thread.cc revision df13240f4b9325b34d09e20cdac4e9a0b12ead61
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "thread.h"
18
19#if !defined(__APPLE__)
20#include <sched.h>
21#endif
22
23#include <pthread.h>
24#include <signal.h>
25#include <sys/resource.h>
26#include <sys/time.h>
27
28#include <algorithm>
29#include <bitset>
30#include <cerrno>
31#include <iostream>
32#include <list>
33#include <sstream>
34
35#include "android-base/stringprintf.h"
36
37#include "arch/context-inl.h"
38#include "arch/context.h"
39#include "art_field-inl.h"
40#include "art_method-inl.h"
41#include "base/bit_utils.h"
42#include "base/memory_tool.h"
43#include "base/mutex.h"
44#include "base/systrace.h"
45#include "base/timing_logger.h"
46#include "base/to_str.h"
47#include "class_linker-inl.h"
48#include "debugger.h"
49#include "dex_file-inl.h"
50#include "dex_file_annotations.h"
51#include "dex_file_types.h"
52#include "entrypoints/entrypoint_utils.h"
53#include "entrypoints/quick/quick_alloc_entrypoints.h"
54#include "gc/accounting/card_table-inl.h"
55#include "gc/accounting/heap_bitmap-inl.h"
56#include "gc/allocator/rosalloc.h"
57#include "gc/heap.h"
58#include "gc/space/space-inl.h"
59#include "gc_root.h"
60#include "handle_scope-inl.h"
61#include "indirect_reference_table-inl.h"
62#include "interpreter/interpreter.h"
63#include "interpreter/shadow_frame.h"
64#include "java_frame_root_info.h"
65#include "java_vm_ext.h"
66#include "jni_internal.h"
67#include "mirror/class-inl.h"
68#include "mirror/class_loader.h"
69#include "mirror/object_array-inl.h"
70#include "mirror/stack_trace_element.h"
71#include "monitor.h"
72#include "native_stack_dump.h"
73#include "nativehelper/ScopedLocalRef.h"
74#include "nativehelper/ScopedUtfChars.h"
75#include "nth_caller_visitor.h"
76#include "oat_quick_method_header.h"
77#include "obj_ptr-inl.h"
78#include "object_lock.h"
79#include "quick/quick_method_frame_info.h"
80#include "quick_exception_handler.h"
81#include "read_barrier-inl.h"
82#include "reflection.h"
83#include "runtime.h"
84#include "runtime_callbacks.h"
85#include "scoped_thread_state_change-inl.h"
86#include "stack.h"
87#include "stack_map.h"
88#include "thread-inl.h"
89#include "thread_list.h"
90#include "utils.h"
91#include "verifier/method_verifier.h"
92#include "verify_object.h"
93#include "well_known_classes.h"
94
95#if ART_USE_FUTEXES
96#include "linux/futex.h"
97#include "sys/syscall.h"
98#ifndef SYS_futex
99#define SYS_futex __NR_futex
100#endif
101#endif  // ART_USE_FUTEXES
102
103namespace art {
104
105using android::base::StringAppendV;
106using android::base::StringPrintf;
107
108extern "C" NO_RETURN void artDeoptimize(Thread* self);
109
110bool Thread::is_started_ = false;
111pthread_key_t Thread::pthread_key_self_;
112ConditionVariable* Thread::resume_cond_ = nullptr;
113const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
114bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
115Thread* Thread::jit_sensitive_thread_ = nullptr;
116
117static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
118
119// For implicit overflow checks we reserve an extra piece of memory at the bottom
120// of the stack (lowest memory).  The higher portion of the memory
121// is protected against reads and the lower is available for use while
122// throwing the StackOverflow exception.
123constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
124
125static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
126
127void Thread::InitCardTable() {
128  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
129}
130
131static void UnimplementedEntryPoint() {
132  UNIMPLEMENTED(FATAL);
133}
134
135void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
136void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
137
138void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
139  CHECK(kUseReadBarrier);
140  tls32_.is_gc_marking = is_marking;
141  UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
142  ResetQuickAllocEntryPointsForThread(is_marking);
143}
144
145void Thread::InitTlsEntryPoints() {
146  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
147  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
148  uintptr_t* end = reinterpret_cast<uintptr_t*>(
149      reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
150  for (uintptr_t* it = begin; it != end; ++it) {
151    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
152  }
153  InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
154}
155
156void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
157  if (kUseReadBarrier && kRuntimeISA != kX86_64) {
158    // Allocation entrypoint switching is currently only implemented for X86_64.
159    is_marking = true;
160  }
161  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
162}
163
164class DeoptimizationContextRecord {
165 public:
166  DeoptimizationContextRecord(const JValue& ret_val,
167                              bool is_reference,
168                              bool from_code,
169                              ObjPtr<mirror::Throwable> pending_exception,
170                              DeoptimizationMethodType method_type,
171                              DeoptimizationContextRecord* link)
172      : ret_val_(ret_val),
173        is_reference_(is_reference),
174        from_code_(from_code),
175        pending_exception_(pending_exception.Ptr()),
176        deopt_method_type_(method_type),
177        link_(link) {}
178
179  JValue GetReturnValue() const { return ret_val_; }
180  bool IsReference() const { return is_reference_; }
181  bool GetFromCode() const { return from_code_; }
182  ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
183  DeoptimizationContextRecord* GetLink() const { return link_; }
184  mirror::Object** GetReturnValueAsGCRoot() {
185    DCHECK(is_reference_);
186    return ret_val_.GetGCRoot();
187  }
188  mirror::Object** GetPendingExceptionAsGCRoot() {
189    return reinterpret_cast<mirror::Object**>(&pending_exception_);
190  }
191  DeoptimizationMethodType GetDeoptimizationMethodType() const {
192    return deopt_method_type_;
193  }
194
195 private:
196  // The value returned by the method at the top of the stack before deoptimization.
197  JValue ret_val_;
198
199  // Indicates whether the returned value is a reference. If so, the GC will visit it.
200  const bool is_reference_;
201
202  // Whether the context was created from an explicit deoptimization in the code.
203  const bool from_code_;
204
205  // The exception that was pending before deoptimization (or null if there was no pending
206  // exception).
207  mirror::Throwable* pending_exception_;
208
209  // Whether the context was created for an (idempotent) runtime method.
210  const DeoptimizationMethodType deopt_method_type_;
211
212  // A link to the previous DeoptimizationContextRecord.
213  DeoptimizationContextRecord* const link_;
214
215  DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
216};
217
218class StackedShadowFrameRecord {
219 public:
220  StackedShadowFrameRecord(ShadowFrame* shadow_frame,
221                           StackedShadowFrameType type,
222                           StackedShadowFrameRecord* link)
223      : shadow_frame_(shadow_frame),
224        type_(type),
225        link_(link) {}
226
227  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
228  StackedShadowFrameType GetType() const { return type_; }
229  StackedShadowFrameRecord* GetLink() const { return link_; }
230
231 private:
232  ShadowFrame* const shadow_frame_;
233  const StackedShadowFrameType type_;
234  StackedShadowFrameRecord* const link_;
235
236  DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
237};
238
239void Thread::PushDeoptimizationContext(const JValue& return_value,
240                                       bool is_reference,
241                                       ObjPtr<mirror::Throwable> exception,
242                                       bool from_code,
243                                       DeoptimizationMethodType method_type) {
244  DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
245      return_value,
246      is_reference,
247      from_code,
248      exception,
249      method_type,
250      tlsPtr_.deoptimization_context_stack);
251  tlsPtr_.deoptimization_context_stack = record;
252}
253
254void Thread::PopDeoptimizationContext(JValue* result,
255                                      ObjPtr<mirror::Throwable>* exception,
256                                      bool* from_code,
257                                      DeoptimizationMethodType* method_type) {
258  AssertHasDeoptimizationContext();
259  DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
260  tlsPtr_.deoptimization_context_stack = record->GetLink();
261  result->SetJ(record->GetReturnValue().GetJ());
262  *exception = record->GetPendingException();
263  *from_code = record->GetFromCode();
264  *method_type = record->GetDeoptimizationMethodType();
265  delete record;
266}
267
268void Thread::AssertHasDeoptimizationContext() {
269  CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
270      << "No deoptimization context for thread " << *this;
271}
272
273void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
274  StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
275      sf, type, tlsPtr_.stacked_shadow_frame_record);
276  tlsPtr_.stacked_shadow_frame_record = record;
277}
278
279ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
280  StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
281  if (must_be_present) {
282    DCHECK(record != nullptr);
283  } else {
284    if (record == nullptr || record->GetType() != type) {
285      return nullptr;
286    }
287  }
288  tlsPtr_.stacked_shadow_frame_record = record->GetLink();
289  ShadowFrame* shadow_frame = record->GetShadowFrame();
290  delete record;
291  return shadow_frame;
292}
293
294class FrameIdToShadowFrame {
295 public:
296  static FrameIdToShadowFrame* Create(size_t frame_id,
297                                      ShadowFrame* shadow_frame,
298                                      FrameIdToShadowFrame* next,
299                                      size_t num_vregs) {
300    // Append a bool array at the end to keep track of what vregs are updated by the debugger.
301    uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
302    return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
303  }
304
305  static void Delete(FrameIdToShadowFrame* f) {
306    uint8_t* memory = reinterpret_cast<uint8_t*>(f);
307    delete[] memory;
308  }
309
310  size_t GetFrameId() const { return frame_id_; }
311  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
312  FrameIdToShadowFrame* GetNext() const { return next_; }
313  void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
314  bool* GetUpdatedVRegFlags() {
315    return updated_vreg_flags_;
316  }
317
318 private:
319  FrameIdToShadowFrame(size_t frame_id,
320                       ShadowFrame* shadow_frame,
321                       FrameIdToShadowFrame* next)
322      : frame_id_(frame_id),
323        shadow_frame_(shadow_frame),
324        next_(next) {}
325
326  const size_t frame_id_;
327  ShadowFrame* const shadow_frame_;
328  FrameIdToShadowFrame* next_;
329  bool updated_vreg_flags_[0];
330
331  DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
332};
333
334static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
335                                                      size_t frame_id) {
336  FrameIdToShadowFrame* found = nullptr;
337  for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
338    if (record->GetFrameId() == frame_id) {
339      if (kIsDebugBuild) {
340        // Sanity check we have at most one record for this frame.
341        CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
342        found = record;
343      } else {
344        return record;
345      }
346    }
347  }
348  return found;
349}
350
351ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
352  FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
353      tlsPtr_.frame_id_to_shadow_frame, frame_id);
354  if (record != nullptr) {
355    return record->GetShadowFrame();
356  }
357  return nullptr;
358}
359
360// Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
361bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
362  FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
363      tlsPtr_.frame_id_to_shadow_frame, frame_id);
364  CHECK(record != nullptr);
365  return record->GetUpdatedVRegFlags();
366}
367
368ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
369                                                     uint32_t num_vregs,
370                                                     ArtMethod* method,
371                                                     uint32_t dex_pc) {
372  ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
373  if (shadow_frame != nullptr) {
374    return shadow_frame;
375  }
376  VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
377  shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
378  FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
379                                                              shadow_frame,
380                                                              tlsPtr_.frame_id_to_shadow_frame,
381                                                              num_vregs);
382  for (uint32_t i = 0; i < num_vregs; i++) {
383    // Do this to clear all references for root visitors.
384    shadow_frame->SetVRegReference(i, nullptr);
385    // This flag will be changed to true if the debugger modifies the value.
386    record->GetUpdatedVRegFlags()[i] = false;
387  }
388  tlsPtr_.frame_id_to_shadow_frame = record;
389  return shadow_frame;
390}
391
392void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
393  FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
394  if (head->GetFrameId() == frame_id) {
395    tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
396    FrameIdToShadowFrame::Delete(head);
397    return;
398  }
399  FrameIdToShadowFrame* prev = head;
400  for (FrameIdToShadowFrame* record = head->GetNext();
401       record != nullptr;
402       prev = record, record = record->GetNext()) {
403    if (record->GetFrameId() == frame_id) {
404      prev->SetNext(record->GetNext());
405      FrameIdToShadowFrame::Delete(record);
406      return;
407    }
408  }
409  LOG(FATAL) << "No shadow frame for frame " << frame_id;
410  UNREACHABLE();
411}
412
413void Thread::InitTid() {
414  tls32_.tid = ::art::GetTid();
415}
416
417void Thread::InitAfterFork() {
418  // One thread (us) survived the fork, but we have a new tid so we need to
419  // update the value stashed in this Thread*.
420  InitTid();
421}
422
423void* Thread::CreateCallback(void* arg) {
424  Thread* self = reinterpret_cast<Thread*>(arg);
425  Runtime* runtime = Runtime::Current();
426  if (runtime == nullptr) {
427    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
428    return nullptr;
429  }
430  {
431    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
432    //       after self->Init().
433    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
434    // Check that if we got here we cannot be shutting down (as shutdown should never have started
435    // while threads are being born).
436    CHECK(!runtime->IsShuttingDownLocked());
437    // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
438    //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
439    //       the runtime in such a case. In case this ever changes, we need to make sure here to
440    //       delete the tmp_jni_env, as we own it at this point.
441    CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
442    self->tlsPtr_.tmp_jni_env = nullptr;
443    Runtime::Current()->EndThreadBirth();
444  }
445  {
446    ScopedObjectAccess soa(self);
447    self->InitStringEntryPoints();
448
449    // Copy peer into self, deleting global reference when done.
450    CHECK(self->tlsPtr_.jpeer != nullptr);
451    self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
452    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
453    self->tlsPtr_.jpeer = nullptr;
454    self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
455
456    ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
457    self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
458
459    runtime->GetRuntimeCallbacks()->ThreadStart(self);
460
461    // Invoke the 'run' method of our java.lang.Thread.
462    ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
463    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
464    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
465    InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
466  }
467  // Detach and delete self.
468  Runtime::Current()->GetThreadList()->Unregister(self);
469
470  return nullptr;
471}
472
473Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
474                                  ObjPtr<mirror::Object> thread_peer) {
475  ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
476  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
477  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
478  // to stop it from going away.
