thread.cc revision eb1680f0365a5b2dd10dd38982cf716ac6fd8c84
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "thread.h"
18
19#include <pthread.h>
20#include <signal.h>
21#include <sys/resource.h>
22#include <sys/time.h>
23
24#include <algorithm>
25#include <bitset>
26#include <cerrno>
27#include <iostream>
28#include <list>
29#include <sstream>
30
31#include "arch/context.h"
32#include "art_field-inl.h"
33#include "art_method-inl.h"
34#include "base/bit_utils.h"
35#include "base/memory_tool.h"
36#include "base/mutex.h"
37#include "base/timing_logger.h"
38#include "base/to_str.h"
39#include "base/systrace.h"
40#include "class_linker-inl.h"
41#include "debugger.h"
42#include "dex_file-inl.h"
43#include "entrypoints/entrypoint_utils.h"
44#include "entrypoints/quick/quick_alloc_entrypoints.h"
45#include "gc/accounting/card_table-inl.h"
46#include "gc/accounting/heap_bitmap-inl.h"
47#include "gc/allocator/rosalloc.h"
48#include "gc/heap.h"
49#include "gc/space/space-inl.h"
50#include "handle_scope-inl.h"
51#include "indirect_reference_table-inl.h"
52#include "jni_internal.h"
53#include "mirror/class_loader.h"
54#include "mirror/class-inl.h"
55#include "mirror/object_array-inl.h"
56#include "mirror/stack_trace_element.h"
57#include "monitor.h"
58#include "native_stack_dump.h"
59#include "nth_caller_visitor.h"
60#include "oat_quick_method_header.h"
61#include "object_lock.h"
62#include "quick_exception_handler.h"
63#include "quick/quick_method_frame_info.h"
64#include "reflection.h"
65#include "runtime.h"
66#include "scoped_thread_state_change.h"
67#include "ScopedLocalRef.h"
68#include "ScopedUtfChars.h"
69#include "stack.h"
70#include "stack_map.h"
71#include "thread_list.h"
72#include "thread-inl.h"
73#include "utils.h"
74#include "verifier/method_verifier.h"
75#include "verify_object-inl.h"
76#include "well_known_classes.h"
77#include "interpreter/interpreter.h"
78
79#if ART_USE_FUTEXES
80#include "linux/futex.h"
81#include "sys/syscall.h"
82#ifndef SYS_futex
83#define SYS_futex __NR_futex
84#endif
85#endif  // ART_USE_FUTEXES
86
87namespace art {
88
89extern "C" NO_RETURN void artDeoptimize(Thread* self);
90
91bool Thread::is_started_ = false;
92pthread_key_t Thread::pthread_key_self_;
93ConditionVariable* Thread::resume_cond_ = nullptr;
94const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
95bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
96Thread* Thread::jit_sensitive_thread_ = nullptr;
97
98static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
99
100// For implicit overflow checks we reserve an extra piece of memory at the bottom
101// of the stack (lowest memory).  The higher portion of the memory
102// is protected against reads and the lower is available for use while
103// throwing the StackOverflow exception.
104constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
105
106static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
107
108void Thread::InitCardTable() {
109  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
110}
111
112static void UnimplementedEntryPoint() {
113  UNIMPLEMENTED(FATAL);
114}
115
116void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
117
118void Thread::InitTlsEntryPoints() {
119  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
120  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
121  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
122      sizeof(tlsPtr_.quick_entrypoints));
123  for (uintptr_t* it = begin; it != end; ++it) {
124    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
125  }
126  InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
127}
128
129void Thread::InitStringEntryPoints() {
130  ScopedObjectAccess soa(this);
131  QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
132  qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
133      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
134  qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
135      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
136  qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
137      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
138  qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
139      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
140  qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
141      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
142  qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
143      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
144  qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
145      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
146  qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
147      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
148  qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
149      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
150  qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
151      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
152  qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
153      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
154  qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
155      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
156  qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
157      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
158  qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
159      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
160  qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
161      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
162  qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
163      soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
164}
165
166void Thread::ResetQuickAllocEntryPointsForThread() {
167  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
168}
169
170class DeoptimizationContextRecord {
171 public:
172  DeoptimizationContextRecord(const JValue& ret_val,
173                              bool is_reference,
174                              bool from_code,
175                              mirror::Throwable* pending_exception,
176                              DeoptimizationContextRecord* link)
177      : ret_val_(ret_val),
178        is_reference_(is_reference),
179        from_code_(from_code),
180        pending_exception_(pending_exception),
181        link_(link) {}
182
183  JValue GetReturnValue() const { return ret_val_; }
184  bool IsReference() const { return is_reference_; }
185  bool GetFromCode() const { return from_code_; }
186  mirror::Throwable* GetPendingException() const { return pending_exception_; }
187  DeoptimizationContextRecord* GetLink() const { return link_; }
188  mirror::Object** GetReturnValueAsGCRoot() {
189    DCHECK(is_reference_);
190    return ret_val_.GetGCRoot();
191  }
192  mirror::Object** GetPendingExceptionAsGCRoot() {
193    return reinterpret_cast<mirror::Object**>(&pending_exception_);
194  }
195
196 private:
197  // The value returned by the method at the top of the stack before deoptimization.
198  JValue ret_val_;
199
200  // Indicates whether the returned value is a reference. If so, the GC will visit it.
201  const bool is_reference_;
202
203  // Whether the context was created from an explicit deoptimization in the code.
204  const bool from_code_;
205
206  // The exception that was pending before deoptimization (or null if there was no pending
207  // exception).
208  mirror::Throwable* pending_exception_;
209
210  // A link to the previous DeoptimizationContextRecord.
211  DeoptimizationContextRecord* const link_;
212
213  DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
214};
215
216class StackedShadowFrameRecord {
217 public:
218  StackedShadowFrameRecord(ShadowFrame* shadow_frame,
219                           StackedShadowFrameType type,
220                           StackedShadowFrameRecord* link)
221      : shadow_frame_(shadow_frame),
222        type_(type),
223        link_(link) {}
224
225  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
226  StackedShadowFrameType GetType() const { return type_; }
227  StackedShadowFrameRecord* GetLink() const { return link_; }
228
229 private:
230  ShadowFrame* const shadow_frame_;
231  const StackedShadowFrameType type_;
232  StackedShadowFrameRecord* const link_;
233
234  DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
235};
236
237void Thread::PushDeoptimizationContext(const JValue& return_value,
238                                       bool is_reference,
239                                       bool from_code,
240                                       mirror::Throwable* exception) {
241  DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
242      return_value,
243      is_reference,
244      from_code,
245      exception,
246      tlsPtr_.deoptimization_context_stack);
247  tlsPtr_.deoptimization_context_stack = record;
248}
249
250void Thread::PopDeoptimizationContext(JValue* result,
251                                      mirror::Throwable** exception,
252                                      bool* from_code) {
253  AssertHasDeoptimizationContext();
254  DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
255  tlsPtr_.deoptimization_context_stack = record->GetLink();
256  result->SetJ(record->GetReturnValue().GetJ());
257  *exception = record->GetPendingException();
258  *from_code = record->GetFromCode();
259  delete record;
260}
261
262void Thread::AssertHasDeoptimizationContext() {
263  CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
264      << "No deoptimization context for thread " << *this;
265}
266
267void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
268  StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
269      sf, type, tlsPtr_.stacked_shadow_frame_record);
270  tlsPtr_.stacked_shadow_frame_record = record;
271}
272
273ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
274  StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
275  if (must_be_present) {
276    DCHECK(record != nullptr);
277  } else {
278    if (record == nullptr || record->GetType() != type) {
279      return nullptr;
280    }
281  }
282  tlsPtr_.stacked_shadow_frame_record = record->GetLink();
283  ShadowFrame* shadow_frame = record->GetShadowFrame();
284  delete record;
285  return shadow_frame;
286}
287
288class FrameIdToShadowFrame {
289 public:
290  static FrameIdToShadowFrame* Create(size_t frame_id,
291                                      ShadowFrame* shadow_frame,
292                                      FrameIdToShadowFrame* next,
293                                      size_t num_vregs) {
294    // Append a bool array at the end to keep track of what vregs are updated by the debugger.
295    uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
296    return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
297  }
298
299  static void Delete(FrameIdToShadowFrame* f) {
300    uint8_t* memory = reinterpret_cast<uint8_t*>(f);
301    delete[] memory;
302  }
303
304  size_t GetFrameId() const { return frame_id_; }
305  ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
306  FrameIdToShadowFrame* GetNext() const { return next_; }
307  void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
308  bool* GetUpdatedVRegFlags() {
309    return updated_vreg_flags_;
310  }
311
312 private:
313  FrameIdToShadowFrame(size_t frame_id,
314                       ShadowFrame* shadow_frame,
315                       FrameIdToShadowFrame* next)
316      : frame_id_(frame_id),
317        shadow_frame_(shadow_frame),
318        next_(next) {}
319
320  const size_t frame_id_;
321  ShadowFrame* const shadow_frame_;
322  FrameIdToShadowFrame* next_;
323  bool updated_vreg_flags_[0];
324
325  DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
326};
327
328static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
329                                                      size_t frame_id) {
330  FrameIdToShadowFrame* found = nullptr;
331  for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
332    if (record->GetFrameId() == frame_id) {
333      if (kIsDebugBuild) {
334        // Sanity check we have at most one record for this frame.
335        CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
336        found = record;
337      } else {
338        return record;
339      }
340    }
341  }
342  return found;
343}
344
345ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
346  FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
347      tlsPtr_.frame_id_to_shadow_frame, frame_id);
348  if (record != nullptr) {
349    return record->GetShadowFrame();
350  }
351  return nullptr;
352}
353
354// Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
355bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
356  FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
357      tlsPtr_.frame_id_to_shadow_frame, frame_id);
358  CHECK(record != nullptr);
359  return record->GetUpdatedVRegFlags();
360}
361
362ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
363                                                     uint32_t num_vregs,
364                                                     ArtMethod* method,
365                                                     uint32_t dex_pc) {
366  ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
367  if (shadow_frame != nullptr) {
368    return shadow_frame;
369  }
370  VLOG(deopt) << "Create pre-deopted ShadowFrame for " << PrettyMethod(method);
371  shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
372  FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
373                                                              shadow_frame,
374                                                              tlsPtr_.frame_id_to_shadow_frame,
375                                                              num_vregs);
376  for (uint32_t i = 0; i < num_vregs; i++) {
377    // Do this to clear all references for root visitors.
378    shadow_frame->SetVRegReference(i, nullptr);
379    // This flag will be changed to true if the debugger modifies the value.
380    record->GetUpdatedVRegFlags()[i] = false;
381  }
382  tlsPtr_.frame_id_to_shadow_frame = record;
383  return shadow_frame;
384}
385
386void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
387  FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
388  if (head->GetFrameId() == frame_id) {
389    tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
390    FrameIdToShadowFrame::Delete(head);
391    return;
392  }
393  FrameIdToShadowFrame* prev = head;
394  for (FrameIdToShadowFrame* record = head->GetNext();
395       record != nullptr;
396       prev = record, record = record->GetNext()) {
397    if (record->GetFrameId() == frame_id) {
398      prev->SetNext(record->GetNext());
399      FrameIdToShadowFrame::Delete(record);
400      return;
401    }
402  }
403  LOG(FATAL) << "No shadow frame for frame " << frame_id;
404  UNREACHABLE();
405}
406
407void Thread::InitTid() {
408  tls32_.tid = ::art::GetTid();
409}
410
411void Thread::InitAfterFork() {
412  // One thread (us) survived the fork, but we have a new tid so we need to
413  // update the value stashed in this Thread*.
414  InitTid();
415}
416
417void* Thread::CreateCallback(void* arg) {
418  Thread* self = reinterpret_cast<Thread*>(arg);
419  Runtime* runtime = Runtime::Current();
420  if (runtime == nullptr) {
421    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
422    return nullptr;
423  }
424  {
425    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
426    //       after self->Init().
