1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
13 * from: @(#)fdlibm.h 5.1 93/09/24
14 * $FreeBSD$
15 */
16
17#ifndef _MATH_PRIVATE_H_
18#define	_MATH_PRIVATE_H_
19
20#include <sys/types.h>
21#include <machine/endian.h>
22
23#include <stdint.h>
24typedef uint32_t u_int32_t;
25typedef uint64_t u_int64_t;
26
27/*
28 * The original fdlibm code used statements like:
29 *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
30 *	ix0 = *(n0+(int*)&x);			* high word of x *
31 *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
32 * to dig two 32 bit words out of the 64 bit IEEE floating point
33 * value.  That is non-ANSI, and, moreover, the gcc instruction
34 * scheduler gets it wrong.  We instead use the following macros.
35 * Unlike the original code, we determine the endianness at compile
36 * time, not at run time; I don't see much benefit to selecting
37 * endianness at run time.
38 */
39
40/*
41 * A union which permits us to convert between a double and two 32 bit
42 * ints.
43 */
44
45#ifdef __arm__
46#if defined(__VFP_FP__) || defined(__ARM_EABI__)
47#define	IEEE_WORD_ORDER	BYTE_ORDER
48#else
49#define	IEEE_WORD_ORDER	BIG_ENDIAN
50#endif
51#else /* __arm__ */
52#define	IEEE_WORD_ORDER	BYTE_ORDER
53#endif
54
55#if IEEE_WORD_ORDER == BIG_ENDIAN
56
57typedef union
58{
59  double value;
60  struct
61  {
62    u_int32_t msw;
63    u_int32_t lsw;
64  } parts;
65  struct
66  {
67    u_int64_t w;
68  } xparts;
69} ieee_double_shape_type;
70
71#endif
72
73#if IEEE_WORD_ORDER == LITTLE_ENDIAN
74
75typedef union
76{
77  double value;
78  struct
79  {
80    u_int32_t lsw;
81    u_int32_t msw;
82  } parts;
83  struct
84  {
85    u_int64_t w;
86  } xparts;
87} ieee_double_shape_type;
88
89#endif
90
91/* Get two 32 bit ints from a double.  */
92
93#define EXTRACT_WORDS(ix0,ix1,d)				\
94do {								\
95  ieee_double_shape_type ew_u;					\
96  ew_u.value = (d);						\
97  (ix0) = ew_u.parts.msw;					\
98  (ix1) = ew_u.parts.lsw;					\
99} while (0)
100
101/* Get a 64-bit int from a double. */
102#define EXTRACT_WORD64(ix,d)					\
103do {								\
104  ieee_double_shape_type ew_u;					\
105  ew_u.value = (d);						\
106  (ix) = ew_u.xparts.w;						\
107} while (0)
108
109/* Get the more significant 32 bit int from a double.  */
110
111#define GET_HIGH_WORD(i,d)					\
112do {								\
113  ieee_double_shape_type gh_u;					\
114  gh_u.value = (d);						\
115  (i) = gh_u.parts.msw;						\
116} while (0)
117
118/* Get the less significant 32 bit int from a double.  */
119
120#define GET_LOW_WORD(i,d)					\
121do {								\
122  ieee_double_shape_type gl_u;					\
123  gl_u.value = (d);						\
124  (i) = gl_u.parts.lsw;						\
125} while (0)
126
127/* Set a double from two 32 bit ints.  */
128
129#define INSERT_WORDS(d,ix0,ix1)					\
130do {								\
131  ieee_double_shape_type iw_u;					\
132  iw_u.parts.msw = (ix0);					\
133  iw_u.parts.lsw = (ix1);					\
134  (d) = iw_u.value;						\
135} while (0)
136
137/* Set a double from a 64-bit int. */
138#define INSERT_WORD64(d,ix)					\
139do {								\
140  ieee_double_shape_type iw_u;					\
141  iw_u.xparts.w = (ix);						\
142  (d) = iw_u.value;						\
143} while (0)
144
145/* Set the more significant 32 bits of a double from an int.  */
146
147#define SET_HIGH_WORD(d,v)					\
148do {								\
149  ieee_double_shape_type sh_u;					\
150  sh_u.value = (d);						\
151  sh_u.parts.msw = (v);						\
152  (d) = sh_u.value;						\
153} while (0)
154
155/* Set the less significant 32 bits of a double from an int.  */
156
157#define SET_LOW_WORD(d,v)					\
158do {								\
159  ieee_double_shape_type sl_u;					\
160  sl_u.value = (d);						\
161  sl_u.parts.lsw = (v);						\
162  (d) = sl_u.value;						\
163} while (0)
164
165/*
166 * A union which permits us to convert between a float and a 32 bit
167 * int.