479  if (kIsDebugBuild) {
480    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
481    if (result != nullptr && !result->IsSuspended()) {
482      Locks::thread_list_lock_->AssertHeld(soa.Self());
483    }
484  }
485  return result;
486}
487
488Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
489                                  jobject java_thread) {
490  return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
491}
492
493static size_t FixStackSize(size_t stack_size) {
494  // A stack size of zero means "use the default".
495  if (stack_size == 0) {
496    stack_size = Runtime::Current()->GetDefaultStackSize();
497  }
498
499  // Dalvik used the bionic pthread default stack size for native threads,
500  // so include that here to support apps that expect large native stacks.
501  stack_size += 1 * MB;
502
503  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
504  if (stack_size < PTHREAD_STACK_MIN) {
505    stack_size = PTHREAD_STACK_MIN;
506  }
507
508  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
509    // It's likely that callers are trying to ensure they have at least a certain amount of
510    // stack space, so we should add our reserved space on top of what they requested, rather
511    // than implicitly take it away from them.
512    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
513  } else {
514    // If we are going to use implicit stack checks, allocate space for the protected
515    // region at the bottom of the stack.
516    stack_size += Thread::kStackOverflowImplicitCheckSize +
517        GetStackOverflowReservedBytes(kRuntimeISA);
518  }
519
520  // Some systems require the stack size to be a multiple of the system page size, so round up.
521  stack_size = RoundUp(stack_size, kPageSize);
522
523  return stack_size;
524}
525
526// Return the nearest page-aligned address below the current stack top.
527NO_INLINE
528static uint8_t* FindStackTop() {
529  return reinterpret_cast<uint8_t*>(
530      AlignDown(__builtin_frame_address(0), kPageSize));
531}
532
533// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
534// overflow is detected.  It is located right below the stack_begin_.
535ATTRIBUTE_NO_SANITIZE_ADDRESS
536void Thread::InstallImplicitProtection() {
537  uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
538  // Page containing current top of stack.
539  uint8_t* stack_top = FindStackTop();
540
541  // Try to directly protect the stack.
542  VLOG(threads) << "installing stack protected region at " << std::hex <<
543        static_cast<void*>(pregion) << " to " <<
544        static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
545  if (ProtectStack(/* fatal_on_error */ false)) {
546    // Tell the kernel that we won't be needing these pages any more.
547    // NB. madvise will probably write zeroes into the memory (on linux it does).
548    uint32_t unwanted_size = stack_top - pregion - kPageSize;
549    madvise(pregion, unwanted_size, MADV_DONTNEED);
550    return;
551  }
552
553  // There is a little complexity here that deserves a special mention.  On some
554  // architectures, the stack is created using a VM_GROWSDOWN flag
555  // to prevent memory being allocated when it's not needed.  This flag makes the
556  // kernel only allocate memory for the stack by growing down in memory.  Because we
557  // want to put an mprotected region far away from that at the stack top, we need
558  // to make sure the pages for the stack are mapped in before we call mprotect.
559  //
560  // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
561  // with a non-mapped stack (usually only the main thread).
562  //
563  // We map in the stack by reading every page from the stack bottom (highest address)
564  // to the stack top. (We then madvise this away.) This must be done by reading from the
565  // current stack pointer downwards.
566  //
567  // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
568  // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
569  // thus have to move the stack pointer. We do this portably by using a recursive function with a
570  // large stack frame size.
571
572  // (Defensively) first remove the protection on the protected region as we'll want to read
573  // and write it. Ignore errors.
574  UnprotectStack();
575
576  VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
577      static_cast<void*>(pregion);
578
579  struct RecurseDownStack {
580    // This function has an intentionally large stack size.
581#pragma GCC diagnostic push
582#pragma GCC diagnostic ignored "-Wframe-larger-than="
583    NO_INLINE
584    static void Touch(uintptr_t target) {
585      volatile size_t zero = 0;
586      // Use a large local volatile array to ensure a large frame size. Do not use anything close
587      // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
588      // there is no pragma support for this.
589      // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
590      constexpr size_t kAsanMultiplier =
591#ifdef ADDRESS_SANITIZER
592          2u;
593#else
594          1u;
595#endif
596      volatile char space[kPageSize - (kAsanMultiplier * 256)];
597      char sink ATTRIBUTE_UNUSED = space[zero];
598      if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
599        Touch(target);
600      }
601      zero *= 2;  // Try to avoid tail recursion.
602    }
603#pragma GCC diagnostic pop
604  };
605  RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
606
607  VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
608      static_cast<void*>(pregion) << " to " <<
609      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
610
611  // Protect the bottom of the stack to prevent read/write to it.
612  ProtectStack(/* fatal_on_error */ true);
613
614  // Tell the kernel that we won't be needing these pages any more.
615  // NB. madvise will probably write zeroes into the memory (on linux it does).
616  uint32_t unwanted_size = stack_top - pregion - kPageSize;
617  madvise(pregion, unwanted_size, MADV_DONTNEED);
618}
619
620void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
621  CHECK(java_peer != nullptr);
622  Thread* self = static_cast<JNIEnvExt*>(env)->self;
623
624  if (VLOG_IS_ON(threads)) {
625    ScopedObjectAccess soa(env);
626
627    ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
628    ObjPtr<mirror::String> java_name =
629        f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
630    std::string thread_name;
631    if (java_name != nullptr) {
632      thread_name = java_name->ToModifiedUtf8();
633    } else {
634      thread_name = "(Unnamed)";
635    }
636
637    VLOG(threads) << "Creating native thread for " << thread_name;
638    self->Dump(LOG_STREAM(INFO));
639  }
640
641  Runtime* runtime = Runtime::Current();
642
643  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
644  bool thread_start_during_shutdown = false;
645  {
646    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
647    if (runtime->IsShuttingDownLocked()) {
648      thread_start_during_shutdown = true;
649    } else {
650      runtime->StartThreadBirth();
651    }
652  }
653  if (thread_start_during_shutdown) {
654    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
655    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
656    return;
657  }
658
659  Thread* child_thread = new Thread(is_daemon);
660  // Use global JNI ref to hold peer live while child thread starts.
661  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
662  stack_size = FixStackSize(stack_size);
663
664  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
665  // assign it.
666  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
667                    reinterpret_cast<jlong>(child_thread));
668
669  // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
670  // do not have a good way to report this on the child's side.
671  std::string error_msg;
672  std::unique_ptr<JNIEnvExt> child_jni_env_ext(
673      JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
674
675  int pthread_create_result = 0;
676  if (child_jni_env_ext.get() != nullptr) {
677    pthread_t new_pthread;
678    pthread_attr_t attr;
679    child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
680    CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
681    CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
682                       "PTHREAD_CREATE_DETACHED");
683    CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
684    pthread_create_result = pthread_create(&new_pthread,
685                                           &attr,
686                                           Thread::CreateCallback,
687                                           child_thread);
688    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
689
690    if (pthread_create_result == 0) {
691      // pthread_create started the new thread. The child is now responsible for managing the
692      // JNIEnvExt we created.
693      // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
694      //       between the threads.
695      child_jni_env_ext.release();
696      return;
697    }
698  }
699
700  // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
701  {
702    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
703    runtime->EndThreadBirth();
704  }
705  // Manually delete the global reference since Thread::Init will not have been run.
706  env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
707  child_thread->tlsPtr_.jpeer = nullptr;
708  delete child_thread;
709  child_thread = nullptr;
710  // TODO: remove from thread group?
711  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
712  {
713    std::string msg(child_jni_env_ext.get() == nullptr ?
714        StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
715        StringPrintf("pthread_create (%s stack) failed: %s",
716                                 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
717    ScopedObjectAccess soa(env);
718    soa.Self()->ThrowOutOfMemoryError(msg.c_str());
719  }
720}
721
722bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
723  // This function does all the initialization that must be run by the native thread it applies to.
724  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
725  // we can handshake with the corresponding native thread when it's ready.) Check this native
726  // thread hasn't been through here already...
727  CHECK(Thread::Current() == nullptr);
728
729  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
730  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
731  tlsPtr_.pthread_self = pthread_self();
732  CHECK(is_started_);
733
734  SetUpAlternateSignalStack();
735  if (!InitStackHwm()) {
736    return false;
737  }
738  InitCpu();
739  InitTlsEntryPoints();
740  RemoveSuspendTrigger();
741  InitCardTable();
742  InitTid();
743  interpreter::InitInterpreterTls(this);
744
745#ifdef ART_TARGET_ANDROID
746  __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
747#else
748  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
749#endif
750  DCHECK_EQ(Thread::Current(), this);
751
752  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
753
754  if (jni_env_ext != nullptr) {
755    DCHECK_EQ(jni_env_ext->vm, java_vm);
756    DCHECK_EQ(jni_env_ext->self, this);
757    tlsPtr_.jni_env = jni_env_ext;
758  } else {
759    std::string error_msg;
760    tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
761    if (tlsPtr_.jni_env == nullptr) {
762      LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
763      return false;
764    }
765  }
766
767  thread_list->Register(this);
768  return true;
769}
770
771template <typename PeerAction>
772Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
773  Runtime* runtime = Runtime::Current();
774  if (runtime == nullptr) {
775    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
776    return nullptr;
777  }
778  Thread* self;
779  {
780    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
781    if (runtime->IsShuttingDownLocked()) {
782      LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
783      return nullptr;
784    } else {
785      Runtime::Current()->StartThreadBirth();
786      self = new Thread(as_daemon);
787      bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
788      Runtime::Current()->EndThreadBirth();
789      if (!init_success) {
790        delete self;
791        return nullptr;
792      }
793    }
794  }
795
796  self->InitStringEntryPoints();
797
798  CHECK_NE(self->GetState(), kRunnable);
799  self->SetState(kNative);
800
801  // Run the action that is acting on the peer.
802  if (!peer_action(self)) {
803    runtime->GetThreadList()->Unregister(self);
804    // Unregister deletes self, no need to do this here.
805    return nullptr;
806  }
807
808  if (VLOG_IS_ON(threads)) {
809    if (thread_name != nullptr) {
810      VLOG(threads) << "Attaching thread " << thread_name;
811    } else {
812      VLOG(threads) << "Attaching unnamed thread.";
813    }
814    ScopedObjectAccess soa(self);
815    self->Dump(LOG_STREAM(INFO));
816  }
817
818  {
819    ScopedObjectAccess soa(self);
820    runtime->GetRuntimeCallbacks()->ThreadStart(self);
821  }
822
823  return self;
824}
825
826Thread* Thread::Attach(const char* thread_name,
827                       bool as_daemon,
828                       jobject thread_group,
829                       bool create_peer) {
830  auto create_peer_action = [&](Thread* self) {
831    // If we're the main thread, ClassLinker won't be created until after we're attached,
832    // so that thread needs a two-stage attach. Regular threads don't need this hack.
833    // In the compiler, all threads need this hack, because no-one's going to be getting
834    // a native peer!
835    if (create_peer) {
836      self->CreatePeer(thread_name, as_daemon, thread_group);
837      if (self->IsExceptionPending()) {
838        // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
839        {
840          ScopedObjectAccess soa(self);
841          LOG(ERROR) << "Exception creating thread peer:";
842          LOG(ERROR) << self->GetException()->Dump();
843          self->ClearException();
844        }
845        return false;
846      }
847    } else {
848      // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
849      if (thread_name != nullptr) {
850        self->tlsPtr_.name->assign(thread_name);
851        ::art::SetThreadName(thread_name);
852      } else if (self->GetJniEnv()->check_jni) {
853        LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
854      }
855    }
856    return true;
857  };
858  return Attach(thread_name, as_daemon, create_peer_action);
859}
860
861Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
862  auto set_peer_action = [&](Thread* self) {
863    // Install the given peer.
864    {
865      DCHECK(self == Thread::Current());
866      ScopedObjectAccess soa(self);
867      self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
868    }
869    self->GetJniEnv()->SetLongField(thread_peer,
870                                    WellKnownClasses::java_lang_Thread_nativePeer,
871                                    reinterpret_cast<jlong>(self));
872    return true;
873  };
874  return Attach(thread_name, as_daemon, set_peer_action);
875}
876
877void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
878  Runtime* runtime = Runtime::Current();
879  CHECK(runtime->IsStarted());
880  JNIEnv* env = tlsPtr_.jni_env;
881
882  if (thread_group == nullptr) {
883    thread_group = runtime->GetMainThreadGroup();
884  }
885  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
886  // Add missing null check in case of OOM b/18297817
887  if (name != nullptr && thread_name.get() == nullptr) {
888    CHECK(IsExceptionPending());
889    return;
890  }
891  jint thread_priority = GetNativePriority();
892  jboolean thread_is_daemon = as_daemon;
893
894  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
895  if (peer.get() == nullptr) {
896    CHECK(IsExceptionPending());
897    return;
898  }
899  {
900    ScopedObjectAccess soa(this);
901    tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
902  }
903  env->CallNonvirtualVoidMethod(peer.get(),
904                                WellKnownClasses::java_lang_Thread,
905                                WellKnownClasses::java_lang_Thread_init,
906                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
907  if (IsExceptionPending()) {
908    return;
909  }
910
911  Thread* self = this;
912  DCHECK_EQ(self, Thread::Current());
913  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
914                    reinterpret_cast<jlong>(self));
915
916  ScopedObjectAccess soa(self);
917  StackHandleScope<1> hs(self);
918  MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
919  if (peer_thread_name == nullptr) {
920    // The Thread constructor should have set the Thread.name to a
921    // non-null value. However, because we can run without code
922    // available (in the compiler, in tests), we manually assign the
923    // fields the constructor should have set.
