450                                  ArtMethodDexPcPair* saved_frames = nullptr,
2451                                  size_t max_saved_frames = 0)
2452      REQUIRES_SHARED(Locks::mutator_lock_)
2453      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2454        saved_frames_(saved_frames),
2455        max_saved_frames_(max_saved_frames) {}
2456
2457  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2458    // We want to skip frames up to and including the exception's constructor.
2459    // Note we also skip the frame if it doesn't have a method (namely the callee
2460    // save frame)
2461    ArtMethod* m = GetMethod();
2462    if (skipping_ && !m->IsRuntimeMethod() &&
2463        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2464      skipping_ = false;
2465    }
2466    if (!skipping_) {
2467      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2468        if (depth_ < max_saved_frames_) {
2469          saved_frames_[depth_].first = m;
2470          saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2471        }
2472        ++depth_;
2473      }
2474    } else {
2475      ++skip_depth_;
2476    }
2477    return true;
2478  }
2479
2480  uint32_t GetDepth() const {
2481    return depth_;
2482  }
2483
2484  uint32_t GetSkipDepth() const {
2485    return skip_depth_;
2486  }
2487
2488 private:
2489  uint32_t depth_ = 0;
2490  uint32_t skip_depth_ = 0;
2491  bool skipping_ = true;
2492  ArtMethodDexPcPair* saved_frames_;
2493  const size_t max_saved_frames_;
2494
2495  DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2496};
2497
2498template<bool kTransactionActive>
2499class BuildInternalStackTraceVisitor : public StackVisitor {
2500 public:
2501  BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2502      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2503        self_(self),
2504        skip_depth_(skip_depth),
2505        pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2506
2507  bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2508    // Allocate method trace as an object array where the first element is a pointer array that
2509    // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2510    // class of the ArtMethod pointers.
2511    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2512    StackHandleScope<1> hs(self_);
2513    ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2514    // The first element is the methods and dex pc array, the other elements are declaring classes
2515    // for the methods to ensure classes in the stack trace don't get unloaded.
2516    Handle<mirror::ObjectArray<mirror::Object>> trace(
2517        hs.NewHandle(
2518            mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2519    if (trace == nullptr) {
2520      // Acquire uninterruptible_ in all paths.
2521      self_->StartAssertNoThreadSuspension("Building internal stack trace");
2522      self_->AssertPendingOOMException();
2523      return false;
2524    }
2525    ObjPtr<mirror::PointerArray> methods_and_pcs =
2526        class_linker->AllocPointerArray(self_, depth * 2);
2527    const char* last_no_suspend_cause =
2528        self_->StartAssertNoThreadSuspension("Building internal stack trace");
2529    if (methods_and_pcs == nullptr) {
2530      self_->AssertPendingOOMException();
2531      return false;
2532    }
2533    trace->Set(0, methods_and_pcs);
2534    trace_ = trace.Get();
2535    // If We are called from native, use non-transactional mode.
2536    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2537    return true;
2538  }
2539
2540  virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2541    self_->EndAssertNoThreadSuspension(nullptr);
2542  }
2543
2544  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2545    if (trace_ == nullptr) {
2546      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2547    }
2548    if (skip_depth_ > 0) {
2549      skip_depth_--;
2550      return true;
2551    }
2552    ArtMethod* m = GetMethod();
2553    if (m->IsRuntimeMethod()) {
2554      return true;  // Ignore runtime frames (in particular callee save).
2555    }
2556    AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2557    return true;
2558  }
2559
2560  void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2561    ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2562    trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2563    trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2564        trace_methods_and_pcs->GetLength() / 2 + count_,
2565        dex_pc,
2566        pointer_size_);
2567    // Save the declaring class of the method to ensure that the declaring classes of the methods
2568    // do not get unloaded while the stack trace is live.
2569    trace_->Set(count_ + 1, method->GetDeclaringClass());
2570    ++count_;
2571  }
2572
2573  ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2574    return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2575  }
2576
2577  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2578    return trace_;
2579  }
2580
2581 private:
2582  Thread* const self_;
2583  // How many more frames to skip.
2584  int32_t skip_depth_;
2585  // Current position down stack trace.
2586  uint32_t count_ = 0;
2587  // An object array where the first element is a pointer array that contains the ArtMethod
2588  // pointers on the stack and dex PCs. The rest of the elements are the declaring
2589  // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2590  // the i'th frame.
2591  mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2592  // For cross compilation.
2593  const PointerSize pointer_size_;
2594
2595  DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2596};
2597
2598template<bool kTransactionActive>
2599jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2600  // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2601  constexpr size_t kMaxSavedFrames = 256;
2602  std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2603  FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2604                                       &saved_frames[0],
2605                                       kMaxSavedFrames);
2606  count_visitor.WalkStack();
2607  const uint32_t depth = count_visitor.GetDepth();
2608  const uint32_t skip_depth = count_visitor.GetSkipDepth();
2609
2610  // Build internal stack trace.
2611  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2612                                                                         const_cast<Thread*>(this),
2613                                                                         skip_depth);
2614  if (!build_trace_visitor.Init(depth)) {
2615    return nullptr;  // Allocation failed.
2616  }
2617  // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2618  // than doing the stack walk twice.
2619  if (depth < kMaxSavedFrames) {
2620    for (size_t i = 0; i < depth; ++i) {
2621      build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2622    }
2623  } else {
2624    build_trace_visitor.WalkStack();
2625  }
2626
2627  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2628  if (kIsDebugBuild) {
2629    ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2630    // Second half of trace_methods is dex PCs.
2631    for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2632      auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2633          i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2634      CHECK(method != nullptr);
2635    }
2636  }
2637  return soa.AddLocalReference<jobject>(trace);
2638}
2639template jobject Thread::CreateInternalStackTrace<false>(
2640    const ScopedObjectAccessAlreadyRunnable& soa) const;
2641template jobject Thread::CreateInternalStackTrace<true>(
2642    const ScopedObjectAccessAlreadyRunnable& soa) const;
2643
2644bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2645  // Only count the depth since we do not pass a stack frame array as an argument.
