thread.cc revision acbb30867482986e02a7cc53c099b8d56d32acee
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
98      sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize +
228        GetStackOverflowReservedBytes(kRuntimeISA);
229  }
230
231  // Some systems require the stack size to be a multiple of the system page size, so round up.
232  stack_size = RoundUp(stack_size, kPageSize);
233
234  return stack_size;
235}
236
237// Global variable to prevent the compiler optimizing away the page reads for the stack.
238uint8_t dont_optimize_this;
239
240// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241// overflow is detected.  It is located right below the stack_begin_.
242//
243// There is a little complexity here that deserves a special mention.  On some
244// architectures, the stack created using a VM_GROWSDOWN flag
245// to prevent memory being allocated when it's not needed.  This flag makes the
246// kernel only allocate memory for the stack by growing down in memory.  Because we
247// want to put an mprotected region far away from that at the stack top, we need
248// to make sure the pages for the stack are mapped in before we call mprotect.  We do
249// this by reading every page from the stack bottom (highest address) to the stack top.
250// We then madvise this away.
251void Thread::InstallImplicitProtection() {
252  uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253  uint8_t* stack_himem = tlsPtr_.stack_end;
254  uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255      ~(kPageSize - 1));    // Page containing current top of stack.
256
257  // First remove the protection on the protected region as will want to read and
258  // write it.  This may fail (on the first attempt when the stack is not mapped)
259  // but we ignore that.
260  UnprotectStack();
261
262  // Map in the stack.  This must be done by reading from the
263  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264  // in the kernel.  Any access more than a page below the current SP might cause
265  // a segv.
266
267  // Read every page from the high address to the low.
268  for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
269    dont_optimize_this = *p;
270  }
271
272  VLOG(threads) << "installing stack protected region at " << std::hex <<
273      static_cast<void*>(pregion) << " to " <<
274      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275
276  // Protect the bottom of the stack to prevent read/write to it.
277  ProtectStack();
278
279  // Tell the kernel that we won't be needing these pages any more.
280  // NB. madvise will probably write zeroes into the memory (on linux it does).
281  uint32_t unwanted_size = stack_top - pregion - kPageSize;
282  madvise(pregion, unwanted_size, MADV_DONTNEED);
283}
284
285void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286  CHECK(java_peer != nullptr);
287  Thread* self = static_cast<JNIEnvExt*>(env)->self;
288  Runtime* runtime = Runtime::Current();
289
290  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291  bool thread_start_during_shutdown = false;
292  {
293    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294    if (runtime->IsShuttingDownLocked()) {
295      thread_start_during_shutdown = true;
296    } else {
297      runtime->StartThreadBirth();
298    }
299  }
300  if (thread_start_during_shutdown) {
301    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303    return;
304  }
305
306  Thread* child_thread = new Thread(is_daemon);
307  // Use global JNI ref to hold peer live while child thread starts.
308  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309  stack_size = FixStackSize(stack_size);
310
311  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312  // assign it.
313  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314                    reinterpret_cast<jlong>(child_thread));
315
316  pthread_t new_pthread;
317  pthread_attr_t attr;
318  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323
324  if (pthread_create_result != 0) {
325    // pthread_create(3) failed, so clean up.
326    {
327      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328      runtime->EndThreadBirth();
329    }
330    // Manually delete the global reference since Thread::Init will not have been run.
331    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332    child_thread->tlsPtr_.jpeer = nullptr;
333    delete child_thread;
334    child_thread = nullptr;
335    // TODO: remove from thread group?
336    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337    {
338      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340      ScopedObjectAccess soa(env);
341      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342    }
343  }
344}
345
346void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347  // This function does all the initialization that must be run by the native thread it applies to.
348  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349  // we can handshake with the corresponding native thread when it's ready.) Check this native
350  // thread hasn't been through here already...
351  CHECK(Thread::Current() == nullptr);
352  SetUpAlternateSignalStack();
353  InitCpu();
354  InitTlsEntryPoints();
355  RemoveSuspendTrigger();
356  InitCardTable();
357  InitTid();
358  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360  tlsPtr_.pthread_self = pthread_self();
361  CHECK(is_started_);
362  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363  DCHECK_EQ(Thread::Current(), this);
364
365  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366  InitStackHwm();
367
368  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369  thread_list->Register(this);
370}
371
372Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373                       bool create_peer) {
374  Thread* self;
375  Runtime* runtime = Runtime::Current();
376  if (runtime == nullptr) {
377    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378    return nullptr;
379  }
380  {
381    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382    if (runtime->IsShuttingDownLocked()) {
383      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384      return nullptr;
385    } else {
386      Runtime::Current()->StartThreadBirth();
387      self = new Thread(as_daemon);
388      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389      Runtime::Current()->EndThreadBirth();
390    }
391  }
392
393  CHECK_NE(self->GetState(), kRunnable);
394  self->SetState(kNative);
395
396  // If we're the main thread, ClassLinker won't be created until after we're attached,
397  // so that thread needs a two-stage attach. Regular threads don't need this hack.
398  // In the compiler, all threads need this hack, because no-one's going to be getting
399  // a native peer!
400  if (create_peer) {
401    self->CreatePeer(thread_name, as_daemon, thread_group);
402  } else {
403    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404    if (thread_name != nullptr) {
405      self->tlsPtr_.name->assign(thread_name);
406      ::art::SetThreadName(thread_name);
407    } else if (self->GetJniEnv()->check_jni) {
408      LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
409    }
410  }
411
412  return self;
413}
414
415void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
416  Runtime* runtime = Runtime::Current();
417  CHECK(runtime->IsStarted());
418  JNIEnv* env = tlsPtr_.jni_env;
419
420  if (thread_group == nullptr) {
421    thread_group = runtime->GetMainThreadGroup();
422  }
423  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
424  jint thread_priority = GetNativePriority();
425  jboolean thread_is_daemon = as_daemon;
426
427  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
428  if (peer.get() == nullptr) {
429    CHECK(IsExceptionPending());
430    return;
431  }
432  {
433    ScopedObjectAccess soa(this);
434    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
435  }
436  env->CallNonvirtualVoidMethod(peer.get(),
437                                WellKnownClasses::java_lang_Thread,
438                                WellKnownClasses::java_lang_Thread_init,
439                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
440  AssertNoPendingException();
441
442  Thread* self = this;
443  DCHECK_EQ(self, Thread::Current());
444  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
445                    reinterpret_cast<jlong>(self));
446
447  ScopedObjectAccess soa(self);
448  StackHandleScope<1> hs(self);
449  MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
450  if (peer_thread_name.Get() == nullptr) {
451    // The Thread constructor should have set the Thread.name to a
452    // non-null value. However, because we can run without code
453    // available (in the compiler, in tests), we manually assign the
454    // fields the constructor should have set.
455    if (runtime->IsActiveTransaction()) {
456      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457    } else {
458      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
459    }
460    peer_thread_name.Assign(GetThreadName(soa));
461  }
462  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
463  if (peer_thread_name.Get() != nullptr) {
464    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
465  }
466}
467
468template<bool kTransactionActive>
469void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
470                      jobject thread_name, jint thread_priority) {
471  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
472      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
473  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
474      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
475  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
476      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
477  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
478      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
479}
480
481void Thread::SetThreadName(const char* name) {
482  tlsPtr_.name->assign(name);
483  ::art::SetThreadName(name);
484  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
485}
486
487void Thread::InitStackHwm() {
488  void* read_stack_base;
489  size_t read_stack_size;
490  size_t read_guard_size;
491  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
492
493  // This is included in the SIGQUIT output, but it's useful here for thread debugging.
494  VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
495                                read_stack_base,
496                                PrettySize(read_stack_size).c_str(),
497                                PrettySize(read_guard_size).c_str());
498
499  tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
500  tlsPtr_.stack_size = read_stack_size;
501
502  // The minimum stack size we can cope with is the overflow reserved bytes (typically
503  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
504  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
505  // between 8K and 12K.