924    if (runtime->IsActiveTransaction()) {
925      InitPeer<true>(soa,
926                     tlsPtr_.opeer,
927                     thread_is_daemon,
928                     thread_group,
929                     thread_name.get(),
930                     thread_priority);
931    } else {
932      InitPeer<false>(soa,
933                      tlsPtr_.opeer,
934                      thread_is_daemon,
935                      thread_group,
936                      thread_name.get(),
937                      thread_priority);
938    }
939    peer_thread_name.Assign(GetThreadName());
940  }
941  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
942  if (peer_thread_name != nullptr) {
943    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
944  }
945}
946
947jobject Thread::CreateCompileTimePeer(JNIEnv* env,
948                                      const char* name,
949                                      bool as_daemon,
950                                      jobject thread_group) {
951  Runtime* runtime = Runtime::Current();
952  CHECK(!runtime->IsStarted());
953
954  if (thread_group == nullptr) {
955    thread_group = runtime->GetMainThreadGroup();
956  }
957  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
958  // Add missing null check in case of OOM b/18297817
959  if (name != nullptr && thread_name.get() == nullptr) {
960    CHECK(Thread::Current()->IsExceptionPending());
961    return nullptr;
962  }
963  jint thread_priority = GetNativePriority();
964  jboolean thread_is_daemon = as_daemon;
965
966  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
967  if (peer.get() == nullptr) {
968    CHECK(Thread::Current()->IsExceptionPending());
969    return nullptr;
970  }
971
972  // We cannot call Thread.init, as it will recursively ask for currentThread.
973
974  // The Thread constructor should have set the Thread.name to a
975  // non-null value. However, because we can run without code
976  // available (in the compiler, in tests), we manually assign the
977  // fields the constructor should have set.
978  ScopedObjectAccessUnchecked soa(Thread::Current());
979  if (runtime->IsActiveTransaction()) {
980    InitPeer<true>(soa,
981                   soa.Decode<mirror::Object>(peer.get()),
982                   thread_is_daemon,
983                   thread_group,
984                   thread_name.get(),
985                   thread_priority);
986  } else {
987    InitPeer<false>(soa,
988                    soa.Decode<mirror::Object>(peer.get()),
989                    thread_is_daemon,
990                    thread_group,
991                    thread_name.get(),
992                    thread_priority);
993  }
994
995  return peer.release();
996}
997
998template<bool kTransactionActive>
999void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1000                      ObjPtr<mirror::Object> peer,
1001                      jboolean thread_is_daemon,
1002                      jobject thread_group,
1003                      jobject thread_name,
1004                      jint thread_priority) {
1005  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1006      SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1007  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1008      SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1009  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1010      SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1011  jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1012      SetInt<kTransactionActive>(peer, thread_priority);
1013}
1014
1015void Thread::SetThreadName(const char* name) {
1016  tlsPtr_.name->assign(name);
1017  ::art::SetThreadName(name);
1018  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1019}
1020
1021static void GetThreadStack(pthread_t thread,
1022                           void** stack_base,
1023                           size_t* stack_size,
1024                           size_t* guard_size) {
1025#if defined(__APPLE__)
1026  *stack_size = pthread_get_stacksize_np(thread);
1027  void* stack_addr = pthread_get_stackaddr_np(thread);
1028
1029  // Check whether stack_addr is the base or end of the stack.
1030  // (On Mac OS 10.7, it's the end.)
1031  int stack_variable;
1032  if (stack_addr > &stack_variable) {
1033    *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1034  } else {
1035    *stack_base = stack_addr;
1036  }
1037
1038  // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1039  pthread_attr_t attributes;
1040  CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1041  CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1042  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1043#else
1044  pthread_attr_t attributes;
1045  CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1046  CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1047  CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1048  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1049
1050#if defined(__GLIBC__)
1051  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1052  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1053  // will be broken because we'll die long before we get close to 2GB.
1054  bool is_main_thread = (::art::GetTid() == getpid());
1055  if (is_main_thread) {
1056    rlimit stack_limit;
1057    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1058      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1059    }
1060    if (stack_limit.rlim_cur == RLIM_INFINITY) {
1061      size_t old_stack_size = *stack_size;
1062
1063      // Use the kernel default limit as our size, and adjust the base to match.
1064      *stack_size = 8 * MB;
1065      *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1066
1067      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1068                    << " to " << PrettySize(*stack_size)
1069                    << " with base " << *stack_base;
1070    }
1071  }
1072#endif
1073
1074#endif
1075}
1076
1077bool Thread::InitStackHwm() {
1078  void* read_stack_base;
1079  size_t read_stack_size;
1080  size_t read_guard_size;
1081  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1082
1083  tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1084  tlsPtr_.stack_size = read_stack_size;
1085
1086  // The minimum stack size we can cope with is the overflow reserved bytes (typically
1087  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1088  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1089  // between 8K and 12K.
1090  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1091    + 4 * KB;
1092  if (read_stack_size <= min_stack) {
1093    // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1094    LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1095                               __LINE__,
1096                               ::android::base::ERROR,
1097                               "Attempt to attach a thread with a too-small stack");
1098    return false;
1099  }
1100
1101  // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1102  VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1103                                read_stack_base,
1104                                PrettySize(read_stack_size).c_str(),
1105                                PrettySize(read_guard_size).c_str());
1106
1107  // Set stack_end_ to the bottom of the stack saving space of stack overflows
1108
1109  Runtime* runtime = Runtime::Current();
1110  bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1111
1112  // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1113  // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1114  // stack_begin to 0.
1115  const bool valgrind_on_arm =
1116      (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
1117      kMemoryToolIsValgrind &&
1118      RUNNING_ON_MEMORY_TOOL != 0;
1119  if (valgrind_on_arm) {
1120    tlsPtr_.stack_begin = nullptr;
1121  }
1122
1123  ResetDefaultStackEnd();
1124
1125  // Install the protected region if we are doing implicit overflow checks.
1126  if (implicit_stack_check && !valgrind_on_arm) {
1127    // The thread might have protected region at the bottom.  We need
1128    // to install our own region so we need to move the limits
1129    // of the stack to make room for it.
1130
1131    tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1132    tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1133    tlsPtr_.stack_size -= read_guard_size;
1134
1135    InstallImplicitProtection();
1136  }
1137
1138  // Sanity check.
1139  CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1140
1141  return true;
1142}
1143
1144void Thread::ShortDump(std::ostream& os) const {
1145  os << "Thread[";
1146  if (GetThreadId() != 0) {
1147    // If we're in kStarting, we won't have a thin lock id or tid yet.
1148    os << GetThreadId()
1149       << ",tid=" << GetTid() << ',';
1150  }
1151  os << GetState()
1152     << ",Thread*=" << this
1153     << ",peer=" << tlsPtr_.opeer
1154     << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1155     << "]";
1156}
1157
1158void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1159                  bool force_dump_stack) const {
1160  DumpState(os);
1161  DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1162}
1163
1164mirror::String* Thread::GetThreadName() const {
1165  ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1166  if (tlsPtr_.opeer == nullptr) {
1167    return nullptr;
1168  }
1169  ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1170  return name == nullptr ? nullptr : name->AsString();
1171}
1172
1173void Thread::GetThreadName(std::string& name) const {
1174  name.assign(*tlsPtr_.name);
1175}
1176
1177uint64_t Thread::GetCpuMicroTime() const {
1178#if defined(__linux__)
1179  clockid_t cpu_clock_id;
1180  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1181  timespec now;
1182  clock_gettime(cpu_clock_id, &now);
1183  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1184#else  // __APPLE__
1185  UNIMPLEMENTED(WARNING);
1186  return -1;
1187#endif
1188}
1189
1190// Attempt to rectify locks so that we dump thread list with required locks before exiting.
1191static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1192  LOG(ERROR) << *thread << " suspend count already zero.";
1193  Locks::thread_suspend_count_lock_->Unlock(self);
1194  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1195    Locks::mutator_lock_->SharedTryLock(self);
1196    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1197      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1198    }
1199  }
1200  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1201    Locks::thread_list_lock_->TryLock(self);
1202    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1203      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1204    }
1205  }
1206  std::ostringstream ss;
1207  Runtime::Current()->GetThreadList()->Dump(ss);
1208  LOG(FATAL) << ss.str();
1209}
1210
1211bool Thread::ModifySuspendCountInternal(Thread* self,
1212                                        int delta,
1213                                        AtomicInteger* suspend_barrier,
1214                                        SuspendReason reason) {
1215  if (kIsDebugBuild) {
1216    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1217          << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1218    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1219    Locks::thread_suspend_count_lock_->AssertHeld(self);
1220    if (this != self && !IsSuspended()) {
1221      Locks::thread_list_lock_->AssertHeld(self);
1222    }
1223  }
1224  // User code suspensions need to be checked more closely since they originate from code outside of
1225  // the runtime's control.
1226  if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1227    Locks::user_code_suspension_lock_->AssertHeld(self);
1228    if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1229      LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1230      return false;
1231    }
1232  }
1233  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1234    UnsafeLogFatalForSuspendCount(self, this);
1235    return false;
1236  }
1237
1238  if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1239    // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1240    // deadlock. b/31683379.
1241    return false;
1242  }
1243
1244  uint16_t flags = kSuspendRequest;
1245  if (delta > 0 && suspend_barrier != nullptr) {
1246    uint32_t available_barrier = kMaxSuspendBarriers;
1247    for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1248      if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1249        available_barrier = i;
1250        break;
1251      }
1252    }
1253    if (available_barrier == kMaxSuspendBarriers) {
1254      // No barrier spaces available, we can't add another.
1255      return false;
1256    }
1257    tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1258    flags |= kActiveSuspendBarrier;
1259  }
1260
1261  tls32_.suspend_count += delta;
1262  switch (reason) {
1263    case SuspendReason::kForDebugger:
1264      tls32_.debug_suspend_count += delta;
1265      break;
1266    case SuspendReason::kForUserCode:
1267      tls32_.user_code_suspend_count += delta;
1268      break;
1269    case SuspendReason::kInternal:
1270      break;
1271  }
1272
1273  if (tls32_.suspend_count == 0) {
1274    AtomicClearFlag(kSuspendRequest);
1275  } else {
1276    // Two bits might be set simultaneously.
1277    tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1278    TriggerSuspend();
1279  }
1280  return true;
1281}
1282
1283bool Thread::PassActiveSuspendBarriers(Thread* self) {
1284  // Grab the suspend_count lock and copy the current set of
1285  // barriers. Then clear the list and the flag. The ModifySuspendCount
1286  // function requires the lock so we prevent a race between setting
1287  // the kActiveSuspendBarrier flag and clearing it.
1288  AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1289  {
1290    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1291    if (!ReadFlag(kActiveSuspendBarrier)) {
1292      // quick exit test: the barriers have already been claimed - this is
1293      // possible as there may be a race to claim and it doesn't matter
1294      // who wins.
1295      // All of the callers of this function (except the SuspendAllInternal)
1296      // will first test the kActiveSuspendBarrier flag without lock. Here
1297      // double-check whether the barrier has been passed with the
1298      // suspend_count lock.
1299      return false;
1300    }
1301
1302    for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1303      pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1304      tlsPtr_.active_suspend_barriers[i] = nullptr;
1305    }
1306    AtomicClearFlag(kActiveSuspendBarrier);
1307  }
1308
1309  uint32_t barrier_count = 0;
1310  for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1311    AtomicInteger* pending_threads = pass_barriers[i];
1312    if (pending_threads != nullptr) {
1313      bool done = false;
1314      do {
1315        int32_t cur_val = pending_threads->LoadRelaxed();
1316        CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1317        // Reduce value by 1.
1318        done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1319#if ART_USE_FUTEXES
1320        if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1321          futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1322        }
1323#endif
1324      } while (!done);
1325      ++barrier_count;
1326    }
1327  }
1328  CHECK_GT(barrier_count, 0U);
1329  return true;
1330}
1331
1332void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1333  CHECK(ReadFlag(kActiveSuspendBarrier));
1334  bool clear_flag = true;
1335  for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1336    AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1337    if (ptr == target) {
1338      tlsPtr_.active_suspend_barriers[i] = nullptr;
1339    } else if (ptr != nullptr) {
1340      clear_flag = false;
1341    }
1342  }
1343  if (LIKELY(clear_flag)) {
1344    AtomicClearFlag(kActiveSuspendBarrier);
1345  }
1346}
1347
1348void Thread::RunCheckpointFunction() {
1349  bool done = false;
1350  do {
1351    // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
1352    // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
1353    // to prevent a race between setting the kCheckpointRequest flag and clearing it.
1354    Closure* checkpoint = nullptr;
1355    {
1356      MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1357      if (tlsPtr_.checkpoint_function != nullptr) {
1358        checkpoint = tlsPtr_.checkpoint_function;
1359        if (!checkpoint_overflow_.empty()) {
1360          // Overflow list not empty, copy the first one out and continue.
1361          tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1362          checkpoint_overflow_.pop_front();
1363        } else {
1364          // No overflow checkpoints, this means that we are on the last pending checkpoint.
1365          tlsPtr_.checkpoint_function = nullptr;
1366          AtomicClearFlag(kCheckpointRequest);
1367          done = true;
1368        }
1369      } else {
1370        LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
1371      }
1372    }
1373
1374    // Outside the lock, run the checkpoint functions that we collected.
1375    ScopedTrace trace("Run checkpoint function");
1376    DCHECK(checkpoint != nullptr);
1377    checkpoint->Run(this);
1378  } while (!done);
1379}
1380
1381void Thread::RunEmptyCheckpoint() {
1382  DCHECK_EQ(Thread::Current(), this);
1383  AtomicClearFlag(kEmptyCheckpointRequest);
1384  Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1385}
1386
1387bool Thread::RequestCheckpoint(Closure* function) {
1388  union StateAndFlags old_state_and_flags;
1389  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1390  if (old_state_and_flags.as_struct.state != kRunnable) {
1391    return false;  // Fail, thread is suspended and so can't run a checkpoint.
1392  }
1393
1394  // We must be runnable to request a checkpoint.
1395  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1396  union StateAndFlags new_state_and_flags;
1397  new_state_and_flags.as_int = old_state_and_flags.as_int;
1398  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1399  bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1400      old_state_and_flags.as_int, new_state_and_flags.as_int);
1401  if (success) {
1402    // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1403    if (tlsPtr_.checkpoint_function == nullptr) {
1404      tlsPtr_.checkpoint_function = function;
1405    } else {
1406      checkpoint_overflow_.push_back(function);
1407    }
1408    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1409    TriggerSuspend();
1410  }
1411  return success;
1412}
1413
1414bool Thread::RequestEmptyCheckpoint() {
1415  union StateAndFlags old_state_and_flags;
1416  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1417  if (old_state_and_flags.as_struct.state != kRunnable) {
1418    // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1419    // heap access (eg. the read barrier).