2646  FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2647  count_visitor.WalkStack();
2648  return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2649}
2650
2651static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2652    const ScopedObjectAccessAlreadyRunnable& soa,
2653    ArtMethod* method,
2654    uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2655  int32_t line_number;
2656  StackHandleScope<3> hs(soa.Self());
2657  auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2658  auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2659  if (method->IsProxyMethod()) {
2660    line_number = -1;
2661    class_name_object.Assign(method->GetDeclaringClass()->GetName());
2662    // source_name_object intentionally left null for proxy methods
2663  } else {
2664    line_number = method->GetLineNumFromDexPC(dex_pc);
2665    // Allocate element, potentially triggering GC
2666    // TODO: reuse class_name_object via Class::name_?
2667    const char* descriptor = method->GetDeclaringClassDescriptor();
2668    CHECK(descriptor != nullptr);
2669    std::string class_name(PrettyDescriptor(descriptor));
2670    class_name_object.Assign(
2671        mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2672    if (class_name_object == nullptr) {
2673      soa.Self()->AssertPendingOOMException();
2674      return nullptr;
2675    }
2676    const char* source_file = method->GetDeclaringClassSourceFile();
2677    if (line_number == -1) {
2678      // Make the line_number field of StackTraceElement hold the dex pc.
2679      // source_name_object is intentionally left null if we failed to map the dex pc to
2680      // a line number (most probably because there is no debug info). See b/30183883.
2681      line_number = dex_pc;
2682    } else {
2683      if (source_file != nullptr) {
2684        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2685        if (source_name_object == nullptr) {
2686          soa.Self()->AssertPendingOOMException();
2687          return nullptr;
2688        }
2689      }
2690    }
2691  }
2692  const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2693  CHECK(method_name != nullptr);
2694  Handle<mirror::String> method_name_object(
2695      hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2696  if (method_name_object == nullptr) {
2697    return nullptr;
2698  }
2699  return mirror::StackTraceElement::Alloc(soa.Self(),
2700                                          class_name_object,
2701                                          method_name_object,
2702                                          source_name_object,
2703                                          line_number);
2704}
2705
2706jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2707    const ScopedObjectAccessAlreadyRunnable& soa,
2708    jobject internal,
2709    jobjectArray output_array,
2710    int* stack_depth) {
2711  // Decode the internal stack trace into the depth, method trace and PC trace.
2712  // Subtract one for the methods and PC trace.
2713  int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2714  DCHECK_GE(depth, 0);
2715
2716  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2717
2718  jobjectArray result;
2719
2720  if (output_array != nullptr) {
2721    // Reuse the array we were given.
2722    result = output_array;
2723    // ...adjusting the number of frames we'll write to not exceed the array length.
2724    const int32_t traces_length =
2725        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2726    depth = std::min(depth, traces_length);
2727  } else {
2728    // Create java_trace array and place in local reference table
2729    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2730        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2731    if (java_traces == nullptr) {
2732      return nullptr;
2733    }
2734    result = soa.AddLocalReference<jobjectArray>(java_traces);
2735  }
2736
2737  if (stack_depth != nullptr) {
2738    *stack_depth = depth;
2739  }
2740
2741  for (int32_t i = 0; i < depth; ++i) {
2742    ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2743        soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2744    // Methods and dex PC trace is element 0.
2745    DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2746    ObjPtr<mirror::PointerArray> const method_trace =
2747        ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2748    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2749    ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2750    uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2751        i + method_trace->GetLength() / 2, kRuntimePointerSize);
2752    ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
2753    if (obj == nullptr) {
2754      return nullptr;
2755    }
2756    // We are called from native: use non-transactional mode.
2757    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2758  }
2759  return result;
2760}
2761
2762jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2763  // This code allocates. Do not allow it to operate with a pending exception.
2764  if (IsExceptionPending()) {
2765    return nullptr;
2766  }
2767
2768  // If flip_function is not null, it means we have run a checkpoint
2769  // before the thread wakes up to execute the flip function and the
2770  // thread roots haven't been forwarded.  So the following access to
2771  // the roots (locks or methods in the frames) would be bad. Run it
2772  // here. TODO: clean up.
2773  // Note: copied from DumpJavaStack.
2774  {
2775    Thread* this_thread = const_cast<Thread*>(this);
2776    Closure* flip_func = this_thread->GetFlipFunction();
2777    if (flip_func != nullptr) {
2778      flip_func->Run(this_thread);
2779    }
2780  }
2781
2782  class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
2783   public:
2784    CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
2785                                      Thread* self,
2786                                      Context* context)
2787        : MonitorObjectsStackVisitor(self, context),
2788          wait_jobject_(soaa_in.Env(), nullptr),
2789          block_jobject_(soaa_in.Env(), nullptr),
2790          soaa_(soaa_in) {}
2791
2792   protected:
2793    VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2794        OVERRIDE
2795        REQUIRES_SHARED(Locks::mutator_lock_) {
2796      ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
2797          soaa_, m, GetDexPc(/* abort on error */ false));
2798      if (obj == nullptr) {
2799        return VisitMethodResult::kEndStackWalk;
2800      }
2801      stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
2802      return VisitMethodResult::kContinueMethod;
2803    }
2804
2805    VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
2806      lock_objects_.push_back({});
2807      lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
2808
2809      DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
2810
2811      return VisitMethodResult::kContinueMethod;
2812    }
2813
2814    void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
2815        OVERRIDE
2816        REQUIRES_SHARED(Locks::mutator_lock_) {
2817      wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2818    }
2819    void VisitSleepingObject(mirror::Object* obj)
2820        OVERRIDE
2821        REQUIRES_SHARED(Locks::mutator_lock_) {
2822      wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2823    }
2824    void VisitBlockedOnObject(mirror::Object* obj,
2825                              ThreadState state ATTRIBUTE_UNUSED,
2826                              uint32_t owner_tid ATTRIBUTE_UNUSED)
2827        OVERRIDE
2828        REQUIRES_SHARED(Locks::mutator_lock_) {
2829      block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2830    }
2831    void VisitLockedObject(mirror::Object* obj)
2832        OVERRIDE
2833        REQUIRES_SHARED(Locks::mutator_lock_) {
2834      frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
2835    }
2836
2837   public:
2838    std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
2839    ScopedLocalRef<jobject> wait_jobject_;
2840    ScopedLocalRef<jobject> block_jobject_;
2841    std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
2842
2843   private:
2844    const ScopedObjectAccessAlreadyRunnable& soaa_;
2845
2846    std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
2847  };
2848
2849  std::unique_ptr<Context> context(Context::Create());
2850  CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
2851  dumper.WalkStack();
2852
2853  // There should not be a pending exception. Otherwise, return with it pending.