427    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
428    // Check that if we got here we cannot be shutting down (as shutdown should never have started
429    // while threads are being born).
430    CHECK(!runtime->IsShuttingDownLocked());
431    // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
432    //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
433    //       the runtime in such a case. In case this ever changes, we need to make sure here to
434    //       delete the tmp_jni_env, as we own it at this point.
435    CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
436    self->tlsPtr_.tmp_jni_env = nullptr;
437    Runtime::Current()->EndThreadBirth();
438  }
439  {
440    ScopedObjectAccess soa(self);
441    self->InitStringEntryPoints();
442
443    // Copy peer into self, deleting global reference when done.
444    CHECK(self->tlsPtr_.jpeer != nullptr);
445    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
446    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
447    self->tlsPtr_.jpeer = nullptr;
448    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
449
450    ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
451    self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
452    Dbg::PostThreadStart(self);
453
454    // Invoke the 'run' method of our java.lang.Thread.
455    mirror::Object* receiver = self->tlsPtr_.opeer;
456    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
457    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
458    InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
459  }
460  // Detach and delete self.
461  Runtime::Current()->GetThreadList()->Unregister(self);
462
463  return nullptr;
464}
465
466Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
467                                  mirror::Object* thread_peer) {
468  ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
469  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
470  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
471  // to stop it from going away.
472  if (kIsDebugBuild) {
473    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
474    if (result != nullptr && !result->IsSuspended()) {
475      Locks::thread_list_lock_->AssertHeld(soa.Self());
476    }
477  }
478  return result;
479}
480
481Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
482                                  jobject java_thread) {
483  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
484}
485
486static size_t FixStackSize(size_t stack_size) {
487  // A stack size of zero means "use the default".
488  if (stack_size == 0) {
489    stack_size = Runtime::Current()->GetDefaultStackSize();
490  }
491
492  // Dalvik used the bionic pthread default stack size for native threads,
493  // so include that here to support apps that expect large native stacks.
494  stack_size += 1 * MB;
495
496  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
497  if (stack_size < PTHREAD_STACK_MIN) {
498    stack_size = PTHREAD_STACK_MIN;
499  }
500
501  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
502    // It's likely that callers are trying to ensure they have at least a certain amount of
503    // stack space, so we should add our reserved space on top of what they requested, rather
504    // than implicitly take it away from them.
505    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
506  } else {
507    // If we are going to use implicit stack checks, allocate space for the protected
508    // region at the bottom of the stack.
509    stack_size += Thread::kStackOverflowImplicitCheckSize +
510        GetStackOverflowReservedBytes(kRuntimeISA);
511  }
512
513  // Some systems require the stack size to be a multiple of the system page size, so round up.
514  stack_size = RoundUp(stack_size, kPageSize);
515
516  return stack_size;
517}
518
519// Return the nearest page-aligned address below the current stack top.
520NO_INLINE
521static uint8_t* FindStackTop() {
522  return reinterpret_cast<uint8_t*>(
523      AlignDown(__builtin_frame_address(0), kPageSize));
524}
525
526// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
527// overflow is detected.  It is located right below the stack_begin_.
528ATTRIBUTE_NO_SANITIZE_ADDRESS
529void Thread::InstallImplicitProtection() {
530  uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
531  // Page containing current top of stack.
532  uint8_t* stack_top = FindStackTop();
533
534  // Try to directly protect the stack.
535  VLOG(threads) << "installing stack protected region at " << std::hex <<
536        static_cast<void*>(pregion) << " to " <<
537        static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
538  if (ProtectStack(/* fatal_on_error */ false)) {
539    // Tell the kernel that we won't be needing these pages any more.
540    // NB. madvise will probably write zeroes into the memory (on linux it does).
541    uint32_t unwanted_size = stack_top - pregion - kPageSize;
542    madvise(pregion, unwanted_size, MADV_DONTNEED);
543    return;
544  }
545
546  // There is a little complexity here that deserves a special mention.  On some
547  // architectures, the stack is created using a VM_GROWSDOWN flag
548  // to prevent memory being allocated when it's not needed.  This flag makes the
549  // kernel only allocate memory for the stack by growing down in memory.  Because we
550  // want to put an mprotected region far away from that at the stack top, we need
551  // to make sure the pages for the stack are mapped in before we call mprotect.
552  //
553  // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
554  // with a non-mapped stack (usually only the main thread).
555  //
556  // We map in the stack by reading every page from the stack bottom (highest address)
557  // to the stack top. (We then madvise this away.) This must be done by reading from the
558  // current stack pointer downwards. Any access more than a page below the current SP
559  // might cause a segv.
560  // TODO: This comment may be out of date. It seems possible to speed this up. As
561  //       this is normally done once in the zygote on startup, ignore for now.
562  //
563  // AddressSanitizer does not like the part of this functions that reads every stack page.
564  // Looks a lot like an out-of-bounds access.
565
566  // (Defensively) first remove the protection on the protected region as will want to read
567  // and write it. Ignore errors.
568  UnprotectStack();
569
570  VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
571      static_cast<void*>(pregion);
572
573  // Read every page from the high address to the low.
574  volatile uint8_t dont_optimize_this;
575  UNUSED(dont_optimize_this);
576  for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
577    dont_optimize_this = *p;
578  }
579
580  VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
581      static_cast<void*>(pregion) << " to " <<
582      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
583
584  // Protect the bottom of the stack to prevent read/write to it.
585  ProtectStack(/* fatal_on_error */ true);
586
587  // Tell the kernel that we won't be needing these pages any more.
588  // NB. madvise will probably write zeroes into the memory (on linux it does).
589  uint32_t unwanted_size = stack_top - pregion - kPageSize;
590  madvise(pregion, unwanted_size, MADV_DONTNEED);
591}
592
593void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
594  CHECK(java_peer != nullptr);
595  Thread* self = static_cast<JNIEnvExt*>(env)->self;
596
597  if (VLOG_IS_ON(threads)) {
598    ScopedObjectAccess soa(env);
599
600    ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
601    mirror::String* java_name = reinterpret_cast<mirror::String*>(f->GetObject(
602        soa.Decode<mirror::Object*>(java_peer)));
603    std::string thread_name;
604    if (java_name != nullptr) {
605      thread_name = java_name->ToModifiedUtf8();
606    } else {
607      thread_name = "(Unnamed)";
608    }
609
610    VLOG(threads) << "Creating native thread for " << thread_name;
611    self->Dump(LOG(INFO));
612  }
613
614  Runtime* runtime = Runtime::Current();
615
616  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
617  bool thread_start_during_shutdown = false;
618  {
619    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
620    if (runtime->IsShuttingDownLocked()) {
621      thread_start_during_shutdown = true;
622    } else {
623      runtime->StartThreadBirth();
624    }
625  }
626  if (thread_start_during_shutdown) {
627    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
628    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
629    return;
630  }
631
632  Thread* child_thread = new Thread(is_daemon);
633  // Use global JNI ref to hold peer live while child thread starts.
634  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
635  stack_size = FixStackSize(stack_size);
636
637  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
638  // assign it.
639  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
640                    reinterpret_cast<jlong>(child_thread));
641
642  // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
643  // do not have a good way to report this on the child's side.
644  std::unique_ptr<JNIEnvExt> child_jni_env_ext(
645      JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));
646
647  int pthread_create_result = 0;
648  if (child_jni_env_ext.get() != nullptr) {
649    pthread_t new_pthread;
650    pthread_attr_t attr;
651    child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
652    CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
653    CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
654                       "PTHREAD_CREATE_DETACHED");
655    CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
656    pthread_create_result = pthread_create(&new_pthread,
657                                           &attr,
658                                           Thread::CreateCallback,
659                                           child_thread);
660    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
661
662    if (pthread_create_result == 0) {
663      // pthread_create started the new thread. The child is now responsible for managing the
664      // JNIEnvExt we created.
665      // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
666      //       between the threads.
667      child_jni_env_ext.release();
668      return;
669    }
670  }
671
672  // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
673  {
674    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
675    runtime->EndThreadBirth();
676  }
677  // Manually delete the global reference since Thread::Init will not have been run.
678  env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
679  child_thread->tlsPtr_.jpeer = nullptr;
680  delete child_thread;
681  child_thread = nullptr;
682  // TODO: remove from thread group?
683  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
684  {
685    std::string msg(child_jni_env_ext.get() == nullptr ?
686        "Could not allocate JNI Env" :
687        StringPrintf("pthread_create (%s stack) failed: %s",
688                                 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
689    ScopedObjectAccess soa(env);
690    soa.Self()->ThrowOutOfMemoryError(msg.c_str());
691  }
692}
693
694bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
695  // This function does all the initialization that must be run by the native thread it applies to.
696  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
697  // we can handshake with the corresponding native thread when it's ready.) Check this native
698  // thread hasn't been through here already...
699  CHECK(Thread::Current() == nullptr);
700
701  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
702  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
703  tlsPtr_.pthread_self = pthread_self();
704  CHECK(is_started_);
705
706  SetUpAlternateSignalStack();
707  if (!InitStackHwm()) {
708    return false;
709  }
710  InitCpu();
711  InitTlsEntryPoints();
712  RemoveSuspendTrigger();
713  InitCardTable();
714  InitTid();
715  interpreter::InitInterpreterTls(this);
716
717#ifdef ART_TARGET_ANDROID
718  __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
719#else
720  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
721#endif
722  DCHECK_EQ(Thread::Current(), this);
723
724  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
725
726  if (jni_env_ext != nullptr) {
727    DCHECK_EQ(jni_env_ext->vm, java_vm);
728    DCHECK_EQ(jni_env_ext->self, this);
729    tlsPtr_.jni_env = jni_env_ext;
730  } else {
731    tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
732    if (tlsPtr_.jni_env == nullptr) {
733      return false;
734    }
735  }
736
737  thread_list->Register(this);
738  return true;
739}
740
741Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
742                       bool create_peer) {
743  Runtime* runtime = Runtime::Current();
744  if (runtime == nullptr) {
745    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
746    return nullptr;
747  }
748  Thread* self;
749  {
750    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
751    if (runtime->IsShuttingDownLocked()) {
752      LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
753      return nullptr;
754    } else {
755      Runtime::Current()->StartThreadBirth();
756      self = new Thread(as_daemon);
757      bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
758      Runtime::Current()->EndThreadBirth();
759      if (!init_success) {
760        delete self;
761        return nullptr;
762      }
763    }
764  }
765
766  self->InitStringEntryPoints();
767
768  CHECK_NE(self->GetState(), kRunnable);
769  self->SetState(kNative);
770
771  // If we're the main thread, ClassLinker won't be created until after we're attached,
772  // so that thread needs a two-stage attach. Regular threads don't need this hack.
773  // In the compiler, all threads need this hack, because no-one's going to be getting
774  // a native peer!
775  if (create_peer) {
776    self->CreatePeer(thread_name, as_daemon, thread_group);
777    if (self->IsExceptionPending()) {
778      // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
779      {
780        ScopedObjectAccess soa(self);
781        LOG(ERROR) << "Exception creating thread peer:";
782        LOG(ERROR) << self->GetException()->Dump();
783        self->ClearException();
784      }
785      runtime->GetThreadList()->Unregister(self);
786      // Unregister deletes self, no need to do this here.
