1
2/* @(#)e_jn.c 1.4 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14#include <sys/cdefs.h>
15__FBSDID("$FreeBSD: head/lib/msun/src/e_jn.c 279856 2015-03-10 17:10:54Z kargl $");
16
17/*
18 * __ieee754_jn(n, x), __ieee754_yn(n, x)
19 * floating point Bessel's function of the 1st and 2nd kind
20 * of order n
21 *
22 * Special cases:
23 *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24 *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25 * Note 2. About jn(n,x), yn(n,x)
26 *	For n=0, j0(x) is called,
27 *	for n=1, j1(x) is called,
28 *	for n<x, forward recursion us used starting
29 *	from values of j0(x) and j1(x).
30 *	for n>x, a continued fraction approximation to
31 *	j(n,x)/j(n-1,x) is evaluated and then backward
32 *	recursion is used starting from a supposed value
33 *	for j(n,x). The resulting value of j(0,x) is
34 *	compared with the actual value to correct the
35 *	supposed value of j(n,x).
36 *
37 *	yn(n,x) is similar in all respects, except
38 *	that forward recursion is used for all
39 *	values of n>1.
40 *
41 */
42
43#include "math.h"
44#include "math_private.h"
45
46static const volatile double vone = 1, vzero = 0;
47
48static const double
49invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
50two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
51one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
52
53static const double zero  =  0.00000000000000000000e+00;
54
55double
56__ieee754_jn(int n, double x)
57{
58	int32_t i,hx,ix,lx, sgn;
59	double a, b, temp, di;
60	double z, w;
61
62    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
63     * Thus, J(-n,x) = J(n,-x)
64     */
65	EXTRACT_WORDS(hx,lx,x);
66	ix = 0x7fffffff&hx;
67    /* if J(n,NaN) is NaN */
68	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
69	if(n<0){
70		n = -n;
71		x = -x;
72		hx ^= 0x80000000;
73	}
74	if(n==0) return(__ieee754_j0(x));
75	if(n==1) return(__ieee754_j1(x));
76	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
77	x = fabs(x);
78	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
79	    b = zero;
80	else if((double)n<=x) {
81		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
82	    if(ix>=0x52D00000) { /* x > 2**302 */
83    /* (x >> n**2)
84     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
85     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
86     *	    Let s=sin(x), c=cos(x),
87     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
88     *
89     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
90     *		----------------------------------
91     *		   0	 s-c		 c+s
92     *		   1	-s-c 		-c+s
93     *		   2	-s+c		-c-s
94     *		   3	 s+c		 c-s
95     */
96		switch(n&3) {
97		    case 0: temp =  cos(x)+sin(x); break;
98		    case 1: temp = -cos(x)+sin(x); break;
99		    case 2: temp = -cos(x)-sin(x); break;
100		    case 3: temp =  cos(x)-sin(x); break;
101		}
102		b = invsqrtpi*temp/sqrt(x);
103	    } else {
104	        a = __ieee754_j0(x);
105	        b = __ieee754_j1(x);
106	        for(i=1;i<n;i++){
107		    temp = b;
108		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
109		    a = temp;
110	        }
111	    }
112	} else {
113	    if(ix<0x3e100000) {	/* x < 2**-29 */
114    /* x is tiny, return the first Taylor expansion of J(n,x)
115     * J(n,x) = 1/n!*(x/2)^n  - ...
116     */
117		if(n>33)	/* underflow */
118		    b = zero;
119		else {
120		    temp = x*0.5; b = temp;
121		    for (a=one,i=2;i<=n;i++) {
122			a *= (double)i;		/* a = n! */
123			b *= temp;		/* b = (x/2)^n */
124		    }
125		    b = b/a;
126		}
127	    } else {
128		/* use backward recurrence */
129		/* 			x      x^2      x^2
130		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
131		 *			2n  - 2(n+1) - 2(n+2)
132		 *
133		 * 			1      1        1
134		 *  (for large x)   =  ----  ------   ------   .....
135		 *			2n   2(n+1)   2(n+2)
136		 *			-- - ------ - ------ -
137		 *			 x     x         x
138		 *
139		 * Let w = 2n/x and h=2/x, then the above quotient
140		 * is equal to the continued fraction:
141		 *		    1
142		 *	= -----------------------
143		 *		       1
144		 *	   w - -----------------
145		 *			  1
146		 * 	        w+h - ---------
147		 *		       w+2h - ...