2854  if (IsExceptionPending()) {
2855    return nullptr;
2856  }
2857
2858  // Now go and create Java arrays.
2859
2860  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2861
2862  StackHandleScope<6> hs(soa.Self());
2863  mirror::Class* aste_array_class = class_linker->FindClass(
2864      soa.Self(),
2865      "[Ldalvik/system/AnnotatedStackTraceElement;",
2866      ScopedNullHandle<mirror::ClassLoader>());
2867  if (aste_array_class == nullptr) {
2868    return nullptr;
2869  }
2870  Handle<mirror::Class> h_aste_array_class(hs.NewHandle<mirror::Class>(aste_array_class));
2871
2872  mirror::Class* o_array_class = class_linker->FindClass(soa.Self(),
2873                                                         "[Ljava/lang/Object;",
2874                                                         ScopedNullHandle<mirror::ClassLoader>());
2875  if (o_array_class == nullptr) {
2876    // This should not fail in a healthy runtime.
2877    soa.Self()->AssertPendingException();
2878    return nullptr;
2879  }
2880  Handle<mirror::Class> h_o_array_class(hs.NewHandle<mirror::Class>(o_array_class));
2881
2882  Handle<mirror::Class> h_aste_class(hs.NewHandle<mirror::Class>(
2883      h_aste_array_class->GetComponentType()));
2884
2885  // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
2886  class_linker->EnsureInitialized(soa.Self(),
2887                                  h_aste_class,
2888                                  /* can_init_fields */ true,
2889                                  /* can_init_parents */ true);
2890  if (soa.Self()->IsExceptionPending()) {
2891    // This should not fail in a healthy runtime.
2892    return nullptr;
2893  }
2894
2895  ArtField* stack_trace_element_field = h_aste_class->FindField(
2896      soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
2897  DCHECK(stack_trace_element_field != nullptr);
2898  ArtField* held_locks_field = h_aste_class->FindField(
2899        soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
2900  DCHECK(held_locks_field != nullptr);
2901  ArtField* blocked_on_field = h_aste_class->FindField(
2902        soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
2903  DCHECK(blocked_on_field != nullptr);
2904
2905  size_t length = dumper.stack_trace_elements_.size();
2906  ObjPtr<mirror::ObjectArray<mirror::Object>> array =
2907      mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), aste_array_class, length);
2908  if (array == nullptr) {
2909    soa.Self()->AssertPendingOOMException();
2910    return nullptr;
2911  }
2912
2913  ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
2914
2915  MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
2916  MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
2917      hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
2918  for (size_t i = 0; i != length; ++i) {
2919    handle.Assign(h_aste_class->AllocObject(soa.Self()));
2920    if (handle == nullptr) {
2921      soa.Self()->AssertPendingOOMException();
2922      return nullptr;
2923    }
2924
2925    // Set stack trace element.
2926    stack_trace_element_field->SetObject<false>(
2927        handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
2928
2929    // Create locked-on array.
2930    if (!dumper.lock_objects_[i].empty()) {
2931      handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
2932                                                                h_o_array_class.Get(),
2933                                                                dumper.lock_objects_[i].size()));
2934      if (handle2 == nullptr) {
2935        soa.Self()->AssertPendingOOMException();
2936        return nullptr;
2937      }
2938      int32_t j = 0;
2939      for (auto& scoped_local : dumper.lock_objects_[i]) {
2940        if (scoped_local == nullptr) {
2941          continue;
2942        }
2943        handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
2944        DCHECK(!soa.Self()->IsExceptionPending());
2945        j++;
2946      }
2947      held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
2948    }
2949
2950    // Set blocked-on object.
2951    if (i == 0) {
2952      if (dumper.block_jobject_ != nullptr) {
2953        blocked_on_field->SetObject<false>(
2954            handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
2955      }
2956    }
2957
2958    ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
2959    soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
2960    DCHECK(!soa.Self()->IsExceptionPending());
2961  }
2962
2963  return result.release();
2964}
2965
2966void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2967  va_list args;
2968  va_start(args, fmt);
2969  ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2970  va_end(args);
2971}
2972
2973void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2974                                const char* fmt, va_list ap) {
2975  std::string msg;
2976  StringAppendV(&msg, fmt, ap);
2977  ThrowNewException(exception_class_descriptor, msg.c_str());
2978}
2979
2980void Thread::ThrowNewException(const char* exception_class_descriptor,
2981                               const char* msg) {
2982  // Callers should either clear or call ThrowNewWrappedException.
2983  AssertNoPendingExceptionForNewException(msg);
2984  ThrowNewWrappedException(exception_class_descriptor, msg);
2985}
2986
2987static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2988    REQUIRES_SHARED(Locks::mutator_lock_) {
2989  ArtMethod* method = self->GetCurrentMethod(nullptr);
2990  return method != nullptr
2991      ? method->GetDeclaringClass()->GetClassLoader()
2992      : nullptr;
2993}
2994
2995void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2996                                      const char* msg) {
2997  DCHECK_EQ(this, Thread::Current());
2998  ScopedObjectAccessUnchecked soa(this);
2999  StackHandleScope<3> hs(soa.Self());
3000  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3001  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3002  ClearException();
3003  Runtime* runtime = Runtime::Current();
3004  auto* cl = runtime->GetClassLinker();
3005  Handle<mirror::Class> exception_class(
3006      hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3007  if (UNLIKELY(exception_class == nullptr)) {
3008    CHECK(IsExceptionPending());
3009    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3010    return;
3011  }
3012
3013  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3014                                                             true))) {
3015    DCHECK(IsExceptionPending());
3016    return;
3017  }
3018  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3019  Handle<mirror::Throwable> exception(
3020      hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3021
3022  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3023  if (exception == nullptr) {
3024    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
3025    return;
3026  }
3027
3028  // Choose an appropriate constructor and set up the arguments.