787      return nullptr;
788    }
789  } else {
790    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
791    if (thread_name != nullptr) {
792      self->tlsPtr_.name->assign(thread_name);
793      ::art::SetThreadName(thread_name);
794    } else if (self->GetJniEnv()->check_jni) {
795      LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
796    }
797  }
798
799  if (VLOG_IS_ON(threads)) {
800    if (thread_name != nullptr) {
801      VLOG(threads) << "Attaching thread " << thread_name;
802    } else {
803      VLOG(threads) << "Attaching unnamed thread.";
804    }
805    ScopedObjectAccess soa(self);
806    self->Dump(LOG(INFO));
807  }
808
809  {
810    ScopedObjectAccess soa(self);
811    Dbg::PostThreadStart(self);
812  }
813
814  return self;
815}
816
817void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
818  Runtime* runtime = Runtime::Current();
819  CHECK(runtime->IsStarted());
820  JNIEnv* env = tlsPtr_.jni_env;
821
822  if (thread_group == nullptr) {
823    thread_group = runtime->GetMainThreadGroup();
824  }
825  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
826  // Add missing null check in case of OOM b/18297817
827  if (name != nullptr && thread_name.get() == nullptr) {
828    CHECK(IsExceptionPending());
829    return;
830  }
831  jint thread_priority = GetNativePriority();
832  jboolean thread_is_daemon = as_daemon;
833
834  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
835  if (peer.get() == nullptr) {
836    CHECK(IsExceptionPending());
837    return;
838  }
839  {
840    ScopedObjectAccess soa(this);
841    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
842  }
843  env->CallNonvirtualVoidMethod(peer.get(),
844                                WellKnownClasses::java_lang_Thread,
845                                WellKnownClasses::java_lang_Thread_init,
846                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
847  if (IsExceptionPending()) {
848    return;
849  }
850
851  Thread* self = this;
852  DCHECK_EQ(self, Thread::Current());
853  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
854                    reinterpret_cast<jlong>(self));
855
856  ScopedObjectAccess soa(self);
857  StackHandleScope<1> hs(self);
858  MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
859  if (peer_thread_name.Get() == nullptr) {
860    // The Thread constructor should have set the Thread.name to a
861    // non-null value. However, because we can run without code
862    // available (in the compiler, in tests), we manually assign the
863    // fields the constructor should have set.
864    if (runtime->IsActiveTransaction()) {
865      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
866    } else {
867      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
868    }
869    peer_thread_name.Assign(GetThreadName(soa));
870  }
871  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
872  if (peer_thread_name.Get() != nullptr) {
873    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
874  }
875}
876
877template<bool kTransactionActive>
878void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
879                      jobject thread_name, jint thread_priority) {
880  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
881      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
882  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
883      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
884  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
885      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
886  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
887      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
888}
889
890void Thread::SetThreadName(const char* name) {
891  tlsPtr_.name->assign(name);
892  ::art::SetThreadName(name);
893  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
894}
895
896bool Thread::InitStackHwm() {
897  void* read_stack_base;
898  size_t read_stack_size;
899  size_t read_guard_size;
900  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
901
902  tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
903  tlsPtr_.stack_size = read_stack_size;
904
905  // The minimum stack size we can cope with is the overflow reserved bytes (typically
906  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
907  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
908  // between 8K and 12K.
909  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
910    + 4 * KB;
911  if (read_stack_size <= min_stack) {
912    // Note, as we know the stack is small, avoid operations that could use a lot of stack.
913    LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
914                                "Attempt to attach a thread with a too-small stack");
915    return false;
916  }
917
918  // This is included in the SIGQUIT output, but it's useful here for thread debugging.
919  VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
920                                read_stack_base,
921                                PrettySize(read_stack_size).c_str(),
922                                PrettySize(read_guard_size).c_str());
923
924  // Set stack_end_ to the bottom of the stack saving space of stack overflows
925
926  Runtime* runtime = Runtime::Current();
927  bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
928
929  // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
930  // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
931  // stack_begin to 0.
932  const bool valgrind_on_arm =
933      (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
934      kMemoryToolIsValgrind &&
935      RUNNING_ON_MEMORY_TOOL != 0;
936  if (valgrind_on_arm) {
937    tlsPtr_.stack_begin = nullptr;
938  }
939
940  ResetDefaultStackEnd();
941
942  // Install the protected region if we are doing implicit overflow checks.
943  if (implicit_stack_check && !valgrind_on_arm) {
944    // The thread might have protected region at the bottom.  We need
945    // to install our own region so we need to move the limits
946    // of the stack to make room for it.
947
948    tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
949    tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
950    tlsPtr_.stack_size -= read_guard_size;
951
952    InstallImplicitProtection();
953  }
954
955  // Sanity check.
956  CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
957
958  return true;
959}
960
961void Thread::ShortDump(std::ostream& os) const {
962  os << "Thread[";
963  if (GetThreadId() != 0) {
964    // If we're in kStarting, we won't have a thin lock id or tid yet.
965    os << GetThreadId()
966       << ",tid=" << GetTid() << ',';
967  }
968  os << GetState()
969     << ",Thread*=" << this
970     << ",peer=" << tlsPtr_.opeer
971     << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
972     << "]";
973}
974
975void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map) const {
976  DumpState(os);
977  DumpStack(os, dump_native_stack, backtrace_map);
978}
979
980mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
981  ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
982  return (tlsPtr_.opeer != nullptr) ?
983      reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
984}
985
986void Thread::GetThreadName(std::string& name) const {
987  name.assign(*tlsPtr_.name);
988}
989
990uint64_t Thread::GetCpuMicroTime() const {
991#if defined(__linux__)
992  clockid_t cpu_clock_id;
993  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
994  timespec now;
995  clock_gettime(cpu_clock_id, &now);
996  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
997#else  // __APPLE__
998  UNIMPLEMENTED(WARNING);
999  return -1;
1000#endif
1001}
1002
1003// Attempt to rectify locks so that we dump thread list with required locks before exiting.
1004static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1005  LOG(ERROR) << *thread << " suspend count already zero.";
1006  Locks::thread_suspend_count_lock_->Unlock(self);
1007  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1008    Locks::mutator_lock_->SharedTryLock(self);
1009    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1010      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1011    }
1012  }
1013  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1014    Locks::thread_list_lock_->TryLock(self);
1015    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1016      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1017    }
1018  }
1019  std::ostringstream ss;
1020  Runtime::Current()->GetThreadList()->Dump(ss);
1021  LOG(FATAL) << ss.str();
1022}
1023
1024bool Thread::ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier,
1025                                bool for_debugger) {
1026  if (kIsDebugBuild) {
1027    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1028          << delta << " " << tls32_.debug_suspend_count << " " << this;
1029    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1030    Locks::thread_suspend_count_lock_->AssertHeld(self);
1031    if (this != self && !IsSuspended()) {
1032      Locks::thread_list_lock_->AssertHeld(self);
1033    }
1034  }
1035  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1036    UnsafeLogFatalForSuspendCount(self, this);
1037    return false;
1038  }
1039
1040  uint16_t flags = kSuspendRequest;
1041  if (delta > 0 && suspend_barrier != nullptr) {
1042    uint32_t available_barrier = kMaxSuspendBarriers;
1043    for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1044      if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1045        available_barrier = i;
1046        break;
1047      }
1048    }
1049    if (available_barrier == kMaxSuspendBarriers) {
1050      // No barrier spaces available, we can't add another.
1051      return false;
1052    }
1053    tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1054    flags |= kActiveSuspendBarrier;
1055  }
1056
1057  tls32_.suspend_count += delta;
1058  if (for_debugger) {
1059    tls32_.debug_suspend_count += delta;
1060  }
1061
1062  if (tls32_.suspend_count == 0) {
1063    AtomicClearFlag(kSuspendRequest);
1064  } else {
1065    // Two bits might be set simultaneously.
1066    tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1067    TriggerSuspend();
1068  }
1069  return true;
1070}
1071
1072bool Thread::PassActiveSuspendBarriers(Thread* self) {
1073  // Grab the suspend_count lock and copy the current set of
1074  // barriers. Then clear the list and the flag. The ModifySuspendCount
1075  // function requires the lock so we prevent a race between setting
1076  // the kActiveSuspendBarrier flag and clearing it.
1077  AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1078  {
1079    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1080    if (!ReadFlag(kActiveSuspendBarrier)) {
1081      // quick exit test: the barriers have already been claimed - this is
1082      // possible as there may be a race to claim and it doesn't matter
1083      // who wins.
1084      // All of the callers of this function (except the SuspendAllInternal)
1085      // will first test the kActiveSuspendBarrier flag without lock. Here
1086      // double-check whether the barrier has been passed with the
1087      // suspend_count lock.
1088      return false;
1089    }
1090
1091    for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1092      pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1093      tlsPtr_.active_suspend_barriers[i] = nullptr;
1094    }
1095    AtomicClearFlag(kActiveSuspendBarrier);
1096  }
1097
1098  uint32_t barrier_count = 0;
1099  for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1100    AtomicInteger* pending_threads = pass_barriers[i];
1101    if (pending_threads != nullptr) {
1102      bool done = false;
1103      do {
1104        int32_t cur_val = pending_threads->LoadRelaxed();
1105        CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1106        // Reduce value by 1.
1107        done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1108#if ART_USE_FUTEXES
1109        if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1110          futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1111        }
1112#endif
1113      } while (!done);
1114      ++barrier_count;
1115    }
1116  }
1117  CHECK_GT(barrier_count, 0U);
1118  return true;
1119}
1120
1121void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1122  CHECK(ReadFlag(kActiveSuspendBarrier));
1123  bool clear_flag = true;
1124  for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1125    AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1126    if (ptr == target) {
1127      tlsPtr_.active_suspend_barriers[i] = nullptr;
1128    } else if (ptr != nullptr) {
1129      clear_flag = false;
1130    }
1131  }
1132  if (LIKELY(clear_flag)) {
1133    AtomicClearFlag(kActiveSuspendBarrier);
1134  }
1135}
1136
1137void Thread::RunCheckpointFunction() {
1138  bool done = false;
1139  do {
1140    // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
1141    // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
1142    // to prevent a race between setting the kCheckpointRequest flag and clearing it.
1143    Closure* checkpoint = nullptr;
1144    {
1145      MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1146      if (tlsPtr_.checkpoint_function != nullptr) {
1147        checkpoint = tlsPtr_.checkpoint_function;
1148        if (!checkpoint_overflow_.empty()) {
1149          // Overflow list not empty, copy the first one out and continue.
1150          tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1151          checkpoint_overflow_.pop_front();
1152        } else {
1153          // No overflow checkpoints, this means that we are on the last pending checkpoint.
1154          tlsPtr_.checkpoint_function = nullptr;
1155          AtomicClearFlag(kCheckpointRequest);
1156          done = true;
1157        }
1158      } else {
1159        LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
1160      }
1161    }
1162
1163    // Outside the lock, run the checkpoint functions that we collected.
1164    ScopedTrace trace("Run checkpoint function");
1165    DCHECK(checkpoint != nullptr);
1166    checkpoint->Run(this);
1167  } while (!done);
1168}
1169
1170bool Thread::RequestCheckpoint(Closure* function) {
1171  union StateAndFlags old_state_and_flags;
1172  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1173  if (old_state_and_flags.as_struct.state != kRunnable) {
1174    return false;  // Fail, thread is suspended and so can't run a checkpoint.
1175  }
1176
1177  // We must be runnable to request a checkpoint.
1178  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1179  union StateAndFlags new_state_and_flags;
1180  new_state_and_flags.as_int = old_state_and_flags.as_int;
1181  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1182  bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1183      old_state_and_flags.as_int, new_state_and_flags.as_int);
1184  if (success) {
1185    // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1186    if (tlsPtr_.checkpoint_function == nullptr) {
1187      tlsPtr_.checkpoint_function = function;
1188    } else {
1189      checkpoint_overflow_.push_back(function);
1190    }
1191    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1192    TriggerSuspend();
1193  }
1194  return success;
1195}
1196
1197Closure* Thread::GetFlipFunction() {
1198  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1199  Closure* func;
1200  do {
1201    func = atomic_func->LoadRelaxed();
1202    if (func == nullptr) {
1203      return nullptr;
1204    }
1205  } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1206  DCHECK(func != nullptr);
1207  return func;
1208}
1209
1210void Thread::SetFlipFunction(Closure* function) {
1211  CHECK(function != nullptr);
1212  Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1213  atomic_func->StoreSequentiallyConsistent(function);
1214}
1215
1216void Thread::FullSuspendCheck() {
1217  ScopedTrace trace(__FUNCTION__);
1218  VLOG(threads) << this << " self-suspending";
1219  // Make thread appear suspended to other threads, release mutator_lock_.