506  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
507    + 4 * KB;
508  if (read_stack_size <= min_stack) {
509    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
510               << " bytes)";
511  }
512
513  // Set stack_end_ to the bottom of the stack saving space of stack overflows
514
515  Runtime* runtime = Runtime::Current();
516  bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
517  ResetDefaultStackEnd();
518
519  // Install the protected region if we are doing implicit overflow checks.
520  if (implicit_stack_check) {
521    // The thread might have protected region at the bottom.  We need
522    // to install our own region so we need to move the limits
523    // of the stack to make room for it.
524
525    tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
526    tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
527    tlsPtr_.stack_size -= read_guard_size;
528
529    InstallImplicitProtection();
530  }
531
532  // Sanity check.
533  int stack_variable;
534  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
535}
536
537void Thread::ShortDump(std::ostream& os) const {
538  os << "Thread[";
539  if (GetThreadId() != 0) {
540    // If we're in kStarting, we won't have a thin lock id or tid yet.
541    os << GetThreadId()
542             << ",tid=" << GetTid() << ',';
543  }
544  os << GetState()
545           << ",Thread*=" << this
546           << ",peer=" << tlsPtr_.opeer
547           << ",\"" << *tlsPtr_.name << "\""
548           << "]";
549}
550
551void Thread::Dump(std::ostream& os) const {
552  DumpState(os);
553  DumpStack(os);
554}
555
556mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
557  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
558  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
559}
560
561void Thread::GetThreadName(std::string& name) const {
562  name.assign(*tlsPtr_.name);
563}
564
565uint64_t Thread::GetCpuMicroTime() const {
566#if defined(HAVE_POSIX_CLOCKS)
567  clockid_t cpu_clock_id;
568  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
569  timespec now;
570  clock_gettime(cpu_clock_id, &now);
571  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
572#else
573  UNIMPLEMENTED(WARNING);
574  return -1;
575#endif
576}
577
578// Attempt to rectify locks so that we dump thread list with required locks before exiting.
579static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
580  LOG(ERROR) << *thread << " suspend count already zero.";
581  Locks::thread_suspend_count_lock_->Unlock(self);
582  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
583    Locks::mutator_lock_->SharedTryLock(self);
584    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
585      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
586    }
587  }
588  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
589    Locks::thread_list_lock_->TryLock(self);
590    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
591      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
592    }
593  }
594  std::ostringstream ss;
595  Runtime::Current()->GetThreadList()->Dump(ss);
596  LOG(FATAL) << ss.str();
597}
598
599void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
600  if (kIsDebugBuild) {
601    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
602          << delta << " " << tls32_.debug_suspend_count << " " << this;
603    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
604    Locks::thread_suspend_count_lock_->AssertHeld(self);
605    if (this != self && !IsSuspended()) {
606      Locks::thread_list_lock_->AssertHeld(self);
607    }
608  }
609  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
610    UnsafeLogFatalForSuspendCount(self, this);
611    return;
612  }
613
614  tls32_.suspend_count += delta;
615  if (for_debugger) {
616    tls32_.debug_suspend_count += delta;
617  }
618
619  if (tls32_.suspend_count == 0) {
620    AtomicClearFlag(kSuspendRequest);
621  } else {
622    AtomicSetFlag(kSuspendRequest);
623    TriggerSuspend();
624  }
625}
626
627void Thread::RunCheckpointFunction() {
628  Closure *checkpoints[kMaxCheckpoints];
629
630  // Grab the suspend_count lock and copy the current set of
631  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
632  // function will also grab this lock so we prevent a race between setting
633  // the kCheckpointRequest flag and clearing it.
634  {
635    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
636    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
637      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
638      tlsPtr_.checkpoint_functions[i] = nullptr;
639    }
640    AtomicClearFlag(kCheckpointRequest);
641  }
642
643  // Outside the lock, run all the checkpoint functions that
644  // we collected.
645  bool found_checkpoint = false;
646  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
647    if (checkpoints[i] != nullptr) {
648      ATRACE_BEGIN("Checkpoint function");
649      checkpoints[i]->Run(this);
650      ATRACE_END();
651      found_checkpoint = true;
652    }
653  }
654  CHECK(found_checkpoint);
655}
656
657bool Thread::RequestCheckpoint(Closure* function) {
658  union StateAndFlags old_state_and_flags;
659  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
660  if (old_state_and_flags.as_struct.state != kRunnable) {
661    return false;  // Fail, thread is suspended and so can't run a checkpoint.
662  }
663
664  uint32_t available_checkpoint = kMaxCheckpoints;
665  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
666    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
667      available_checkpoint = i;
668      break;
669    }
670  }
671  if (available_checkpoint == kMaxCheckpoints) {
672    // No checkpoint functions available, we can't run a checkpoint
673    return false;
674  }
675  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
676
677  // Checkpoint function installed now install flag bit.
678  // We must be runnable to request a checkpoint.
679  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
680  union StateAndFlags new_state_and_flags;
681  new_state_and_flags.as_int = old_state_and_flags.as_int;
682  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
683  bool success =
684      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
685                                                                                       new_state_and_flags.as_int);
686  if (UNLIKELY(!success)) {
687    // The thread changed state before the checkpoint was installed.
688    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
689    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
690  } else {
691    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
692    TriggerSuspend();
693  }
694  return success;
695}
696
697void Thread::FullSuspendCheck() {
698  VLOG(threads) << this << " self-suspending";
699  ATRACE_BEGIN("Full suspend check");
700  // Make thread appear suspended to other threads, release mutator_lock_.
701  TransitionFromRunnableToSuspended(kSuspended);
702  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
703  TransitionFromSuspendedToRunnable();
704  ATRACE_END();
705  VLOG(threads) << this << " self-reviving";
706}
707
708void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
709  std::string group_name;
710  int priority;
711  bool is_daemon = false;
712  Thread* self = Thread::Current();
713
714  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
715  // cause ScopedObjectAccessUnchecked to deadlock.
716  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
717    ScopedObjectAccessUnchecked soa(self);
718    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
719        ->GetInt(thread->tlsPtr_.opeer);
720    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
721        ->GetBoolean(thread->tlsPtr_.opeer);
722
723    mirror::Object* thread_group =
724        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
725
726    if (thread_group != nullptr) {
727      mirror::ArtField* group_name_field =
728          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
729      mirror::String* group_name_string =
730          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
731      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
732    }
733  } else {
734    priority = GetNativePriority();
735  }
736
737  std::string scheduler_group_name(GetSchedulerGroupName(tid));
738  if (scheduler_group_name.empty()) {
739    scheduler_group_name = "default";
740  }
741
742  if (thread != nullptr) {
743    os << '"' << *thread->tlsPtr_.name << '"';
744    if (is_daemon) {
745      os << " daemon";
746    }
747    os << " prio=" << priority
748       << " tid=" << thread->GetThreadId()
749       << " " << thread->GetState();
750    if (thread->IsStillStarting()) {
751      os << " (still starting up)";
752    }
753    os << "\n";
754  } else {
755    os << '"' << ::art::GetThreadName(tid) << '"'
756       << " prio=" << priority
757       << " (not attached)\n";
758  }
759
760  if (thread != nullptr) {
761    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
762    os << "  | group=\"" << group_name << "\""
763       << " sCount=" << thread->tls32_.suspend_count
764       << " dsCount=" << thread->tls32_.debug_suspend_count
765       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
766       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
767  }
768
769  os << "  | sysTid=" << tid
770     << " nice=" << getpriority(PRIO_PROCESS, tid)
771     << " cgrp=" << scheduler_group_name;
772  if (thread != nullptr) {
773    int policy;
774    sched_param sp;
775    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
776                       __FUNCTION__);
777    os << " sched=" << policy << "/" << sp.sched_priority
778       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
779  }
780  os << "\n";
781
782  // Grab the scheduler stats for this thread.