148		 *
149		 * To determine how many terms needed, let
150		 * Q(0) = w, Q(1) = w(w+h) - 1,
151		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
152		 * When Q(k) > 1e4	good for single
153		 * When Q(k) > 1e9	good for double
154		 * When Q(k) > 1e17	good for quadruple
155		 */
156	    /* determine k */
157		double t,v;
158		double q0,q1,h,tmp; int32_t k,m;
159		w  = (n+n)/(double)x; h = 2.0/(double)x;
160		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
161		while(q1<1.0e9) {
162			k += 1; z += h;
163			tmp = z*q1 - q0;
164			q0 = q1;
165			q1 = tmp;
166		}
167		m = n+n;
168		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
169		a = t;
170		b = one;
171		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
172		 *  Hence, if n*(log(2n/x)) > ...
173		 *  single 8.8722839355e+01
174		 *  double 7.09782712893383973096e+02
175		 *  long double 1.1356523406294143949491931077970765006170e+04
176		 *  then recurrent value may overflow and the result is
177		 *  likely underflow to zero
178		 */
179		tmp = n;
180		v = two/x;
181		tmp = tmp*__ieee754_log(fabs(v*tmp));
182		if(tmp<7.09782712893383973096e+02) {
183	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
184		        temp = b;
185			b *= di;
186			b  = b/x - a;
187		        a = temp;
188			di -= two;
189	     	    }
190		} else {
191	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
192		        temp = b;
193			b *= di;
194			b  = b/x - a;
195		        a = temp;
196			di -= two;
197		    /* scale b to avoid spurious overflow */
198			if(b>1e100) {
199			    a /= b;
200			    t /= b;
201			    b  = one;
202			}
203	     	    }
204		}
205		z = __ieee754_j0(x);
206		w = __ieee754_j1(x);
207		if (fabs(z) >= fabs(w))
208		    b = (t*z/b);
209		else
210		    b = (t*w/a);
211	    }
212	}
213	if(sgn==1) return -b; else return b;
214}
215
216double
217__ieee754_yn(int n, double x)
218{
219	int32_t i,hx,ix,lx;
220	int32_t sign;
221	double a, b, temp;
222
223	EXTRACT_WORDS(hx,lx,x);
224	ix = 0x7fffffff&hx;
225	/* yn(n,NaN) = NaN */
226	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
227	/* yn(n,+-0) = -inf and raise divide-by-zero exception. */
228	if((ix|lx)==0) return -one/vzero;
229	/* yn(n,x<0) = NaN and raise invalid exception. */
230	if(hx<0) return vzero/vzero;
231	sign = 1;
232	if(n<0){
233		n = -n;
234		sign = 1 - ((n&1)<<1);
235	}
236	if(n==0) return(__ieee754_y0(x));
237	if(n==1) return(sign*__ieee754_y1(x));
238	if(ix==0x7ff00000) return zero;
239	if(ix>=0x52D00000) { /* x > 2**302 */
240    /* (x >> n**2)
241     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
242     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
243     *	    Let s=sin(x), c=cos(x),
244     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
245     *
246     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
247     *		----------------------------------
248     *		   0	 s-c		 c+s
249     *		   1	-s-c 		-c+s
250     *		   2	-s+c		-c-s
251     *		   3	 s+c		 c-s
252     */
253		switch(n&3) {
254		    case 0: temp =  sin(x)-cos(x); break;
255		    case 1: temp = -sin(x)-cos(x); break;
256		    case 2: temp = -sin(x)+cos(x); break;
257		    case 3: temp =  sin(x)+cos(x); break;
258		}
259		b = invsqrtpi*temp/sqrt(x);
260	} else {
261	    u_int32_t high;
262	    a = __ieee754_y0(x);
263	    b = __ieee754_y1(x);
264	/* quit if b is -inf */
265	    GET_HIGH_WORD(high,b);
266	    for(i=1;i<n&&high!=0xfff00000;i++){
267		temp = b;
268		b = ((double)(i+i)/x)*b - a;
269		GET_HIGH_WORD(high,b);
270		a = temp;
271	    }
272	}
273	if(sign>0) return b; else return -b;
274}
275