3029  const char* signature;
3030  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3031  if (msg != nullptr) {
3032    // Ensure we remember this and the method over the String allocation.
3033    msg_string.reset(
3034        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3035    if (UNLIKELY(msg_string.get() == nullptr)) {
3036      CHECK(IsExceptionPending());  // OOME.
3037      return;
3038    }
3039    if (cause.get() == nullptr) {
3040      signature = "(Ljava/lang/String;)V";
3041    } else {
3042      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3043    }
3044  } else {
3045    if (cause.get() == nullptr) {
3046      signature = "()V";
3047    } else {
3048      signature = "(Ljava/lang/Throwable;)V";
3049    }
3050  }
3051  ArtMethod* exception_init_method =
3052      exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3053
3054  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3055      << PrettyDescriptor(exception_class_descriptor);
3056
3057  if (UNLIKELY(!runtime->IsStarted())) {
3058    // Something is trying to throw an exception without a started runtime, which is the common
3059    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3060    // the exception fields directly.
3061    if (msg != nullptr) {
3062      exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3063    }
3064    if (cause.get() != nullptr) {
3065      exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3066    }
3067    ScopedLocalRef<jobject> trace(GetJniEnv(),
3068                                  Runtime::Current()->IsActiveTransaction()
3069                                      ? CreateInternalStackTrace<true>(soa)
3070                                      : CreateInternalStackTrace<false>(soa));
3071    if (trace.get() != nullptr) {
3072      exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3073    }
3074    SetException(exception.Get());
3075  } else {
3076    jvalue jv_args[2];
3077    size_t i = 0;
3078
3079    if (msg != nullptr) {
3080      jv_args[i].l = msg_string.get();
3081      ++i;
3082    }
3083    if (cause.get() != nullptr) {
3084      jv_args[i].l = cause.get();
3085      ++i;
3086    }
3087    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3088    InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
3089    if (LIKELY(!IsExceptionPending())) {
3090      SetException(exception.Get());
3091    }
3092  }
3093}
3094
3095void Thread::ThrowOutOfMemoryError(const char* msg) {
3096  LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
3097      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
3098  if (!tls32_.throwing_OutOfMemoryError) {
3099    tls32_.throwing_OutOfMemoryError = true;
3100    ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3101    tls32_.throwing_OutOfMemoryError = false;
3102  } else {
3103    Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3104    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
3105  }
3106}
3107
3108Thread* Thread::CurrentFromGdb() {
3109  return Thread::Current();
3110}
3111
3112void Thread::DumpFromGdb() const {
3113  std::ostringstream ss;
3114  Dump(ss);
3115  std::string str(ss.str());
3116  // log to stderr for debugging command line processes
3117  std::cerr << str;
3118#ifdef ART_TARGET_ANDROID
3119  // log to logcat for debugging frameworks processes
3120  LOG(INFO) << str;
3121#endif
3122}
3123
3124// Explicitly instantiate 32 and 64bit thread offset dumping support.
3125template
3126void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3127template
3128void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3129
3130template<PointerSize ptr_size>
3131void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3132#define DO_THREAD_OFFSET(x, y) \
3133    if (offset == (x).Uint32Value()) { \
3134      os << (y); \
3135      return; \
3136    }
3137  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3138  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3139  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3140  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3141  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3142  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3143  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3144  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3145  DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3146  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3147  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3148  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3149  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3150#undef DO_THREAD_OFFSET
3151
3152#define JNI_ENTRY_POINT_INFO(x) \
3153    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3154      os << #x; \
3155      return; \
3156    }
3157  JNI_ENTRY_POINT_INFO(pDlsymLookup)
3158#undef JNI_ENTRY_POINT_INFO
3159
3160#define QUICK_ENTRY_POINT_INFO(x) \
3161    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3162      os << #x; \
3163      return; \
3164    }
3165  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3166  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3167  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3168  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3169  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3170  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3171  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3172  QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3173  QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3174  QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3175  QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3176  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3177  QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3178  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3179  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
3180  QUICK_ENTRY_POINT_INFO(pInitializeType)
3181  QUICK_ENTRY_POINT_INFO(pResolveString)
3182  QUICK_ENTRY_POINT_INFO(pSet8Instance)
3183  QUICK_ENTRY_POINT_INFO(pSet8Static)
3184  QUICK_ENTRY_POINT_INFO(pSet16Instance)
3185  QUICK_ENTRY_POINT_INFO(pSet16Static)
3186  QUICK_ENTRY_POINT_INFO(pSet32Instance)
3187  QUICK_ENTRY_POINT_INFO(pSet32Static)
3188  QUICK_ENTRY_POINT_INFO(pSet64Instance)
3189  QUICK_ENTRY_POINT_INFO(pSet64Static)
3190  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3191  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3192  QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3193  QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3194  QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3195  QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3196  QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3197  QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3198  QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3199  QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3200  QUICK_ENTRY_POINT_INFO(pGet32Instance)
3201  QUICK_ENTRY_POINT_INFO(pGet32Static)
3202  QUICK_ENTRY_POINT_INFO(pGet64Instance)
3203  QUICK_ENTRY_POINT_INFO(pGet64Static)
3204  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3205  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3206  QUICK_ENTRY_POINT_INFO(pAputObject)
3207  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3208  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3209  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3210  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3211  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3212  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3213  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3214  QUICK_ENTRY_POINT_INFO(pLockObject)
3215  QUICK_ENTRY_POINT_INFO(pUnlockObject)
3216  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3217  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3218  QUICK_ENTRY_POINT_INFO(pCmplDouble)
3219  QUICK_ENTRY_POINT_INFO(pCmplFloat)
3220  QUICK_ENTRY_POINT_INFO(pCos)
3221  QUICK_ENTRY_POINT_INFO(pSin)
3222  QUICK_ENTRY_POINT_INFO(pAcos)
3223  QUICK_ENTRY_POINT_INFO(pAsin)
3224  QUICK_ENTRY_POINT_INFO(pAtan)
3225  QUICK_ENTRY_POINT_INFO(pAtan2)
3226  QUICK_ENTRY_POINT_INFO(pCbrt)
3227  QUICK_ENTRY_POINT_INFO(pCosh)
3228  QUICK_ENTRY_POINT_INFO(pExp)
3229  QUICK_ENTRY_POINT_INFO(pExpm1)
3230  QUICK_ENTRY_POINT_INFO(pHypot)
3231  QUICK_ENTRY_POINT_INFO(pLog)
3232  QUICK_ENTRY_POINT_INFO(pLog10)
3233  QUICK_ENTRY_POINT_INFO(pNextAfter)
3234  QUICK_ENTRY_POINT_INFO(pSinh)
3235  QUICK_ENTRY_POINT_INFO(pTan)
3236  QUICK_ENTRY_POINT_INFO(pTanh)
3237  QUICK_ENTRY_POINT_INFO(pFmod)