1220  // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1221  ScopedThreadSuspension(this, kSuspended);
1222  VLOG(threads) << this << " self-reviving";
1223}
1224
1225void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1226  std::string group_name;
1227  int priority;
1228  bool is_daemon = false;
1229  Thread* self = Thread::Current();
1230
1231  // If flip_function is not null, it means we have run a checkpoint
1232  // before the thread wakes up to execute the flip function and the
1233  // thread roots haven't been forwarded.  So the following access to
1234  // the roots (opeer or methods in the frames) would be bad. Run it
1235  // here. TODO: clean up.
1236  if (thread != nullptr) {
1237    ScopedObjectAccessUnchecked soa(self);
1238    Thread* this_thread = const_cast<Thread*>(thread);
1239    Closure* flip_func = this_thread->GetFlipFunction();
1240    if (flip_func != nullptr) {
1241      flip_func->Run(this_thread);
1242    }
1243  }
1244
1245  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1246  // cause ScopedObjectAccessUnchecked to deadlock.
1247  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1248    ScopedObjectAccessUnchecked soa(self);
1249    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
1250        ->GetInt(thread->tlsPtr_.opeer);
1251    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
1252        ->GetBoolean(thread->tlsPtr_.opeer);
1253
1254    mirror::Object* thread_group =
1255        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
1256
1257    if (thread_group != nullptr) {
1258      ArtField* group_name_field =
1259          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
1260      mirror::String* group_name_string =
1261          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
1262      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1263    }
1264  } else {
1265    priority = GetNativePriority();
1266  }
1267
1268  std::string scheduler_group_name(GetSchedulerGroupName(tid));
1269  if (scheduler_group_name.empty()) {
1270    scheduler_group_name = "default";
1271  }
1272
1273  if (thread != nullptr) {
1274    os << '"' << *thread->tlsPtr_.name << '"';
1275    if (is_daemon) {
1276      os << " daemon";
1277    }
1278    os << " prio=" << priority
1279       << " tid=" << thread->GetThreadId()
1280       << " " << thread->GetState();
1281    if (thread->IsStillStarting()) {
1282      os << " (still starting up)";
1283    }
1284    os << "\n";
1285  } else {
1286    os << '"' << ::art::GetThreadName(tid) << '"'
1287       << " prio=" << priority
1288       << " (not attached)\n";
1289  }
1290
1291  if (thread != nullptr) {
1292    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1293    os << "  | group=\"" << group_name << "\""
1294       << " sCount=" << thread->tls32_.suspend_count
1295       << " dsCount=" << thread->tls32_.debug_suspend_count
1296       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1297       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1298  }
1299
1300  os << "  | sysTid=" << tid
1301     << " nice=" << getpriority(PRIO_PROCESS, tid)
1302     << " cgrp=" << scheduler_group_name;
1303  if (thread != nullptr) {
1304    int policy;
1305    sched_param sp;
1306    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1307                       __FUNCTION__);
1308    os << " sched=" << policy << "/" << sp.sched_priority
1309       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1310  }
1311  os << "\n";
1312
1313  // Grab the scheduler stats for this thread.
1314  std::string scheduler_stats;
1315  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1316    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1317  } else {
1318    scheduler_stats = "0 0 0";
1319  }
1320
1321  char native_thread_state = '?';
1322  int utime = 0;
1323  int stime = 0;
1324  int task_cpu = 0;
1325  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1326
1327  os << "  | state=" << native_thread_state
1328     << " schedstat=( " << scheduler_stats << " )"
1329     << " utm=" << utime
1330     << " stm=" << stime
1331     << " core=" << task_cpu
1332     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1333  if (thread != nullptr) {
1334    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1335        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1336        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1337    // Dump the held mutexes.
1338    os << "  | held mutexes=";
1339    for (size_t i = 0; i < kLockLevelCount; ++i) {
1340      if (i != kMonitorLock) {
1341        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1342        if (mutex != nullptr) {
1343          os << " \"" << mutex->GetName() << "\"";
1344          if (mutex->IsReaderWriterMutex()) {
1345            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1346            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1347              os << "(exclusive held)";
1348            } else {
1349              os << "(shared held)";
1350            }
1351          }
1352        }
1353      }
1354    }
1355    os << "\n";
1356  }
1357}
1358
1359void Thread::DumpState(std::ostream& os) const {
1360  Thread::DumpState(os, this, GetTid());
1361}
1362
1363struct StackDumpVisitor : public StackVisitor {
1364  StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
1365      REQUIRES_SHARED(Locks::mutator_lock_)
1366      : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1367        os(os_in),
1368        can_allocate(can_allocate_in),
1369        last_method(nullptr),
1370        last_line_number(0),
1371        repetition_count(0),
1372        frame_count(0) {}
1373
1374  virtual ~StackDumpVisitor() {
1375    if (frame_count == 0) {
1376      os << "  (no managed stack frames)\n";
1377    }
1378  }
1379
1380  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1381    ArtMethod* m = GetMethod();
1382    if (m->IsRuntimeMethod()) {
1383      return true;
1384    }
1385    m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1386    const int kMaxRepetition = 3;
1387    mirror::Class* c = m->GetDeclaringClass();
1388    mirror::DexCache* dex_cache = c->GetDexCache();
1389    int line_number = -1;
1390    if (dex_cache != nullptr) {  // be tolerant of bad input
1391      const DexFile& dex_file = *dex_cache->GetDexFile();
1392      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
1393    }
1394    if (line_number == last_line_number && last_method == m) {
1395      ++repetition_count;
1396    } else {
1397      if (repetition_count >= kMaxRepetition) {
1398        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1399      }
1400      repetition_count = 0;
1401      last_line_number = line_number;
1402      last_method = m;
1403    }
1404    if (repetition_count < kMaxRepetition) {
1405      os << "  at " << PrettyMethod(m, false);
1406      if (m->IsNative()) {
1407        os << "(Native method)";
1408      } else {
1409        const char* source_file(m->GetDeclaringClassSourceFile());
1410        os << "(" << (source_file != nullptr ? source_file : "unavailable")
1411           << ":" << line_number << ")";
1412      }
1413      os << "\n";
1414      if (frame_count == 0) {
1415        Monitor::DescribeWait(os, GetThread());
1416      }
1417      if (can_allocate) {
1418        // Visit locks, but do not abort on errors. This would trigger a nested abort.
1419        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1420      }
1421    }
1422
1423    ++frame_count;
1424    return true;
1425  }
1426
1427  static void DumpLockedObject(mirror::Object* o, void* context)
1428      REQUIRES_SHARED(Locks::mutator_lock_) {
1429    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1430    os << "  - locked ";
1431    if (o == nullptr) {
1432      os << "an unknown object";
1433    } else {
1434      if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1435        // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1436        // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
1437        // IdentityHashCode call below will crash. So explicitly mark/forward it here.
1438        o = ReadBarrier::Mark(o);
1439      }
1440      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1441          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1442        // Getting the identity hashcode here would result in lock inflation and suspension of the
1443        // current thread, which isn't safe if this is the only runnable thread.
1444        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1445                           PrettyTypeOf(o).c_str());
1446      } else {
1447        // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1448        // we get the pretty type beofre we call IdentityHashCode.
1449        const std::string pretty_type(PrettyTypeOf(o));
1450        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1451      }
1452    }
1453    os << "\n";
1454  }
1455
1456  std::ostream& os;
1457  const bool can_allocate;
1458  ArtMethod* last_method;
1459  int last_line_number;
1460  int repetition_count;
1461  int frame_count;
1462};
1463
1464static bool ShouldShowNativeStack(const Thread* thread)
1465    REQUIRES_SHARED(Locks::mutator_lock_) {
1466  ThreadState state = thread->GetState();
1467
1468  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1469  if (state > kWaiting && state < kStarting) {
1470    return true;
1471  }
1472
1473  // In an Object.wait variant or Thread.sleep? That's not interesting.
1474  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1475    return false;
1476  }
1477
1478  // Threads with no managed stack frames should be shown.
1479  const ManagedStack* managed_stack = thread->GetManagedStack();
1480  if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1481      managed_stack->GetTopShadowFrame() == nullptr)) {
1482    return true;
1483  }
1484
1485  // In some other native method? That's interesting.
1486  // We don't just check kNative because native methods will be in state kSuspended if they're
1487  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1488  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1489  ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1490  return current_method != nullptr && current_method->IsNative();
1491}
1492
1493void Thread::DumpJavaStack(std::ostream& os) const {
1494  // If flip_function is not null, it means we have run a checkpoint
1495  // before the thread wakes up to execute the flip function and the
1496  // thread roots haven't been forwarded.  So the following access to
1497  // the roots (locks or methods in the frames) would be bad. Run it
1498  // here. TODO: clean up.
1499  {
1500    Thread* this_thread = const_cast<Thread*>(this);
1501    Closure* flip_func = this_thread->GetFlipFunction();
1502    if (flip_func != nullptr) {
1503      flip_func->Run(this_thread);
1504    }
1505  }
1506
1507  // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1508  // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1509  // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1510  // thread.
1511  StackHandleScope<1> scope(Thread::Current());
1512  Handle<mirror::Throwable> exc;
1513  bool have_exception = false;
1514  if (IsExceptionPending()) {
1515    exc = scope.NewHandle(GetException());
1516    const_cast<Thread*>(this)->ClearException();
1517    have_exception = true;
1518  }
1519
1520  std::unique_ptr<Context> context(Context::Create());
1521  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1522                          !tls32_.throwing_OutOfMemoryError);
1523  dumper.WalkStack();
1524
1525  if (have_exception) {
1526    const_cast<Thread*>(this)->SetException(exc.Get());
1527  }
1528}
1529
1530void Thread::DumpStack(std::ostream& os,
1531                       bool dump_native_stack,
1532                       BacktraceMap* backtrace_map) const {
1533  // TODO: we call this code when dying but may not have suspended the thread ourself. The
1534  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1535  //       the race with the thread_suspend_count_lock_).
1536  bool dump_for_abort = (gAborting > 0);
1537  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1538  if (!kIsDebugBuild) {
1539    // We always want to dump the stack for an abort, however, there is no point dumping another
1540    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1541    safe_to_dump = (safe_to_dump || dump_for_abort);
1542  }
1543  if (safe_to_dump) {
1544    // If we're currently in native code, dump that stack before dumping the managed stack.
1545    if (dump_native_stack && (dump_for_abort || ShouldShowNativeStack(this))) {
1546      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1547      ArtMethod* method = GetCurrentMethod(nullptr, !dump_for_abort);
1548      DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1549    }
1550    DumpJavaStack(os);
1551  } else {
1552    os << "Not able to dump stack of thread that isn't suspended";
1553  }
1554}
1555
1556void Thread::ThreadExitCallback(void* arg) {
1557  Thread* self = reinterpret_cast<Thread*>(arg);
1558  if (self->tls32_.thread_exit_check_count == 0) {
1559    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1560        "going to use a pthread_key_create destructor?): " << *self;
1561    CHECK(is_started_);
1562#ifdef ART_TARGET_ANDROID
1563    __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1564#else
1565    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1566#endif
1567    self->tls32_.thread_exit_check_count = 1;
1568  } else {
1569    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1570  }
1571}
1572
1573void Thread::Startup() {
1574  CHECK(!is_started_);
1575  is_started_ = true;
1576  {
1577    // MutexLock to keep annotalysis happy.
1578    //
1579    // Note we use null for the thread because Thread::Current can
1580    // return garbage since (is_started_ == true) and
1581    // Thread::pthread_key_self_ is not yet initialized.
1582    // This was seen on glibc.
1583    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1584    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1585                                         *Locks::thread_suspend_count_lock_);
1586  }
1587
1588  // Allocate a TLS slot.
1589  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1590                     "self key");
1591
1592  // Double-check the TLS slot allocation.