783  std::string scheduler_stats;
784  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
785    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
786  } else {
787    scheduler_stats = "0 0 0";
788  }
789
790  char native_thread_state = '?';
791  int utime = 0;
792  int stime = 0;
793  int task_cpu = 0;
794  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
795
796  os << "  | state=" << native_thread_state
797     << " schedstat=( " << scheduler_stats << " )"
798     << " utm=" << utime
799     << " stm=" << stime
800     << " core=" << task_cpu
801     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
802  if (thread != nullptr) {
803    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
804        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
805        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
806    // Dump the held mutexes.
807    os << "  | held mutexes=";
808    for (size_t i = 0; i < kLockLevelCount; ++i) {
809      if (i != kMonitorLock) {
810        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
811        if (mutex != nullptr) {
812          os << " \"" << mutex->GetName() << "\"";
813          if (mutex->IsReaderWriterMutex()) {
814            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
815            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
816              os << "(exclusive held)";
817            } else {
818              os << "(shared held)";
819            }
820          }
821        }
822      }
823    }
824    os << "\n";
825  }
826}
827
828void Thread::DumpState(std::ostream& os) const {
829  Thread::DumpState(os, this, GetTid());
830}
831
832struct StackDumpVisitor : public StackVisitor {
833  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
834      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
835      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
836        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
837  }
838
839  virtual ~StackDumpVisitor() {
840    if (frame_count == 0) {
841      os << "  (no managed stack frames)\n";
842    }
843  }
844
845  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
846    mirror::ArtMethod* m = GetMethod();
847    if (m->IsRuntimeMethod()) {
848      return true;
849    }
850    const int kMaxRepetition = 3;
851    mirror::Class* c = m->GetDeclaringClass();
852    mirror::DexCache* dex_cache = c->GetDexCache();
853    int line_number = -1;
854    if (dex_cache != nullptr) {  // be tolerant of bad input
855      const DexFile& dex_file = *dex_cache->GetDexFile();
856      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
857    }
858    if (line_number == last_line_number && last_method == m) {
859      ++repetition_count;
860    } else {
861      if (repetition_count >= kMaxRepetition) {
862        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
863      }
864      repetition_count = 0;
865      last_line_number = line_number;
866      last_method = m;
867    }
868    if (repetition_count < kMaxRepetition) {
869      os << "  at " << PrettyMethod(m, false);
870      if (m->IsNative()) {
871        os << "(Native method)";
872      } else {
873        const char* source_file(m->GetDeclaringClassSourceFile());
874        os << "(" << (source_file != nullptr ? source_file : "unavailable")
875           << ":" << line_number << ")";
876      }
877      os << "\n";
878      if (frame_count == 0) {
879        Monitor::DescribeWait(os, thread);
880      }
881      if (can_allocate) {
882        // Visit locks, but do not abort on errors. This would trigger a nested abort.
883        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
884      }
885    }
886
887    ++frame_count;
888    return true;
889  }
890
891  static void DumpLockedObject(mirror::Object* o, void* context)
892      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
893    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
894    os << "  - locked ";
895    if (o == nullptr) {
896      os << "an unknown object";
897    } else {
898      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
899          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
900        // Getting the identity hashcode here would result in lock inflation and suspension of the
901        // current thread, which isn't safe if this is the only runnable thread.
902        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
903                           PrettyTypeOf(o).c_str());
904      } else {
905        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
906      }
907    }
908    os << "\n";
909  }
910
911  std::ostream& os;
912  const Thread* thread;
913  const bool can_allocate;
914  mirror::ArtMethod* last_method;
915  int last_line_number;
916  int repetition_count;
917  int frame_count;
918};
919
920static bool ShouldShowNativeStack(const Thread* thread)
921    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
922  ThreadState state = thread->GetState();
923
924  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
925  if (state > kWaiting && state < kStarting) {
926    return true;
927  }
928
929  // In an Object.wait variant or Thread.sleep? That's not interesting.
930  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
931    return false;
932  }
933
934  // Threads with no managed stack frames should be shown.
935  const ManagedStack* managed_stack = thread->GetManagedStack();
936  if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
937      managed_stack->GetTopShadowFrame() == NULL)) {
938    return true;
939  }
940
941  // In some other native method? That's interesting.
942  // We don't just check kNative because native methods will be in state kSuspended if they're
943  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
944  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
945  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
946  return current_method != nullptr && current_method->IsNative();
947}
948
949void Thread::DumpJavaStack(std::ostream& os) const {
950  // Dumping the Java stack involves the verifier for locks. The verifier operates under the
951  // assumption that there is no exception pending on entry. Thus, stash any pending exception.
952  // TODO: Find a way to avoid const_cast.
953  StackHandleScope<3> scope(const_cast<Thread*>(this));
954  Handle<mirror::Throwable> exc;
955  Handle<mirror::Object> throw_location_this_object;
956  Handle<mirror::ArtMethod> throw_location_method;
957  uint32_t throw_location_dex_pc;
958  bool have_exception = false;
959  if (IsExceptionPending()) {
960    ThrowLocation exc_location;
961    exc = scope.NewHandle(GetException(&exc_location));
962    throw_location_this_object = scope.NewHandle(exc_location.GetThis());
963    throw_location_method = scope.NewHandle(exc_location.GetMethod());
964    throw_location_dex_pc = exc_location.GetDexPc();
965    const_cast<Thread*>(this)->ClearException();
966    have_exception = true;
967  }
968
969  std::unique_ptr<Context> context(Context::Create());
970  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
971                          !tls32_.throwing_OutOfMemoryError);
972  dumper.WalkStack();
973
974  if (have_exception) {
975    ThrowLocation exc_location(throw_location_this_object.Get(),
976                               throw_location_method.Get(),
977                               throw_location_dex_pc);
978    const_cast<Thread*>(this)->SetException(exc_location, exc.Get());
979  }
980}
981
982void Thread::DumpStack(std::ostream& os) const {
983  // TODO: we call this code when dying but may not have suspended the thread ourself. The
984  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
985  //       the race with the thread_suspend_count_lock_).
986  bool dump_for_abort = (gAborting > 0);
987  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
988  if (!kIsDebugBuild) {
989    // We always want to dump the stack for an abort, however, there is no point dumping another
990    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
991    safe_to_dump = (safe_to_dump || dump_for_abort);
992  }
993  if (safe_to_dump) {
994    // If we're currently in native code, dump that stack before dumping the managed stack.
995    if (dump_for_abort || ShouldShowNativeStack(this)) {
996      DumpKernelStack(os, GetTid(), "  kernel: ", false);
997      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
998    }
999    DumpJavaStack(os);
1000  } else {
1001    os << "Not able to dump stack of thread that isn't suspended";
1002  }
1003}
1004
1005void Thread::ThreadExitCallback(void* arg) {
1006  Thread* self = reinterpret_cast<Thread*>(arg);
1007  if (self->tls32_.thread_exit_check_count == 0) {
1008    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1009        "going to use a pthread_key_create destructor?): " << *self;
1010    CHECK(is_started_);
1011    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1012    self->tls32_.thread_exit_check_count = 1;
1013  } else {
1014    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1015  }
1016}
1017
1018void Thread::Startup() {
1019  CHECK(!is_started_);
1020  is_started_ = true;
1021  {
1022    // MutexLock to keep annotalysis happy.
1023    //
1024    // Note we use nullptr for the thread because Thread::Current can
1025    // return garbage since (is_started_ == true) and
1026    // Thread::pthread_key_self_ is not yet initialized.
1027    // This was seen on glibc.
1028    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1029    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1030                                         *Locks::thread_suspend_count_lock_);
1031  }
1032
1033  // Allocate a TLS slot.
1034  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1035
1036  // Double-check the TLS slot allocation.