3238  QUICK_ENTRY_POINT_INFO(pL2d)
3239  QUICK_ENTRY_POINT_INFO(pFmodf)
3240  QUICK_ENTRY_POINT_INFO(pL2f)
3241  QUICK_ENTRY_POINT_INFO(pD2iz)
3242  QUICK_ENTRY_POINT_INFO(pF2iz)
3243  QUICK_ENTRY_POINT_INFO(pIdivmod)
3244  QUICK_ENTRY_POINT_INFO(pD2l)
3245  QUICK_ENTRY_POINT_INFO(pF2l)
3246  QUICK_ENTRY_POINT_INFO(pLdiv)
3247  QUICK_ENTRY_POINT_INFO(pLmod)
3248  QUICK_ENTRY_POINT_INFO(pLmul)
3249  QUICK_ENTRY_POINT_INFO(pShlLong)
3250  QUICK_ENTRY_POINT_INFO(pShrLong)
3251  QUICK_ENTRY_POINT_INFO(pUshrLong)
3252  QUICK_ENTRY_POINT_INFO(pIndexOf)
3253  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3254  QUICK_ENTRY_POINT_INFO(pMemcpy)
3255  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3256  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3257  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3258  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3259  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3260  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3261  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3262  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3263  QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3264  QUICK_ENTRY_POINT_INFO(pTestSuspend)
3265  QUICK_ENTRY_POINT_INFO(pDeliverException)
3266  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3267  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3268  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3269  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3270  QUICK_ENTRY_POINT_INFO(pDeoptimize)
3271  QUICK_ENTRY_POINT_INFO(pA64Load)
3272  QUICK_ENTRY_POINT_INFO(pA64Store)
3273  QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3274  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3275  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3276  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3277  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3278  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3279  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3280  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3281  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3282  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3283  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3284  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3285  QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3286  QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3287  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3288  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3289  QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3290  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3291  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3292  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3293  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3294  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3295  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3296  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3297  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3298  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3299  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3300  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3301  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3302  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3303  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3304  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3305  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3306  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3307  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3308  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3309  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3310  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3311  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3312  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3313  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3314  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3315  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3316  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3317  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3318  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3319  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3320  QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3321  QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3322
3323  QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3324  QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3325#undef QUICK_ENTRY_POINT_INFO
3326
3327  os << offset;
3328}
3329
3330void Thread::QuickDeliverException() {
3331  // Get exception from thread.
3332  ObjPtr<mirror::Throwable> exception = GetException();
3333  CHECK(exception != nullptr);
3334  if (exception == GetDeoptimizationException()) {
3335    artDeoptimize(this);
3336    UNREACHABLE();
3337  }
3338
3339  ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3340
3341  // This is a real exception: let the instrumentation know about it.
3342  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3343  if (instrumentation->HasExceptionThrownListeners() &&
3344      IsExceptionThrownByCurrentMethod(exception)) {
3345    // Instrumentation may cause GC so keep the exception object safe.
3346    StackHandleScope<1> hs(this);
3347    HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3348    instrumentation->ExceptionThrownEvent(this, exception.Ptr());
3349  }
3350  // Does instrumentation need to deoptimize the stack?
3351  // Note: we do this *after* reporting the exception to instrumentation in case it
3352  // now requires deoptimization. It may happen if a debugger is attached and requests
3353  // new events (single-step, breakpoint, ...) when the exception is reported.
3354  if (Dbg::IsForcedInterpreterNeededForException(this)) {
3355    NthCallerVisitor visitor(this, 0, false);
3356    visitor.WalkStack();
3357    if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3358      // method_type shouldn't matter due to exception handling.
3359      const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3360      // Save the exception into the deoptimization context so it can be restored
3361      // before entering the interpreter.
3362      PushDeoptimizationContext(
3363          JValue(),
3364          false /* is_reference */,
3365          exception,
3366          false /* from_code */,
3367          method_type);
3368      artDeoptimize(this);
3369      UNREACHABLE();
3370    } else {
3371      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3372                   << visitor.caller->PrettyMethod();
3373    }
3374  }
3375
3376  // Don't leave exception visible while we try to find the handler, which may cause class
3377  // resolution.
3378  ClearException();
3379  QuickExceptionHandler exception_handler(this, false);
3380  exception_handler.FindCatch(exception);
3381  exception_handler.UpdateInstrumentationStack();
3382  if (exception_handler.GetClearException()) {
3383    // Exception was cleared as part of delivery.
3384    DCHECK(!IsExceptionPending());
3385  } else {
3386    // Exception was put back with a throw location.
3387    DCHECK(IsExceptionPending());
3388    // Check the to-space invariant on the re-installed exception (if applicable).
3389    ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3390  }
3391  exception_handler.DoLongJump();
3392}
3393
3394Context* Thread::GetLongJumpContext() {
3395  Context* result = tlsPtr_.long_jump_context;
3396  if (result == nullptr) {
3397    result = Context::Create();
3398  } else {
3399    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3400    result->Reset();
3401  }
3402  return result;
3403}
3404
3405// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3406//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3407struct CurrentMethodVisitor FINAL : public StackVisitor {
3408  CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3409      REQUIRES_SHARED(Locks::mutator_lock_)
3410      : StackVisitor(thread,
3411                     context,
3412                     StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3413                     check_suspended),
3414        this_object_(nullptr),
3415        method_(nullptr),
3416        dex_pc_(0),
3417        abort_on_error_(abort_on_error) {}
3418  bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3419    ArtMethod* m = GetMethod();
3420    if (m->IsRuntimeMethod()) {
3421      // Continue if this is a runtime method.
