thread.cc revision 067d20fd2fddd947ce3a014d023e9de249082ebe
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "catch_finder.h"
36#include "class_linker.h"
37#include "class_linker-inl.h"
38#include "cutils/atomic.h"
39#include "cutils/atomic-inline.h"
40#include "debugger.h"
41#include "dex_file-inl.h"
42#include "entrypoints/entrypoint_utils.h"
43#include "entrypoints/quick/quick_alloc_entrypoints.h"
44#include "gc_map.h"
45#include "gc/accounting/card_table-inl.h"
46#include "gc/heap.h"
47#include "gc/space/space.h"
48#include "invoke_arg_array_builder.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/class_loader.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_utils.h"
58#include "reflection.h"
59#include "runtime.h"
60#include "scoped_thread_state_change.h"
61#include "ScopedLocalRef.h"
62#include "ScopedUtfChars.h"
63#include "sirt_ref.h"
64#include "stack.h"
65#include "stack_indirect_reference_table.h"
66#include "thread-inl.h"
67#include "thread_list.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79
80static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
81
82void Thread::InitCardTable() {
83  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
84}
85
86#if !defined(__APPLE__)
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90#endif
91
92void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
93                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
94
95void Thread::InitTlsEntryPoints() {
96#if !defined(__APPLE__)  // The Mac GCC is too old to accept this code.
97  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
98  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
99  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
100  for (uintptr_t* it = begin; it != end; ++it) {
101    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
102  }
103  begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
104  end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
105  for (uintptr_t* it = begin; it != end; ++it) {
106    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
107  }
108#endif
109  InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
110                  &quick_entrypoints_);
111}
112
113void Thread::ResetQuickAllocEntryPointsForThread() {
114  ResetQuickAllocEntryPoints(&quick_entrypoints_);
115}
116
117void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
118  deoptimization_shadow_frame_ = sf;
119}
120
121void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
122  deoptimization_return_value_.SetJ(ret_val.GetJ());
123}
124
125ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
126  ShadowFrame* sf = deoptimization_shadow_frame_;
127  deoptimization_shadow_frame_ = nullptr;
128  ret_val->SetJ(deoptimization_return_value_.GetJ());
129  return sf;
130}
131
132void Thread::InitTid() {
133  tid_ = ::art::GetTid();
134}
135
136void Thread::InitAfterFork() {
137  // One thread (us) survived the fork, but we have a new tid so we need to
138  // update the value stashed in this Thread*.
139  InitTid();
140}
141
142void* Thread::CreateCallback(void* arg) {
143  Thread* self = reinterpret_cast<Thread*>(arg);
144  Runtime* runtime = Runtime::Current();
145  if (runtime == nullptr) {
146    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
147    return nullptr;
148  }
149  {
150    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
151    //       after self->Init().
152    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
153    // Check that if we got here we cannot be shutting down (as shutdown should never have started
154    // while threads are being born).
155    CHECK(!runtime->IsShuttingDownLocked());
156    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
157    Runtime::Current()->EndThreadBirth();
158  }
159  {
160    ScopedObjectAccess soa(self);
161
162    // Copy peer into self, deleting global reference when done.
163    CHECK(self->jpeer_ != nullptr);
164    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
165    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
166    self->jpeer_ = nullptr;
167
168    {
169      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
170      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
171    }
172    Dbg::PostThreadStart(self);
173
174    // Invoke the 'run' method of our java.lang.Thread.
175    mirror::Object* receiver = self->opeer_;
176    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
177    mirror::ArtMethod* m =
178        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
179    JValue result;
180    ArgArray arg_array(nullptr, 0);
181    arg_array.Append(receiver);
182    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, "V");
183  }
184  // Detach and delete self.
185  Runtime::Current()->GetThreadList()->Unregister(self);
186
187  return nullptr;
188}
189
190Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
191                                  mirror::Object* thread_peer) {
192  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
193  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
194  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
195  // to stop it from going away.
196  if (kIsDebugBuild) {
197    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
198    if (result != nullptr && !result->IsSuspended()) {
199      Locks::thread_list_lock_->AssertHeld(soa.Self());
200    }
201  }
202  return result;
203}
204
205Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
206  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
207}
208
209static size_t FixStackSize(size_t stack_size) {
210  // A stack size of zero means "use the default".
211  if (stack_size == 0) {
212    stack_size = Runtime::Current()->GetDefaultStackSize();
213  }
214
215  // Dalvik used the bionic pthread default stack size for native threads,
216  // so include that here to support apps that expect large native stacks.
217  stack_size += 1 * MB;
218
219  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
220  if (stack_size < PTHREAD_STACK_MIN) {
221    stack_size = PTHREAD_STACK_MIN;
222  }
223
224  // It's likely that callers are trying to ensure they have at least a certain amount of
225  // stack space, so we should add our reserved space on top of what they requested, rather
226  // than implicitly take it away from them.
227  stack_size += Thread::kStackOverflowReservedBytes;
228
229  // Some systems require the stack size to be a multiple of the system page size, so round up.
230  stack_size = RoundUp(stack_size, kPageSize);
231
232  return stack_size;
233}
234
235void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
236  CHECK(java_peer != nullptr);
237  Thread* self = static_cast<JNIEnvExt*>(env)->self;
238  Runtime* runtime = Runtime::Current();
239
240  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
241  bool thread_start_during_shutdown = false;
242  {
243    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
244    if (runtime->IsShuttingDownLocked()) {
245      thread_start_during_shutdown = true;
246    } else {
247      runtime->StartThreadBirth();
248    }
249  }
250  if (thread_start_during_shutdown) {
251    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
252    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
253    return;
254  }
255
256  Thread* child_thread = new Thread(is_daemon);
257  // Use global JNI ref to hold peer live while child thread starts.
258  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
259  stack_size = FixStackSize(stack_size);
260
261  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
262  // assign it.
263  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
264                    reinterpret_cast<jlong>(child_thread));
265
266  pthread_t new_pthread;
267  pthread_attr_t attr;
268  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
269  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
270  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
271  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
272  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
273
274  if (pthread_create_result != 0) {
275    // pthread_create(3) failed, so clean up.
276    {
277      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
278      runtime->EndThreadBirth();
279    }
280    // Manually delete the global reference since Thread::Init will not have been run.
281    env->DeleteGlobalRef(child_thread->jpeer_);
282    child_thread->jpeer_ = nullptr;
283    delete child_thread;
284    child_thread = nullptr;
285    // TODO: remove from thread group?
286    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
287    {
288      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
289                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
290      ScopedObjectAccess soa(env);
291      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
292    }
293  }
294}
295
296void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
297  // This function does all the initialization that must be run by the native thread it applies to.
298  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
299  // we can handshake with the corresponding native thread when it's ready.) Check this native
300  // thread hasn't been through here already...
301  CHECK(Thread::Current() == nullptr);
302  SetUpAlternateSignalStack();
303  InitCpu();
304  InitTlsEntryPoints();
305  InitCardTable();
306  InitTid();
307  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
308  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
309  pthread_self_ = pthread_self();
310  CHECK(is_started_);
311  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
312  DCHECK_EQ(Thread::Current(), this);
313
314  thin_lock_thread_id_ = thread_list->AllocThreadId(this);
315  InitStackHwm();
316
317  jni_env_ = new JNIEnvExt(this, java_vm);
318  thread_list->Register(this);
319}
320
321Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
322                       bool create_peer) {
323  Thread* self;
324  Runtime* runtime = Runtime::Current();
325  if (runtime == nullptr) {
326    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
327    return nullptr;
328  }
329  {
330    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
331    if (runtime->IsShuttingDownLocked()) {
332      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
333      return nullptr;
334    } else {
335      Runtime::Current()->StartThreadBirth();
336      self = new Thread(as_daemon);
337      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
338      Runtime::Current()->EndThreadBirth();
339    }
340  }
341
342  CHECK_NE(self->GetState(), kRunnable);
343  self->SetState(kNative);
344
345  // If we're the main thread, ClassLinker won't be created until after we're attached,
346  // so that thread needs a two-stage attach. Regular threads don't need this hack.