1037  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1038    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1039  }
1040}
1041
1042void Thread::FinishStartup() {
1043  Runtime* runtime = Runtime::Current();
1044  CHECK(runtime->IsStarted());
1045
1046  // Finish attaching the main thread.
1047  ScopedObjectAccess soa(Thread::Current());
1048  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1049
1050  Runtime::Current()->GetClassLinker()->RunRootClinits();
1051}
1052
1053void Thread::Shutdown() {
1054  CHECK(is_started_);
1055  is_started_ = false;
1056  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1057  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1058  if (resume_cond_ != nullptr) {
1059    delete resume_cond_;
1060    resume_cond_ = nullptr;
1061  }
1062}
1063
1064Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1065  wait_mutex_ = new Mutex("a thread wait mutex");
1066  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1067  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1068  tlsPtr_.single_step_control = new SingleStepControl;
1069  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1070  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1071  tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1072
1073  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1074  tls32_.state_and_flags.as_struct.flags = 0;
1075  tls32_.state_and_flags.as_struct.state = kNative;
1076  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1077  std::fill(tlsPtr_.rosalloc_runs,
1078            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1079            gc::allocator::RosAlloc::GetDedicatedFullRun());
1080  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1081    tlsPtr_.checkpoint_functions[i] = nullptr;
1082  }
1083}
1084
1085bool Thread::IsStillStarting() const {
1086  // You might think you can check whether the state is kStarting, but for much of thread startup,
1087  // the thread is in kNative; it might also be in kVmWait.
1088  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1089  // assigned fairly early on, and needs to be.
1090  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1091  // this thread _ever_ entered kRunnable".
1092  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1093      (*tlsPtr_.name == kThreadNameDuringStartup);
1094}
1095
1096void Thread::AssertPendingException() const {
1097  if (UNLIKELY(!IsExceptionPending())) {
1098    LOG(FATAL) << "Pending exception expected.";
1099  }
1100}
1101
1102void Thread::AssertNoPendingException() const {
1103  if (UNLIKELY(IsExceptionPending())) {
1104    ScopedObjectAccess soa(Thread::Current());
1105    mirror::Throwable* exception = GetException(nullptr);
1106    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1107  }
1108}
1109
1110void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1111  if (UNLIKELY(IsExceptionPending())) {
1112    ScopedObjectAccess soa(Thread::Current());
1113    mirror::Throwable* exception = GetException(nullptr);
1114    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1115        << exception->Dump();
1116  }
1117}
1118
1119static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1120                               RootType /*root_type*/)
1121    NO_THREAD_SAFETY_ANALYSIS {
1122  Thread* self = reinterpret_cast<Thread*>(arg);
1123  mirror::Object* entered_monitor = *object;
1124  if (self->HoldsLock(entered_monitor)) {
1125    LOG(WARNING) << "Calling MonitorExit on object "
1126                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1127                 << " left locked by native thread "
1128                 << *Thread::Current() << " which is detaching";
1129    entered_monitor->MonitorExit(self);
1130  }
1131}
1132
1133void Thread::Destroy() {
1134  Thread* self = this;
1135  DCHECK_EQ(self, Thread::Current());
1136
1137  if (tlsPtr_.jni_env != nullptr) {
1138    // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1139    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1140    // Release locally held global references which releasing may require the mutator lock.
1141    if (tlsPtr_.jpeer != nullptr) {
1142      // If pthread_create fails we don't have a jni env here.
1143      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1144      tlsPtr_.jpeer = nullptr;
1145    }
1146    if (tlsPtr_.class_loader_override != nullptr) {
1147      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
1148      tlsPtr_.class_loader_override = nullptr;
1149    }
1150  }
1151
1152  if (tlsPtr_.opeer != nullptr) {
1153    ScopedObjectAccess soa(self);
1154    // We may need to call user-supplied managed code, do this before final clean-up.
1155    HandleUncaughtExceptions(soa);
1156    RemoveFromThreadGroup(soa);
1157
1158    // this.nativePeer = 0;
1159    if (Runtime::Current()->IsActiveTransaction()) {
1160      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1161          ->SetLong<true>(tlsPtr_.opeer, 0);
1162    } else {
1163      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1164          ->SetLong<false>(tlsPtr_.opeer, 0);
1165    }
1166    Dbg::PostThreadDeath(self);
1167
1168    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1169    // who is waiting.
1170    mirror::Object* lock =
1171        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1172    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1173    if (lock != nullptr) {
1174      StackHandleScope<1> hs(self);
1175      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1176      ObjectLock<mirror::Object> locker(self, h_obj);
1177      locker.NotifyAll();
1178    }
1179    tlsPtr_.opeer = nullptr;
1180  }
1181
1182  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1183}
1184
1185Thread::~Thread() {
1186  CHECK(tlsPtr_.class_loader_override == nullptr);
1187  CHECK(tlsPtr_.jpeer == nullptr);
1188  CHECK(tlsPtr_.opeer == nullptr);
1189  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1190  if (initialized) {
1191    delete tlsPtr_.jni_env;
1192    tlsPtr_.jni_env = nullptr;
1193  }
1194  CHECK_NE(GetState(), kRunnable);
1195  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1196  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1197  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1198  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1199
1200  // We may be deleting a still born thread.
1201  SetStateUnsafe(kTerminated);
1202
1203  delete wait_cond_;
1204  delete wait_mutex_;
1205
1206  if (tlsPtr_.long_jump_context != nullptr) {
1207    delete tlsPtr_.long_jump_context;
1208  }
1209
1210  if (initialized) {
1211    CleanupCpu();
1212  }
1213
1214  delete tlsPtr_.debug_invoke_req;
1215  delete tlsPtr_.single_step_control;
1216  delete tlsPtr_.instrumentation_stack;
1217  delete tlsPtr_.name;
1218  delete tlsPtr_.stack_trace_sample;
1219  free(tlsPtr_.nested_signal_state);
1220
1221  Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
1222
1223  TearDownAlternateSignalStack();
1224}
1225
1226void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1227  if (!IsExceptionPending()) {
1228    return;
1229  }
1230  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1231  ScopedThreadStateChange tsc(this, kNative);
1232
1233  // Get and clear the exception.
1234  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1235  tlsPtr_.jni_env->ExceptionClear();
1236
1237  // If the thread has its own handler, use that.
1238  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1239                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1240                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1241  if (handler.get() == nullptr) {
1242    // Otherwise use the thread group's default handler.
1243    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1244                                                  WellKnownClasses::java_lang_Thread_group));
1245  }
1246
1247  // Call the handler.
1248  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1249      WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
1250      peer.get(), exception.get());
1251
1252  // If the handler threw, clear that exception too.
1253  tlsPtr_.jni_env->ExceptionClear();
1254}
1255
1256void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1257  // this.group.removeThread(this);
1258  // group can be null if we're in the compiler or a test.
1259  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1260      ->GetObject(tlsPtr_.opeer);
1261  if (ogroup != nullptr) {
1262    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1263    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1264    ScopedThreadStateChange tsc(soa.Self(), kNative);
1265    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1266                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1267                                    peer.get());
1268  }
1269}
1270
1271size_t Thread::NumHandleReferences() {
1272  size_t count = 0;
1273  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
1274    count += cur->NumberOfReferences();
1275  }
1276  return count;
1277}
1278
1279bool Thread::HandleScopeContains(jobject obj) const {
1280  StackReference<mirror::Object>* hs_entry =
1281      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1282  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
1283    if (cur->Contains(hs_entry)) {
1284      return true;
1285    }
1286  }
1287  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1288  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1289}
1290
1291void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1292  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1293    size_t num_refs = cur->NumberOfReferences();
1294    for (size_t j = 0; j < num_refs; ++j) {
1295      mirror::Object* object = cur->GetReference(j);
1296      if (object != nullptr) {
1297        mirror::Object* old_obj = object;
1298        visitor(&object, arg, thread_id, kRootNativeStack);
1299        if (old_obj != object) {
1300          cur->SetReference(j, object);
1301        }
1302      }
1303    }
1304  }
1305}
1306
1307mirror::Object* Thread::DecodeJObject(jobject obj) const {
1308  Locks::mutator_lock_->AssertSharedHeld(this);
1309  if (obj == nullptr) {
1310    return nullptr;
1311  }
1312  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1313  IndirectRefKind kind = GetIndirectRefKind(ref);
1314  mirror::Object* result;
1315  bool expect_null = false;
1316  // The "kinds" below are sorted by the frequency we expect to encounter them.