1593  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1594    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1595  }
1596}
1597
1598void Thread::FinishStartup() {
1599  Runtime* runtime = Runtime::Current();
1600  CHECK(runtime->IsStarted());
1601
1602  // Finish attaching the main thread.
1603  ScopedObjectAccess soa(Thread::Current());
1604  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1605  Thread::Current()->AssertNoPendingException();
1606
1607  Runtime::Current()->GetClassLinker()->RunRootClinits();
1608}
1609
1610void Thread::Shutdown() {
1611  CHECK(is_started_);
1612  is_started_ = false;
1613  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1614  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1615  if (resume_cond_ != nullptr) {
1616    delete resume_cond_;
1617    resume_cond_ = nullptr;
1618  }
1619}
1620
1621Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1622  wait_mutex_ = new Mutex("a thread wait mutex");
1623  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1624  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1625  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1626  tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1627
1628  static_assert((sizeof(Thread) % 4) == 0U,
1629                "art::Thread has a size which is not a multiple of 4.");
1630  tls32_.state_and_flags.as_struct.flags = 0;
1631  tls32_.state_and_flags.as_struct.state = kNative;
1632  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1633  std::fill(tlsPtr_.rosalloc_runs,
1634            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
1635            gc::allocator::RosAlloc::GetDedicatedFullRun());
1636  tlsPtr_.checkpoint_function = nullptr;
1637  for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1638    tlsPtr_.active_suspend_barriers[i] = nullptr;
1639  }
1640  tlsPtr_.flip_function = nullptr;
1641  tlsPtr_.thread_local_mark_stack = nullptr;
1642  tls32_.is_transitioning_to_runnable = false;
1643}
1644
1645bool Thread::IsStillStarting() const {
1646  // You might think you can check whether the state is kStarting, but for much of thread startup,
1647  // the thread is in kNative; it might also be in kVmWait.
1648  // You might think you can check whether the peer is null, but the peer is actually created and
1649  // assigned fairly early on, and needs to be.
1650  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1651  // this thread _ever_ entered kRunnable".
1652  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1653      (*tlsPtr_.name == kThreadNameDuringStartup);
1654}
1655
1656void Thread::AssertPendingException() const {
1657  CHECK(IsExceptionPending()) << "Pending exception expected.";
1658}
1659
1660void Thread::AssertPendingOOMException() const {
1661  AssertPendingException();
1662  auto* e = GetException();
1663  CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
1664      << e->Dump();
1665}
1666
1667void Thread::AssertNoPendingException() const {
1668  if (UNLIKELY(IsExceptionPending())) {
1669    ScopedObjectAccess soa(Thread::Current());
1670    mirror::Throwable* exception = GetException();
1671    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1672  }
1673}
1674
1675void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1676  if (UNLIKELY(IsExceptionPending())) {
1677    ScopedObjectAccess soa(Thread::Current());
1678    mirror::Throwable* exception = GetException();
1679    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1680        << exception->Dump();
1681  }
1682}
1683
1684class MonitorExitVisitor : public SingleRootVisitor {
1685 public:
1686  explicit MonitorExitVisitor(Thread* self) : self_(self) { }
1687
1688  // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
1689  void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
1690      OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1691    if (self_->HoldsLock(entered_monitor)) {
1692      LOG(WARNING) << "Calling MonitorExit on object "
1693                   << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
1694                   << " left locked by native thread "
1695                   << *Thread::Current() << " which is detaching";
1696      entered_monitor->MonitorExit(self_);
1697    }
1698  }
1699
1700 private:
1701  Thread* const self_;
1702};
1703
1704void Thread::Destroy() {
1705  Thread* self = this;
1706  DCHECK_EQ(self, Thread::Current());
1707
1708  if (tlsPtr_.jni_env != nullptr) {
1709    {
1710      ScopedObjectAccess soa(self);
1711      MonitorExitVisitor visitor(self);
1712      // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1713      tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
1714    }
1715    // Release locally held global references which releasing may require the mutator lock.
1716    if (tlsPtr_.jpeer != nullptr) {
1717      // If pthread_create fails we don't have a jni env here.
1718      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1719      tlsPtr_.jpeer = nullptr;
1720    }
1721    if (tlsPtr_.class_loader_override != nullptr) {
1722      tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
1723      tlsPtr_.class_loader_override = nullptr;
1724    }
1725  }
1726
1727  if (tlsPtr_.opeer != nullptr) {
1728    ScopedObjectAccess soa(self);
1729    // We may need to call user-supplied managed code, do this before final clean-up.
1730    HandleUncaughtExceptions(soa);
1731    RemoveFromThreadGroup(soa);
1732
1733    // this.nativePeer = 0;
1734    if (Runtime::Current()->IsActiveTransaction()) {
1735      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1736          ->SetLong<true>(tlsPtr_.opeer, 0);
1737    } else {
1738      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1739          ->SetLong<false>(tlsPtr_.opeer, 0);
1740    }
1741    Dbg::PostThreadDeath(self);
1742
1743    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1744    // who is waiting.
1745    mirror::Object* lock =
1746        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1747    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1748    if (lock != nullptr) {
1749      StackHandleScope<1> hs(self);
1750      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1751      ObjectLock<mirror::Object> locker(self, h_obj);
1752      locker.NotifyAll();
1753    }
1754    tlsPtr_.opeer = nullptr;
1755  }
1756
1757  {
1758    ScopedObjectAccess soa(self);
1759    Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1760    if (kUseReadBarrier) {
1761      Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
1762    }
1763  }
1764}
1765
1766Thread::~Thread() {
1767  CHECK(tlsPtr_.class_loader_override == nullptr);
1768  CHECK(tlsPtr_.jpeer == nullptr);
1769  CHECK(tlsPtr_.opeer == nullptr);
1770  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1771  if (initialized) {
1772    delete tlsPtr_.jni_env;
1773    tlsPtr_.jni_env = nullptr;
1774  }
1775  CHECK_NE(GetState(), kRunnable);
1776  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1777  CHECK(tlsPtr_.checkpoint_function == nullptr);
1778  CHECK_EQ(checkpoint_overflow_.size(), 0u);
1779  CHECK(tlsPtr_.flip_function == nullptr);
1780  CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
1781
1782  // Make sure we processed all deoptimization requests.
1783  CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
1784  CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
1785      "Not all deoptimized frames have been consumed by the debugger.";
1786
1787  // We may be deleting a still born thread.
1788  SetStateUnsafe(kTerminated);
1789
1790  delete wait_cond_;
1791  delete wait_mutex_;
1792
1793  if (tlsPtr_.long_jump_context != nullptr) {
1794    delete tlsPtr_.long_jump_context;
1795  }
1796
1797  if (initialized) {
1798    CleanupCpu();
1799  }
1800
1801  if (tlsPtr_.single_step_control != nullptr) {
1802    delete tlsPtr_.single_step_control;
1803  }
1804  delete tlsPtr_.instrumentation_stack;
1805  delete tlsPtr_.name;
1806  delete tlsPtr_.stack_trace_sample;
1807  free(tlsPtr_.nested_signal_state);
1808
1809  Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
1810
1811  TearDownAlternateSignalStack();
1812}
1813
1814void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1815  if (!IsExceptionPending()) {
1816    return;
1817  }
1818  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1819  ScopedThreadStateChange tsc(this, kNative);
1820
1821  // Get and clear the exception.
1822  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1823  tlsPtr_.jni_env->ExceptionClear();
1824
1825  // Call the Thread instance's dispatchUncaughtException(Throwable)
1826  tlsPtr_.jni_env->CallVoidMethod(peer.get(),
1827      WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
1828      exception.get());
1829
1830  // If the dispatchUncaughtException threw, clear that exception too.
1831  tlsPtr_.jni_env->ExceptionClear();
1832}
1833
1834void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1835  // this.group.removeThread(this);
1836  // group can be null if we're in the compiler or a test.
1837  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1838      ->GetObject(tlsPtr_.opeer);
1839  if (ogroup != nullptr) {
1840    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1841    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1842    ScopedThreadStateChange tsc(soa.Self(), kNative);
1843    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1844                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1845                                    peer.get());
1846  }
1847}
1848
1849size_t Thread::NumHandleReferences() {
1850  size_t count = 0;
1851  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
1852    count += cur->NumberOfReferences();
1853  }
1854  return count;
1855}
1856
1857bool Thread::HandleScopeContains(jobject obj) const {
1858  StackReference<mirror::Object>* hs_entry =
1859      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1860  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
1861    if (cur->Contains(hs_entry)) {
1862      return true;
1863    }
1864  }
1865  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1866  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1867}
1868
1869void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
1870  BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1871      visitor, RootInfo(kRootNativeStack, thread_id));
1872  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1873    for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
1874      // GetReference returns a pointer to the stack reference within the handle scope. If this
1875      // needs to be updated, it will be done by the root visitor.
1876      buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
1877    }
1878  }
1879}
1880
1881mirror::Object* Thread::DecodeJObject(jobject obj) const {
1882  if (obj == nullptr) {
1883    return nullptr;
1884  }
1885  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1886  IndirectRefKind kind = GetIndirectRefKind(ref);
1887  mirror::Object* result;
1888  bool expect_null = false;
1889  // The "kinds" below are sorted by the frequency we expect to encounter them.
1890  if (kind == kLocal) {
1891    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1892    // Local references do not need a read barrier.
1893    result = locals.Get<kWithoutReadBarrier>(ref);
1894  } else if (kind == kHandleScopeOrInvalid) {
1895    // TODO: make stack indirect reference table lookup more efficient.
1896    // Check if this is a local reference in the handle scope.
1897    if (LIKELY(HandleScopeContains(obj))) {
1898      // Read from handle scope.
1899      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1900      VerifyObject(result);
1901    } else {
1902      tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
1903      expect_null = true;
1904      result = nullptr;
1905    }
1906  } else if (kind == kGlobal) {
1907    result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
1908  } else {
1909    DCHECK_EQ(kind, kWeakGlobal);
1910    result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1911    if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
1912      // This is a special case where it's okay to return null.
1913      expect_null = true;
1914      result = nullptr;
1915    }
1916  }
1917
1918  if (UNLIKELY(!expect_null && result == nullptr)) {
1919    tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
1920                                   ToStr<IndirectRefKind>(kind).c_str(), obj);
1921  }
1922  return result;
1923}
1924
1925bool Thread::IsJWeakCleared(jweak obj) const {
1926  CHECK(obj != nullptr);
1927  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1928  IndirectRefKind kind = GetIndirectRefKind(ref);
1929  CHECK_EQ(kind, kWeakGlobal);
1930  return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
1931}
1932
1933// Implements java.lang.Thread.interrupted.
1934bool Thread::Interrupted() {
1935  MutexLock mu(Thread::Current(), *wait_mutex_);
1936  bool interrupted = IsInterruptedLocked();
1937  SetInterruptedLocked(false);
1938  return interrupted;
1939}
1940
1941// Implements java.lang.Thread.isInterrupted.
1942bool Thread::IsInterrupted() {
1943  MutexLock mu(Thread::Current(), *wait_mutex_);
1944  return IsInterruptedLocked();
1945}
1946
1947void Thread::Interrupt(Thread* self) {
1948  MutexLock mu(self, *wait_mutex_);
1949  if (interrupted_) {
1950    return;
1951  }
1952  interrupted_ = true;
1953  NotifyLocked(self);
1954}
1955
1956void Thread::Notify() {
1957  Thread* self = Thread::Current();
1958  MutexLock mu(self, *wait_mutex_);
1959  NotifyLocked(self);
1960}
1961
1962void Thread::NotifyLocked(Thread* self) {
1963  if (wait_monitor_ != nullptr) {
1964    wait_cond_->Signal(self);
1965  }
1966}
1967
1968void Thread::SetClassLoaderOverride(jobject class_loader_override) {
1969  if (tlsPtr_.class_loader_override != nullptr) {
1970    GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
1971  }
1972  tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
1973}
1974
1975class CountStackDepthVisitor : public StackVisitor {
1976 public:
1977  explicit CountStackDepthVisitor(Thread* thread)
1978      REQUIRES_SHARED(Locks::mutator_lock_)
1979      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1980        depth_(0), skip_depth_(0), skipping_(true) {}
1981
1982  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1983    // We want to skip frames up to and including the exception's constructor.