347  // In the compiler, all threads need this hack, because no-one's going to be getting
348  // a native peer!
349  if (create_peer) {
350    self->CreatePeer(thread_name, as_daemon, thread_group);
351  } else {
352    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
353    if (thread_name != nullptr) {
354      self->name_->assign(thread_name);
355      ::art::SetThreadName(thread_name);
356    }
357  }
358
359  return self;
360}
361
362void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
363  Runtime* runtime = Runtime::Current();
364  CHECK(runtime->IsStarted());
365  JNIEnv* env = jni_env_;
366
367  if (thread_group == nullptr) {
368    thread_group = runtime->GetMainThreadGroup();
369  }
370  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
371  jint thread_priority = GetNativePriority();
372  jboolean thread_is_daemon = as_daemon;
373
374  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
375  if (peer.get() == nullptr) {
376    CHECK(IsExceptionPending());
377    return;
378  }
379  {
380    ScopedObjectAccess soa(this);
381    opeer_ = soa.Decode<mirror::Object*>(peer.get());
382  }
383  env->CallNonvirtualVoidMethod(peer.get(),
384                                WellKnownClasses::java_lang_Thread,
385                                WellKnownClasses::java_lang_Thread_init,
386                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
387  AssertNoPendingException();
388
389  Thread* self = this;
390  DCHECK_EQ(self, Thread::Current());
391  jni_env_->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
392                         reinterpret_cast<jlong>(self));
393
394  ScopedObjectAccess soa(self);
395  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
396  if (peer_thread_name.get() == nullptr) {
397    // The Thread constructor should have set the Thread.name to a
398    // non-null value. However, because we can run without code
399    // available (in the compiler, in tests), we manually assign the
400    // fields the constructor should have set.
401    if (runtime->IsActiveTransaction()) {
402      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
403    } else {
404      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
405    }
406    peer_thread_name.reset(GetThreadName(soa));
407  }
408  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
409  if (peer_thread_name.get() != nullptr) {
410    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
411  }
412}
413
414template<bool kTransactionActive>
415void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
416                      jobject thread_name, jint thread_priority) {
417  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
418      SetBoolean<kTransactionActive>(opeer_, thread_is_daemon);
419  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
420      SetObject<kTransactionActive>(opeer_, soa.Decode<mirror::Object*>(thread_group));
421  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
422      SetObject<kTransactionActive>(opeer_, soa.Decode<mirror::Object*>(thread_name));
423  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
424      SetInt<kTransactionActive>(opeer_, thread_priority);
425}
426
427void Thread::SetThreadName(const char* name) {
428  name_->assign(name);
429  ::art::SetThreadName(name);
430  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
431}
432
433void Thread::InitStackHwm() {
434  void* stack_base;
435  size_t stack_size;
436  GetThreadStack(pthread_self_, &stack_base, &stack_size);
437
438  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
439  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
440
441  stack_begin_ = reinterpret_cast<byte*>(stack_base);
442  stack_size_ = stack_size;
443
444  if (stack_size_ <= kStackOverflowReservedBytes) {
445    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
446  }
447
448  // TODO: move this into the Linux GetThreadStack implementation.
449#if !defined(__APPLE__)
450  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
451  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
452  // will be broken because we'll die long before we get close to 2GB.
453  bool is_main_thread = (::art::GetTid() == getpid());
454  if (is_main_thread) {
455    rlimit stack_limit;
456    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
457      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
458    }
459    if (stack_limit.rlim_cur == RLIM_INFINITY) {
460      // Find the default stack size for new threads...
461      pthread_attr_t default_attributes;
462      size_t default_stack_size;
463      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
464      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
465                         "default stack size query");
466      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
467
468      // ...and use that as our limit.
469      size_t old_stack_size = stack_size_;
470      stack_size_ = default_stack_size;
471      stack_begin_ += (old_stack_size - stack_size_);
472      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
473                    << " to " << PrettySize(stack_size_)
474                    << " with base " << reinterpret_cast<void*>(stack_begin_);
475    }
476  }
477#endif
478
479  // Set stack_end_ to the bottom of the stack saving space of stack overflows
480  ResetDefaultStackEnd();
481
482  // Sanity check.
483  int stack_variable;
484  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
485}
486
487void Thread::ShortDump(std::ostream& os) const {
488  os << "Thread[";
489  if (GetThreadId() != 0) {
490    // If we're in kStarting, we won't have a thin lock id or tid yet.
491    os << GetThreadId()
492             << ",tid=" << GetTid() << ',';
493  }
494  os << GetState()
495           << ",Thread*=" << this
496           << ",peer=" << opeer_
497           << ",\"" << *name_ << "\""
498           << "]";
499}
500
501void Thread::Dump(std::ostream& os) const {
502  DumpState(os);
503  DumpStack(os);
504}
505
506mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
507  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
508  return (opeer_ != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : nullptr;
509}
510
511void Thread::GetThreadName(std::string& name) const {
512  name.assign(*name_);
513}
514
515uint64_t Thread::GetCpuMicroTime() const {
516#if defined(HAVE_POSIX_CLOCKS)
517  clockid_t cpu_clock_id;
518  pthread_getcpuclockid(pthread_self_, &cpu_clock_id);
519  timespec now;
520  clock_gettime(cpu_clock_id, &now);
521  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
522#else
523  UNIMPLEMENTED(WARNING);
524  return -1;
525#endif
526}
527
528void Thread::AtomicSetFlag(ThreadFlag flag) {
529  android_atomic_or(flag, &state_and_flags_.as_int);
530}
531
532void Thread::AtomicClearFlag(ThreadFlag flag) {
533  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
534}
535
536// Attempt to rectify locks so that we dump thread list with required locks before exiting.
537static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
538  LOG(ERROR) << *thread << " suspend count already zero.";
539  Locks::thread_suspend_count_lock_->Unlock(self);
540  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
541    Locks::mutator_lock_->SharedTryLock(self);
542    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
543      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
544    }
545  }
546  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
547    Locks::thread_list_lock_->TryLock(self);
548    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
549      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
550    }
551  }
552  std::ostringstream ss;
553  Runtime::Current()->GetThreadList()->DumpLocked(ss);
554  LOG(FATAL) << ss.str();
555}
556
557void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
558  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
559      << delta << " " << debug_suspend_count_ << " " << this;
560  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
561  Locks::thread_suspend_count_lock_->AssertHeld(self);
562  if (this != self && !IsSuspended()) {
563    Locks::thread_list_lock_->AssertHeld(self);
564  }
565  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
566    UnsafeLogFatalForSuspendCount(self, this);
567    return;
568  }
569
570  suspend_count_ += delta;
571  if (for_debugger) {
572    debug_suspend_count_ += delta;
573  }
574
575  if (suspend_count_ == 0) {
576    AtomicClearFlag(kSuspendRequest);
577  } else {
578    AtomicSetFlag(kSuspendRequest);
579  }
580}
581
582void Thread::RunCheckpointFunction() {
583  Closure *checkpoints[kMaxCheckpoints];
584
585  // Grab the suspend_count lock and copy the current set of
586  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
587  // function will also grab this lock so we prevent a race between setting
588  // the kCheckpointRequest flag and clearing it.
589  {
590    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
591    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
592      checkpoints[i] = checkpoint_functions_[i];
593      checkpoint_functions_[i] = nullptr;
594    }
595    AtomicClearFlag(kCheckpointRequest);
596  }
597
598  // Outside the lock, run all the checkpoint functions that
599  // we collected.
600  bool found_checkpoint = false;
601  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
602    if (checkpoints[i] != nullptr) {
603      ATRACE_BEGIN("Checkpoint function");
604      checkpoints[i]->Run(this);
605      ATRACE_END();
606      found_checkpoint = true;
607    }
608  }
609  CHECK(found_checkpoint);
610}
611
612bool Thread::RequestCheckpoint(Closure* function) {
613  union StateAndFlags old_state_and_flags;
614  old_state_and_flags.as_int = state_and_flags_.as_int;
615  if (old_state_and_flags.as_struct.state != kRunnable) {
616    return false;  // Fail, thread is suspended and so can't run a checkpoint.