1317  if (kind == kLocal) {
1318    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1319    // Local references do not need a read barrier.
1320    result = locals.Get<kWithoutReadBarrier>(ref);
1321  } else if (kind == kHandleScopeOrInvalid) {
1322    // TODO: make stack indirect reference table lookup more efficient.
1323    // Check if this is a local reference in the handle scope.
1324    if (LIKELY(HandleScopeContains(obj))) {
1325      // Read from handle scope.
1326      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1327      VerifyObject(result);
1328    } else {
1329      tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
1330      expect_null = true;
1331      result = nullptr;
1332    }
1333  } else if (kind == kGlobal) {
1334    result = tlsPtr_.jni_env->vm->DecodeGlobal(const_cast<Thread*>(this), ref);
1335  } else {
1336    DCHECK_EQ(kind, kWeakGlobal);
1337    result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1338    if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
1339      // This is a special case where it's okay to return nullptr.
1340      expect_null = true;
1341      result = nullptr;
1342    }
1343  }
1344
1345  if (UNLIKELY(!expect_null && result == nullptr)) {
1346    tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
1347                                   ToStr<IndirectRefKind>(kind).c_str(), obj);
1348  }
1349  return result;
1350}
1351
1352// Implements java.lang.Thread.interrupted.
1353bool Thread::Interrupted() {
1354  MutexLock mu(Thread::Current(), *wait_mutex_);
1355  bool interrupted = IsInterruptedLocked();
1356  SetInterruptedLocked(false);
1357  return interrupted;
1358}
1359
1360// Implements java.lang.Thread.isInterrupted.
1361bool Thread::IsInterrupted() {
1362  MutexLock mu(Thread::Current(), *wait_mutex_);
1363  return IsInterruptedLocked();
1364}
1365
1366void Thread::Interrupt(Thread* self) {
1367  MutexLock mu(self, *wait_mutex_);
1368  if (interrupted_) {
1369    return;
1370  }
1371  interrupted_ = true;
1372  NotifyLocked(self);
1373}
1374
1375void Thread::Notify() {
1376  Thread* self = Thread::Current();
1377  MutexLock mu(self, *wait_mutex_);
1378  NotifyLocked(self);
1379}
1380
1381void Thread::NotifyLocked(Thread* self) {
1382  if (wait_monitor_ != nullptr) {
1383    wait_cond_->Signal(self);
1384  }
1385}
1386
1387void Thread::SetClassLoaderOverride(jobject class_loader_override) {
1388  if (tlsPtr_.class_loader_override != nullptr) {
1389    GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
1390  }
1391  tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
1392}
1393
1394class CountStackDepthVisitor : public StackVisitor {
1395 public:
1396  explicit CountStackDepthVisitor(Thread* thread)
1397      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1398      : StackVisitor(thread, nullptr),
1399        depth_(0), skip_depth_(0), skipping_(true) {}
1400
1401  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1402    // We want to skip frames up to and including the exception's constructor.
1403    // Note we also skip the frame if it doesn't have a method (namely the callee
1404    // save frame)
1405    mirror::ArtMethod* m = GetMethod();
1406    if (skipping_ && !m->IsRuntimeMethod() &&
1407        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1408      skipping_ = false;
1409    }
1410    if (!skipping_) {
1411      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1412        ++depth_;
1413      }
1414    } else {
1415      ++skip_depth_;
1416    }
1417    return true;
1418  }
1419
1420  int GetDepth() const {
1421    return depth_;
1422  }
1423
1424  int GetSkipDepth() const {
1425    return skip_depth_;
1426  }
1427
1428 private:
1429  uint32_t depth_;
1430  uint32_t skip_depth_;
1431  bool skipping_;
1432};
1433
1434template<bool kTransactionActive>
1435class BuildInternalStackTraceVisitor : public StackVisitor {
1436 public:
1437  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1438      : StackVisitor(thread, nullptr), self_(self),
1439        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1440
1441  bool Init(int depth)
1442      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1443    // Allocate method trace with an extra slot that will hold the PC trace
1444    StackHandleScope<1> hs(self_);
1445    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1446    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1447        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1448    if (method_trace.Get() == nullptr) {
1449      return false;
1450    }
1451    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1452    if (dex_pc_trace == nullptr) {
1453      return false;
1454    }
1455    // Save PC trace in last element of method trace, also places it into the
1456    // object graph.
1457    // We are called from native: use non-transactional mode.
1458    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1459    // Set the Object*s and assert that no thread suspension is now possible.
1460    const char* last_no_suspend_cause =
1461        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1462    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1463    method_trace_ = method_trace.Get();
1464    dex_pc_trace_ = dex_pc_trace;
1465    return true;
1466  }
1467
1468  virtual ~BuildInternalStackTraceVisitor() {
1469    if (method_trace_ != nullptr) {
1470      self_->EndAssertNoThreadSuspension(nullptr);
1471    }
1472  }
1473
1474  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1475    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1476      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1477    }
1478    if (skip_depth_ > 0) {
1479      skip_depth_--;
1480      return true;
1481    }
1482    mirror::ArtMethod* m = GetMethod();
1483    if (m->IsRuntimeMethod()) {
1484      return true;  // Ignore runtime frames (in particular callee save).
1485    }
1486    method_trace_->Set<kTransactionActive>(count_, m);
1487    dex_pc_trace_->Set<kTransactionActive>(count_,
1488        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1489    ++count_;
1490    return true;
1491  }
1492
1493  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1494    return method_trace_;
1495  }
1496
1497 private:
1498  Thread* const self_;
1499  // How many more frames to skip.
1500  int32_t skip_depth_;
1501  // Current position down stack trace.
1502  uint32_t count_;
1503  // Array of dex PC values.
1504  mirror::IntArray* dex_pc_trace_;
1505  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1506  mirror::ObjectArray<mirror::Object>* method_trace_;
1507};
1508
1509template<bool kTransactionActive>
1510jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1511  // Compute depth of stack
1512  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1513  count_visitor.WalkStack();
1514  int32_t depth = count_visitor.GetDepth();
1515  int32_t skip_depth = count_visitor.GetSkipDepth();
1516
1517  // Build internal stack trace.
1518  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1519                                                                         const_cast<Thread*>(this),
1520                                                                         skip_depth);
1521  if (!build_trace_visitor.Init(depth)) {
1522    return nullptr;  // Allocation failed.
1523  }
1524  build_trace_visitor.WalkStack();
1525  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1526  if (kIsDebugBuild) {
1527    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1528      CHECK(trace->Get(i) != nullptr);
1529    }
1530  }
1531  return soa.AddLocalReference<jobjectArray>(trace);
1532}
1533template jobject Thread::CreateInternalStackTrace<false>(
1534    const ScopedObjectAccessAlreadyRunnable& soa) const;
1535template jobject Thread::CreateInternalStackTrace<true>(
1536    const ScopedObjectAccessAlreadyRunnable& soa) const;
1537
1538jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1539    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1540    int* stack_depth) {
1541  // Decode the internal stack trace into the depth, method trace and PC trace
1542  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1543
1544  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1545
1546  jobjectArray result;
1547
1548  if (output_array != nullptr) {
1549    // Reuse the array we were given.
1550    result = output_array;
1551    // ...adjusting the number of frames we'll write to not exceed the array length.