1984    // Note we also skip the frame if it doesn't have a method (namely the callee
1985    // save frame)
1986    ArtMethod* m = GetMethod();
1987    if (skipping_ && !m->IsRuntimeMethod() &&
1988        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1989      skipping_ = false;
1990    }
1991    if (!skipping_) {
1992      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1993        ++depth_;
1994      }
1995    } else {
1996      ++skip_depth_;
1997    }
1998    return true;
1999  }
2000
2001  int GetDepth() const {
2002    return depth_;
2003  }
2004
2005  int GetSkipDepth() const {
2006    return skip_depth_;
2007  }
2008
2009 private:
2010  uint32_t depth_;
2011  uint32_t skip_depth_;
2012  bool skipping_;
2013
2014  DISALLOW_COPY_AND_ASSIGN(CountStackDepthVisitor);
2015};
2016
2017template<bool kTransactionActive>
2018class BuildInternalStackTraceVisitor : public StackVisitor {
2019 public:
2020  BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2021      : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2022        self_(self),
2023        skip_depth_(skip_depth),
2024        count_(0),
2025        trace_(nullptr),
2026        pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2027
2028  bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2029    // Allocate method trace as an object array where the first element is a pointer array that
2030    // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2031    // class of the ArtMethod pointers.
2032    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2033    StackHandleScope<1> hs(self_);
2034    mirror::Class* array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2035    // The first element is the methods and dex pc array, the other elements are declaring classes
2036    // for the methods to ensure classes in the stack trace don't get unloaded.
2037    Handle<mirror::ObjectArray<mirror::Object>> trace(
2038        hs.NewHandle(
2039            mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2040    if (trace.Get() == nullptr) {
2041      // Acquire uninterruptible_ in all paths.
2042      self_->StartAssertNoThreadSuspension("Building internal stack trace");
2043      self_->AssertPendingOOMException();
2044      return false;
2045    }
2046    mirror::PointerArray* methods_and_pcs = class_linker->AllocPointerArray(self_, depth * 2);
2047    const char* last_no_suspend_cause =
2048        self_->StartAssertNoThreadSuspension("Building internal stack trace");
2049    if (methods_and_pcs == nullptr) {
2050      self_->AssertPendingOOMException();
2051      return false;
2052    }
2053    trace->Set(0, methods_and_pcs);
2054    trace_ = trace.Get();
2055    // If We are called from native, use non-transactional mode.
2056    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2057    return true;
2058  }
2059
2060  virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2061    self_->EndAssertNoThreadSuspension(nullptr);
2062  }
2063
2064  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2065    if (trace_ == nullptr) {
2066      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2067    }
2068    if (skip_depth_ > 0) {
2069      skip_depth_--;
2070      return true;
2071    }
2072    ArtMethod* m = GetMethod();
2073    if (m->IsRuntimeMethod()) {
2074      return true;  // Ignore runtime frames (in particular callee save).
2075    }
2076    mirror::PointerArray* trace_methods_and_pcs = GetTraceMethodsAndPCs();
2077    trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, m, pointer_size_);
2078    trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2079        trace_methods_and_pcs->GetLength() / 2 + count_,
2080        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
2081        pointer_size_);
2082    // Save the declaring class of the method to ensure that the declaring classes of the methods
2083    // do not get unloaded while the stack trace is live.
2084    trace_->Set(count_ + 1, m->GetDeclaringClass());
2085    ++count_;
2086    return true;
2087  }
2088
2089  mirror::PointerArray* GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2090    return down_cast<mirror::PointerArray*>(trace_->Get(0));
2091  }
2092
2093  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2094    return trace_;
2095  }
2096
2097 private:
2098  Thread* const self_;
2099  // How many more frames to skip.
2100  int32_t skip_depth_;
2101  // Current position down stack trace.
2102  uint32_t count_;
2103  // An object array where the first element is a pointer array that contains the ArtMethod
2104  // pointers on the stack and dex PCs. The rest of the elements are the declaring
2105  // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2106  // the i'th frame.
2107  mirror::ObjectArray<mirror::Object>* trace_;
2108  // For cross compilation.
2109  const PointerSize pointer_size_;
2110
2111  DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2112};
2113
2114template<bool kTransactionActive>
2115jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2116  // Compute depth of stack
2117  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
2118  count_visitor.WalkStack();
2119  int32_t depth = count_visitor.GetDepth();
2120  int32_t skip_depth = count_visitor.GetSkipDepth();
2121
2122  // Build internal stack trace.
2123  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2124                                                                         const_cast<Thread*>(this),
2125                                                                         skip_depth);
2126  if (!build_trace_visitor.Init(depth)) {
2127    return nullptr;  // Allocation failed.
2128  }
2129  build_trace_visitor.WalkStack();
2130  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2131  if (kIsDebugBuild) {
2132    mirror::PointerArray* trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2133    // Second half of trace_methods is dex PCs.
2134    for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2135      auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2136          i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2137      CHECK(method != nullptr);
2138    }
2139  }
2140  return soa.AddLocalReference<jobject>(trace);
2141}
2142template jobject Thread::CreateInternalStackTrace<false>(
2143    const ScopedObjectAccessAlreadyRunnable& soa) const;
2144template jobject Thread::CreateInternalStackTrace<true>(
2145    const ScopedObjectAccessAlreadyRunnable& soa) const;
2146
2147bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
2148  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
2149  count_visitor.WalkStack();
2150  return count_visitor.GetDepth() == exception->GetStackDepth();
2151}
2152
2153jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2154    const ScopedObjectAccessAlreadyRunnable& soa,
2155    jobject internal,
2156    jobjectArray output_array,
2157    int* stack_depth) {
2158  // Decode the internal stack trace into the depth, method trace and PC trace.
2159  // Subtract one for the methods and PC trace.
2160  int32_t depth = soa.Decode<mirror::Array*>(internal)->GetLength() - 1;
2161  DCHECK_GE(depth, 0);
2162
2163  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2164
2165  jobjectArray result;
2166
2167  if (output_array != nullptr) {
2168    // Reuse the array we were given.
2169    result = output_array;
2170    // ...adjusting the number of frames we'll write to not exceed the array length.
2171    const int32_t traces_length =
2172        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
2173    depth = std::min(depth, traces_length);
2174  } else {
2175    // Create java_trace array and place in local reference table
2176    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2177        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2178    if (java_traces == nullptr) {
2179      return nullptr;
2180    }
2181    result = soa.AddLocalReference<jobjectArray>(java_traces);
2182  }
2183
2184  if (stack_depth != nullptr) {
2185    *stack_depth = depth;
2186  }
2187
2188  for (int32_t i = 0; i < depth; ++i) {
2189    mirror::ObjectArray<mirror::Object>* decoded_traces =
2190        soa.Decode<mirror::Object*>(internal)->AsObjectArray<mirror::Object>();
2191    // Methods and dex PC trace is element 0.
2192    DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2193    mirror::PointerArray* const method_trace =
2194        down_cast<mirror::PointerArray*>(decoded_traces->Get(0));
2195    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2196    ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2197    uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2198        i + method_trace->GetLength() / 2, kRuntimePointerSize);
2199    int32_t line_number;
2200    StackHandleScope<3> hs(soa.Self());
2201    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2202    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2203    if (method->IsProxyMethod()) {
2204      line_number = -1;
2205      class_name_object.Assign(method->GetDeclaringClass()->GetName());
2206      // source_name_object intentionally left null for proxy methods
2207    } else {
2208      line_number = method->GetLineNumFromDexPC(dex_pc);
2209      // Allocate element, potentially triggering GC
2210      // TODO: reuse class_name_object via Class::name_?
2211      const char* descriptor = method->GetDeclaringClassDescriptor();
2212      CHECK(descriptor != nullptr);
2213      std::string class_name(PrettyDescriptor(descriptor));
2214      class_name_object.Assign(
2215          mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2216      if (class_name_object.Get() == nullptr) {
2217        soa.Self()->AssertPendingOOMException();
2218        return nullptr;
2219      }
2220      const char* source_file = method->GetDeclaringClassSourceFile();
2221      if (source_file != nullptr) {
2222        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2223        if (source_name_object.Get() == nullptr) {
2224          soa.Self()->AssertPendingOOMException();
2225          return nullptr;
2226        }
2227      }
2228    }
2229    const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2230    CHECK(method_name != nullptr);
2231    Handle<mirror::String> method_name_object(
2232        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2233    if (method_name_object.Get() == nullptr) {
2234      return nullptr;
2235    }
2236    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
2237        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
2238    if (obj == nullptr) {
2239      return nullptr;
2240    }
2241    // We are called from native: use non-transactional mode.
2242    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
2243  }
2244  return result;
2245}
2246
2247void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2248  va_list args;
2249  va_start(args, fmt);
2250  ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2251  va_end(args);
2252}
2253
2254void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2255                                const char* fmt, va_list ap) {
2256  std::string msg;
2257  StringAppendV(&msg, fmt, ap);
2258  ThrowNewException(exception_class_descriptor, msg.c_str());
2259}
2260
2261void Thread::ThrowNewException(const char* exception_class_descriptor,
2262                               const char* msg) {
2263  // Callers should either clear or call ThrowNewWrappedException.
2264  AssertNoPendingExceptionForNewException(msg);
2265  ThrowNewWrappedException(exception_class_descriptor, msg);
2266}
2267
2268static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
2269    REQUIRES_SHARED(Locks::mutator_lock_) {
2270  ArtMethod* method = self->GetCurrentMethod(nullptr);
2271  return method != nullptr
2272      ? method->GetDeclaringClass()->GetClassLoader()
2273      : nullptr;
2274}
2275
2276void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2277                                      const char* msg) {
2278  DCHECK_EQ(this, Thread::Current());
2279  ScopedObjectAccessUnchecked soa(this);
2280  StackHandleScope<3> hs(soa.Self());
2281  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2282  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2283  ClearException();
2284  Runtime* runtime = Runtime::Current();
2285  auto* cl = runtime->GetClassLinker();
2286  Handle<mirror::Class> exception_class(
2287      hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2288  if (UNLIKELY(exception_class.Get() == nullptr)) {
2289    CHECK(IsExceptionPending());
2290    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2291    return;
2292  }
2293
2294  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2295                                                             true))) {
2296    DCHECK(IsExceptionPending());
2297    return;
2298  }
2299  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2300  Handle<mirror::Throwable> exception(
2301      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
2302
2303  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2304  if (exception.Get() == nullptr) {
2305    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2306    return;
2307  }
2308
2309  // Choose an appropriate constructor and set up the arguments.
2310  const char* signature;
2311  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2312  if (msg != nullptr) {
2313    // Ensure we remember this and the method over the String allocation.
2314    msg_string.reset(
2315        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2316    if (UNLIKELY(msg_string.get() == nullptr)) {
2317      CHECK(IsExceptionPending());  // OOME.
2318      return;
2319    }
2320    if (cause.get() == nullptr) {
2321      signature = "(Ljava/lang/String;)V";
2322    } else {
2323      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2324    }
2325  } else {
2326    if (cause.get() == nullptr) {
2327      signature = "()V";
2328    } else {
2329      signature = "(Ljava/lang/Throwable;)V";
2330    }
2331  }
2332  ArtMethod* exception_init_method =
2333      exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
2334
2335  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2336      << PrettyDescriptor(exception_class_descriptor);
2337
2338  if (UNLIKELY(!runtime->IsStarted())) {
2339    // Something is trying to throw an exception without a started runtime, which is the common
2340    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2341    // the exception fields directly.