617  }
618
619  uint32_t available_checkpoint = kMaxCheckpoints;
620  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
621    if (checkpoint_functions_[i] == nullptr) {
622      available_checkpoint = i;
623      break;
624    }
625  }
626  if (available_checkpoint == kMaxCheckpoints) {
627    // No checkpoint functions available, we can't run a checkpoint
628    return false;
629  }
630  checkpoint_functions_[available_checkpoint] = function;
631
632  // Checkpoint function installed now install flag bit.
633  // We must be runnable to request a checkpoint.
634  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
635  union StateAndFlags new_state_and_flags;
636  new_state_and_flags.as_int = old_state_and_flags.as_int;
637  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
638  int succeeded = android_atomic_acquire_cas(old_state_and_flags.as_int, new_state_and_flags.as_int,
639                                         &state_and_flags_.as_int);
640  if (UNLIKELY(succeeded != 0)) {
641    // The thread changed state before the checkpoint was installed.
642    CHECK_EQ(checkpoint_functions_[available_checkpoint], function);
643    checkpoint_functions_[available_checkpoint] = nullptr;
644  } else {
645    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
646  }
647  return succeeded == 0;
648}
649
650void Thread::FullSuspendCheck() {
651  VLOG(threads) << this << " self-suspending";
652  ATRACE_BEGIN("Full suspend check");
653  // Make thread appear suspended to other threads, release mutator_lock_.
654  TransitionFromRunnableToSuspended(kSuspended);
655  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
656  TransitionFromSuspendedToRunnable();
657  ATRACE_END();
658  VLOG(threads) << this << " self-reviving";
659}
660
661void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
662  std::string group_name;
663  int priority;
664  bool is_daemon = false;
665  Thread* self = Thread::Current();
666
667  if (self != nullptr && thread != nullptr && thread->opeer_ != nullptr) {
668    ScopedObjectAccessUnchecked soa(self);
669    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
670    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
671
672    mirror::Object* thread_group =
673        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
674
675    if (thread_group != nullptr) {
676      mirror::ArtField* group_name_field =
677          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
678      mirror::String* group_name_string =
679          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
680      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
681    }
682  } else {
683    priority = GetNativePriority();
684  }
685
686  std::string scheduler_group_name(GetSchedulerGroupName(tid));
687  if (scheduler_group_name.empty()) {
688    scheduler_group_name = "default";
689  }
690
691  if (thread != nullptr) {
692    os << '"' << *thread->name_ << '"';
693    if (is_daemon) {
694      os << " daemon";
695    }
696    os << " prio=" << priority
697       << " tid=" << thread->GetThreadId()
698       << " " << thread->GetState();
699    if (thread->IsStillStarting()) {
700      os << " (still starting up)";
701    }
702    os << "\n";
703  } else {
704    os << '"' << ::art::GetThreadName(tid) << '"'
705       << " prio=" << priority
706       << " (not attached)\n";
707  }
708
709  if (thread != nullptr) {
710    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
711    os << "  | group=\"" << group_name << "\""
712       << " sCount=" << thread->suspend_count_
713       << " dsCount=" << thread->debug_suspend_count_
714       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
715       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
716  }
717
718  os << "  | sysTid=" << tid
719     << " nice=" << getpriority(PRIO_PROCESS, tid)
720     << " cgrp=" << scheduler_group_name;
721  if (thread != nullptr) {
722    int policy;
723    sched_param sp;
724    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
725    os << " sched=" << policy << "/" << sp.sched_priority
726       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
727  }
728  os << "\n";
729
730  // Grab the scheduler stats for this thread.
731  std::string scheduler_stats;
732  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
733    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
734  } else {
735    scheduler_stats = "0 0 0";
736  }
737
738  char native_thread_state = '?';
739  int utime = 0;
740  int stime = 0;
741  int task_cpu = 0;
742  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
743
744  os << "  | state=" << native_thread_state
745     << " schedstat=( " << scheduler_stats << " )"
746     << " utm=" << utime
747     << " stm=" << stime
748     << " core=" << task_cpu
749     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
750  if (thread != nullptr) {
751    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
752       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
753  }
754}
755
756void Thread::DumpState(std::ostream& os) const {
757  Thread::DumpState(os, this, GetTid());
758}
759
760struct StackDumpVisitor : public StackVisitor {
761  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
762      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
763      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
764        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
765  }
766
767  virtual ~StackDumpVisitor() {
768    if (frame_count == 0) {
769      os << "  (no managed stack frames)\n";
770    }
771  }
772
773  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
774    mirror::ArtMethod* m = GetMethod();
775    if (m->IsRuntimeMethod()) {
776      return true;
777    }
778    const int kMaxRepetition = 3;
779    mirror::Class* c = m->GetDeclaringClass();
780    mirror::DexCache* dex_cache = c->GetDexCache();
781    int line_number = -1;
782    if (dex_cache != nullptr) {  // be tolerant of bad input
783      const DexFile& dex_file = *dex_cache->GetDexFile();
784      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
785    }
786    if (line_number == last_line_number && last_method == m) {
787      ++repetition_count;
788    } else {
789      if (repetition_count >= kMaxRepetition) {
790        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
791      }
792      repetition_count = 0;
793      last_line_number = line_number;
794      last_method = m;
795    }
796    if (repetition_count < kMaxRepetition) {
797      os << "  at " << PrettyMethod(m, false);
798      if (m->IsNative()) {
799        os << "(Native method)";
800      } else {
801        mh.ChangeMethod(m);
802        const char* source_file(mh.GetDeclaringClassSourceFile());
803        os << "(" << (source_file != nullptr ? source_file : "unavailable")
804           << ":" << line_number << ")";
805      }
806      os << "\n";
807      if (frame_count == 0) {
808        Monitor::DescribeWait(os, thread);
809      }
810      if (can_allocate) {
811        Monitor::VisitLocks(this, DumpLockedObject, &os);
812      }
813    }
814
815    ++frame_count;
816    return true;
817  }
818
819  static void DumpLockedObject(mirror::Object* o, void* context)
820      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
821    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
822    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
823  }
824
825  std::ostream& os;
826  const Thread* thread;
827  const bool can_allocate;
828  MethodHelper mh;
829  mirror::ArtMethod* last_method;
830  int last_line_number;
831  int repetition_count;
832  int frame_count;
833};
834
835static bool ShouldShowNativeStack(const Thread* thread)
836    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
837  ThreadState state = thread->GetState();
838
839  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
840  if (state > kWaiting && state < kStarting) {
841    return true;
842  }
843
844  // In an Object.wait variant or Thread.sleep? That's not interesting.
845  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
846    return false;
847  }
848
849  // In some other native method? That's interesting.
850  // We don't just check kNative because native methods will be in state kSuspended if they're
851  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
852  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
853  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
854  return current_method != nullptr && current_method->IsNative();
855}
856
857void Thread::DumpStack(std::ostream& os) const {
858  // TODO: we call this code when dying but may not have suspended the thread ourself. The
859  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
860  //       the race with the thread_suspend_count_lock_).
861  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
862  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
863  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
864    // If we're currently in native code, dump that stack before dumping the managed stack.
865    if (dump_for_abort || ShouldShowNativeStack(this)) {
866      DumpKernelStack(os, GetTid(), "  kernel: ", false);
867      SirtRef<mirror::ArtMethod> method_ref(Thread::Current(), GetCurrentMethod(nullptr));
868      DumpNativeStack(os, GetTid(), "  native: ", false, method_ref.get());
869    }
870    UniquePtr<Context> context(Context::Create());
871    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
872    dumper.WalkStack();
873  } else {
874    os << "Not able to dump stack of thread that isn't suspended";
875  }
876}
877
878void Thread::ThreadExitCallback(void* arg) {
879  Thread* self = reinterpret_cast<Thread*>(arg);
880  if (self->thread_exit_check_count_ == 0) {
881    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
882    CHECK(is_started_);
883    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
884    self->thread_exit_check_count_ = 1;
885  } else {
886    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
887  }
888}
889
890void Thread::Startup() {
891  CHECK(!is_started_);
892  is_started_ = true;
893  {
894    // MutexLock to keep annotalysis happy.