1552    const int32_t traces_length =
1553        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1554    depth = std::min(depth, traces_length);
1555  } else {
1556    // Create java_trace array and place in local reference table
1557    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1558        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1559    if (java_traces == nullptr) {
1560      return nullptr;
1561    }
1562    result = soa.AddLocalReference<jobjectArray>(java_traces);
1563  }
1564
1565  if (stack_depth != nullptr) {
1566    *stack_depth = depth;
1567  }
1568
1569  for (int32_t i = 0; i < depth; ++i) {
1570    mirror::ObjectArray<mirror::Object>* method_trace =
1571          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1572    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1573    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1574    int32_t line_number;
1575    StackHandleScope<3> hs(soa.Self());
1576    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1577    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1578    if (method->IsProxyMethod()) {
1579      line_number = -1;
1580      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1581      // source_name_object intentionally left null for proxy methods
1582    } else {
1583      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1584      uint32_t dex_pc = pc_trace->Get(i);
1585      line_number = method->GetLineNumFromDexPC(dex_pc);
1586      // Allocate element, potentially triggering GC
1587      // TODO: reuse class_name_object via Class::name_?
1588      const char* descriptor = method->GetDeclaringClassDescriptor();
1589      CHECK(descriptor != nullptr);
1590      std::string class_name(PrettyDescriptor(descriptor));
1591      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1592      if (class_name_object.Get() == nullptr) {
1593        return nullptr;
1594      }
1595      const char* source_file = method->GetDeclaringClassSourceFile();
1596      if (source_file != nullptr) {
1597        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1598        if (source_name_object.Get() == nullptr) {
1599          return nullptr;
1600        }
1601      }
1602    }
1603    const char* method_name = method->GetName();
1604    CHECK(method_name != nullptr);
1605    Handle<mirror::String> method_name_object(
1606        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1607    if (method_name_object.Get() == nullptr) {
1608      return nullptr;
1609    }
1610    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1611        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1612    if (obj == nullptr) {
1613      return nullptr;
1614    }
1615    // We are called from native: use non-transactional mode.
1616    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1617  }
1618  return result;
1619}
1620
1621void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1622                                const char* exception_class_descriptor, const char* fmt, ...) {
1623  va_list args;
1624  va_start(args, fmt);
1625  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1626                     fmt, args);
1627  va_end(args);
1628}
1629
1630void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1631                                const char* exception_class_descriptor,
1632                                const char* fmt, va_list ap) {
1633  std::string msg;
1634  StringAppendV(&msg, fmt, ap);
1635  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1636}
1637
1638void Thread::ThrowNewException(const ThrowLocation& throw_location,
1639                               const char* exception_class_descriptor,
1640                               const char* msg) {
1641  // Callers should either clear or call ThrowNewWrappedException.
1642  AssertNoPendingExceptionForNewException(msg);
1643  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1644}
1645
1646void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1647                                      const char* exception_class_descriptor,
1648                                      const char* msg) {
1649  DCHECK_EQ(this, Thread::Current());
1650  ScopedObjectAccessUnchecked soa(this);
1651  StackHandleScope<5> hs(soa.Self());
1652  // Ensure we don't forget arguments over object allocation.
1653  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1654  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1655  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1656  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1657  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1658  ClearException();
1659  Runtime* runtime = Runtime::Current();
1660
1661  mirror::ClassLoader* cl = nullptr;
1662  if (saved_throw_method.Get() != nullptr) {
1663    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1664  }
1665  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1666  Handle<mirror::Class> exception_class(
1667      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1668                                                        class_loader)));
1669  if (UNLIKELY(exception_class.Get() == nullptr)) {
1670    CHECK(IsExceptionPending());
1671    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1672    return;
1673  }
1674
1675  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
1676                                                             true))) {
1677    DCHECK(IsExceptionPending());
1678    return;
1679  }
1680  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1681  Handle<mirror::Throwable> exception(
1682      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1683
1684  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1685  if (exception.Get() == nullptr) {
1686    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1687                                         throw_location.GetDexPc());
1688    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1689    SetExceptionReportedToInstrumentation(is_exception_reported);
1690    return;
1691  }
1692
1693  // Choose an appropriate constructor and set up the arguments.
1694  const char* signature;
1695  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1696  if (msg != nullptr) {
1697    // Ensure we remember this and the method over the String allocation.
1698    msg_string.reset(
1699        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1700    if (UNLIKELY(msg_string.get() == nullptr)) {
1701      CHECK(IsExceptionPending());  // OOME.
1702      return;
1703    }
1704    if (cause.get() == nullptr) {
1705      signature = "(Ljava/lang/String;)V";
1706    } else {
1707      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1708    }
1709  } else {
1710    if (cause.get() == nullptr) {
1711      signature = "()V";
1712    } else {
1713      signature = "(Ljava/lang/Throwable;)V";
1714    }
1715  }
1716  mirror::ArtMethod* exception_init_method =
1717      exception_class->FindDeclaredDirectMethod("<init>", signature);
1718
1719  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1720      << PrettyDescriptor(exception_class_descriptor);
1721
1722  if (UNLIKELY(!runtime->IsStarted())) {
1723    // Something is trying to throw an exception without a started runtime, which is the common
1724    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1725    // the exception fields directly.
1726    if (msg != nullptr) {
1727      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1728    }
1729    if (cause.get() != nullptr) {
1730      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1731    }
1732    ScopedLocalRef<jobject> trace(GetJniEnv(),
1733                                  Runtime::Current()->IsActiveTransaction()
1734                                      ? CreateInternalStackTrace<true>(soa)
1735                                      : CreateInternalStackTrace<false>(soa));
1736    if (trace.get() != nullptr) {
1737      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1738    }
1739    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1740                                         throw_location.GetDexPc());
1741    SetException(gc_safe_throw_location, exception.Get());
1742    SetExceptionReportedToInstrumentation(is_exception_reported);
1743  } else {
1744    jvalue jv_args[2];
1745    size_t i = 0;
1746
1747    if (msg != nullptr) {
1748      jv_args[i].l = msg_string.get();
1749      ++i;
1750    }
1751    if (cause.get() != nullptr) {
1752      jv_args[i].l = cause.get();
1753      ++i;
1754    }
1755    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1756    if (LIKELY(!IsExceptionPending())) {
1757      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1758                                           throw_location.GetDexPc());
1759      SetException(gc_safe_throw_location, exception.Get());
1760      SetExceptionReportedToInstrumentation(is_exception_reported);
1761    }
1762  }
1763}
1764
1765void Thread::ThrowOutOfMemoryError(const char* msg) {
1766  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1767      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1768  ThrowLocation throw_location = GetCurrentLocationForThrow();
1769  if (!tls32_.throwing_OutOfMemoryError) {
1770    tls32_.throwing_OutOfMemoryError = true;
1771    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1772    tls32_.throwing_OutOfMemoryError = false;
1773  } else {
1774    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1775    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1776  }
1777}
1778
1779Thread* Thread::CurrentFromGdb() {
1780  return Thread::Current();
1781}
1782
1783void Thread::DumpFromGdb() const {
1784  std::ostringstream ss;
1785  Dump(ss);
1786  std::string str(ss.str());
1787  // log to stderr for debugging command line processes
1788  std::cerr << str;
1789#ifdef HAVE_ANDROID_OS
1790  // log to logcat for debugging frameworks processes
1791  LOG(INFO) << str;
1792#endif
1793}
1794
1795// Explicitly instantiate 32 and 64bit thread offset dumping support.