1420    return false;
1421  }
1422
1423  // We must be runnable to request a checkpoint.
1424  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1425  union StateAndFlags new_state_and_flags;
1426  new_state_and_flags.as_int = old_state_and_flags.as_int;
1427  new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1428  bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1429      old_state_and_flags.as_int, new_state_and_flags.as_int);
1430  if (success) {
1431    TriggerSuspend();
1432  }
1433  return success;
1434}
1435
1436class BarrierClosure : public Closure {
1437 public:
1438  explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1439
1440  void Run(Thread* self) OVERRIDE {
1441    wrapped_->Run(self);
1442    barrier_.Pass(self);
1443  }
1444
1445  void Wait(Thread* self) {
1446    barrier_.Increment(self, 1);
1447  }
1448
1449 private:
1450  Closure* wrapped_;
1451  Barrier barrier_;
1452};
1453
1454bool Thread::RequestSynchronousCheckpoint(Closure* function) {
1455  if (this == Thread::Current()) {
1456    // Asked to run on this thread. Just run.
1457    function->Run(this);
1458    return true;
1459  }
1460  Thread* self = Thread::Current();
1461
1462  // The current thread is not this thread.
1463
1464  if (GetState() == ThreadState::kTerminated) {
1465    return false;
1466  }
1467
1468  // Note: we're holding the thread-list lock. The thread cannot die at this point.
1469  struct ScopedThreadListLockUnlock {
1470    explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1471        : self_thread(self_in) {
1472      Locks::thread_list_lock_->AssertHeld(self_thread);
1473      Locks::thread_list_lock_->Unlock(self_thread);
1474    }
1475
1476    ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1477      Locks::thread_list_lock_->AssertNotHeld(self_thread);
1478      Locks::thread_list_lock_->Lock(self_thread);
1479    }
1480
1481    Thread* self_thread;
1482  };
1483
1484  for (;;) {
1485    // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1486    // suspend-count lock for too long.
1487    if (GetState() == ThreadState::kRunnable) {
1488      BarrierClosure barrier_closure(function);
1489      bool installed = false;
1490      {
1491        MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1492        installed = RequestCheckpoint(&barrier_closure);
1493      }
1494      if (installed) {
1495        // Relinquish the thread-list lock, temporarily. We should not wait holding any locks.
1496        ScopedThreadListLockUnlock stllu(self);
1497        ScopedThreadSuspension sts(self, ThreadState::kWaiting);
1498        barrier_closure.Wait(self);
1499        return true;
1500      }
1501      // Fall-through.
1502    }
1503
1504    // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1505    // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1506    //       certain situations.
1507    {
1508      MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1509
1510      if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1511        // Just retry the loop.
1512        sched_yield();
1513        continue;
1514      }
1515    }
1516
1517    {
1518      ScopedThreadListLockUnlock stllu(self);
1519      {
1520        ScopedThreadSuspension sts(self, ThreadState::kWaiting);
1521        while (GetState() == ThreadState::kRunnable) {
1522          // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1523          // moves us to suspended.
1524          sched_yield();
1525        }
1526      }
1527
1528      function->Run(this);
1529    }
1530
1531    {
1532      MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1533
1534      DCHECK_NE(GetState(), ThreadState::kRunnable);
1535      bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1536      DCHECK(updated);
1537    }
1538
1539    {
1540      // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1541      // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1542      MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1543      Thread::resume_cond_->Broadcast(self);
1544    }
1545
1546    return true;  // We're done, break out of the loop.
1547  }
1548}
1549
1550Closure* Thread::GetFlipFunction() {
1551  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1552  Closure* func;
1553  do {
1554    func = atomic_func->LoadRelaxed();
1555    if (func == nullptr) {
1556      return nullptr;
1557    }
1558  } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1559  DCHECK(func != nullptr);
1560  return func;
1561}
1562
1563void Thread::SetFlipFunction(Closure* function) {
1564  CHECK(function != nullptr);
1565  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1566  atomic_func->StoreSequentiallyConsistent(function);
1567}
1568
1569void Thread::FullSuspendCheck() {
1570  ScopedTrace trace(__FUNCTION__);
1571  VLOG(threads) << this << " self-suspending";
1572  // Make thread appear suspended to other threads, release mutator_lock_.
1573  // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1574  ScopedThreadSuspension(this, kSuspended);
1575  VLOG(threads) << this << " self-reviving";
1576}
1577
1578static std::string GetSchedulerGroupName(pid_t tid) {
1579  // /proc/<pid>/cgroup looks like this:
1580  // 2:devices:/
1581  // 1:cpuacct,cpu:/
1582  // We want the third field from the line whose second field contains the "cpu" token.
1583  std::string cgroup_file;
1584  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1585    return "";
1586  }
1587  std::vector<std::string> cgroup_lines;
1588  Split(cgroup_file, '\n', &cgroup_lines);
1589  for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1590    std::vector<std::string> cgroup_fields;
1591    Split(cgroup_lines[i], ':', &cgroup_fields);
1592    std::vector<std::string> cgroups;
1593    Split(cgroup_fields[1], ',', &cgroups);
1594    for (size_t j = 0; j < cgroups.size(); ++j) {
1595      if (cgroups[j] == "cpu") {
1596        return cgroup_fields[2].substr(1);  // Skip the leading slash.
1597      }
1598    }
1599  }
1600  return "";
1601}
1602
1603
1604void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1605  std::string group_name;
1606  int priority;
1607  bool is_daemon = false;
1608  Thread* self = Thread::Current();
1609
1610  // If flip_function is not null, it means we have run a checkpoint
1611  // before the thread wakes up to execute the flip function and the
1612  // thread roots haven't been forwarded.  So the following access to
1613  // the roots (opeer or methods in the frames) would be bad. Run it
1614  // here. TODO: clean up.
1615  if (thread != nullptr) {
1616    ScopedObjectAccessUnchecked soa(self);
1617    Thread* this_thread = const_cast<Thread*>(thread);
1618    Closure* flip_func = this_thread->GetFlipFunction();
1619    if (flip_func != nullptr) {
1620      flip_func->Run(this_thread);
1621    }
1622  }
1623
1624  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1625  // cause ScopedObjectAccessUnchecked to deadlock.
1626  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1627    ScopedObjectAccessUnchecked soa(self);
1628    priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1629        ->GetInt(thread->tlsPtr_.opeer);
1630    is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1631        ->GetBoolean(thread->tlsPtr_.opeer);
1632
1633    ObjPtr<mirror::Object> thread_group =
1634        jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1635            ->GetObject(thread->tlsPtr_.opeer);
1636
1637    if (thread_group != nullptr) {
1638      ArtField* group_name_field =
1639          jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1640      ObjPtr<mirror::String> group_name_string =
1641          group_name_field->GetObject(thread_group)->AsString();
1642      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1643    }
1644  } else {
1645    priority = GetNativePriority();
1646  }
1647
1648  std::string scheduler_group_name(GetSchedulerGroupName(tid));
1649  if (scheduler_group_name.empty()) {
1650    scheduler_group_name = "default";
1651  }
1652
1653  if (thread != nullptr) {
1654    os << '"' << *thread->tlsPtr_.name << '"';
1655    if (is_daemon) {
1656      os << " daemon";
1657    }
1658    os << " prio=" << priority
1659       << " tid=" << thread->GetThreadId()
1660       << " " << thread->GetState();
1661    if (thread->IsStillStarting()) {
1662      os << " (still starting up)";
1663    }
1664    os << "\n";
1665  } else {
1666    os << '"' << ::art::GetThreadName(tid) << '"'
1667       << " prio=" << priority
1668       << " (not attached)\n";
1669  }
1670
1671  if (thread != nullptr) {
1672    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1673    os << "  | group=\"" << group_name << "\""
1674       << " sCount=" << thread->tls32_.suspend_count
1675       << " dsCount=" << thread->tls32_.debug_suspend_count
1676       << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1677       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1678       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1679  }
1680
1681  os << "  | sysTid=" << tid
1682     << " nice=" << getpriority(PRIO_PROCESS, tid)
1683     << " cgrp=" << scheduler_group_name;
1684  if (thread != nullptr) {
1685    int policy;
1686    sched_param sp;
1687#if !defined(__APPLE__)
1688    // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1689    policy = sched_getscheduler(tid);
1690    if (policy == -1) {
1691      PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1692    }
1693    int sched_getparam_result = sched_getparam(tid, &sp);
1694    if (sched_getparam_result == -1) {
1695      PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1696      sp.sched_priority = -1;
1697    }
1698#else
1699    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1700                       __FUNCTION__);
1701#endif
1702    os << " sched=" << policy << "/" << sp.sched_priority
1703       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1704  }
1705  os << "\n";
1706
1707  // Grab the scheduler stats for this thread.
1708  std::string scheduler_stats;
1709  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1710    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1711  } else {
1712    scheduler_stats = "0 0 0";
1713  }
1714
1715  char native_thread_state = '?';
1716  int utime = 0;
1717  int stime = 0;
1718  int task_cpu = 0;
1719  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1720
1721  os << "  | state=" << native_thread_state
1722     << " schedstat=( " << scheduler_stats << " )"
1723     << " utm=" << utime
1724     << " stm=" << stime
1725     << " core=" << task_cpu
1726     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1727  if (thread != nullptr) {
1728    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1729        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1730        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1731    // Dump the held mutexes.
1732    os << "  | held mutexes=";
1733    for (size_t i = 0; i < kLockLevelCount; ++i) {
1734      if (i != kMonitorLock) {
1735        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1736        if (mutex != nullptr) {
1737          os << " \"" << mutex->GetName() << "\"";
1738          if (mutex->IsReaderWriterMutex()) {
1739            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1740            if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1741              os << "(exclusive held)";
1742            } else {
1743              os << "(shared held)";
1744            }
1745          }
1746        }
1747      }
1748    }
1749    os << "\n";
1750  }
1751}
1752
1753void Thread::DumpState(std::ostream& os) const {
1754  Thread::DumpState(os, this, GetTid());
1755}
1756
1757struct StackDumpVisitor : public StackVisitor {
1758  StackDumpVisitor(std::ostream& os_in,
1759                   Thread* thread_in,
1760                   Context* context,
1761                   bool can_allocate_in,
1762                   bool check_suspended = true,
1763                   bool dump_locks_in = true)
1764      REQUIRES_SHARED(Locks::mutator_lock_)
1765      : StackVisitor(thread_in,
1766                     context,
1767                     StackVisitor::StackWalkKind::kIncludeInlinedFrames,
1768                     check_suspended),
1769        os(os_in),
1770        can_allocate(can_allocate_in),
1771        last_method(nullptr),
1772        last_line_number(0),
1773        repetition_count(0),
1774        frame_count(0),
1775        dump_locks(dump_locks_in) {}
1776
1777  virtual ~StackDumpVisitor() {
1778    if (frame_count == 0) {
1779      os << "  (no managed stack frames)\n";
1780    }
1781  }
1782
1783  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1784    ArtMethod* m = GetMethod();
1785    if (m->IsRuntimeMethod()) {
1786      return true;
1787    }
1788    m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1789    const int kMaxRepetition = 3;
1790    ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1791    ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1792    int line_number = -1;
1793    if (dex_cache != nullptr) {  // be tolerant of bad input
1794      const DexFile* dex_file = dex_cache->GetDexFile();
1795      line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1796    }
1797    if (line_number == last_line_number && last_method == m) {
1798      ++repetition_count;
1799    } else {
1800      if (repetition_count >= kMaxRepetition) {
1801        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1802      }
1803      repetition_count = 0;
1804      last_line_number = line_number;
1805      last_method = m;
1806    }
1807    if (repetition_count < kMaxRepetition) {
1808      os << "  at " << m->PrettyMethod(false);
1809      if (m->IsNative()) {
1810        os << "(Native method)";
1811      } else {
1812        const char* source_file(m->GetDeclaringClassSourceFile());
1813        os << "(" << (source_file != nullptr ? source_file : "unavailable")
1814           << ":" << line_number << ")";
1815      }
1816      os << "\n";
1817      if (frame_count == 0) {
1818        Monitor::DescribeWait(os, GetThread());
1819      }
1820      if (can_allocate && dump_locks) {
1821        // Visit locks, but do not abort on errors. This would trigger a nested abort.
1822        // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
1823        // RegTypeCache::RegTypeCache due to thread_list_lock.
1824        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1825      }
1826    }
1827
1828    ++frame_count;
1829    return true;
1830  }
1831
1832  static void DumpLockedObject(mirror::Object* o, void* context)
1833      REQUIRES_SHARED(Locks::mutator_lock_) {
1834    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1835    os << "  - locked ";
1836    if (o == nullptr) {
1837      os << "an unknown object";
1838    } else {
1839      if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1840        // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1841        // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
1842        // IdentityHashCode call below will crash. So explicitly mark/forward it here.
1843        o = ReadBarrier::Mark(o);
1844      }
1845      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1846          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1847        // Getting the identity hashcode here would result in lock inflation and suspension of the
1848        // current thread, which isn't safe if this is the only runnable thread.
1849        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1850                           o->PrettyTypeOf().c_str());
1851      } else {
1852        // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1853        // we get the pretty type beofre we call IdentityHashCode.
1854        const std::string pretty_type(o->PrettyTypeOf());
1855        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1856      }
1857    }
1858    os << "\n";
1859  }
1860
1861  std::ostream& os;
1862  const bool can_allocate;
1863  ArtMethod* last_method;
1864  int last_line_number;
1865  int repetition_count;
1866  int frame_count;
1867  const bool dump_locks;
1868};
1869
1870static bool ShouldShowNativeStack(const Thread* thread)
1871    REQUIRES_SHARED(Locks::mutator_lock_) {
1872  ThreadState state = thread->GetState();
1873
1874  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1875  if (state > kWaiting && state < kStarting) {
1876    return true;
1877  }
1878
1879  // In an Object.wait variant or Thread.sleep? That's not interesting.