895    //
896    // Note we use nullptr for the thread because Thread::Current can
897    // return garbage since (is_started_ == true) and
898    // Thread::pthread_key_self_ is not yet initialized.
899    // This was seen on glibc.
900    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
901    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
902                                         *Locks::thread_suspend_count_lock_);
903  }
904
905  // Allocate a TLS slot.
906  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
907
908  // Double-check the TLS slot allocation.
909  if (pthread_getspecific(pthread_key_self_) != nullptr) {
910    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
911  }
912}
913
914void Thread::FinishStartup() {
915  Runtime* runtime = Runtime::Current();
916  CHECK(runtime->IsStarted());
917
918  // Finish attaching the main thread.
919  ScopedObjectAccess soa(Thread::Current());
920  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
921
922  Runtime::Current()->GetClassLinker()->RunRootClinits();
923}
924
925void Thread::Shutdown() {
926  CHECK(is_started_);
927  is_started_ = false;
928  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
929  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
930  if (resume_cond_ != nullptr) {
931    delete resume_cond_;
932    resume_cond_ = nullptr;
933  }
934}
935
936Thread::Thread(bool daemon)
937    : suspend_count_(0),
938      card_table_(nullptr),
939      exception_(nullptr),
940      stack_end_(nullptr),
941      managed_stack_(),
942      jni_env_(nullptr),
943      self_(nullptr),
944      opeer_(nullptr),
945      jpeer_(nullptr),
946      stack_begin_(nullptr),
947      stack_size_(0),
948      thin_lock_thread_id_(0),
949      stack_trace_sample_(nullptr),
950      trace_clock_base_(0),
951      tid_(0),
952      wait_mutex_(new Mutex("a thread wait mutex")),
953      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
954      wait_monitor_(nullptr),
955      interrupted_(false),
956      wait_next_(nullptr),
957      monitor_enter_object_(nullptr),
958      top_sirt_(nullptr),
959      runtime_(nullptr),
960      class_loader_override_(nullptr),
961      long_jump_context_(nullptr),
962      throwing_OutOfMemoryError_(false),
963      debug_suspend_count_(0),
964      debug_invoke_req_(new DebugInvokeReq),
965      single_step_control_(new SingleStepControl),
966      deoptimization_shadow_frame_(nullptr),
967      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
968      name_(new std::string(kThreadNameDuringStartup)),
969      daemon_(daemon),
970      pthread_self_(0),
971      no_thread_suspension_(0),
972      last_no_thread_suspension_cause_(nullptr),
973      thread_exit_check_count_(0),
974      thread_local_start_(nullptr),
975      thread_local_pos_(nullptr),
976      thread_local_end_(nullptr),
977      thread_local_objects_(0),
978      thread_local_alloc_stack_top_(nullptr),
979      thread_local_alloc_stack_end_(nullptr) {
980  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
981  state_and_flags_.as_struct.flags = 0;
982  state_and_flags_.as_struct.state = kNative;
983  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
984  memset(rosalloc_runs_, 0, sizeof(rosalloc_runs_));
985  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
986    checkpoint_functions_[i] = nullptr;
987  }
988}
989
990bool Thread::IsStillStarting() const {
991  // You might think you can check whether the state is kStarting, but for much of thread startup,
992  // the thread is in kNative; it might also be in kVmWait.
993  // You might think you can check whether the peer is nullptr, but the peer is actually created and
994  // assigned fairly early on, and needs to be.
995  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
996  // this thread _ever_ entered kRunnable".
997  return (jpeer_ == nullptr && opeer_ == nullptr) || (*name_ == kThreadNameDuringStartup);
998}
999
1000void Thread::AssertNoPendingException() const {
1001  if (UNLIKELY(IsExceptionPending())) {
1002    ScopedObjectAccess soa(Thread::Current());
1003    mirror::Throwable* exception = GetException(nullptr);
1004    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1005  }
1006}
1007
1008void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1009  if (UNLIKELY(IsExceptionPending())) {
1010    ScopedObjectAccess soa(Thread::Current());
1011    mirror::Throwable* exception = GetException(nullptr);
1012    LOG(FATAL) << "Throwing new exception " << msg << " with unexpected pending exception: "
1013        << exception->Dump();
1014  }
1015}
1016
1017static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1018                               RootType /*root_type*/)
1019    NO_THREAD_SAFETY_ANALYSIS {
1020  Thread* self = reinterpret_cast<Thread*>(arg);
1021  mirror::Object* entered_monitor = *object;
1022  if (self->HoldsLock(entered_monitor)) {
1023    LOG(WARNING) << "Calling MonitorExit on object "
1024                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1025                 << " left locked by native thread "
1026                 << *Thread::Current() << " which is detaching";
1027    entered_monitor->MonitorExit(self);
1028  }
1029}
1030
1031void Thread::Destroy() {
1032  Thread* self = this;
1033  DCHECK_EQ(self, Thread::Current());
1034
1035  if (opeer_ != nullptr) {
1036    ScopedObjectAccess soa(self);
1037    // We may need to call user-supplied managed code, do this before final clean-up.
1038    HandleUncaughtExceptions(soa);
1039    RemoveFromThreadGroup(soa);
1040
1041    // this.nativePeer = 0;
1042    if (Runtime::Current()->IsActiveTransaction()) {
1043      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetLong<true>(opeer_, 0);
1044    } else {
1045      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetLong<false>(opeer_, 0);
1046    }
1047    Dbg::PostThreadDeath(self);
1048
1049    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1050    // who is waiting.
1051    mirror::Object* lock =
1052        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1053    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1054    if (lock != nullptr) {
1055      SirtRef<mirror::Object> sirt_obj(self, lock);
1056      ObjectLock<mirror::Object> locker(self, &sirt_obj);
1057      locker.Notify();
1058    }
1059  }
1060
1061  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1062  if (jni_env_ != nullptr) {
1063    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1064  }
1065}
1066
1067Thread::~Thread() {
1068  if (jni_env_ != nullptr && jpeer_ != nullptr) {
1069    // If pthread_create fails we don't have a jni env here.
1070    jni_env_->DeleteGlobalRef(jpeer_);
1071    jpeer_ = nullptr;
1072  }
1073  opeer_ = nullptr;
1074
1075  bool initialized = (jni_env_ != nullptr);  // Did Thread::Init run?
1076  if (initialized) {
1077    delete jni_env_;
1078    jni_env_ = nullptr;
1079  }
1080  CHECK_NE(GetState(), kRunnable);
1081  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1082  CHECK(checkpoint_functions_[0] == nullptr);
1083  CHECK(checkpoint_functions_[1] == nullptr);
1084  CHECK(checkpoint_functions_[2] == nullptr);
1085
1086  // We may be deleting a still born thread.
1087  SetStateUnsafe(kTerminated);
1088
1089  delete wait_cond_;
1090  delete wait_mutex_;
1091
1092  if (long_jump_context_ != nullptr) {
1093    delete long_jump_context_;
1094  }
1095
1096  if (initialized) {
1097    CleanupCpu();
1098  }
1099
1100  delete debug_invoke_req_;
1101  delete single_step_control_;
1102  delete instrumentation_stack_;
1103  delete name_;
1104  delete stack_trace_sample_;
1105
1106  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1107
1108  TearDownAlternateSignalStack();
1109}
1110
1111void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1112  if (!IsExceptionPending()) {
1113    return;
1114  }
1115  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1116  ScopedThreadStateChange tsc(this, kNative);
1117
1118  // Get and clear the exception.
1119  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1120  jni_env_->ExceptionClear();
1121
1122  // If the thread has its own handler, use that.
1123  ScopedLocalRef<jobject> handler(jni_env_,
1124                                  jni_env_->GetObjectField(peer.get(),
1125                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1126  if (handler.get() == nullptr) {
1127    // Otherwise use the thread group's default handler.