1796template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1797template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1798
1799template<size_t ptr_size>
1800void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1801#define DO_THREAD_OFFSET(x, y) \
1802    if (offset == x.Uint32Value()) { \
1803      os << y; \
1804      return; \
1805    }
1806  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1807  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1808  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1809  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1810  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1811  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1812  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1813  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1814  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1815  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1816  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1817  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1818  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1819#undef DO_THREAD_OFFSET
1820
1821#define INTERPRETER_ENTRY_POINT_INFO(x) \
1822    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1823      os << #x; \
1824      return; \
1825    }
1826  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1827  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1828#undef INTERPRETER_ENTRY_POINT_INFO
1829
1830#define JNI_ENTRY_POINT_INFO(x) \
1831    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1832      os << #x; \
1833      return; \
1834    }
1835  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1836#undef JNI_ENTRY_POINT_INFO
1837
1838#define PORTABLE_ENTRY_POINT_INFO(x) \
1839    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1840      os << #x; \
1841      return; \
1842    }
1843  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1844  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1845  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1846#undef PORTABLE_ENTRY_POINT_INFO
1847
1848#define QUICK_ENTRY_POINT_INFO(x) \
1849    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1850      os << #x; \
1851      return; \
1852    }
1853  QUICK_ENTRY_POINT_INFO(pAllocArray)
1854  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1855  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1856  QUICK_ENTRY_POINT_INFO(pAllocObject)
1857  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1858  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1859  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1860  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1861  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1862  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1863  QUICK_ENTRY_POINT_INFO(pCheckCast)
1864  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1865  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1866  QUICK_ENTRY_POINT_INFO(pInitializeType)
1867  QUICK_ENTRY_POINT_INFO(pResolveString)
1868  QUICK_ENTRY_POINT_INFO(pSet8Instance)
1869  QUICK_ENTRY_POINT_INFO(pSet8Static)
1870  QUICK_ENTRY_POINT_INFO(pSet16Instance)
1871  QUICK_ENTRY_POINT_INFO(pSet16Static)
1872  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1873  QUICK_ENTRY_POINT_INFO(pSet32Static)
1874  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1875  QUICK_ENTRY_POINT_INFO(pSet64Static)
1876  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1877  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1878  QUICK_ENTRY_POINT_INFO(pGetByteInstance)
1879  QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
1880  QUICK_ENTRY_POINT_INFO(pGetByteStatic)
1881  QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
1882  QUICK_ENTRY_POINT_INFO(pGetShortInstance)
1883  QUICK_ENTRY_POINT_INFO(pGetCharInstance)
1884  QUICK_ENTRY_POINT_INFO(pGetShortStatic)
1885  QUICK_ENTRY_POINT_INFO(pGetCharStatic)
1886  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1887  QUICK_ENTRY_POINT_INFO(pGet32Static)
1888  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1889  QUICK_ENTRY_POINT_INFO(pGet64Static)
1890  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1891  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1892  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1893  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1894  QUICK_ENTRY_POINT_INFO(pAputObject)
1895  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1896  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1897  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1898  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1899  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1900  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1901  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1902  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1903  QUICK_ENTRY_POINT_INFO(pLockObject)
1904  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1905  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1906  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1907  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1908  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1909  QUICK_ENTRY_POINT_INFO(pFmod)
1910  QUICK_ENTRY_POINT_INFO(pL2d)
1911  QUICK_ENTRY_POINT_INFO(pFmodf)
1912  QUICK_ENTRY_POINT_INFO(pL2f)
1913  QUICK_ENTRY_POINT_INFO(pD2iz)
1914  QUICK_ENTRY_POINT_INFO(pF2iz)
1915  QUICK_ENTRY_POINT_INFO(pIdivmod)
1916  QUICK_ENTRY_POINT_INFO(pD2l)
1917  QUICK_ENTRY_POINT_INFO(pF2l)
1918  QUICK_ENTRY_POINT_INFO(pLdiv)
1919  QUICK_ENTRY_POINT_INFO(pLmod)
1920  QUICK_ENTRY_POINT_INFO(pLmul)
1921  QUICK_ENTRY_POINT_INFO(pShlLong)
1922  QUICK_ENTRY_POINT_INFO(pShrLong)
1923  QUICK_ENTRY_POINT_INFO(pUshrLong)
1924  QUICK_ENTRY_POINT_INFO(pIndexOf)
1925  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1926  QUICK_ENTRY_POINT_INFO(pMemcpy)
1927  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1928  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1929  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1930  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1931  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1932  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1933  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1934  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1935  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1936  QUICK_ENTRY_POINT_INFO(pDeliverException)
1937  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1938  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1939  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1940  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1941  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1942  QUICK_ENTRY_POINT_INFO(pA64Load)
1943  QUICK_ENTRY_POINT_INFO(pA64Store)
1944#undef QUICK_ENTRY_POINT_INFO
1945
1946  os << offset;
1947}
1948
1949void Thread::QuickDeliverException() {
1950  // Get exception from thread.
1951  ThrowLocation throw_location;
1952  mirror::Throwable* exception = GetException(&throw_location);
1953  CHECK(exception != nullptr);
1954  // Don't leave exception visible while we try to find the handler, which may cause class
1955  // resolution.
1956  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1957  ClearException();
1958  bool is_deoptimization = (exception == GetDeoptimizationException());
1959  QuickExceptionHandler exception_handler(this, is_deoptimization);
1960  if (is_deoptimization) {
1961    exception_handler.DeoptimizeStack();
1962  } else {
1963    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1964  }
1965  exception_handler.UpdateInstrumentationStack();
1966  exception_handler.DoLongJump();
1967  LOG(FATAL) << "UNREACHABLE";
1968}
1969
1970Context* Thread::GetLongJumpContext() {
1971  Context* result = tlsPtr_.long_jump_context;
1972  if (result == nullptr) {
1973    result = Context::Create();
1974  } else {
1975    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1976    result->Reset();
1977  }
1978  return result;
1979}
1980
1981// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1982//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1983struct CurrentMethodVisitor FINAL : public StackVisitor {
1984  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1985      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1986      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1987        abort_on_error_(abort_on_error) {}
1988  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1989    mirror::ArtMethod* m = GetMethod();
1990    if (m->IsRuntimeMethod()) {
1991      // Continue if this is a runtime method.
1992      return true;
1993    }
1994    if (context_ != nullptr) {
1995      this_object_ = GetThisObject();
1996    }
1997    method_ = m;
1998    dex_pc_ = GetDexPc(abort_on_error_);
1999    return false;
2000  }
2001  mirror::Object* this_object_;
2002  mirror::ArtMethod* method_;
2003  uint32_t dex_pc_;
2004  const bool abort_on_error_;
2005};
2006
2007mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2008  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2009  visitor.WalkStack(false);
2010  if (dex_pc != nullptr) {
2011    *dex_pc = visitor.dex_pc_;
2012  }
2013  return visitor.method_;
2014}
2015
2016ThrowLocation Thread::GetCurrentLocationForThrow() {
2017  Context* context = GetLongJumpContext();
2018  CurrentMethodVisitor visitor(this, context, true);
2019  visitor.WalkStack(false);
2020  ReleaseLongJumpContext(context);
2021  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2022}
2023
2024bool Thread::HoldsLock(mirror::Object* object) const {
2025  if (object == nullptr) {
2026    return false;
2027  }
2028  return object->GetLockOwnerThreadId() == GetThreadId();
2029}
2030
2031// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2032template <typename RootVisitor>
2033class ReferenceMapVisitor : public StackVisitor {
2034 public:
2035  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2036      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2037      : StackVisitor(thread, context), visitor_(visitor) {}
2038
2039  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2040    if (false) {
2041      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2042                << StringPrintf("@ PC:%04x", GetDexPc());
2043    }
2044    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2045    if (shadow_frame != nullptr) {
2046      VisitShadowFrame(shadow_frame);
2047    } else {
2048      VisitQuickFrame();
2049    }
2050    return true;
2051  }
2052
2053  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2054    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2055    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2056    mirror::ArtMethod* m = *method_addr;
2057    DCHECK(m != nullptr);
2058    size_t num_regs = shadow_frame->NumberOfVRegs();
2059    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2060      // handle scope for JNI or References for interpreter.