3422      return true;
3423    }
3424    if (context_ != nullptr) {
3425      this_object_ = GetThisObject();
3426    }
3427    method_ = m;
3428    dex_pc_ = GetDexPc(abort_on_error_);
3429    return false;
3430  }
3431  ObjPtr<mirror::Object> this_object_;
3432  ArtMethod* method_;
3433  uint32_t dex_pc_;
3434  const bool abort_on_error_;
3435};
3436
3437ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3438                                    bool check_suspended,
3439                                    bool abort_on_error) const {
3440  CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3441                               nullptr,
3442                               check_suspended,
3443                               abort_on_error);
3444  visitor.WalkStack(false);
3445  if (dex_pc != nullptr) {
3446    *dex_pc = visitor.dex_pc_;
3447  }
3448  return visitor.method_;
3449}
3450
3451bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3452  return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3453}
3454
3455extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3456    REQUIRES_SHARED(Locks::mutator_lock_);
3457
3458// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3459template <typename RootVisitor, bool kPrecise = false>
3460class ReferenceMapVisitor : public StackVisitor {
3461 public:
3462  ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3463      REQUIRES_SHARED(Locks::mutator_lock_)
3464        // We are visiting the references in compiled frames, so we do not need
3465        // to know the inlined frames.
3466      : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3467        visitor_(visitor) {}
3468
3469  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3470    if (false) {
3471      LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3472                << StringPrintf("@ PC:%04x", GetDexPc());
3473    }
3474    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3475    if (shadow_frame != nullptr) {
3476      VisitShadowFrame(shadow_frame);
3477    } else {
3478      VisitQuickFrame();
3479    }
3480    return true;
3481  }
3482
3483  void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3484    ArtMethod* m = shadow_frame->GetMethod();
3485    VisitDeclaringClass(m);
3486    DCHECK(m != nullptr);
3487    size_t num_regs = shadow_frame->NumberOfVRegs();
3488    DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3489    // handle scope for JNI or References for interpreter.
3490    for (size_t reg = 0; reg < num_regs; ++reg) {
3491      mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3492      if (ref != nullptr) {
3493        mirror::Object* new_ref = ref;
3494        visitor_(&new_ref, reg, this);
3495        if (new_ref != ref) {
3496          shadow_frame->SetVRegReference(reg, new_ref);
3497        }
3498      }
3499    }
3500    // Mark lock count map required for structured locking checks.
3501    shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg */ -1, this);
3502  }
3503
3504 private:
3505  // Visiting the declaring class is necessary so that we don't unload the class of a method that
3506  // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3507  // the threads do not all hold the heap bitmap lock for parallel GC.
3508  void VisitDeclaringClass(ArtMethod* method)
3509      REQUIRES_SHARED(Locks::mutator_lock_)
3510      NO_THREAD_SAFETY_ANALYSIS {
3511    ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3512    // klass can be null for runtime methods.
3513    if (klass != nullptr) {
3514      if (kVerifyImageObjectsMarked) {
3515        gc::Heap* const heap = Runtime::Current()->GetHeap();
3516        gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3517                                                                                /*fail_ok*/true);
3518        if (space != nullptr && space->IsImageSpace()) {
3519          bool failed = false;
3520          if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3521            failed = true;
3522            LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3523          } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3524            failed = true;
3525            LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3526          }
3527          if (failed) {
3528            GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3529            space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3530            LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3531                                     << " klass@" << klass.Ptr();
3532            // Pretty info last in case it crashes.
3533            LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3534                       << klass->PrettyClass();
3535          }
3536        }
3537      }
3538      mirror::Object* new_ref = klass.Ptr();
3539      visitor_(&new_ref, /* vreg */ -1, this);
3540      if (new_ref != klass) {
3541        method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3542      }
3543    }
3544  }
3545
3546  template <typename T>
3547  ALWAYS_INLINE
3548  inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3549    ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3550    DCHECK(cur_quick_frame != nullptr);
3551    ArtMethod* m = *cur_quick_frame;
3552    VisitDeclaringClass(m);
3553
3554    // Process register map (which native and runtime methods don't have)
3555    if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3556      const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3557      DCHECK(method_header->IsOptimized());
3558      StackReference<mirror::Object>* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3559          reinterpret_cast<uintptr_t>(cur_quick_frame));
3560      uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3561      CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3562      CodeInfoEncoding encoding = code_info.ExtractEncoding();
3563      StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3564      DCHECK(map.IsValid());
3565
3566      T vreg_info(m, code_info, encoding, map, visitor_);
3567
3568      // Visit stack entries that hold pointers.
3569      const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3570      BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3571      for (size_t i = 0; i < number_of_bits; ++i) {
3572        if (stack_mask.LoadBit(i)) {
3573          StackReference<mirror::Object>* ref_addr = vreg_base + i;
3574          mirror::Object* ref = ref_addr->AsMirrorPtr();
3575          if (ref != nullptr) {
3576            mirror::Object* new_ref = ref;
3577            vreg_info.VisitStack(&new_ref, i, this);
3578            if (ref != new_ref) {
3579              ref_addr->Assign(new_ref);
3580           }
3581          }
3582        }
3583      }
3584      // Visit callee-save registers that hold pointers.
3585      uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3586      for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3587        if (register_mask & (1 << i)) {
3588          mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3589          if (kIsDebugBuild && ref_addr == nullptr) {
3590            std::string thread_name;
3591            GetThread()->GetThreadName(thread_name);
3592            LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3593            DescribeStack(GetThread());
3594            LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3595                       << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3596          }
3597          if (*ref_addr != nullptr) {
3598            vreg_info.VisitRegister(ref_addr, i, this);
3599          }
3600        }
3601      }
3602    } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3603      // If this is a proxy method, visit its reference arguments.