1128    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1129  }
1130
1131  // Call the handler.
1132  jni_env_->CallVoidMethod(handler.get(),
1133                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1134                           peer.get(), exception.get());
1135
1136  // If the handler threw, clear that exception too.
1137  jni_env_->ExceptionClear();
1138}
1139
1140void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1141  // this.group.removeThread(this);
1142  // group can be null if we're in the compiler or a test.
1143  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1144  if (ogroup != nullptr) {
1145    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1146    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1147    ScopedThreadStateChange tsc(soa.Self(), kNative);
1148    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1149                             peer.get());
1150  }
1151}
1152
1153size_t Thread::NumSirtReferences() {
1154  size_t count = 0;
1155  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1156    count += cur->NumberOfReferences();
1157  }
1158  return count;
1159}
1160
1161bool Thread::SirtContains(jobject obj) const {
1162  StackReference<mirror::Object>* sirt_entry =
1163      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1164  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1165    if (cur->Contains(sirt_entry)) {
1166      return true;
1167    }
1168  }
1169  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1170  return managed_stack_.ShadowFramesContain(sirt_entry);
1171}
1172
1173void Thread::SirtVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1174  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1175    size_t num_refs = cur->NumberOfReferences();
1176    for (size_t j = 0; j < num_refs; ++j) {
1177      mirror::Object* object = cur->GetReference(j);
1178      if (object != nullptr) {
1179        mirror::Object* old_obj = object;
1180        visitor(&object, arg, thread_id, kRootNativeStack);
1181        if (old_obj != object) {
1182          cur->SetReference(j, object);
1183        }
1184      }
1185    }
1186  }
1187}
1188
1189mirror::Object* Thread::DecodeJObject(jobject obj) const {
1190  Locks::mutator_lock_->AssertSharedHeld(this);
1191  if (obj == nullptr) {
1192    return nullptr;
1193  }
1194  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1195  IndirectRefKind kind = GetIndirectRefKind(ref);
1196  mirror::Object* result;
1197  // The "kinds" below are sorted by the frequency we expect to encounter them.
1198  if (kind == kLocal) {
1199    IndirectReferenceTable& locals = jni_env_->locals;
1200    result = const_cast<mirror::Object*>(locals.Get(ref));
1201  } else if (kind == kSirtOrInvalid) {
1202    // TODO: make stack indirect reference table lookup more efficient.
1203    // Check if this is a local reference in the SIRT.
1204    if (LIKELY(SirtContains(obj))) {
1205      // Read from SIRT.
1206      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1207    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1208      // Assume an invalid local reference is actually a direct pointer.
1209      result = reinterpret_cast<mirror::Object*>(obj);
1210    } else {
1211      result = kInvalidIndirectRefObject;
1212    }
1213  } else if (kind == kGlobal) {
1214    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1215    IndirectReferenceTable& globals = vm->globals;
1216    ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1217    result = const_cast<mirror::Object*>(globals.Get(ref));
1218  } else {
1219    DCHECK_EQ(kind, kWeakGlobal);
1220    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1221    if (result == kClearedJniWeakGlobal) {
1222      // This is a special case where it's okay to return nullptr.
1223      return nullptr;
1224    }
1225  }
1226
1227  if (UNLIKELY(result == nullptr)) {
1228    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1229  } else {
1230    if (result != kInvalidIndirectRefObject) {
1231      VerifyObject(result);
1232    }
1233  }
1234  return result;
1235}
1236
1237// Implements java.lang.Thread.interrupted.
1238bool Thread::Interrupted() {
1239  MutexLock mu(Thread::Current(), *wait_mutex_);
1240  bool interrupted = interrupted_;
1241  interrupted_ = false;
1242  return interrupted;
1243}
1244
1245// Implements java.lang.Thread.isInterrupted.
1246bool Thread::IsInterrupted() {
1247  MutexLock mu(Thread::Current(), *wait_mutex_);
1248  return interrupted_;
1249}
1250
1251void Thread::Interrupt() {
1252  Thread* self = Thread::Current();
1253  MutexLock mu(self, *wait_mutex_);
1254  if (interrupted_) {
1255    return;
1256  }
1257  interrupted_ = true;
1258  NotifyLocked(self);
1259}
1260
1261void Thread::Notify() {
1262  Thread* self = Thread::Current();
1263  MutexLock mu(self, *wait_mutex_);
1264  NotifyLocked(self);
1265}
1266
1267void Thread::NotifyLocked(Thread* self) {
1268  if (wait_monitor_ != nullptr) {
1269    wait_cond_->Signal(self);
1270  }
1271}
1272
1273class CountStackDepthVisitor : public StackVisitor {
1274 public:
1275  explicit CountStackDepthVisitor(Thread* thread)
1276      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1277      : StackVisitor(thread, nullptr),
1278        depth_(0), skip_depth_(0), skipping_(true) {}
1279
1280  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1281    // We want to skip frames up to and including the exception's constructor.
1282    // Note we also skip the frame if it doesn't have a method (namely the callee
1283    // save frame)
1284    mirror::ArtMethod* m = GetMethod();
1285    if (skipping_ && !m->IsRuntimeMethod() &&
1286        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1287      skipping_ = false;
1288    }
1289    if (!skipping_) {
1290      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1291        ++depth_;
1292      }
1293    } else {
1294      ++skip_depth_;
1295    }
1296    return true;
1297  }
1298
1299  int GetDepth() const {
1300    return depth_;
1301  }
1302
1303  int GetSkipDepth() const {
1304    return skip_depth_;
1305  }
1306
1307 private:
1308  uint32_t depth_;
1309  uint32_t skip_depth_;
1310  bool skipping_;
1311};
1312
1313class BuildInternalStackTraceVisitor : public StackVisitor {
1314 public:
1315  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1316      : StackVisitor(thread, nullptr), self_(self),
1317        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1318
1319  bool Init(int depth)
1320      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1321    // Allocate method trace with an extra slot that will hold the PC trace
1322    SirtRef<mirror::ObjectArray<mirror::Object> >
1323        method_trace(self_,
1324                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1325                                                                                            depth + 1));
1326    if (method_trace.get() == nullptr) {
1327      return false;
1328    }
1329    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1330    if (dex_pc_trace == nullptr) {
1331      return false;
1332    }
1333    // Save PC trace in last element of method trace, also places it into the
1334    // object graph.
1335    // We are called from native: use non-transactional mode.
1336    method_trace->Set<false>(depth, dex_pc_trace);
1337    // Set the Object*s and assert that no thread suspension is now possible.
1338    const char* last_no_suspend_cause =
1339        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1340    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1341    method_trace_ = method_trace.get();
1342    dex_pc_trace_ = dex_pc_trace;
1343    return true;
1344  }
1345
1346  virtual ~BuildInternalStackTraceVisitor() {
1347    if (method_trace_ != nullptr) {
1348      self_->EndAssertNoThreadSuspension(nullptr);
1349    }
1350  }
1351
1352  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1353    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1354      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1355    }
1356    if (skip_depth_ > 0) {
1357      skip_depth_--;
1358      return true;
1359    }
1360    mirror::ArtMethod* m = GetMethod();
1361    if (m->IsRuntimeMethod()) {
1362      return true;  // Ignore runtime frames (in particular callee save).
1363    }
1364    // TODO dedup this code.
1365    if (Runtime::Current()->IsActiveTransaction()) {
1366      method_trace_->Set<true>(count_, m);
1367      dex_pc_trace_->Set<true>(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1368    } else {
1369      method_trace_->Set<false>(count_, m);
1370      dex_pc_trace_->Set<false>(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1371    }
1372    ++count_;
1373    return true;
1374  }
1375
1376  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1377    return method_trace_;
1378  }
1379
1380 private:
1381  Thread* const self_;
1382  // How many more frames to skip.
1383  int32_t skip_depth_;
1384  // Current position down stack trace.
1385  uint32_t count_;
1386  // Array of dex PC values.