2061      for (size_t reg = 0; reg < num_regs; ++reg) {
2062        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2063        if (ref != nullptr) {
2064          mirror::Object* new_ref = ref;
2065          visitor_(&new_ref, reg, this);
2066          if (new_ref != ref) {
2067            shadow_frame->SetVRegReference(reg, new_ref);
2068          }
2069        }
2070      }
2071    } else {
2072      // Java method.
2073      // Portable path use DexGcMap and store in Method.native_gc_map_.
2074      const uint8_t* gc_map = m->GetNativeGcMap();
2075      CHECK(gc_map != nullptr) << PrettyMethod(m);
2076      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2077      uint32_t dex_pc = shadow_frame->GetDexPC();
2078      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2079      DCHECK(reg_bitmap != nullptr);
2080      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2081      for (size_t reg = 0; reg < num_regs; ++reg) {
2082        if (TestBitmap(reg, reg_bitmap)) {
2083          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2084          if (ref != nullptr) {
2085            mirror::Object* new_ref = ref;
2086            visitor_(&new_ref, reg, this);
2087            if (new_ref != ref) {
2088              shadow_frame->SetVRegReference(reg, new_ref);
2089            }
2090          }
2091        }
2092      }
2093    }
2094  }
2095
2096 private:
2097  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2098    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2099    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2100    mirror::ArtMethod* old_method = m;
2101    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2102    if (m != old_method) {
2103      cur_quick_frame->Assign(m);
2104    }
2105
2106    // Process register map (which native and runtime methods don't have)
2107    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2108      if (m->IsOptimized()) {
2109        Runtime* runtime = Runtime::Current();
2110        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2111        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2112        StackMap map = m->GetStackMap(native_pc_offset);
2113        MemoryRegion mask = map.GetStackMask();
2114        for (size_t i = 0; i < mask.size_in_bits(); ++i) {
2115          if (mask.LoadBit(i)) {
2116            StackReference<mirror::Object>* ref_addr =
2117                  reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame) + i;
2118            mirror::Object* ref = ref_addr->AsMirrorPtr();
2119            if (ref != nullptr) {
2120              mirror::Object* new_ref = ref;
2121              visitor_(&new_ref, -1, this);
2122              if (ref != new_ref) {
2123                ref_addr->Assign(new_ref);
2124              }
2125            }
2126          }
2127        }
2128      } else {
2129        const uint8_t* native_gc_map = m->GetNativeGcMap();
2130        CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2131        const DexFile::CodeItem* code_item = m->GetCodeItem();
2132        // Can't be nullptr or how would we compile its instructions?
2133        DCHECK(code_item != nullptr) << PrettyMethod(m);
2134        NativePcOffsetToReferenceMap map(native_gc_map);
2135        size_t num_regs = std::min(map.RegWidth() * 8,
2136                                   static_cast<size_t>(code_item->registers_size_));
2137        if (num_regs > 0) {
2138          Runtime* runtime = Runtime::Current();
2139          const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2140          uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2141          const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2142          DCHECK(reg_bitmap != nullptr);
2143          const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2144          const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2145          QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2146          // For all dex registers in the bitmap
2147          StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2148          DCHECK(cur_quick_frame != nullptr);
2149          for (size_t reg = 0; reg < num_regs; ++reg) {
2150            // Does this register hold a reference?
2151            if (TestBitmap(reg, reg_bitmap)) {
2152              uint32_t vmap_offset;
2153              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2154                int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2155                                                          kReferenceVReg);
2156                // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2157                mirror::Object** ref_addr =
2158                    reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2159                if (*ref_addr != nullptr) {
2160                  visitor_(ref_addr, reg, this);
2161                }
2162              } else {
2163                StackReference<mirror::Object>* ref_addr =
2164                    reinterpret_cast<StackReference<mirror::Object>*>(
2165                        GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2166                                    frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2167                mirror::Object* ref = ref_addr->AsMirrorPtr();
2168                if (ref != nullptr) {
2169                  mirror::Object* new_ref = ref;
2170                  visitor_(&new_ref, reg, this);
2171                  if (ref != new_ref) {
2172                    ref_addr->Assign(new_ref);
2173                  }
2174                }
2175              }
2176            }
2177          }
2178        }
2179      }
2180    }
2181  }
2182
2183  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2184    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2185  }
2186
2187  // Visitor for when we visit a root.
2188  const RootVisitor& visitor_;
2189};
2190
2191class RootCallbackVisitor {
2192 public:
2193  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2194     : callback_(callback), arg_(arg), tid_(tid) {}
2195
2196  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2197    callback_(obj, arg_, tid_, kRootJavaFrame);
2198  }
2199
2200 private:
2201  RootCallback* const callback_;
2202  void* const arg_;
2203  const uint32_t tid_;
2204};
2205
2206void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2207  uint32_t thread_id = GetThreadId();
2208  if (tlsPtr_.opeer != nullptr) {
2209    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2210  }
2211  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2212    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2213  }
2214  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2215  if (tlsPtr_.monitor_enter_object != nullptr) {
2216    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2217  }
2218  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2219  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2220  HandleScopeVisitRoots(visitor, arg, thread_id);
2221  if (tlsPtr_.debug_invoke_req != nullptr) {
2222    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2223  }
2224  if (tlsPtr_.single_step_control != nullptr) {
2225    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2226  }
2227  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2228    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2229    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2230    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2231        shadow_frame = shadow_frame->GetLink()) {
2232      mapper.VisitShadowFrame(shadow_frame);
2233    }
2234  }
2235  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2236    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2237    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2238    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2239        shadow_frame != nullptr;
2240        shadow_frame = shadow_frame->GetLink()) {
2241      mapper.VisitShadowFrame(shadow_frame);
2242    }
2243  }
2244  // Visit roots on this thread's stack
2245  Context* context = GetLongJumpContext();
2246  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2247  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2248  mapper.WalkStack();
2249  ReleaseLongJumpContext(context);
2250  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2251    if (frame.this_object_ != nullptr) {
2252      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2253    }
2254    DCHECK(frame.method_ != nullptr);
2255    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2256  }
2257}
2258
2259static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2260                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2261  VerifyObject(*root);
2262}
2263
2264void Thread::VerifyStackImpl() {
2265  std::unique_ptr<Context> context(Context::Create());
2266  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2267  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2268  mapper.WalkStack();
2269}
2270
2271// Set the stack end to that to be used during a stack overflow
2272void Thread::SetStackEndForStackOverflow() {
2273  // During stack overflow we allow use of the full stack.
2274  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2275    // However, we seem to have already extended to use the full stack.
2276    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2277               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2278    DumpStack(LOG(ERROR));
2279    LOG(FATAL) << "Recursive stack overflow.";
2280  }
2281
2282  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2283
2284  // Remove the stack overflow protection if is it set up.
2285  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2286  if (implicit_stack_check) {
2287    if (!UnprotectStack()) {
2288      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2289    }
2290  }
2291}
2292
2293void Thread::SetTlab(uint8_t* start, uint8_t* end) {
2294  DCHECK_LE(start, end);
2295  tlsPtr_.thread_local_start = start;
2296  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2297  tlsPtr_.thread_local_end = end;
2298  tlsPtr_.thread_local_objects = 0;
2299}
2300
2301bool Thread::HasTlab() const {
2302  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2303  if (has_tlab) {
2304    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2305  } else {
2306    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2307  }
2308  return has_tlab;
2309}
2310
2311std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2312  thread.ShortDump(os);
2313  return os;
2314}
2315
2316void Thread::ProtectStack() {
2317  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2318  VLOG(threads) << "Protecting stack at " << pregion;
2319  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2320    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2321        "Reason: "
2322        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2323  }
2324}
2325
2326bool Thread::UnprotectStack() {
2327  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2328  VLOG(threads) << "Unprotecting stack at " << pregion;
2329  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2330}
2331
2332
2333}  // namespace art
2334