2342    if (msg != nullptr) {
2343      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
2344    }
2345    if (cause.get() != nullptr) {
2346      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
2347    }
2348    ScopedLocalRef<jobject> trace(GetJniEnv(),
2349                                  Runtime::Current()->IsActiveTransaction()
2350                                      ? CreateInternalStackTrace<true>(soa)
2351                                      : CreateInternalStackTrace<false>(soa));
2352    if (trace.get() != nullptr) {
2353      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
2354    }
2355    SetException(exception.Get());
2356  } else {
2357    jvalue jv_args[2];
2358    size_t i = 0;
2359
2360    if (msg != nullptr) {
2361      jv_args[i].l = msg_string.get();
2362      ++i;
2363    }
2364    if (cause.get() != nullptr) {
2365      jv_args[i].l = cause.get();
2366      ++i;
2367    }
2368    ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2369    InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
2370    if (LIKELY(!IsExceptionPending())) {
2371      SetException(exception.Get());
2372    }
2373  }
2374}
2375
2376void Thread::ThrowOutOfMemoryError(const char* msg) {
2377  LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2378      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2379  if (!tls32_.throwing_OutOfMemoryError) {
2380    tls32_.throwing_OutOfMemoryError = true;
2381    ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2382    tls32_.throwing_OutOfMemoryError = false;
2383  } else {
2384    Dump(LOG(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
2385    SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2386  }
2387}
2388
2389Thread* Thread::CurrentFromGdb() {
2390  return Thread::Current();
2391}
2392
2393void Thread::DumpFromGdb() const {
2394  std::ostringstream ss;
2395  Dump(ss);
2396  std::string str(ss.str());
2397  // log to stderr for debugging command line processes
2398  std::cerr << str;
2399#ifdef ART_TARGET_ANDROID
2400  // log to logcat for debugging frameworks processes
2401  LOG(INFO) << str;
2402#endif
2403}
2404
2405// Explicitly instantiate 32 and 64bit thread offset dumping support.
2406template
2407void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
2408template
2409void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
2410
2411template<PointerSize ptr_size>
2412void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2413#define DO_THREAD_OFFSET(x, y) \
2414    if (offset == (x).Uint32Value()) { \
2415      os << (y); \
2416      return; \
2417    }
2418  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2419  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2420  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2421  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2422  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2423  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2424  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2425  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2426  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2427  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2428  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2429  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2430#undef DO_THREAD_OFFSET
2431
2432#define JNI_ENTRY_POINT_INFO(x) \
2433    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2434      os << #x; \
2435      return; \
2436    }
2437  JNI_ENTRY_POINT_INFO(pDlsymLookup)
2438#undef JNI_ENTRY_POINT_INFO
2439
2440#define QUICK_ENTRY_POINT_INFO(x) \
2441    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2442      os << #x; \
2443      return; \
2444    }
2445  QUICK_ENTRY_POINT_INFO(pAllocArray)
2446  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2447  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
2448  QUICK_ENTRY_POINT_INFO(pAllocObject)
2449  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2450  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2451  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
2452  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
2453  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
2454  QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2455  QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2456  QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2457  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2458  QUICK_ENTRY_POINT_INFO(pCheckCast)
2459  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2460  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2461  QUICK_ENTRY_POINT_INFO(pInitializeType)
2462  QUICK_ENTRY_POINT_INFO(pResolveString)
2463  QUICK_ENTRY_POINT_INFO(pSet8Instance)
2464  QUICK_ENTRY_POINT_INFO(pSet8Static)
2465  QUICK_ENTRY_POINT_INFO(pSet16Instance)
2466  QUICK_ENTRY_POINT_INFO(pSet16Static)
2467  QUICK_ENTRY_POINT_INFO(pSet32Instance)
2468  QUICK_ENTRY_POINT_INFO(pSet32Static)
2469  QUICK_ENTRY_POINT_INFO(pSet64Instance)
2470  QUICK_ENTRY_POINT_INFO(pSet64Static)
2471  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2472  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2473  QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2474  QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2475  QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2476  QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2477  QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2478  QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2479  QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2480  QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2481  QUICK_ENTRY_POINT_INFO(pGet32Instance)
2482  QUICK_ENTRY_POINT_INFO(pGet32Static)
2483  QUICK_ENTRY_POINT_INFO(pGet64Instance)
2484  QUICK_ENTRY_POINT_INFO(pGet64Static)
2485  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2486  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2487  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
2488  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
2489  QUICK_ENTRY_POINT_INFO(pAputObject)
2490  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
2491  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2492  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2493  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2494  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2495  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2496  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2497  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2498  QUICK_ENTRY_POINT_INFO(pLockObject)
2499  QUICK_ENTRY_POINT_INFO(pUnlockObject)
2500  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2501  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2502  QUICK_ENTRY_POINT_INFO(pCmplDouble)
2503  QUICK_ENTRY_POINT_INFO(pCmplFloat)
2504  QUICK_ENTRY_POINT_INFO(pCos)
2505  QUICK_ENTRY_POINT_INFO(pSin)
2506  QUICK_ENTRY_POINT_INFO(pAcos)
2507  QUICK_ENTRY_POINT_INFO(pAsin)
2508  QUICK_ENTRY_POINT_INFO(pAtan)
2509  QUICK_ENTRY_POINT_INFO(pAtan2)
2510  QUICK_ENTRY_POINT_INFO(pCbrt)
2511  QUICK_ENTRY_POINT_INFO(pCosh)
2512  QUICK_ENTRY_POINT_INFO(pExp)
2513  QUICK_ENTRY_POINT_INFO(pExpm1)
2514  QUICK_ENTRY_POINT_INFO(pHypot)
2515  QUICK_ENTRY_POINT_INFO(pLog)
2516  QUICK_ENTRY_POINT_INFO(pLog10)
2517  QUICK_ENTRY_POINT_INFO(pNextAfter)
2518  QUICK_ENTRY_POINT_INFO(pSinh)
2519  QUICK_ENTRY_POINT_INFO(pTan)
2520  QUICK_ENTRY_POINT_INFO(pTanh)
2521  QUICK_ENTRY_POINT_INFO(pFmod)
2522  QUICK_ENTRY_POINT_INFO(pL2d)
2523  QUICK_ENTRY_POINT_INFO(pFmodf)
2524  QUICK_ENTRY_POINT_INFO(pL2f)
2525  QUICK_ENTRY_POINT_INFO(pD2iz)
2526  QUICK_ENTRY_POINT_INFO(pF2iz)
2527  QUICK_ENTRY_POINT_INFO(pIdivmod)
2528  QUICK_ENTRY_POINT_INFO(pD2l)
2529  QUICK_ENTRY_POINT_INFO(pF2l)
2530  QUICK_ENTRY_POINT_INFO(pLdiv)
2531  QUICK_ENTRY_POINT_INFO(pLmod)
2532  QUICK_ENTRY_POINT_INFO(pLmul)
2533  QUICK_ENTRY_POINT_INFO(pShlLong)
2534  QUICK_ENTRY_POINT_INFO(pShrLong)
2535  QUICK_ENTRY_POINT_INFO(pUshrLong)
2536  QUICK_ENTRY_POINT_INFO(pIndexOf)
2537  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2538  QUICK_ENTRY_POINT_INFO(pMemcpy)
2539  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2540  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2541  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2542  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2543  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2544  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2545  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2546  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2547  QUICK_ENTRY_POINT_INFO(pTestSuspend)
2548  QUICK_ENTRY_POINT_INFO(pDeliverException)
2549  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2550  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2551  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
2552  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2553  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2554  QUICK_ENTRY_POINT_INFO(pDeoptimize)
2555  QUICK_ENTRY_POINT_INFO(pA64Load)
2556  QUICK_ENTRY_POINT_INFO(pA64Store)
2557  QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2558  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2559  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2560  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2561  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2562  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2563  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2564  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2565  QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2566  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2567  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2568  QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2569  QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2570  QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2571  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2572  QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2573  QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2574  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
2575  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
2576  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
2577  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
2578  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
2579  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
2580  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
2581  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
2582  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
2583  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
2584  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
2585  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
2586  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
2587  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
2588  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
2589  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
2590  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
2591  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
2592  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
2593  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
2594  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
2595  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
2596  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
2597  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
2598  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
2599  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
2600  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
2601  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
2602  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
2603  QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
2604  QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
2605  QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
2606
2607  QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
2608  QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
2609#undef QUICK_ENTRY_POINT_INFO
2610
2611  os << offset;
2612}
2613
2614void Thread::QuickDeliverException() {
2615  // Get exception from thread.
2616  mirror::Throwable* exception = GetException();
2617  CHECK(exception != nullptr);
2618  if (exception == GetDeoptimizationException()) {
2619    artDeoptimize(this);
2620    UNREACHABLE();
2621  }
2622
2623  // This is a real exception: let the instrumentation know about it.
2624  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
2625  if (instrumentation->HasExceptionCaughtListeners() &&
2626      IsExceptionThrownByCurrentMethod(exception)) {
2627    // Instrumentation may cause GC so keep the exception object safe.
2628    StackHandleScope<1> hs(this);
2629    HandleWrapper<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
2630    instrumentation->ExceptionCaughtEvent(this, exception);
2631  }
2632  // Does instrumentation need to deoptimize the stack?
2633  // Note: we do this *after* reporting the exception to instrumentation in case it
2634  // now requires deoptimization. It may happen if a debugger is attached and requests
2635  // new events (single-step, breakpoint, ...) when the exception is reported.
2636  if (Dbg::IsForcedInterpreterNeededForException(this)) {
2637    NthCallerVisitor visitor(this, 0, false);
2638    visitor.WalkStack();
2639    if (Runtime::Current()->IsDeoptimizeable(visitor.caller_pc)) {
2640      // Save the exception into the deoptimization context so it can be restored
2641      // before entering the interpreter.
2642      PushDeoptimizationContext(
2643          JValue(), /*is_reference */ false, /* from_code */ false, exception);
2644      artDeoptimize(this);
2645      UNREACHABLE();
2646    }
2647  }
2648
2649  // Don't leave exception visible while we try to find the handler, which may cause class
2650  // resolution.
2651  ClearException();
2652  QuickExceptionHandler exception_handler(this, false);
2653  exception_handler.FindCatch(exception);
2654  exception_handler.UpdateInstrumentationStack();
2655  exception_handler.DoLongJump();
2656}
2657
2658Context* Thread::GetLongJumpContext() {
2659  Context* result = tlsPtr_.long_jump_context;
2660  if (result == nullptr) {
2661    result = Context::Create();
2662  } else {
2663    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
2664    result->Reset();
2665  }
2666  return result;
2667}
2668
2669// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
2670//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
2671struct CurrentMethodVisitor FINAL : public StackVisitor {
2672  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
2673      REQUIRES_SHARED(Locks::mutator_lock_)
2674      : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2675        this_object_(nullptr),
2676        method_(nullptr),
2677        dex_pc_(0),
2678        abort_on_error_(abort_on_error) {}
2679  bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2680    ArtMethod* m = GetMethod();
2681    if (m->IsRuntimeMethod()) {
2682      // Continue if this is a runtime method.
2683      return true;
2684    }
2685    if (context_ != nullptr) {
2686      this_object_ = GetThisObject();
2687    }
2688    method_ = m;
2689    dex_pc_ = GetDexPc(abort_on_error_);
2690    return false;
2691  }
2692  mirror::Object* this_object_;
2693  ArtMethod* method_;
2694  uint32_t dex_pc_;
2695  const bool abort_on_error_;
2696};
2697
2698ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2699  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2700  visitor.WalkStack(false);
2701  if (dex_pc != nullptr) {
2702    *dex_pc = visitor.dex_pc_;
2703  }
2704  return visitor.method_;
2705}
2706
2707bool Thread::HoldsLock(mirror::Object* object) const {
2708  if (object == nullptr) {
2709    return false;
2710  }
2711  return object->GetLockOwnerThreadId() == GetThreadId();
2712}
2713
2714// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2715template <typename RootVisitor>
2716class ReferenceMapVisitor : public StackVisitor {
2717 public:
2718  ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
2719      REQUIRES_SHARED(Locks::mutator_lock_)
2720        // We are visiting the references in compiled frames, so we do not need
2721        // to know the inlined frames.