1387  mirror::IntArray* dex_pc_trace_;
1388  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1389  mirror::ObjectArray<mirror::Object>* method_trace_;
1390};
1391
1392jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1393  // Compute depth of stack
1394  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1395  count_visitor.WalkStack();
1396  int32_t depth = count_visitor.GetDepth();
1397  int32_t skip_depth = count_visitor.GetSkipDepth();
1398
1399  // Build internal stack trace.
1400  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1401                                                     skip_depth);
1402  if (!build_trace_visitor.Init(depth)) {
1403    return nullptr;  // Allocation failed.
1404  }
1405  build_trace_visitor.WalkStack();
1406  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1407  if (kIsDebugBuild) {
1408    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1409      CHECK(trace->Get(i) != nullptr);
1410    }
1411  }
1412  return soa.AddLocalReference<jobjectArray>(trace);
1413}
1414
1415jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1416    jobjectArray output_array, int* stack_depth) {
1417  // Transition into runnable state to work on Object*/Array*
1418  ScopedObjectAccess soa(env);
1419  // Decode the internal stack trace into the depth, method trace and PC trace
1420  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1421
1422  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1423
1424  jobjectArray result;
1425
1426  if (output_array != nullptr) {
1427    // Reuse the array we were given.
1428    result = output_array;
1429    // ...adjusting the number of frames we'll write to not exceed the array length.
1430    const int32_t traces_length =
1431        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1432    depth = std::min(depth, traces_length);
1433  } else {
1434    // Create java_trace array and place in local reference table
1435    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1436        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1437    if (java_traces == nullptr) {
1438      return nullptr;
1439    }
1440    result = soa.AddLocalReference<jobjectArray>(java_traces);
1441  }
1442
1443  if (stack_depth != nullptr) {
1444    *stack_depth = depth;
1445  }
1446
1447  for (int32_t i = 0; i < depth; ++i) {
1448    mirror::ObjectArray<mirror::Object>* method_trace =
1449          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1450    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1451    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1452    MethodHelper mh(method);
1453    int32_t line_number;
1454    SirtRef<mirror::String> class_name_object(soa.Self(), nullptr);
1455    SirtRef<mirror::String> source_name_object(soa.Self(), nullptr);
1456    if (method->IsProxyMethod()) {
1457      line_number = -1;
1458      class_name_object.reset(method->GetDeclaringClass()->GetName());
1459      // source_name_object intentionally left null for proxy methods
1460    } else {
1461      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1462      uint32_t dex_pc = pc_trace->Get(i);
1463      line_number = mh.GetLineNumFromDexPC(dex_pc);
1464      // Allocate element, potentially triggering GC
1465      // TODO: reuse class_name_object via Class::name_?
1466      const char* descriptor = mh.GetDeclaringClassDescriptor();
1467      CHECK(descriptor != nullptr);
1468      std::string class_name(PrettyDescriptor(descriptor));
1469      class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1470      if (class_name_object.get() == nullptr) {
1471        return nullptr;
1472      }
1473      const char* source_file = mh.GetDeclaringClassSourceFile();
1474      if (source_file != nullptr) {
1475        source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1476        if (source_name_object.get() == nullptr) {
1477          return nullptr;
1478        }
1479      }
1480    }
1481    const char* method_name = mh.GetName();
1482    CHECK(method_name != nullptr);
1483    SirtRef<mirror::String> method_name_object(soa.Self(),
1484                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1485                                                                                     method_name));
1486    if (method_name_object.get() == nullptr) {
1487      return nullptr;
1488    }
1489    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1490        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1491    if (obj == nullptr) {
1492      return nullptr;
1493    }
1494    // We are called from native: use non-transactional mode.
1495    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1496  }
1497  return result;
1498}
1499
1500void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1501                                const char* exception_class_descriptor, const char* fmt, ...) {
1502  va_list args;
1503  va_start(args, fmt);
1504  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1505                     fmt, args);
1506  va_end(args);
1507}
1508
1509void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1510                                const char* exception_class_descriptor,
1511                                const char* fmt, va_list ap) {
1512  std::string msg;
1513  StringAppendV(&msg, fmt, ap);
1514  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1515}
1516
1517void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1518                               const char* msg) {
1519  // Callers should either clear or call ThrowNewWrappedException.
1520  AssertNoPendingExceptionForNewException(msg);
1521  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1522}
1523
1524void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1525                                      const char* exception_class_descriptor,
1526                                      const char* msg) {
1527  DCHECK_EQ(this, Thread::Current());
1528  // Ensure we don't forget arguments over object allocation.
1529  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1530  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1531  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1532  SirtRef<mirror::Throwable> cause(this, GetException(nullptr));
1533  ClearException();
1534  Runtime* runtime = Runtime::Current();
1535
1536  mirror::ClassLoader* cl = nullptr;
1537  if (saved_throw_method.get() != nullptr) {
1538    cl = saved_throw_method.get()->GetDeclaringClass()->GetClassLoader();
1539  }
1540  SirtRef<mirror::ClassLoader> class_loader(this, cl);
1541  SirtRef<mirror::Class>
1542      exception_class(this, runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1543                                                                 class_loader));
1544  if (UNLIKELY(exception_class.get() == nullptr)) {
1545    CHECK(IsExceptionPending());
1546    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1547    return;
1548  }
1549
1550  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1551    DCHECK(IsExceptionPending());
1552    return;
1553  }
1554  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1555  SirtRef<mirror::Throwable> exception(this,
1556                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1557
1558  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1559  if (exception.get() == nullptr) {
1560    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1561                                         throw_location.GetDexPc());
1562    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1563    return;
1564  }
1565
1566  // Choose an appropriate constructor and set up the arguments.
1567  const char* signature;
1568  const char* shorty;
1569  SirtRef<mirror::String> msg_string(this, nullptr);
1570  if (msg != nullptr) {
1571    // Ensure we remember this and the method over the String allocation.
1572    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1573    if (UNLIKELY(msg_string.get() == nullptr)) {
1574      CHECK(IsExceptionPending());  // OOME.
1575      return;
1576    }
1577    if (cause.get() == nullptr) {
1578      shorty = "VL";
1579      signature = "(Ljava/lang/String;)V";
1580    } else {
1581      shorty = "VLL";
1582      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1583    }
1584  } else {
1585    if (cause.get() == nullptr) {
1586      shorty = "V";
1587      signature = "()V";
1588    } else {
1589      shorty = "VL";
1590      signature = "(Ljava/lang/Throwable;)V";
1591    }
1592  }
1593  mirror::ArtMethod* exception_init_method =
1594      exception_class->FindDeclaredDirectMethod("<init>", signature);
1595
1596  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1597      << PrettyDescriptor(exception_class_descriptor);
1598
1599  if (UNLIKELY(!runtime->IsStarted())) {
1600    // Something is trying to throw an exception without a started runtime, which is the common
1601    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1602    // the exception fields directly.