1880  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1881    return false;
1882  }
1883
1884  // Threads with no managed stack frames should be shown.
1885  const ManagedStack* managed_stack = thread->GetManagedStack();
1886  if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1887      managed_stack->GetTopShadowFrame() == nullptr)) {
1888    return true;
1889  }
1890
1891  // In some other native method? That's interesting.
1892  // We don't just check kNative because native methods will be in state kSuspended if they're
1893  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1894  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1895  ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1896  return current_method != nullptr && current_method->IsNative();
1897}
1898
1899void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1900  // If flip_function is not null, it means we have run a checkpoint
1901  // before the thread wakes up to execute the flip function and the
1902  // thread roots haven't been forwarded.  So the following access to
1903  // the roots (locks or methods in the frames) would be bad. Run it
1904  // here. TODO: clean up.
1905  {
1906    Thread* this_thread = const_cast<Thread*>(this);
1907    Closure* flip_func = this_thread->GetFlipFunction();
1908    if (flip_func != nullptr) {
1909      flip_func->Run(this_thread);
1910    }
1911  }
1912
1913  // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1914  // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1915  // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1916  // thread.
1917  StackHandleScope<1> scope(Thread::Current());
1918  Handle<mirror::Throwable> exc;
1919  bool have_exception = false;
1920  if (IsExceptionPending()) {
1921    exc = scope.NewHandle(GetException());
1922    const_cast<Thread*>(this)->ClearException();
1923    have_exception = true;
1924  }
1925
1926  std::unique_ptr<Context> context(Context::Create());
1927  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1928                          !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1929  dumper.WalkStack();
1930
1931  if (have_exception) {
1932    const_cast<Thread*>(this)->SetException(exc.Get());
1933  }
1934}
1935
1936void Thread::DumpStack(std::ostream& os,
1937                       bool dump_native_stack,
1938                       BacktraceMap* backtrace_map,
1939                       bool force_dump_stack) const {
1940  // TODO: we call this code when dying but may not have suspended the thread ourself. The
1941  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1942  //       the race with the thread_suspend_count_lock_).
1943  bool dump_for_abort = (gAborting > 0);
1944  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1945  if (!kIsDebugBuild) {
1946    // We always want to dump the stack for an abort, however, there is no point dumping another
1947    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1948    safe_to_dump = (safe_to_dump || dump_for_abort);
1949  }
1950  if (safe_to_dump || force_dump_stack) {
1951    // If we're currently in native code, dump that stack before dumping the managed stack.
1952    if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1953      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1954      ArtMethod* method =
1955          GetCurrentMethod(nullptr,
1956                           /*check_suspended*/ !force_dump_stack,
1957                           /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1958      DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1959    }
1960    DumpJavaStack(os,
1961                  /*check_suspended*/ !force_dump_stack,
1962                  /*dump_locks*/ !force_dump_stack);
1963  } else {
1964    os << "Not able to dump stack of thread that isn't suspended";
1965  }
1966}
1967
1968void Thread::ThreadExitCallback(void* arg) {
1969  Thread* self = reinterpret_cast<Thread*>(arg);
1970  if (self->tls32_.thread_exit_check_count == 0) {
1971    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1972        "going to use a pthread_key_create destructor?): " << *self;
1973    CHECK(is_started_);
1974#ifdef ART_TARGET_ANDROID
1975    __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1976#else
1977    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1978#endif
1979    self->tls32_.thread_exit_check_count = 1;
1980  } else {
1981    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1982  }
1983}
1984
1985void Thread::Startup() {
1986  CHECK(!is_started_);
1987  is_started_ = true;
1988  {
1989    // MutexLock to keep annotalysis happy.
1990    //
1991    // Note we use null for the thread because Thread::Current can
1992    // return garbage since (is_started_ == true) and
1993    // Thread::pthread_key_self_ is not yet initialized.
1994    // This was seen on glibc.
1995    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1996    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1997                                         *Locks::thread_suspend_count_lock_);
1998  }
1999
2000  // Allocate a TLS slot.
2001  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2002                     "self key");
2003
2004  // Double-check the TLS slot allocation.
2005  if (pthread_getspecific(pthread_key_self_) != nullptr) {
2006    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2007  }
2008}
2009
2010void Thread::FinishStartup() {
2011  Runtime* runtime = Runtime::Current();
2012  CHECK(runtime->IsStarted());
2013
2014  // Finish attaching the main thread.
2015  ScopedObjectAccess soa(Thread::Current());
2016  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2017  Thread::Current()->AssertNoPendingException();
2018
2019  Runtime::Current()->GetClassLinker()->RunRootClinits();
2020
2021  // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2022  // threads, this is done in Thread.start() on the Java side.
2023  {
2024    // This is only ever done once. There's no benefit in caching the method.
2025    jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
2026                                                        "add",
2027                                                        "(Ljava/lang/Thread;)V");
2028    CHECK(thread_group_add != nullptr);
2029    ScopedLocalRef<jobject> thread_jobject(
2030        soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2031    soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
2032                                        WellKnownClasses::java_lang_ThreadGroup,
2033                                        thread_group_add,
2034                                        thread_jobject.get());
2035    Thread::Current()->AssertNoPendingException();
2036  }
2037}
2038
2039void Thread::Shutdown() {
2040  CHECK(is_started_);
2041  is_started_ = false;
2042  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2043  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2044  if (resume_cond_ != nullptr) {
2045    delete resume_cond_;
2046    resume_cond_ = nullptr;
2047  }
2048}
2049
2050Thread::Thread(bool daemon)
2051    : tls32_(daemon),
2052      wait_monitor_(nullptr),
2053      custom_tls_(nullptr),
2054      can_call_into_java_(true) {
2055  wait_mutex_ = new Mutex("a thread wait mutex");
2056  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2057  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2058  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2059
2060  static_assert((sizeof(Thread) % 4) == 0U,
2061                "art::Thread has a size which is not a multiple of 4.");
2062  tls32_.state_and_flags.as_struct.flags = 0;
2063  tls32_.state_and_flags.as_struct.state = kNative;
2064  tls32_.interrupted.StoreRelaxed(false);
2065  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2066  std::fill(tlsPtr_.rosalloc_runs,
2067            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2068            gc::allocator::RosAlloc::GetDedicatedFullRun());
2069  tlsPtr_.checkpoint_function = nullptr;
2070  for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2071    tlsPtr_.active_suspend_barriers[i] = nullptr;
2072  }
2073  tlsPtr_.flip_function = nullptr;
2074  tlsPtr_.thread_local_mark_stack = nullptr;
2075  tls32_.is_transitioning_to_runnable = false;
2076}
2077
2078bool Thread::IsStillStarting() const {
2079  // You might think you can check whether the state is kStarting, but for much of thread startup,
2080  // the thread is in kNative; it might also be in kVmWait.
2081  // You might think you can check whether the peer is null, but the peer is actually created and
2082  // assigned fairly early on, and needs to be.
2083  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2084  // this thread _ever_ entered kRunnable".
2085  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2086      (*tlsPtr_.name == kThreadNameDuringStartup);
2087}
2088
2089void Thread::AssertPendingException() const {
2090  CHECK(IsExceptionPending()) << "Pending exception expected.";
2091}
2092
2093void Thread::AssertPendingOOMException() const {
2094  AssertPendingException();
2095  auto* e = GetException();
2096  CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2097      << e->Dump();
2098}
2099
2100void Thread::AssertNoPendingException() const {
2101  if (UNLIKELY(IsExceptionPending())) {
2102    ScopedObjectAccess soa(Thread::Current());
2103    LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2104  }
2105}
2106
2107void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2108  if (UNLIKELY(IsExceptionPending())) {
2109    ScopedObjectAccess soa(Thread::Current());
2110    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2111        << GetException()->Dump();
2112  }
2113}
2114
2115class MonitorExitVisitor : public SingleRootVisitor {
2116 public:
2117  explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2118
2119  // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
2120  void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2121      OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2122    if (self_->HoldsLock(entered_monitor)) {
2123      LOG(WARNING) << "Calling MonitorExit on object "
2124                   << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2125                   << " left locked by native thread "
2126                   << *Thread::Current() << " which is detaching";
2127      entered_monitor->MonitorExit(self_);
2128    }
2129  }
2130
2131 private:
2132  Thread* const self_;
2133};
2134
2135void Thread::Destroy() {
2136  Thread* self = this;
2137  DCHECK_EQ(self, Thread::Current());
2138
2139  if (tlsPtr_.jni_env != nullptr) {
2140    {
2141      ScopedObjectAccess soa(self);
2142      MonitorExitVisitor visitor(self);
2143      // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2144      tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2145    }
2146    // Release locally held global references which releasing may require the mutator lock.
2147    if (tlsPtr_.jpeer != nullptr) {
2148      // If pthread_create fails we don't have a jni env here.
2149      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2150      tlsPtr_.jpeer = nullptr;
2151    }
2152    if (tlsPtr_.class_loader_override != nullptr) {
2153      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2154      tlsPtr_.class_loader_override = nullptr;
2155    }
2156  }
2157
2158  if (tlsPtr_.opeer != nullptr) {
2159    ScopedObjectAccess soa(self);
2160    // We may need to call user-supplied managed code, do this before final clean-up.
2161    HandleUncaughtExceptions(soa);
2162    RemoveFromThreadGroup(soa);
2163    Runtime* runtime = Runtime::Current();
2164    if (runtime != nullptr) {
2165      runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2166    }
2167
2168    // this.nativePeer = 0;
2169    if (Runtime::Current()->IsActiveTransaction()) {
2170      jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2171          ->SetLong<true>(tlsPtr_.opeer, 0);
2172    } else {
2173      jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2174          ->SetLong<false>(tlsPtr_.opeer, 0);
2175    }
2176
2177    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2178    // who is waiting.
2179    ObjPtr<mirror::Object> lock =
2180        jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2181    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2182    if (lock != nullptr) {
2183      StackHandleScope<1> hs(self);
2184      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2185      ObjectLock<mirror::Object> locker(self, h_obj);
2186      locker.NotifyAll();
2187    }
2188    tlsPtr_.opeer = nullptr;
2189  }
2190
2191  {
2192    ScopedObjectAccess soa(self);
2193    Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2194    if (kUseReadBarrier) {
2195      Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2196    }
2197  }
2198}
2199
2200Thread::~Thread() {
2201  CHECK(tlsPtr_.class_loader_override == nullptr);
2202  CHECK(tlsPtr_.jpeer == nullptr);
2203  CHECK(tlsPtr_.opeer == nullptr);
2204  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2205  if (initialized) {
2206    delete tlsPtr_.jni_env;
2207    tlsPtr_.jni_env = nullptr;
2208  }
2209  CHECK_NE(GetState(), kRunnable);
2210  CHECK(!ReadFlag(kCheckpointRequest));
2211  CHECK(!ReadFlag(kEmptyCheckpointRequest));
2212  CHECK(tlsPtr_.checkpoint_function == nullptr);
2213  CHECK_EQ(checkpoint_overflow_.size(), 0u);
2214  CHECK(tlsPtr_.flip_function == nullptr);
2215  CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2216
2217  // Make sure we processed all deoptimization requests.
2218  CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2219  CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2220      "Not all deoptimized frames have been consumed by the debugger.";
2221
2222  // We may be deleting a still born thread.
2223  SetStateUnsafe(kTerminated);
2224
2225  delete wait_cond_;
2226  delete wait_mutex_;
2227
2228  if (tlsPtr_.long_jump_context != nullptr) {
2229    delete tlsPtr_.long_jump_context;
2230  }
2231
2232  if (initialized) {
2233    CleanupCpu();
2234  }
2235
2236  if (tlsPtr_.single_step_control != nullptr) {
2237    delete tlsPtr_.single_step_control;
2238  }
2239  delete tlsPtr_.instrumentation_stack;
2240  delete tlsPtr_.name;
2241  delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2242
2243  Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2244
2245  TearDownAlternateSignalStack();
2246}
2247
2248void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2249  if (!IsExceptionPending()) {
2250    return;
2251  }
2252  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2253  ScopedThreadStateChange tsc(this, kNative);
2254
2255  // Get and clear the exception.
2256  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2257  tlsPtr_.jni_env->ExceptionClear();
2258
2259  // Call the Thread instance's dispatchUncaughtException(Throwable)
2260  tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2261      WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2262      exception.get());
2263
2264  // If the dispatchUncaughtException threw, clear that exception too.
2265  tlsPtr_.jni_env->ExceptionClear();
2266}
2267
2268void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2269  // this.group.removeThread(this);
2270  // group can be null if we're in the compiler or a test.
2271  ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2272      ->GetObject(tlsPtr_.opeer);
2273  if (ogroup != nullptr) {
2274    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2275    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2276    ScopedThreadStateChange tsc(soa.Self(), kNative);
2277    tlsPtr_.jni_env->CallVoidMethod(group.get(),
2278                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
2279                                    peer.get());
2280  }
2281}
2282
2283bool Thread::HandleScopeContains(jobject obj) const {
2284  StackReference<mirror::Object>* hs_entry =
2285      reinterpret_cast<StackReference<mirror::Object>*>(obj);
2286  for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2287    if (cur->Contains(hs_entry)) {
2288      return true;
2289    }
2290  }
2291  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2292  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2293}
2294
2295void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2296  BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2297      visitor, RootInfo(kRootNativeStack, thread_id));
2298  for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2299    cur->VisitRoots(buffered_visitor);
2300  }
2301}
2302
2303ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2304  if (obj == nullptr) {
2305    return nullptr;
2306  }
2307  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2308  IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2309  ObjPtr<mirror::Object> result;
2310  bool expect_null = false;
2311  // The "kinds" below are sorted by the frequency we expect to encounter them.
2312  if (kind == kLocal) {
2313    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
2314    // Local references do not need a read barrier.
2315    result = locals.Get<kWithoutReadBarrier>(ref);
2316  } else if (kind == kHandleScopeOrInvalid) {
2317    // TODO: make stack indirect reference table lookup more efficient.
2318    // Check if this is a local reference in the handle scope.