3604      DCHECK(!m->IsStatic());
3605      DCHECK(!m->IsNative());
3606      std::vector<StackReference<mirror::Object>*> ref_addrs =
3607          GetProxyReferenceArguments(cur_quick_frame);
3608      for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3609        mirror::Object* ref = ref_addr->AsMirrorPtr();
3610        if (ref != nullptr) {
3611          mirror::Object* new_ref = ref;
3612          visitor_(&new_ref, /* vreg */ -1, this);
3613          if (ref != new_ref) {
3614            ref_addr->Assign(new_ref);
3615          }
3616        }
3617      }
3618    }
3619  }
3620
3621  void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3622    if (kPrecise) {
3623      VisitQuickFramePrecise();
3624    } else {
3625      VisitQuickFrameNonPrecise();
3626    }
3627  }
3628
3629  void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3630    struct UndefinedVRegInfo {
3631      UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3632                        const CodeInfo& code_info ATTRIBUTE_UNUSED,
3633                        const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3634                        const StackMap& map ATTRIBUTE_UNUSED,
3635                        RootVisitor& _visitor)
3636          : visitor(_visitor) {
3637      }
3638
3639      ALWAYS_INLINE
3640      void VisitStack(mirror::Object** ref,
3641                      size_t stack_index ATTRIBUTE_UNUSED,
3642                      const StackVisitor* stack_visitor)
3643          REQUIRES_SHARED(Locks::mutator_lock_) {
3644        visitor(ref, -1, stack_visitor);
3645      }
3646
3647      ALWAYS_INLINE
3648      void VisitRegister(mirror::Object** ref,
3649                         size_t register_index ATTRIBUTE_UNUSED,
3650                         const StackVisitor* stack_visitor)
3651          REQUIRES_SHARED(Locks::mutator_lock_) {
3652        visitor(ref, -1, stack_visitor);
3653      }
3654
3655      RootVisitor& visitor;
3656    };
3657    VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3658  }
3659
3660  void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3661    struct StackMapVRegInfo {
3662      StackMapVRegInfo(ArtMethod* method,
3663                       const CodeInfo& _code_info,
3664                       const CodeInfoEncoding& _encoding,
3665                       const StackMap& map,
3666                       RootVisitor& _visitor)
3667          : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
3668            code_info(_code_info),
3669            encoding(_encoding),
3670            dex_register_map(code_info.GetDexRegisterMapOf(map,
3671                                                           encoding,
3672                                                           number_of_dex_registers)),
3673            visitor(_visitor) {
3674      }
3675
3676      // TODO: If necessary, we should consider caching a reverse map instead of the linear
3677      //       lookups for each location.
3678      void FindWithType(const size_t index,
3679                        const DexRegisterLocation::Kind kind,
3680                        mirror::Object** ref,
3681                        const StackVisitor* stack_visitor)
3682          REQUIRES_SHARED(Locks::mutator_lock_) {
3683        bool found = false;
3684        for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3685          DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3686              dex_reg, number_of_dex_registers, code_info, encoding);
3687          if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3688            visitor(ref, dex_reg, stack_visitor);
3689            found = true;
3690          }
3691        }
3692
3693        if (!found) {
3694          // If nothing found, report with -1.
3695          visitor(ref, -1, stack_visitor);
3696        }
3697      }
3698
3699      void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3700          REQUIRES_SHARED(Locks::mutator_lock_) {
3701        const size_t stack_offset = stack_index * kFrameSlotSize;
3702        FindWithType(stack_offset,
3703                     DexRegisterLocation::Kind::kInStack,
3704                     ref,
3705                     stack_visitor);
3706      }
3707
3708      void VisitRegister(mirror::Object** ref,
3709                         size_t register_index,
3710                         const StackVisitor* stack_visitor)
3711          REQUIRES_SHARED(Locks::mutator_lock_) {
3712        FindWithType(register_index,
3713                     DexRegisterLocation::Kind::kInRegister,
3714                     ref,
3715                     stack_visitor);
3716      }
3717
3718      size_t number_of_dex_registers;
3719      const CodeInfo& code_info;
3720      const CodeInfoEncoding& encoding;
3721      DexRegisterMap dex_register_map;
3722      RootVisitor& visitor;
3723    };
3724    VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3725  }
3726
3727  // Visitor for when we visit a root.
3728  RootVisitor& visitor_;
3729};
3730
3731class RootCallbackVisitor {
3732 public:
3733  RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3734
3735  void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3736      REQUIRES_SHARED(Locks::mutator_lock_) {
3737    visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3738  }
3739
3740 private:
3741  RootVisitor* const visitor_;
3742  const uint32_t tid_;
3743};
3744
3745template <bool kPrecise>
3746void Thread::VisitRoots(RootVisitor* visitor) {
3747  const pid_t thread_id = GetThreadId();
3748  visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3749  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3750    visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3751                       RootInfo(kRootNativeStack, thread_id));
3752  }
3753  if (tlsPtr_.async_exception != nullptr) {
3754    visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
3755                       RootInfo(kRootNativeStack, thread_id));
3756  }
3757  visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3758  tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3759  tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3760  HandleScopeVisitRoots(visitor, thread_id);
3761  if (tlsPtr_.debug_invoke_req != nullptr) {
3762    tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3763  }
3764  // Visit roots for deoptimization.
3765  if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3766    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3767    ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3768    for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3769         record != nullptr;
3770         record = record->GetLink()) {
3771      for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3772           shadow_frame != nullptr;
3773           shadow_frame = shadow_frame->GetLink()) {
3774        mapper.VisitShadowFrame(shadow_frame);
3775      }
3776    }
3777  }
3778  for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3779       record != nullptr;
3780       record = record->GetLink()) {
3781    if (record->IsReference()) {
3782      visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3783                                  RootInfo(kRootThreadObject, thread_id));
3784    }
3785    visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3786                                RootInfo(kRootThreadObject, thread_id));
3787  }
3788  if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3789    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3790    ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3791    for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3792         record != nullptr;
3793         record = record->GetNext()) {
3794      mapper.VisitShadowFrame(record->GetShadowFrame());
3795    }
3796  }
3797  for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3798    verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3799  }
3800  // Visit roots on this thread's stack
3801  RuntimeContextType context;
3802  RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3803  ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
3804  mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3805  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3806    visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3807  }
3808}
3809
3810void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3811  if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3812    VisitRoots</* kPrecise */ true>(visitor);
3813  } else {
3814    VisitRoots</* kPrecise */ false>(visitor);
3815  }
3816}
3817
3818class VerifyRootVisitor : public SingleRootVisitor {
3819 public:
3820  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3821      OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3822    VerifyObject(root);
3823  }
3824};
3825
3826void Thread::VerifyStackImpl() {
3827  if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
3828    VerifyRootVisitor visitor;
3829    std::unique_ptr<Context> context(Context::Create());
3830    RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3831    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3832    mapper.WalkStack();
3833  }
3834}
3835
3836// Set the stack end to that to be used during a stack overflow
3837void Thread::SetStackEndForStackOverflow() {
3838  // During stack overflow we allow use of the full stack.