1603    if (msg != nullptr) {
1604      exception->SetDetailMessage(msg_string.get());
1605    }
1606    if (cause.get() != nullptr) {
1607      exception->SetCause(cause.get());
1608    }
1609    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1610                                         throw_location.GetDexPc());
1611    SetException(gc_safe_throw_location, exception.get());
1612  } else {
1613    ArgArray args(shorty, strlen(shorty));
1614    args.Append(exception.get());
1615    if (msg != nullptr) {
1616      args.Append(msg_string.get());
1617    }
1618    if (cause.get() != nullptr) {
1619      args.Append(cause.get());
1620    }
1621    JValue result;
1622    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, shorty);
1623    if (LIKELY(!IsExceptionPending())) {
1624      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1625                                           throw_location.GetDexPc());
1626      SetException(gc_safe_throw_location, exception.get());
1627    }
1628  }
1629}
1630
1631void Thread::ThrowOutOfMemoryError(const char* msg) {
1632  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1633      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1634  ThrowLocation throw_location = GetCurrentLocationForThrow();
1635  if (!throwing_OutOfMemoryError_) {
1636    throwing_OutOfMemoryError_ = true;
1637    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1638    throwing_OutOfMemoryError_ = false;
1639  } else {
1640    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1641    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1642  }
1643}
1644
1645Thread* Thread::CurrentFromGdb() {
1646  return Thread::Current();
1647}
1648
1649void Thread::DumpFromGdb() const {
1650  std::ostringstream ss;
1651  Dump(ss);
1652  std::string str(ss.str());
1653  // log to stderr for debugging command line processes
1654  std::cerr << str;
1655#ifdef HAVE_ANDROID_OS
1656  // log to logcat for debugging frameworks processes
1657  LOG(INFO) << str;
1658#endif
1659}
1660
1661struct EntryPointInfo {
1662  uint32_t offset;
1663  const char* name;
1664};
1665#define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1666#define JNI_ENTRY_POINT_INFO(x)         { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1667#define PORTABLE_ENTRY_POINT_INFO(x)    { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1668#define QUICK_ENTRY_POINT_INFO(x)       { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1669static const EntryPointInfo gThreadEntryPointInfo[] = {
1670  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1671  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1672  JNI_ENTRY_POINT_INFO(pDlsymLookup),
1673  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline),
1674  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1675  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1676  QUICK_ENTRY_POINT_INFO(pAllocArray),
1677  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved),
1678  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1679  QUICK_ENTRY_POINT_INFO(pAllocObject),
1680  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved),
1681  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized),
1682  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1683  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1684  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1685  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1686  QUICK_ENTRY_POINT_INFO(pCheckCast),
1687  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1688  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1689  QUICK_ENTRY_POINT_INFO(pInitializeType),
1690  QUICK_ENTRY_POINT_INFO(pResolveString),
1691  QUICK_ENTRY_POINT_INFO(pSet32Instance),
1692  QUICK_ENTRY_POINT_INFO(pSet32Static),
1693  QUICK_ENTRY_POINT_INFO(pSet64Instance),
1694  QUICK_ENTRY_POINT_INFO(pSet64Static),
1695  QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1696  QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1697  QUICK_ENTRY_POINT_INFO(pGet32Instance),
1698  QUICK_ENTRY_POINT_INFO(pGet32Static),
1699  QUICK_ENTRY_POINT_INFO(pGet64Instance),
1700  QUICK_ENTRY_POINT_INFO(pGet64Static),
1701  QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1702  QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1703  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck),
1704  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck),
1705  QUICK_ENTRY_POINT_INFO(pAputObject),
1706  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1707  QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1708  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1709  QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1710  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1711  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1712  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1713  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline),
1714  QUICK_ENTRY_POINT_INFO(pLockObject),
1715  QUICK_ENTRY_POINT_INFO(pUnlockObject),
1716  QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1717  QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1718  QUICK_ENTRY_POINT_INFO(pCmplDouble),
1719  QUICK_ENTRY_POINT_INFO(pCmplFloat),
1720  QUICK_ENTRY_POINT_INFO(pFmod),
1721  QUICK_ENTRY_POINT_INFO(pSqrt),
1722  QUICK_ENTRY_POINT_INFO(pL2d),
1723  QUICK_ENTRY_POINT_INFO(pFmodf),
1724  QUICK_ENTRY_POINT_INFO(pL2f),
1725  QUICK_ENTRY_POINT_INFO(pD2iz),
1726  QUICK_ENTRY_POINT_INFO(pF2iz),
1727  QUICK_ENTRY_POINT_INFO(pIdivmod),
1728  QUICK_ENTRY_POINT_INFO(pD2l),
1729  QUICK_ENTRY_POINT_INFO(pF2l),
1730  QUICK_ENTRY_POINT_INFO(pLdiv),
1731  QUICK_ENTRY_POINT_INFO(pLmod),
1732  QUICK_ENTRY_POINT_INFO(pLmul),
1733  QUICK_ENTRY_POINT_INFO(pShlLong),
1734  QUICK_ENTRY_POINT_INFO(pShrLong),
1735  QUICK_ENTRY_POINT_INFO(pUshrLong),
1736  QUICK_ENTRY_POINT_INFO(pIndexOf),
1737  QUICK_ENTRY_POINT_INFO(pMemcmp16),
1738  QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1739  QUICK_ENTRY_POINT_INFO(pMemcpy),
1740  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline),
1741  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1742  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1743  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1744  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1745  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1746  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1747  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1748  QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1749  QUICK_ENTRY_POINT_INFO(pTestSuspend),
1750  QUICK_ENTRY_POINT_INFO(pDeliverException),
1751  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1752  QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1753  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1754  QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1755  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1756};
1757#undef QUICK_ENTRY_POINT_INFO
1758
1759void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1760  CHECK_EQ(size_of_pointers, 4U);  // TODO: support 64-bit targets.
1761
1762#define DO_THREAD_OFFSET(x) \
1763    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1764      os << # x; \
1765      return; \
1766    }
1767  DO_THREAD_OFFSET(state_and_flags_);
1768  DO_THREAD_OFFSET(card_table_);
1769  DO_THREAD_OFFSET(exception_);
1770  DO_THREAD_OFFSET(opeer_);
1771  DO_THREAD_OFFSET(jni_env_);
1772  DO_THREAD_OFFSET(self_);
1773  DO_THREAD_OFFSET(stack_end_);
1774  DO_THREAD_OFFSET(suspend_count_);
1775  DO_THREAD_OFFSET(thin_lock_thread_id_);
1776  // DO_THREAD_OFFSET(top_of_managed_stack_);
1777  // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1778  DO_THREAD_OFFSET(top_sirt_);
1779#undef DO_THREAD_OFFSET
1780
1781  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1782  CHECK_EQ(entry_point_count * size_of_pointers,
1783           sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1784           sizeof(QuickEntryPoints));
1785  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1786  for (size_t i = 0; i < entry_point_count; ++i) {
1787    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1788    expected_offset += size_of_pointers;
1789    if (gThreadEntryPointInfo[i].offset == offset) {
1790      os << gThreadEntryPointInfo[i].name;
1791      return;
1792    }
1793  }
1794  os << offset;
1795}
1796
1797void Thread::QuickDeliverException() {
1798  // Get exception from thread.
1799  ThrowLocation throw_location;
1800  mirror::Throwable* exception = GetException(&throw_location);
1801  CHECK(exception != nullptr);
1802  // Don't leave exception visible while we try to find the handler, which may cause class
1803  // resolution.
1804  ClearException();
1805  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1806  if (kDebugExceptionDelivery) {
1807    if (!is_deoptimization) {
1808      mirror::String* msg = exception->GetDetailMessage();
1809      std::string str_msg(msg != nullptr ? msg->ToModifiedUtf8() : "");
1810      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1811                << ": " << str_msg << "\n");
1812    } else {
1813      DumpStack(LOG(INFO) << "Deoptimizing: ");
1814    }
1815  }
1816  CatchFinder catch_finder(this, throw_location, exception, is_deoptimization);
1817  catch_finder.FindCatch();
1818  catch_finder.UpdateInstrumentationStack();
1819  catch_finder.DoLongJump();
1820  LOG(FATAL) << "UNREACHABLE";
1821}
1822
1823Context* Thread::GetLongJumpContext() {
1824  Context* result = long_jump_context_;
1825  if (result == nullptr) {
1826    result = Context::Create();
1827  } else {
1828    long_jump_context_ = nullptr;  // Avoid context being shared.
1829    result->Reset();
1830  }
1831  return result;
1832}
1833
1834struct CurrentMethodVisitor : public StackVisitor {
1835  CurrentMethodVisitor(Thread* thread, Context* context)
1836      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1837      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1838  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1839    mirror::ArtMethod* m = GetMethod();
1840    if (m->IsRuntimeMethod()) {
1841      // Continue if this is a runtime method.