2319    if (LIKELY(HandleScopeContains(obj))) {
2320      // Read from handle scope.
2321      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2322      VerifyObject(result);
2323    } else {
2324      tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2325      expect_null = true;
2326      result = nullptr;
2327    }
2328  } else if (kind == kGlobal) {
2329    result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
2330  } else {
2331    DCHECK_EQ(kind, kWeakGlobal);
2332    result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2333    if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2334      // This is a special case where it's okay to return null.
2335      expect_null = true;
2336      result = nullptr;
2337    }
2338  }
2339
2340  if (UNLIKELY(!expect_null && result == nullptr)) {
2341    tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
2342                                   ToStr<IndirectRefKind>(kind).c_str(), obj);
2343  }
2344  return result;
2345}
2346
2347bool Thread::IsJWeakCleared(jweak obj) const {
2348  CHECK(obj != nullptr);
2349  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2350  IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2351  CHECK_EQ(kind, kWeakGlobal);
2352  return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2353}
2354
2355// Implements java.lang.Thread.interrupted.
2356bool Thread::Interrupted() {
2357  DCHECK_EQ(Thread::Current(), this);
2358  // No other thread can concurrently reset the interrupted flag.
2359  bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
2360  if (interrupted) {
2361    tls32_.interrupted.StoreSequentiallyConsistent(false);
2362  }
2363  return interrupted;
2364}
2365
2366// Implements java.lang.Thread.isInterrupted.
2367bool Thread::IsInterrupted() {
2368  return tls32_.interrupted.LoadSequentiallyConsistent();
2369}
2370
2371void Thread::Interrupt(Thread* self) {
2372  MutexLock mu(self, *wait_mutex_);
2373  if (tls32_.interrupted.LoadSequentiallyConsistent()) {
2374    return;
2375  }
2376  tls32_.interrupted.StoreSequentiallyConsistent(true);
2377  NotifyLocked(self);
2378}
2379
2380void Thread::Notify() {
2381  Thread* self = Thread::Current();
2382  MutexLock mu(self, *wait_mutex_);
2383  NotifyLocked(self);
2384}
2385
2386void Thread::NotifyLocked(Thread* self) {
2387  if (wait_monitor_ != nullptr) {
2388    wait_cond_->Signal(self);
2389  }
2390}
2391
2392void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2393  if (tlsPtr_.class_loader_override != nullptr) {
2394    GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2395  }
2396  tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2397}
2398
2399using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2400
2401// Counts the stack trace depth and also fetches the first max_saved_frames frames.
2402class FetchStackTraceVisitor : public StackVisitor {
2403 public:
2404  explicit FetchStackTraceVisitor(Thread* thread,
2405                                  ArtMethodDexPcPair* saved_frames = nullptr,
2406                                  size_t max_saved_frames = 0)
2407      REQUIRES_SHARED(Locks::mutator_lock_)
2408      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2409        saved_frames_(saved_frames),
2410        max_saved_frames_(max_saved_frames) {}
2411
2412  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2413    // We want to skip frames up to and including the exception's constructor.
2414    // Note we also skip the frame if it doesn't have a method (namely the callee
2415    // save frame)
2416    ArtMethod* m = GetMethod();
2417    if (skipping_ && !m->IsRuntimeMethod() &&
2418        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2419      skipping_ = false;
2420    }
2421    if (!skipping_) {
2422      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2423        if (depth_ < max_saved_frames_) {
2424          saved_frames_[depth_].first = m;
2425          saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2426        }
2427        ++depth_;
2428      }
2429    } else {
2430      ++skip_depth_;
2431    }
2432    return true;
2433  }
2434
2435  uint32_t GetDepth() const {
2436    return depth_;
2437  }
2438
2439  uint32_t GetSkipDepth() const {
2440    return skip_depth_;
2441  }
2442
2443 private:
2444  uint32_t depth_ = 0;
2445  uint32_t skip_depth_ = 0;
2446  bool skipping_ = true;
2447  ArtMethodDexPcPair* saved_frames_;
2448  const size_t max_saved_frames_;
2449
2450  DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2451};
2452
2453template<bool kTransactionActive>
2454class BuildInternalStackTraceVisitor : public StackVisitor {
2455 public:
2456  BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2457      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2458        self_(self),
2459        skip_depth_(skip_depth),
2460        pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2461
2462  bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2463    // Allocate method trace as an object array where the first element is a pointer array that
2464    // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2465    // class of the ArtMethod pointers.
2466    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2467    StackHandleScope<1> hs(self_);
2468    ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2469    // The first element is the methods and dex pc array, the other elements are declaring classes
2470    // for the methods to ensure classes in the stack trace don't get unloaded.
2471    Handle<mirror::ObjectArray<mirror::Object>> trace(
2472        hs.NewHandle(
2473            mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2474    if (trace == nullptr) {
2475      // Acquire uninterruptible_ in all paths.
2476      self_->StartAssertNoThreadSuspension("Building internal stack trace");
2477      self_->AssertPendingOOMException();
2478      return false;
2479    }
2480    ObjPtr<mirror::PointerArray> methods_and_pcs =
2481        class_linker->AllocPointerArray(self_, depth * 2);
2482    const char* last_no_suspend_cause =
2483        self_->StartAssertNoThreadSuspension("Building internal stack trace");
2484    if (methods_and_pcs == nullptr) {
2485      self_->AssertPendingOOMException();
2486      return false;
2487    }
2488    trace->Set(0, methods_and_pcs);
2489    trace_ = trace.Get();
2490    // If We are called from native, use non-transactional mode.
2491    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2492    return true;
2493  }
2494
2495  virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2496    self_->EndAssertNoThreadSuspension(nullptr);
2497  }
2498
2499  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2500    if (trace_ == nullptr) {
2501      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2502    }
2503    if (skip_depth_ > 0) {
2504      skip_depth_--;
2505      return true;
2506    }
2507    ArtMethod* m = GetMethod();
2508    if (m->IsRuntimeMethod()) {
2509      return true;  // Ignore runtime frames (in particular callee save).
2510    }
2511    AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2512    return true;
2513  }
2514
2515  void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2516    ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2517    trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2518    trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2519        trace_methods_and_pcs->GetLength() / 2 + count_,
2520        dex_pc,
2521        pointer_size_);
2522    // Save the declaring class of the method to ensure that the declaring classes of the methods
2523    // do not get unloaded while the stack trace is live.
2524    trace_->Set(count_ + 1, method->GetDeclaringClass());
2525    ++count_;
2526  }
2527
2528  ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2529    return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2530  }
2531
2532  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2533    return trace_;
2534  }
2535
2536 private:
2537  Thread* const self_;
2538  // How many more frames to skip.
2539  int32_t skip_depth_;
2540  // Current position down stack trace.
2541  uint32_t count_ = 0;
2542  // An object array where the first element is a pointer array that contains the ArtMethod
2543  // pointers on the stack and dex PCs. The rest of the elements are the declaring
2544  // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2545  // the i'th frame.
2546  mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2547  // For cross compilation.
2548  const PointerSize pointer_size_;
2549
2550  DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2551};
2552
2553template<bool kTransactionActive>
2554jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2555  // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2556  constexpr size_t kMaxSavedFrames = 256;
2557  std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2558  FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2559                                       &saved_frames[0],
2560                                       kMaxSavedFrames);
2561  count_visitor.WalkStack();
2562  const uint32_t depth = count_visitor.GetDepth();
2563  const uint32_t skip_depth = count_visitor.GetSkipDepth();
2564
2565  // Build internal stack trace.
2566  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2567                                                                         const_cast<Thread*>(this),
2568                                                                         skip_depth);
2569  if (!build_trace_visitor.Init(depth)) {
2570    return nullptr;  // Allocation failed.
2571  }
2572  // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2573  // than doing the stack walk twice.
2574  if (depth < kMaxSavedFrames) {
2575    for (size_t i = 0; i < depth; ++i) {
2576      build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2577    }
2578  } else {
2579    build_trace_visitor.WalkStack();
2580  }
2581
2582  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2583  if (kIsDebugBuild) {
2584    ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2585    // Second half of trace_methods is dex PCs.
2586    for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2587      auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2588          i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2589      CHECK(method != nullptr);
2590    }
2591  }
2592  return soa.AddLocalReference<jobject>(trace);
2593}
2594template jobject Thread::CreateInternalStackTrace<false>(
2595    const ScopedObjectAccessAlreadyRunnable& soa) const;
2596template jobject Thread::CreateInternalStackTrace<true>(
2597    const ScopedObjectAccessAlreadyRunnable& soa) const;
2598
2599bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2600  // Only count the depth since we do not pass a stack frame array as an argument.
2601  FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2602  count_visitor.WalkStack();
2603  return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2604}
2605
2606jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2607    const ScopedObjectAccessAlreadyRunnable& soa,
2608    jobject internal,
2609    jobjectArray output_array,
2610    int* stack_depth) {
2611  // Decode the internal stack trace into the depth, method trace and PC trace.
2612  // Subtract one for the methods and PC trace.
2613  int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2614  DCHECK_GE(depth, 0);
2615
2616  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2617
2618  jobjectArray result;
2619
2620  if (output_array != nullptr) {
2621    // Reuse the array we were given.
2622    result = output_array;
2623    // ...adjusting the number of frames we'll write to not exceed the array length.
2624    const int32_t traces_length =
2625        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2626    depth = std::min(depth, traces_length);
2627  } else {
2628    // Create java_trace array and place in local reference table
2629    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2630        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2631    if (java_traces == nullptr) {
2632      return nullptr;
2633    }
2634    result = soa.AddLocalReference<jobjectArray>(java_traces);
2635  }
2636
2637  if (stack_depth != nullptr) {
2638    *stack_depth = depth;
2639  }
2640
2641  for (int32_t i = 0; i < depth; ++i) {
2642    ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2643        soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2644    // Methods and dex PC trace is element 0.
2645    DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2646    ObjPtr<mirror::PointerArray> const method_trace =
2647        ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2648    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2649    ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2650    uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2651        i + method_trace->GetLength() / 2, kRuntimePointerSize);
2652    int32_t line_number;
2653    StackHandleScope<3> hs(soa.Self());
2654    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2655    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2656    if (method->IsProxyMethod()) {
2657      line_number = -1;
2658      class_name_object.Assign(method->GetDeclaringClass()->GetName());
2659      // source_name_object intentionally left null for proxy methods
2660    } else {
2661      line_number = method->GetLineNumFromDexPC(dex_pc);
2662      // Allocate element, potentially triggering GC
2663      // TODO: reuse class_name_object via Class::name_?
2664      const char* descriptor = method->GetDeclaringClassDescriptor();
2665      CHECK(descriptor != nullptr);
2666      std::string class_name(PrettyDescriptor(descriptor));
2667      class_name_object.Assign(
2668          mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2669      if (class_name_object == nullptr) {
2670        soa.Self()->AssertPendingOOMException();
2671        return nullptr;
2672      }
2673      const char* source_file = method->GetDeclaringClassSourceFile();
2674      if (line_number == -1) {
2675        // Make the line_number field of StackTraceElement hold the dex pc.
2676        // source_name_object is intentionally left null if we failed to map the dex pc to
2677        // a line number (most probably because there is no debug info). See b/30183883.
2678        line_number = dex_pc;
2679      } else {
2680        if (source_file != nullptr) {
2681          source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2682          if (source_name_object == nullptr) {
2683            soa.Self()->AssertPendingOOMException();
2684            return nullptr;
2685          }
2686        }
2687      }
2688    }
2689    const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2690    CHECK(method_name != nullptr);
2691    Handle<mirror::String> method_name_object(
2692        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2693    if (method_name_object == nullptr) {
2694      return nullptr;
2695    }
2696    ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
2697                                                                             class_name_object,
2698                                                                             method_name_object,
2699                                                                             source_name_object,
2700                                                                             line_number);
2701    if (obj == nullptr) {
2702      return nullptr;
2703    }
2704    // We are called from native: use non-transactional mode.
2705    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2706  }
2707  return result;
2708}
2709
2710void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2711  va_list args;
2712  va_start(args, fmt);
2713  ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2714  va_end(args);
2715}
2716
2717void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2718                                const char* fmt, va_list ap) {
2719  std::string msg;
2720  StringAppendV(&msg, fmt, ap);
2721  ThrowNewException(exception_class_descriptor, msg.c_str());
2722}
2723
2724void Thread::ThrowNewException(const char* exception_class_descriptor,
2725                               const char* msg) {
2726  // Callers should either clear or call ThrowNewWrappedException.
2727  AssertNoPendingExceptionForNewException(msg);
2728  ThrowNewWrappedException(exception_class_descriptor, msg);
2729}
2730
2731static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2732    REQUIRES_SHARED(Locks::mutator_lock_) {
2733  ArtMethod* method = self->GetCurrentMethod(nullptr);
2734  return method != nullptr
2735      ? method->GetDeclaringClass()->GetClassLoader()
2736      : nullptr;
2737}
2738
2739void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2740                                      const char* msg) {
2741  DCHECK_EQ(this, Thread::Current());
2742  ScopedObjectAccessUnchecked soa(this);
2743  StackHandleScope<3> hs(soa.Self());
2744  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2745  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2746  ClearException();
2747  Runtime* runtime = Runtime::Current();
2748  auto* cl = runtime->GetClassLinker();
2749  Handle<mirror::Class> exception_class(
2750      hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2751  if (UNLIKELY(exception_class == nullptr)) {
2752    CHECK(IsExceptionPending());
2753    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2754    return;
2755  }
2756
2757  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2758                                                             true))) {
2759    DCHECK(IsExceptionPending());
2760    return;
2761  }
2762  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2763  Handle<mirror::Throwable> exception(
2764      hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
2765
2766  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2767  if (exception == nullptr) {
2768    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2769    return;
2770  }
2771
2772  // Choose an appropriate constructor and set up the arguments.
2773  const char* signature;
2774  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2775  if (msg != nullptr) {
2776    // Ensure we remember this and the method over the String allocation.