3839  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3840    // However, we seem to have already extended to use the full stack.
3841    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3842               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3843    DumpStack(LOG_STREAM(ERROR));
3844    LOG(FATAL) << "Recursive stack overflow.";
3845  }
3846
3847  tlsPtr_.stack_end = tlsPtr_.stack_begin;
3848
3849  // Remove the stack overflow protection if is it set up.
3850  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3851  if (implicit_stack_check) {
3852    if (!UnprotectStack()) {
3853      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3854    }
3855  }
3856}
3857
3858void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3859  DCHECK_LE(start, end);
3860  DCHECK_LE(end, limit);
3861  tlsPtr_.thread_local_start = start;
3862  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
3863  tlsPtr_.thread_local_end = end;
3864  tlsPtr_.thread_local_limit = limit;
3865  tlsPtr_.thread_local_objects = 0;
3866}
3867
3868bool Thread::HasTlab() const {
3869  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3870  if (has_tlab) {
3871    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3872  } else {
3873    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3874  }
3875  return has_tlab;
3876}
3877
3878std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3879  thread.ShortDump(os);
3880  return os;
3881}
3882
3883bool Thread::ProtectStack(bool fatal_on_error) {
3884  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3885  VLOG(threads) << "Protecting stack at " << pregion;
3886  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3887    if (fatal_on_error) {
3888      LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3889          "Reason: "
3890          << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
3891    }
3892    return false;
3893  }
3894  return true;
3895}
3896
3897bool Thread::UnprotectStack() {
3898  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3899  VLOG(threads) << "Unprotecting stack at " << pregion;
3900  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3901}
3902
3903void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3904  CHECK(Dbg::IsDebuggerActive());
3905  CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3906  CHECK(ssc != nullptr);
3907  tlsPtr_.single_step_control = ssc;
3908}
3909
3910void Thread::DeactivateSingleStepControl() {
3911  CHECK(Dbg::IsDebuggerActive());
3912  CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3913  SingleStepControl* ssc = GetSingleStepControl();
3914  tlsPtr_.single_step_control = nullptr;
3915  delete ssc;
3916}
3917
3918void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3919  CHECK(Dbg::IsDebuggerActive());
3920  CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3921  CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3922  CHECK(req != nullptr);
3923  tlsPtr_.debug_invoke_req = req;
3924}
3925
3926void Thread::ClearDebugInvokeReq() {
3927  CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3928  CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3929  DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3930  tlsPtr_.debug_invoke_req = nullptr;
3931  delete req;
3932}
3933
3934void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3935  verifier->link_ = tlsPtr_.method_verifier;
3936  tlsPtr_.method_verifier = verifier;
3937}
3938
3939void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3940  CHECK_EQ(tlsPtr_.method_verifier, verifier);
3941  tlsPtr_.method_verifier = verifier->link_;
3942}
3943
3944size_t Thread::NumberOfHeldMutexes() const {
3945  size_t count = 0;
3946  for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3947    count += mu != nullptr ? 1 : 0;
3948  }
3949  return count;
3950}
3951
3952void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3953  DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3954  ClearException();
3955  ShadowFrame* shadow_frame =
3956      PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3957  ObjPtr<mirror::Throwable> pending_exception;
3958  bool from_code = false;
3959  DeoptimizationMethodType method_type;
3960  PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
3961  SetTopOfStack(nullptr);
3962  SetTopOfShadowStack(shadow_frame);
3963
3964  // Restore the exception that was pending before deoptimization then interpret the
3965  // deoptimized frames.
3966  if (pending_exception != nullptr) {
3967    SetException(pending_exception);
3968  }
3969  interpreter::EnterInterpreterFromDeoptimize(this,
3970                                              shadow_frame,
3971                                              result,
3972                                              from_code,
3973                                              method_type);
3974}
3975
3976void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
3977  CHECK(new_exception != nullptr);
3978  Runtime::Current()->SetAsyncExceptionsThrown();
3979  if (kIsDebugBuild) {
3980    // Make sure we are in a checkpoint.
3981    MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
3982    CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
3983        << "It doesn't look like this was called in a checkpoint! this: "
3984        << this << " count: " << GetSuspendCount();
3985  }
3986  tlsPtr_.async_exception = new_exception.Ptr();
3987}
3988
3989bool Thread::ObserveAsyncException() {
3990  DCHECK(this == Thread::Current());
3991  if (tlsPtr_.async_exception != nullptr) {
3992    if (tlsPtr_.exception != nullptr) {
3993      LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
3994                   << tlsPtr_.exception->Dump();
3995      LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
3996    }
3997    tlsPtr_.exception = tlsPtr_.async_exception;
3998    tlsPtr_.async_exception = nullptr;
3999    return true;
4000  } else {
4001    return IsExceptionPending();
4002  }
4003}
4004
4005void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4006  CHECK(new_exception != nullptr);
4007  // TODO: DCHECK(!IsExceptionPending());
4008  tlsPtr_.exception = new_exception.Ptr();
4009}
4010
4011bool Thread::IsAotCompiler() {
4012  return Runtime::Current()->IsAotCompiler();
4013}
4014
4015mirror::Object* Thread::GetPeerFromOtherThread() const {
4016  DCHECK(tlsPtr_.jpeer == nullptr);
4017  mirror::Object* peer = tlsPtr_.opeer;
4018  if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4019    // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4020    // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4021    // mark/forward it here.
4022    peer = art::ReadBarrier::Mark(peer);
4023  }
4024  return peer;
4025}
4026
4027void Thread::SetReadBarrierEntrypoints() {
4028  // Make sure entrypoints aren't null.
4029  UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
4030}
4031
4032}  // namespace art
4033