1842      return true;
1843    }
1844    if (context_ != nullptr) {
1845      this_object_ = GetThisObject();
1846    }
1847    method_ = m;
1848    dex_pc_ = GetDexPc();
1849    return false;
1850  }
1851  mirror::Object* this_object_;
1852  mirror::ArtMethod* method_;
1853  uint32_t dex_pc_;
1854};
1855
1856mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1857  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1858  visitor.WalkStack(false);
1859  if (dex_pc != nullptr) {
1860    *dex_pc = visitor.dex_pc_;
1861  }
1862  return visitor.method_;
1863}
1864
1865ThrowLocation Thread::GetCurrentLocationForThrow() {
1866  Context* context = GetLongJumpContext();
1867  CurrentMethodVisitor visitor(this, context);
1868  visitor.WalkStack(false);
1869  ReleaseLongJumpContext(context);
1870  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1871}
1872
1873bool Thread::HoldsLock(mirror::Object* object) {
1874  if (object == nullptr) {
1875    return false;
1876  }
1877  return object->GetLockOwnerThreadId() == thin_lock_thread_id_;
1878}
1879
1880// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1881template <typename RootVisitor>
1882class ReferenceMapVisitor : public StackVisitor {
1883 public:
1884  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1885      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1886      : StackVisitor(thread, context), visitor_(visitor) {}
1887
1888  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1889    if (false) {
1890      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1891          << StringPrintf("@ PC:%04x", GetDexPc());
1892    }
1893    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1894    if (shadow_frame != nullptr) {
1895      mirror::ArtMethod* m = shadow_frame->GetMethod();
1896      size_t num_regs = shadow_frame->NumberOfVRegs();
1897      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1898        // SIRT for JNI or References for interpreter.
1899        for (size_t reg = 0; reg < num_regs; ++reg) {
1900          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1901          if (ref != nullptr) {
1902            mirror::Object* new_ref = ref;
1903            visitor_(&new_ref, reg, this);
1904            if (new_ref != ref) {
1905             shadow_frame->SetVRegReference(reg, new_ref);
1906            }
1907          }
1908        }
1909      } else {
1910        // Java method.
1911        // Portable path use DexGcMap and store in Method.native_gc_map_.
1912        const uint8_t* gc_map = m->GetNativeGcMap();
1913        CHECK(gc_map != nullptr) << PrettyMethod(m);
1914        verifier::DexPcToReferenceMap dex_gc_map(gc_map);
1915        uint32_t dex_pc = GetDexPc();
1916        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
1917        DCHECK(reg_bitmap != nullptr);
1918        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
1919        for (size_t reg = 0; reg < num_regs; ++reg) {
1920          if (TestBitmap(reg, reg_bitmap)) {
1921            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1922            if (ref != nullptr) {
1923              mirror::Object* new_ref = ref;
1924              visitor_(&new_ref, reg, this);
1925              if (new_ref != ref) {
1926               shadow_frame->SetVRegReference(reg, new_ref);
1927              }
1928            }
1929          }
1930        }
1931      }
1932    } else {
1933      mirror::ArtMethod* m = GetMethod();
1934      // Process register map (which native and runtime methods don't have)
1935      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
1936        const uint8_t* native_gc_map = m->GetNativeGcMap();
1937        CHECK(native_gc_map != nullptr) << PrettyMethod(m);
1938        mh_.ChangeMethod(m);
1939        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
1940        DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
1941        NativePcOffsetToReferenceMap map(native_gc_map);
1942        size_t num_regs = std::min(map.RegWidth() * 8,
1943                                   static_cast<size_t>(code_item->registers_size_));
1944        if (num_regs > 0) {
1945          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
1946          DCHECK(reg_bitmap != nullptr);
1947          const VmapTable vmap_table(m->GetVmapTable());
1948          uint32_t core_spills = m->GetCoreSpillMask();
1949          uint32_t fp_spills = m->GetFpSpillMask();
1950          size_t frame_size = m->GetFrameSizeInBytes();
1951          // For all dex registers in the bitmap
1952          mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
1953          DCHECK(cur_quick_frame != nullptr);
1954          for (size_t reg = 0; reg < num_regs; ++reg) {
1955            // Does this register hold a reference?
1956            if (TestBitmap(reg, reg_bitmap)) {
1957              uint32_t vmap_offset;
1958              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
1959                int vmap_reg = vmap_table.ComputeRegister(core_spills, vmap_offset, kReferenceVReg);
1960                // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
1961                mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
1962                if (*ref_addr != nullptr) {
1963                  visitor_(ref_addr, reg, this);
1964                }
1965              } else {
1966                StackReference<mirror::Object>* ref_addr =
1967                    reinterpret_cast<StackReference<mirror::Object>*>(
1968                        GetVRegAddr(cur_quick_frame, code_item, core_spills, fp_spills, frame_size,
1969                                    reg));
1970                mirror::Object* ref = ref_addr->AsMirrorPtr();
1971                if (ref != nullptr) {
1972                  mirror::Object* new_ref = ref;
1973                  visitor_(&new_ref, reg, this);
1974                  if (ref != new_ref) {
1975                    ref_addr->Assign(new_ref);
1976                  }
1977                }
1978              }
1979            }
1980          }
1981        }
1982      }
1983    }
1984    return true;
1985  }
1986
1987 private:
1988  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
1989    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
1990  }
1991
1992  // Visitor for when we visit a root.
1993  const RootVisitor& visitor_;
1994
1995  // A method helper we keep around to avoid dex file/cache re-computations.
1996  MethodHelper mh_;
1997};
1998
1999class RootCallbackVisitor {
2000 public:
2001  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2002     : callback_(callback), arg_(arg), tid_(tid) {}
2003
2004  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2005    callback_(obj, arg_, tid_, kRootJavaFrame);
2006  }
2007
2008 private:
2009  RootCallback* const callback_;
2010  void* const arg_;
2011  const uint32_t tid_;
2012};
2013
2014void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2015  VerifyObject(class_loader_override);
2016  class_loader_override_ = class_loader_override;
2017}
2018
2019void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2020  uint32_t thread_id = GetThreadId();
2021  if (opeer_ != nullptr) {
2022    visitor(&opeer_, arg, thread_id, kRootThreadObject);
2023  }
2024  if (exception_ != nullptr) {
2025    visitor(reinterpret_cast<mirror::Object**>(&exception_), arg, thread_id, kRootNativeStack);
2026  }
2027  throw_location_.VisitRoots(visitor, arg);
2028  if (class_loader_override_ != nullptr) {
2029    visitor(reinterpret_cast<mirror::Object**>(&class_loader_override_), arg, thread_id,
2030            kRootNativeStack);
2031  }
2032  jni_env_->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2033  jni_env_->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2034  SirtVisitRoots(visitor, arg, thread_id);
2035  // Visit roots on this thread's stack
2036  Context* context = GetLongJumpContext();
2037  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2038  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2039  mapper.WalkStack();
2040  ReleaseLongJumpContext(context);
2041  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2042    if (frame.this_object_ != nullptr) {
2043      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2044    }
2045    DCHECK(frame.method_ != nullptr);
2046    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2047  }
2048}
2049
2050static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2051                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2052  VerifyObject(*root);
2053}
2054
2055void Thread::VerifyStackImpl() {
2056  UniquePtr<Context> context(Context::Create());
2057  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2058  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2059  mapper.WalkStack();
2060}
2061
2062// Set the stack end to that to be used during a stack overflow
2063void Thread::SetStackEndForStackOverflow() {
2064  // During stack overflow we allow use of the full stack.
2065  if (stack_end_ == stack_begin_) {
2066    // However, we seem to have already extended to use the full stack.
2067    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2068               << kStackOverflowReservedBytes << ")?";
2069    DumpStack(LOG(ERROR));
2070    LOG(FATAL) << "Recursive stack overflow.";
2071  }
2072
2073  stack_end_ = stack_begin_;
2074}
2075
2076void Thread::SetTlab(byte* start, byte* end) {
2077  DCHECK_LE(start, end);
2078  thread_local_start_ = start;
2079  thread_local_pos_  = thread_local_start_;
2080  thread_local_end_ = end;
2081  thread_local_objects_ = 0;
2082}
2083
2084std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2085  thread.ShortDump(os);
2086  return os;
2087}
2088
2089}  // namespace art
2090