2722      : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2723        visitor_(visitor) {}
2724
2725  bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2726    if (false) {
2727      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2728                << StringPrintf("@ PC:%04x", GetDexPc());
2729    }
2730    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2731    if (shadow_frame != nullptr) {
2732      VisitShadowFrame(shadow_frame);
2733    } else {
2734      VisitQuickFrame();
2735    }
2736    return true;
2737  }
2738
2739  void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
2740    ArtMethod* m = shadow_frame->GetMethod();
2741    VisitDeclaringClass(m);
2742    DCHECK(m != nullptr);
2743    size_t num_regs = shadow_frame->NumberOfVRegs();
2744    DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
2745    // handle scope for JNI or References for interpreter.
2746    for (size_t reg = 0; reg < num_regs; ++reg) {
2747      mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2748      if (ref != nullptr) {
2749        mirror::Object* new_ref = ref;
2750        visitor_(&new_ref, reg, this);
2751        if (new_ref != ref) {
2752          shadow_frame->SetVRegReference(reg, new_ref);
2753        }
2754      }
2755    }
2756    // Mark lock count map required for structured locking checks.
2757    shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
2758  }
2759
2760 private:
2761  // Visiting the declaring class is necessary so that we don't unload the class of a method that
2762  // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
2763  // the threads do not all hold the heap bitmap lock for parallel GC.
2764  void VisitDeclaringClass(ArtMethod* method)
2765      REQUIRES_SHARED(Locks::mutator_lock_)
2766      NO_THREAD_SAFETY_ANALYSIS {
2767    mirror::Class* klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
2768    // klass can be null for runtime methods.
2769    if (klass != nullptr) {
2770      if (kVerifyImageObjectsMarked) {
2771        gc::Heap* const heap = Runtime::Current()->GetHeap();
2772        gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
2773                                                                                /*fail_ok*/true);
2774        if (space != nullptr && space->IsImageSpace()) {
2775          bool failed = false;
2776          if (!space->GetLiveBitmap()->Test(klass)) {
2777            failed = true;
2778            LOG(INTERNAL_FATAL) << "Unmarked object in image " << *space;
2779          } else if (!heap->GetLiveBitmap()->Test(klass)) {
2780            failed = true;
2781            LOG(INTERNAL_FATAL) << "Unmarked object in image through live bitmap " << *space;
2782          }
2783          if (failed) {
2784            GetThread()->Dump(LOG(INTERNAL_FATAL));
2785            space->AsImageSpace()->DumpSections(LOG(INTERNAL_FATAL));
2786            LOG(INTERNAL_FATAL) << "Method@" << method->GetDexMethodIndex() << ":" << method
2787                                << " klass@" << klass;
2788            // Pretty info last in case it crashes.
2789            LOG(FATAL) << "Method " << PrettyMethod(method) << " klass " << PrettyClass(klass);
2790          }
2791        }
2792      }
2793      mirror::Object* new_ref = klass;
2794      visitor_(&new_ref, -1, this);
2795      if (new_ref != klass) {
2796        method->CASDeclaringClass(klass, new_ref->AsClass());
2797      }
2798    }
2799  }
2800
2801  void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2802    ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2803    DCHECK(cur_quick_frame != nullptr);
2804    ArtMethod* m = *cur_quick_frame;
2805    VisitDeclaringClass(m);
2806
2807    // Process register map (which native and runtime methods don't have)
2808    if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
2809      const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
2810      DCHECK(method_header->IsOptimized());
2811      auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
2812          reinterpret_cast<uintptr_t>(cur_quick_frame));
2813      uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
2814      CodeInfo code_info = method_header->GetOptimizedCodeInfo();
2815      CodeInfoEncoding encoding = code_info.ExtractEncoding();
2816      StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
2817      DCHECK(map.IsValid());
2818      // Visit stack entries that hold pointers.
2819      size_t number_of_bits = map.GetNumberOfStackMaskBits(encoding.stack_map_encoding);
2820      for (size_t i = 0; i < number_of_bits; ++i) {
2821        if (map.GetStackMaskBit(encoding.stack_map_encoding, i)) {
2822          auto* ref_addr = vreg_base + i;
2823          mirror::Object* ref = ref_addr->AsMirrorPtr();
2824          if (ref != nullptr) {
2825            mirror::Object* new_ref = ref;
2826            visitor_(&new_ref, -1, this);
2827            if (ref != new_ref) {
2828              ref_addr->Assign(new_ref);
2829            }
2830          }
2831        }
2832      }
2833      // Visit callee-save registers that hold pointers.
2834      uint32_t register_mask = map.GetRegisterMask(encoding.stack_map_encoding);
2835      for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
2836        if (register_mask & (1 << i)) {
2837          mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
2838          if (kIsDebugBuild && ref_addr == nullptr) {
2839            std::string thread_name;
2840            GetThread()->GetThreadName(thread_name);
2841            LOG(INTERNAL_FATAL) << "On thread " << thread_name;
2842            DescribeStack(GetThread());
2843            LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
2844                       << "set in register_mask=" << register_mask << " at " << DescribeLocation();
2845          }
2846          if (*ref_addr != nullptr) {
2847            visitor_(ref_addr, -1, this);
2848          }
2849        }
2850      }
2851    }
2852  }
2853
2854  // Visitor for when we visit a root.
2855  RootVisitor& visitor_;
2856};
2857
2858class RootCallbackVisitor {
2859 public:
2860  RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
2861
2862  void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
2863      REQUIRES_SHARED(Locks::mutator_lock_) {
2864    visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2865  }
2866
2867 private:
2868  RootVisitor* const visitor_;
2869  const uint32_t tid_;
2870};
2871
2872void Thread::VisitRoots(RootVisitor* visitor) {
2873  const uint32_t thread_id = GetThreadId();
2874  visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
2875  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2876    visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
2877                       RootInfo(kRootNativeStack, thread_id));
2878  }
2879  visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
2880  tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
2881  tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
2882  HandleScopeVisitRoots(visitor, thread_id);
2883  if (tlsPtr_.debug_invoke_req != nullptr) {
2884    tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
2885  }
2886  // Visit roots for deoptimization.
2887  if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
2888    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2889    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2890    for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
2891         record != nullptr;
2892         record = record->GetLink()) {
2893      for (ShadowFrame* shadow_frame = record->GetShadowFrame();
2894           shadow_frame != nullptr;
2895           shadow_frame = shadow_frame->GetLink()) {
2896        mapper.VisitShadowFrame(shadow_frame);
2897      }
2898    }
2899  }
2900  for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
2901       record != nullptr;
2902       record = record->GetLink()) {
2903    if (record->IsReference()) {
2904      visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
2905                                  RootInfo(kRootThreadObject, thread_id));
2906    }
2907    visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
2908                                RootInfo(kRootThreadObject, thread_id));
2909  }
2910  if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
2911    RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2912    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2913    for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
2914         record != nullptr;
2915         record = record->GetNext()) {
2916      mapper.VisitShadowFrame(record->GetShadowFrame());
2917    }
2918  }
2919  for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
2920    verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
2921  }
2922  // Visit roots on this thread's stack
2923  Context* context = GetLongJumpContext();
2924  RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2925  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2926  mapper.WalkStack();
2927  ReleaseLongJumpContext(context);
2928  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2929    visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
2930  }
2931}
2932
2933class VerifyRootVisitor : public SingleRootVisitor {
2934 public:
2935  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
2936      OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2937    VerifyObject(root);
2938  }
2939};
2940
2941void Thread::VerifyStackImpl() {
2942  VerifyRootVisitor visitor;
2943  std::unique_ptr<Context> context(Context::Create());
2944  RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
2945  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
2946  mapper.WalkStack();
2947}
2948
2949// Set the stack end to that to be used during a stack overflow
2950void Thread::SetStackEndForStackOverflow() {
2951  // During stack overflow we allow use of the full stack.
2952  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2953    // However, we seem to have already extended to use the full stack.
2954    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2955               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2956    DumpStack(LOG(ERROR));
2957    LOG(FATAL) << "Recursive stack overflow.";
2958  }
2959
2960  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2961
2962  // Remove the stack overflow protection if is it set up.
2963  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2964  if (implicit_stack_check) {
2965    if (!UnprotectStack()) {
2966      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2967    }
2968  }
2969}
2970
2971void Thread::SetTlab(uint8_t* start, uint8_t* end) {
2972  DCHECK_LE(start, end);
2973  tlsPtr_.thread_local_start = start;
2974  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2975  tlsPtr_.thread_local_end = end;
2976  tlsPtr_.thread_local_objects = 0;
2977}
2978
2979bool Thread::HasTlab() const {
2980  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2981  if (has_tlab) {
2982    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2983  } else {
2984    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2985  }
2986  return has_tlab;
2987}
2988
2989std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2990  thread.ShortDump(os);
2991  return os;
2992}
2993
2994bool Thread::ProtectStack(bool fatal_on_error) {
2995  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2996  VLOG(threads) << "Protecting stack at " << pregion;
2997  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2998    if (fatal_on_error) {
2999      LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3000          "Reason: "
3001          << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
3002    }
3003    return false;
3004  }
3005  return true;
3006}
3007
3008bool Thread::UnprotectStack() {
3009  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3010  VLOG(threads) << "Unprotecting stack at " << pregion;
3011  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3012}
3013
3014void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3015  CHECK(Dbg::IsDebuggerActive());
3016  CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3017  CHECK(ssc != nullptr);
3018  tlsPtr_.single_step_control = ssc;
3019}
3020
3021void Thread::DeactivateSingleStepControl() {
3022  CHECK(Dbg::IsDebuggerActive());
3023  CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3024  SingleStepControl* ssc = GetSingleStepControl();
3025  tlsPtr_.single_step_control = nullptr;
3026  delete ssc;
3027}
3028
3029void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3030  CHECK(Dbg::IsDebuggerActive());
3031  CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3032  CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3033  CHECK(req != nullptr);
3034  tlsPtr_.debug_invoke_req = req;
3035}
3036
3037void Thread::ClearDebugInvokeReq() {
3038  CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3039  CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3040  DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3041  tlsPtr_.debug_invoke_req = nullptr;
3042  delete req;
3043}
3044
3045void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3046  verifier->link_ = tlsPtr_.method_verifier;
3047  tlsPtr_.method_verifier = verifier;
3048}
3049
3050void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3051  CHECK_EQ(tlsPtr_.method_verifier, verifier);
3052  tlsPtr_.method_verifier = verifier->link_;
3053}
3054
3055size_t Thread::NumberOfHeldMutexes() const {
3056  size_t count = 0;
3057  for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3058    count += mu != nullptr ? 1 : 0;
3059  }
3060  return count;
3061}
3062
3063void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3064  DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3065  ClearException();
3066  ShadowFrame* shadow_frame =
3067      PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3068  mirror::Throwable* pending_exception = nullptr;
3069  bool from_code = false;
3070  PopDeoptimizationContext(result, &pending_exception, &from_code);
3071  SetTopOfStack(nullptr);
3072  SetTopOfShadowStack(shadow_frame);
3073
3074  // Restore the exception that was pending before deoptimization then interpret the
3075  // deoptimized frames.
3076  if (pending_exception != nullptr) {
3077    SetException(pending_exception);
3078  }
3079  interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3080}
3081
3082void Thread::SetException(mirror::Throwable* new_exception) {
3083  CHECK(new_exception != nullptr);
3084  // TODO: DCHECK(!IsExceptionPending());
3085  tlsPtr_.exception = new_exception;
3086  // LOG(ERROR) << new_exception->Dump();
3087}
3088
3089}  // namespace art
3090