2777    msg_string.reset(
2778        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2779    if (UNLIKELY(msg_string.get() == nullptr)) {
2780      CHECK(IsExceptionPending());  // OOME.
2781      return;
2782    }
2783    if (cause.get() == nullptr) {
2784      signature = "(Ljava/lang/String;)V";
2785    } else {
2786      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2787    }
2788  } else {
2789    if (cause.get() == nullptr) {
2790      signature = "()V";
2791    } else {
2792      signature = "(Ljava/lang/Throwable;)V";
2793    }
2794  }
2795  ArtMethod* exception_init_method =
2796      exception_class->FindConstructor(signature, cl->GetImagePointerSize());
2797
2798  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2799      << PrettyDescriptor(exception_class_descriptor);
2800
2801  if (UNLIKELY(!runtime->IsStarted())) {
2802    // Something is trying to throw an exception without a started runtime, which is the common
2803    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2804    // the exception fields directly.
2805    if (msg != nullptr) {
2806      exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
2807    }
2808    if (cause.get() != nullptr) {
2809      exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
2810    }
2811    ScopedLocalRef<jobject> trace(GetJniEnv(),
2812                                  Runtime::Current()->IsActiveTransaction()
2813                                      ? CreateInternalStackTrace<true>(soa)
2814                                      : CreateInternalStackTrace<false>(soa));
2815    if (trace.get() != nullptr) {
2816      exception->SetStackState(DecodeJObject(trace.get()).Ptr());
2817    }
2818    SetException(exception.Get());
2819  } else {
2820    jvalue jv_args[2];
2821    size_t i = 0;
2822
2823    if (msg != nullptr) {
2824      jv_args[i].l = msg_string.get();
2825      ++i;
2826    }
2827    if (cause.get() != nullptr) {
2828      jv_args[i].l = cause.get();
2829      ++i;
2830    }
2831    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2832    InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
2833    if (LIKELY(!IsExceptionPending())) {
2834      SetException(exception.Get());
2835    }
2836  }
2837}
2838
2839void Thread::ThrowOutOfMemoryError(const char* msg) {
2840  LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2841      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2842  if (!tls32_.throwing_OutOfMemoryError) {
2843    tls32_.throwing_OutOfMemoryError = true;
2844    ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2845    tls32_.throwing_OutOfMemoryError = false;
2846  } else {
2847    Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
2848    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2849  }
2850}
2851
2852Thread* Thread::CurrentFromGdb() {
2853  return Thread::Current();
2854}
2855
2856void Thread::DumpFromGdb() const {
2857  std::ostringstream ss;
2858  Dump(ss);
2859  std::string str(ss.str());
2860  // log to stderr for debugging command line processes
2861  std::cerr << str;
2862#ifdef ART_TARGET_ANDROID
2863  // log to logcat for debugging frameworks processes
2864  LOG(INFO) << str;
2865#endif
2866}
2867
2868// Explicitly instantiate 32 and 64bit thread offset dumping support.
2869template
2870void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
2871template
2872void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
2873
2874template<PointerSize ptr_size>
2875void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2876#define DO_THREAD_OFFSET(x, y) \
2877    if (offset == (x).Uint32Value()) { \
2878      os << (y); \
2879      return; \
2880    }
2881  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2882  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2883  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2884  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2885  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2886  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2887  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2888  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2889  DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
2890  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2891  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2892  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2893  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2894#undef DO_THREAD_OFFSET
2895
2896#define JNI_ENTRY_POINT_INFO(x) \
2897    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2898      os << #x; \
2899      return; \
2900    }
2901  JNI_ENTRY_POINT_INFO(pDlsymLookup)
2902#undef JNI_ENTRY_POINT_INFO
2903
2904#define QUICK_ENTRY_POINT_INFO(x) \
2905    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2906      os << #x; \
2907      return; \
2908    }
2909  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2910  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
2911  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
2912  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
2913  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
2914  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2915  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2916  QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
2917  QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2918  QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2919  QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2920  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2921  QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
2922  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2923  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2924  QUICK_ENTRY_POINT_INFO(pInitializeType)
2925  QUICK_ENTRY_POINT_INFO(pResolveString)
2926  QUICK_ENTRY_POINT_INFO(pSet8Instance)
2927  QUICK_ENTRY_POINT_INFO(pSet8Static)
2928  QUICK_ENTRY_POINT_INFO(pSet16Instance)
2929  QUICK_ENTRY_POINT_INFO(pSet16Static)
2930  QUICK_ENTRY_POINT_INFO(pSet32Instance)
2931  QUICK_ENTRY_POINT_INFO(pSet32Static)
2932  QUICK_ENTRY_POINT_INFO(pSet64Instance)
2933  QUICK_ENTRY_POINT_INFO(pSet64Static)
2934  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2935  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2936  QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2937  QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2938  QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2939  QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2940  QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2941  QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2942  QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2943  QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2944  QUICK_ENTRY_POINT_INFO(pGet32Instance)
2945  QUICK_ENTRY_POINT_INFO(pGet32Static)
2946  QUICK_ENTRY_POINT_INFO(pGet64Instance)
2947  QUICK_ENTRY_POINT_INFO(pGet64Static)
2948  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2949  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2950  QUICK_ENTRY_POINT_INFO(pAputObject)
2951  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2952  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2953  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2954  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2955  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2956  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2957  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2958  QUICK_ENTRY_POINT_INFO(pLockObject)
2959  QUICK_ENTRY_POINT_INFO(pUnlockObject)
2960  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2961  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2962  QUICK_ENTRY_POINT_INFO(pCmplDouble)
2963  QUICK_ENTRY_POINT_INFO(pCmplFloat)
2964  QUICK_ENTRY_POINT_INFO(pCos)
2965  QUICK_ENTRY_POINT_INFO(pSin)
2966  QUICK_ENTRY_POINT_INFO(pAcos)
2967  QUICK_ENTRY_POINT_INFO(pAsin)
2968  QUICK_ENTRY_POINT_INFO(pAtan)
2969  QUICK_ENTRY_POINT_INFO(pAtan2)
2970  QUICK_ENTRY_POINT_INFO(pCbrt)
2971  QUICK_ENTRY_POINT_INFO(pCosh)
2972  QUICK_ENTRY_POINT_INFO(pExp)
2973  QUICK_ENTRY_POINT_INFO(pExpm1)
2974  QUICK_ENTRY_POINT_INFO(pHypot)
2975  QUICK_ENTRY_POINT_INFO(pLog)
2976  QUICK_ENTRY_POINT_INFO(pLog10)
2977  QUICK_ENTRY_POINT_INFO(pNextAfter)
2978  QUICK_ENTRY_POINT_INFO(pSinh)
2979  QUICK_ENTRY_POINT_INFO(pTan)
2980  QUICK_ENTRY_POINT_INFO(pTanh)
2981  QUICK_ENTRY_POINT_INFO(pFmod)
2982  QUICK_ENTRY_POINT_INFO(pL2d)
2983  QUICK_ENTRY_POINT_INFO(pFmodf)
2984  QUICK_ENTRY_POINT_INFO(pL2f)
2985  QUICK_ENTRY_POINT_INFO(pD2iz)
2986  QUICK_ENTRY_POINT_INFO(pF2iz)
2987  QUICK_ENTRY_POINT_INFO(pIdivmod)
2988  QUICK_ENTRY_POINT_INFO(pD2l)
2989  QUICK_ENTRY_POINT_INFO(pF2l)
2990  QUICK_ENTRY_POINT_INFO(pLdiv)
2991  QUICK_ENTRY_POINT_INFO(pLmod)
2992  QUICK_ENTRY_POINT_INFO(pLmul)
2993  QUICK_ENTRY_POINT_INFO(pShlLong)
2994  QUICK_ENTRY_POINT_INFO(pShrLong)
2995  QUICK_ENTRY_POINT_INFO(pUshrLong)
2996  QUICK_ENTRY_POINT_INFO(pIndexOf)
2997  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2998  QUICK_ENTRY_POINT_INFO(pMemcpy)
2999  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3000  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3001  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3002  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3003  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3004  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3005  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3006  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3007  QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3008  QUICK_ENTRY_POINT_INFO(pTestSuspend)
3009  QUICK_ENTRY_POINT_INFO(pDeliverException)
3010  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3011  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3012  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3013  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3014  QUICK_ENTRY_POINT_INFO(pDeoptimize)
3015  QUICK_ENTRY_POINT_INFO(pA64Load)
3016  QUICK_ENTRY_POINT_INFO(pA64Store)
3017  QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3018  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3019  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3020  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3021  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3022  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3023  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3024  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3025  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3026  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3027  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3028  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3029  QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3030  QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3031  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3032  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3033  QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3034  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3035  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3036  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3037  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3038  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3039  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3040  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3041  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3042  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3043  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3044  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3045  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3046  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3047  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3048  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3049  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3050  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3051  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3052  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3053  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3054  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3055  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3056  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3057  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3058  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3059  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3060  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3061  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3062  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3063  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3064  QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3065  QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3066
3067  QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3068  QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3069#undef QUICK_ENTRY_POINT_INFO
3070
3071  os << offset;
3072}
3073
3074void Thread::QuickDeliverException() {
3075  // Get exception from thread.
3076  ObjPtr<mirror::Throwable> exception = GetException();
3077  CHECK(exception != nullptr);
3078  if (exception == GetDeoptimizationException()) {
3079    artDeoptimize(this);
3080    UNREACHABLE();
3081  }
3082
3083  // This is a real exception: let the instrumentation know about it.
3084  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3085  if (instrumentation->HasExceptionThrownListeners() &&
3086      IsExceptionThrownByCurrentMethod(exception)) {
3087    // Instrumentation may cause GC so keep the exception object safe.
3088    StackHandleScope<1> hs(this);
3089    HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3090    instrumentation->ExceptionThrownEvent(this, exception.Ptr());
3091  }
3092  // Does instrumentation need to deoptimize the stack?
3093  // Note: we do this *after* reporting the exception to instrumentation in case it
3094  // now requires deoptimization. It may happen if a debugger is attached and requests
3095  // new events (single-step, breakpoint, ...) when the exception is reported.
3096  if (Dbg::IsForcedInterpreterNeededForException(this)) {
3097    NthCallerVisitor visitor(this, 0, false);
3098    visitor.WalkStack();
3099    if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3100      // method_type shouldn't matter due to exception handling.
3101      const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3102      // Save the exception into the deoptimization context so it can be restored
3103      // before entering the interpreter.
3104      PushDeoptimizationContext(
3105          JValue(),
3106          false /* is_reference */,
3107          exception,
3108          false /* from_code */,
3109          method_type);
3110      artDeoptimize(this);
3111      UNREACHABLE();
3112    } else {
3113      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3114                   << visitor.caller->PrettyMethod();
3115    }
3116  }
3117
3118  // Don't leave exception visible while we try to find the handler, which may cause class
3119  // resolution.
3120  ClearException();
3121  QuickExceptionHandler exception_handler(this, false);
3122  exception_handler.FindCatch(exception);
3123  exception_handler.UpdateInstrumentationStack();
3124  exception_handler.DoLongJump();
3125}
3126
3127Context* Thread::GetLongJumpContext() {
3128  Context* result = tlsPtr_.long_jump_context;
3129  if (result == nullptr) {
3130    result = Context::Create();
3131  } else {
3132    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3133    result->Reset();
3134  }
3135  return result;
3136}
3137
3138// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3139//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3140struct CurrentMethodVisitor FINAL : public StackVisitor {
3141  CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3142      REQUIRES_SHARED(Locks::mutator_lock_)
3143      : StackVisitor(thread,
3144                     context,
3145                     StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3146                     check_suspended),
3147        this_object_(nullptr),
3148        method_(nullptr),
3149        dex_pc_(0),
3150        abort_on_error_(abort_on_error) {}
3151  bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3152    ArtMethod* m = GetMethod();
3153    if (m->IsRuntimeMethod()) {
3154      // Continue if this is a runtime method.
3155      return true;
3156    }
3157    if (context_ != nullptr) {
3158      this_object_ = GetThisObject();
3159    }
3160    method_ = m;
3161    dex_pc_ = GetDexPc(abort_on_error_);
3162    return false;
3163  }
3164  ObjPtr<mirror::Object> this_object_;
3165  ArtMethod* method_;
3166  uint32_t dex_pc_;
3167  const bool abort_on_error_;
3168};
3169
3170ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3171                                    bool check_suspended,
3172                                    bool abort_on_error) const {
3173  CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3174                               nullptr,
3175                               check_suspended,
3176                               abort_on_error);
3177  visitor.WalkStack(false);
3178  if (dex_pc != nullptr) {
3179    *dex_pc = visitor.dex_pc_;
3180  }
3181  return visitor.method_;
3182}
3183
3184bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3185  return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3186}
3187
3188// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3189template <typename RootVisitor, bool kPrecise = false>
3190class ReferenceMapVisitor : public StackVisitor {
3191 public:
3192  ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3193      REQUIRES_SHARED(Locks::mutator_lock_)
3194        // We are visiting the references in compiled frames, so we do not need
3195        // to know the inlined frames.
3196      : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3197        visitor_(visitor) {}
3198
3199  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3200    if (false) {
3201      LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3202                << StringPrintf("@ PC:%04x", GetDexPc());
3203    }
3204    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3205    if (shadow_frame != nullptr) {
3206      VisitShadowFrame(shadow_frame);
3207    } else {
3208      VisitQuickFrame();
3209    }
3210    return true;
3211  }
3212
3213  void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3214    ArtMethod* m = shadow_frame->GetMethod();
3215    VisitDeclaringClass(m);
3216    DCHECK(m != nullptr);
3217    size_t num_regs = shadow_frame->NumberOfVRegs();
3218    DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3219    // handle scope for JNI or References for interpreter.
3220    for (size_t reg = 0; reg < num_regs; ++reg) {
3221      mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3222      if (ref != nullptr) {
3223        mirror::Object* new_ref = ref;
3224        visitor_(&new_ref, reg, this);
3225        if (new_ref != ref) {
3226          shadow_frame->SetVRegReference(reg, new_ref);
3227        }
3228      }
3229    }
3230    // Mark lock count map required for structured locking checks.
3231    shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
3232  }
3233
3234 private:
3235  // Visiting the declaring class is necessary so that we don't unload the class of a method that
3236  // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3237  // the threads do not all hold the heap bitmap lock for parallel GC.
3238  void VisitDeclaringClass(ArtMethod* method)
3239      REQUIRES_SHARED(Locks::mutator_lock_)
3240      NO_THREAD_SAFETY_ANALYSIS {
3241    ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3242    // klass can be null for runtime methods.
3243    if (klass != nullptr) {
3244      if (kVerifyImageObjectsMarked) {
3245        gc::Heap* const heap = Runtime::Current()->GetHeap();
3246        gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3247                                                                                /*fail_ok*/true);
3248        if (space != nullptr && space->IsImageSpace()) {
3249          bool failed = false;
3250          if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3251            failed = true;
3252            LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3253          } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3254            failed = true;
3255            LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3256          }
3257          if (failed) {
3258            GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3259            space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3260            LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3261                                     << " klass@" << klass.Ptr();
3262            // Pretty info last in case it crashes.
3263            LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3264                       << klass->PrettyClass();
3265          }
3266        }
3267      }
3268      mirror::Object* new_ref = klass.Ptr();
3269      visitor_(&new_ref, -1, this);
3270      if (new_ref != klass) {
3271        method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3272      }
3273    }
3274  }
3275
3276  template <typename T>
3277  ALWAYS_INLINE
3278  inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3279    ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3280    DCHECK(cur_quick_frame != nullptr);
3281    ArtMethod* m = *cur_quick_frame;
3282    VisitDeclaringClass(m);
3283
3284    // Process register map (which native and runtime methods don't have)
3285    if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3286      const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3287      DCHECK(method_header->IsOptimized());
3288      auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3289          reinterpret_cast<uintptr_t>(cur_quick_frame));
3290      uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3291      CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3292      CodeInfoEncoding encoding = code_info.ExtractEncoding();
3293      StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3294      DCHECK(map.IsValid());
3295
3296      T vreg_info(m, code_info, encoding, map, visitor_);
3297
3298      // Visit stack entries that hold pointers.
3299      const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3300      BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3301      for (size_t i = 0; i < number_of_bits; ++i) {
3302        if (stack_mask.LoadBit(i)) {
3303          auto* ref_addr = vreg_base + i;
3304          mirror::Object* ref = ref_addr->AsMirrorPtr();
3305          if (ref != nullptr) {
3306            mirror::Object* new_ref = ref;
3307            vreg_info.VisitStack(&new_ref, i, this);
3308            if (ref != new_ref) {
3309              ref_addr->Assign(new_ref);
3310           }
3311          }
3312        }
3313      }
3314      // Visit callee-save registers that hold pointers.
3315      uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3316      for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3317        if (register_mask & (1 << i)) {
3318          mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3319          if (kIsDebugBuild && ref_addr == nullptr) {
3320            std::string thread_name;
3321            GetThread()->GetThreadName(thread_name);
3322            LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3323            DescribeStack(GetThread());
3324            LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3325                       << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3326          }
3327          if (*ref_addr != nullptr) {
3328            vreg_info.VisitRegister(ref_addr, i, this);
3329          }
3330        }
3331      }
3332    }
3333  }
3334
3335  void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3336    if (kPrecise) {
3337      VisitQuickFramePrecise();
3338    } else {
3339      VisitQuickFrameNonPrecise();
3340    }
3341  }
3342
3343  void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3344    struct UndefinedVRegInfo {
3345      UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3346                        const CodeInfo& code_info ATTRIBUTE_UNUSED,
3347                        const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3348                        const StackMap& map ATTRIBUTE_UNUSED,
3349                        RootVisitor& _visitor)
3350          : visitor(_visitor) {
3351      }
3352
3353      ALWAYS_INLINE
3354      void VisitStack(mirror::Object** ref,
3355                      size_t stack_index ATTRIBUTE_UNUSED,
3356                      const StackVisitor* stack_visitor)
3357          REQUIRES_SHARED(Locks::mutator_lock_) {
3358        visitor(ref, -1, stack_visitor);
3359      }
3360
3361      ALWAYS_INLINE
3362      void VisitRegister(mirror::Object** ref,
3363                         size_t register_index ATTRIBUTE_UNUSED,
3364                         const StackVisitor* stack_visitor)
3365          REQUIRES_SHARED(Locks::mutator_lock_) {
3366        visitor(ref, -1, stack_visitor);
3367      }
3368
3369      RootVisitor& visitor;
3370    };
3371    VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3372  }
3373
3374  void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3375    struct StackMapVRegInfo {
3376      StackMapVRegInfo(ArtMethod* method,
3377                       const CodeInfo& _code_info,
3378                       const CodeInfoEncoding& _encoding,
3379                       const StackMap& map,
3380                       RootVisitor& _visitor)
3381          : number_of_dex_registers(method->GetCodeItem()->registers_size_),
3382            code_info(_code_info),
3383            encoding(_encoding),
3384            dex_register_map(code_info.GetDexRegisterMapOf(map,
3385                                                           encoding,
3386                                                           number_of_dex_registers)),
3387            visitor(_visitor) {
3388      }
3389
3390      // TODO: If necessary, we should consider caching a reverse map instead of the linear
3391      //       lookups for each location.
3392      void FindWithType(const size_t index,
3393                        const DexRegisterLocation::Kind kind,
3394                        mirror::Object** ref,
3395                        const StackVisitor* stack_visitor)
3396          REQUIRES_SHARED(Locks::mutator_lock_) {
3397        bool found = false;
3398        for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3399          DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3400              dex_reg, number_of_dex_registers, code_info, encoding);
3401          if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3402            visitor(ref, dex_reg, stack_visitor);
3403            found = true;
3404          }
3405        }
3406
3407        if (!found) {
3408          // If nothing found, report with -1.
3409          visitor(ref, -1, stack_visitor);
3410        }
3411      }
3412
3413      void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3414          REQUIRES_SHARED(Locks::mutator_lock_) {
3415        const size_t stack_offset = stack_index * kFrameSlotSize;
3416        FindWithType(stack_offset,
3417                     DexRegisterLocation::Kind::kInStack,
3418                     ref,
3419                     stack_visitor);
3420      }
3421
3422      void VisitRegister(mirror::Object** ref,
3423                         size_t register_index,
3424                         const StackVisitor* stack_visitor)
3425          REQUIRES_SHARED(Locks::mutator_lock_) {
3426        FindWithType(register_index,
3427                     DexRegisterLocation::Kind::kInRegister,
3428                     ref,
3429                     stack_visitor);
3430      }
3431
3432      size_t number_of_dex_registers;
3433      const CodeInfo& code_info;
3434      const CodeInfoEncoding& encoding;
3435      DexRegisterMap dex_register_map;
3436      RootVisitor& visitor;
3437    };
3438    VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3439  }
3440
3441  // Visitor for when we visit a root.
3442  RootVisitor& visitor_;
3443};
3444
3445class RootCallbackVisitor {
3446 public:
3447  RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3448
3449  void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3450      REQUIRES_SHARED(Locks::mutator_lock_) {
3451    visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3452  }
3453
3454 private:
3455  RootVisitor* const visitor_;
3456  const uint32_t tid_;
3457};
3458
3459template <bool kPrecise>
3460void Thread::VisitRoots(RootVisitor* visitor) {
3461  const pid_t thread_id = GetThreadId();
3462  visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3463  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3464    visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3465                       RootInfo(kRootNativeStack, thread_id));
3466  }
3467  visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3468  tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3469  tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3470  HandleScopeVisitRoots(visitor, thread_id);
3471  if (tlsPtr_.debug_invoke_req != nullptr) {
3472    tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3473  }
3474  // Visit roots for deoptimization.
3475  if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3476    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3477    ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3478    for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3479         record != nullptr;
3480         record = record->GetLink()) {
3481      for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3482           shadow_frame != nullptr;
3483           shadow_frame = shadow_frame->GetLink()) {
3484        mapper.VisitShadowFrame(shadow_frame);
3485      }
3486    }
3487  }
3488  for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3489       record != nullptr;
3490       record = record->GetLink()) {
3491    if (record->IsReference()) {
3492      visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3493                                  RootInfo(kRootThreadObject, thread_id));
3494    }
3495    visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3496                                RootInfo(kRootThreadObject, thread_id));
3497  }
3498  if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3499    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3500    ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3501    for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3502         record != nullptr;
3503         record = record->GetNext()) {
3504      mapper.VisitShadowFrame(record->GetShadowFrame());
3505    }
3506  }
3507  for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3508    verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3509  }
3510  // Visit roots on this thread's stack
3511  RuntimeContextType context;
3512  RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3513  ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
3514  mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3515  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3516    visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3517  }
3518}
3519
3520void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3521  if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3522    VisitRoots<true>(visitor);
3523  } else {
3524    VisitRoots<false>(visitor);
3525  }
3526}
3527
3528class VerifyRootVisitor : public SingleRootVisitor {
3529 public:
3530  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3531      OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3532    VerifyObject(root);
3533  }
3534};
3535
3536void Thread::VerifyStackImpl() {
3537  if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
3538    VerifyRootVisitor visitor;
3539    std::unique_ptr<Context> context(Context::Create());
3540    RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3541    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3542    mapper.WalkStack();
3543  }
3544}
3545
3546// Set the stack end to that to be used during a stack overflow
3547void Thread::SetStackEndForStackOverflow() {
3548  // During stack overflow we allow use of the full stack.
3549  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3550    // However, we seem to have already extended to use the full stack.
3551    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3552               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3553    DumpStack(LOG_STREAM(ERROR));
3554    LOG(FATAL) << "Recursive stack overflow.";
3555  }
3556
3557  tlsPtr_.stack_end = tlsPtr_.stack_begin;
3558
3559  // Remove the stack overflow protection if is it set up.
3560  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3561  if (implicit_stack_check) {
3562    if (!UnprotectStack()) {
3563      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3564    }
3565  }
3566}
3567
3568void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3569  DCHECK_LE(start, end);
3570  DCHECK_LE(end, limit);
3571  tlsPtr_.thread_local_start = start;
3572  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
3573  tlsPtr_.thread_local_end = end;
3574  tlsPtr_.thread_local_limit = limit;
3575  tlsPtr_.thread_local_objects = 0;
3576}
3577
3578bool Thread::HasTlab() const {
3579  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3580  if (has_tlab) {
3581    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3582  } else {
3583    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3584  }
3585  return has_tlab;
3586}
3587
3588std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3589  thread.ShortDump(os);
3590  return os;
3591}
3592
3593bool Thread::ProtectStack(bool fatal_on_error) {
3594  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3595  VLOG(threads) << "Protecting stack at " << pregion;
3596  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3597    if (fatal_on_error) {
3598      LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3599          "Reason: "
3600          << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
3601    }
3602    return false;
3603  }
3604  return true;
3605}
3606
3607bool Thread::UnprotectStack() {
3608  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3609  VLOG(threads) << "Unprotecting stack at " << pregion;
3610  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3611}
3612
3613void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3614  CHECK(Dbg::IsDebuggerActive());
3615  CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3616  CHECK(ssc != nullptr);
3617  tlsPtr_.single_step_control = ssc;
3618}
3619
3620void Thread::DeactivateSingleStepControl() {
3621  CHECK(Dbg::IsDebuggerActive());
3622  CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3623  SingleStepControl* ssc = GetSingleStepControl();
3624  tlsPtr_.single_step_control = nullptr;
3625  delete ssc;
3626}
3627
3628void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3629  CHECK(Dbg::IsDebuggerActive());
3630  CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3631  CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3632  CHECK(req != nullptr);
3633  tlsPtr_.debug_invoke_req = req;
3634}
3635
3636void Thread::ClearDebugInvokeReq() {
3637  CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3638  CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3639  DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3640  tlsPtr_.debug_invoke_req = nullptr;
3641  delete req;
3642}
3643
3644void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3645  verifier->link_ = tlsPtr_.method_verifier;
3646  tlsPtr_.method_verifier = verifier;
3647}
3648
3649void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3650  CHECK_EQ(tlsPtr_.method_verifier, verifier);
3651  tlsPtr_.method_verifier = verifier->link_;
3652}
3653
3654size_t Thread::NumberOfHeldMutexes() const {
3655  size_t count = 0;
3656  for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3657    count += mu != nullptr ? 1 : 0;
3658  }
3659  return count;
3660}
3661
3662void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3663  DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3664  ClearException();
3665  ShadowFrame* shadow_frame =
3666      PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3667  ObjPtr<mirror::Throwable> pending_exception;
3668  bool from_code = false;
3669  DeoptimizationMethodType method_type;
3670  PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
3671  SetTopOfStack(nullptr);
3672  SetTopOfShadowStack(shadow_frame);
3673
3674  // Restore the exception that was pending before deoptimization then interpret the
3675  // deoptimized frames.
3676  if (pending_exception != nullptr) {
3677    SetException(pending_exception);
3678  }
3679  interpreter::EnterInterpreterFromDeoptimize(this,
3680                                              shadow_frame,
3681                                              result,
3682                                              from_code,
3683                                              method_type);
3684}
3685
3686void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
3687  CHECK(new_exception != nullptr);
3688  // TODO: DCHECK(!IsExceptionPending());
3689  tlsPtr_.exception = new_exception.Ptr();
3690}
3691
3692bool Thread::IsAotCompiler() {
3693  return Runtime::Current()->IsAotCompiler();
3694}
3695
3696mirror::Object* Thread::GetPeerFromOtherThread() const {
3697  DCHECK(tlsPtr_.jpeer == nullptr);
3698  mirror::Object* peer = tlsPtr_.opeer;
3699  if (kUseReadBarrier && Current()->GetIsGcMarking()) {
3700    // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
3701    // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
3702    // mark/forward it here.
3703    peer = art::ReadBarrier::Mark(peer);
3704  }
3705  return peer;
3706}
3707
3708void Thread::SetReadBarrierEntrypoints() {
3709  // Make sure entrypoints aren't null.
3710  UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
3711}
3712
3713}  // namespace art
3714