168 */
169
170typedef union
171{
172  float value;
173  /* FIXME: Assumes 32 bit int.  */
174  unsigned int word;
175} ieee_float_shape_type;
176
177/* Get a 32 bit int from a float.  */
178
179#define GET_FLOAT_WORD(i,d)					\
180do {								\
181  ieee_float_shape_type gf_u;					\
182  gf_u.value = (d);						\
183  (i) = gf_u.word;						\
184} while (0)
185
186/* Set a float from a 32 bit int.  */
187
188#define SET_FLOAT_WORD(d,i)					\
189do {								\
190  ieee_float_shape_type sf_u;					\
191  sf_u.word = (i);						\
192  (d) = sf_u.value;						\
193} while (0)
194
195/*
196 * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
197 * double.
198 */
199
200#define	EXTRACT_LDBL80_WORDS(ix0,ix1,d)				\
201do {								\
202  union IEEEl2bits ew_u;					\
203  ew_u.e = (d);							\
204  (ix0) = ew_u.xbits.expsign;					\
205  (ix1) = ew_u.xbits.man;					\
206} while (0)
207
208/*
209 * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
210 * long double.
211 */
212
213#define	EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d)			\
214do {								\
215  union IEEEl2bits ew_u;					\
216  ew_u.e = (d);							\
217  (ix0) = ew_u.xbits.expsign;					\
218  (ix1) = ew_u.xbits.manh;					\
219  (ix2) = ew_u.xbits.manl;					\
220} while (0)
221
222/* Get expsign as a 16 bit int from a long double.  */
223
224#define	GET_LDBL_EXPSIGN(i,d)					\
225do {								\
226  union IEEEl2bits ge_u;					\
227  ge_u.e = (d);							\
228  (i) = ge_u.xbits.expsign;					\
229} while (0)
230
231/*
232 * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
233 * mantissa.
234 */
235
236#define	INSERT_LDBL80_WORDS(d,ix0,ix1)				\
237do {								\
238  union IEEEl2bits iw_u;					\
239  iw_u.xbits.expsign = (ix0);					\
240  iw_u.xbits.man = (ix1);					\
241  (d) = iw_u.e;							\
242} while (0)
243
244/*
245 * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
246 * comprising the mantissa.
247 */
248
249#define	INSERT_LDBL128_WORDS(d,ix0,ix1,ix2)			\
250do {								\
251  union IEEEl2bits iw_u;					\
252  iw_u.xbits.expsign = (ix0);					\
253  iw_u.xbits.manh = (ix1);					\
254  iw_u.xbits.manl = (ix2);					\
255  (d) = iw_u.e;							\
256} while (0)
257
258/* Set expsign of a long double from a 16 bit int.  */
259
260#define	SET_LDBL_EXPSIGN(d,v)					\
261do {								\
262  union IEEEl2bits se_u;					\
263  se_u.e = (d);							\
264  se_u.xbits.expsign = (v);					\
265  (d) = se_u.e;							\
266} while (0)
267
268#ifdef __i386__
269/* Long double constants are broken on i386. */
270#define	LD80C(m, ex, v) {						\
271	.xbits.man = __CONCAT(m, ULL),					\
272	.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),	\
273}
274#else
275/* The above works on non-i386 too, but we use this to check v. */
276#define	LD80C(m, ex, v)	{ .e = (v), }
277#endif
278
279#ifdef FLT_EVAL_METHOD
280/*
281 * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
282 */
283#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
284#define	STRICT_ASSIGN(type, lval, rval)	((lval) = (rval))
285#else
286#define	STRICT_ASSIGN(type, lval, rval) do {	\
287	volatile type __lval;			\
288						\
289	if (sizeof(type) >= sizeof(long double))	\
290		(lval) = (rval);		\
291	else {					\
292		__lval = (rval);		\
293		(lval) = __lval;		\
294	}					\
295} while (0)
296#endif
297#endif /* FLT_EVAL_METHOD */
298
299/* Support switching the mode to FP_PE if necessary. */
300#if defined(__i386__) && !defined(NO_FPSETPREC)
301#define	ENTERI()				\
302	long double __retval;			\
303	fp_prec_t __oprec;			\
304						\
305	if ((__oprec = fpgetprec()) != FP_PE)	\
306		fpsetprec(FP_PE)
307#define	RETURNI(x) do {				\
308	__retval = (x);				\
309	if (__oprec != FP_PE)			\
310		fpsetprec(__oprec);		\
311	RETURNF(__retval);			\
312} while (0)
313#else
314#define	ENTERI(x)
315#define	RETURNI(x)	RETURNF(x)
316#endif
317
318/* Default return statement if hack*_t() is not used. */
319#define      RETURNF(v)      return (v)
320
321/*
322 * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
323 * a == 0, but is slower.
324 */
325#define	_2sum(a, b) do {	\
326	__typeof(a) __s, __w;	\
327				\
328	__w = (a) + (b);	\
329	__s = __w - (a);	\
330	(b) = ((a) - (__w - __s)) + ((b) - __s); \
331	(a) = __w;		\
332} while (0)
333
334/*
335 * 2sumF algorithm.
336 *
337 * "Normalize" the terms in the infinite-precision expression a + b for
338 * the sum of 2 floating point values so that b is as small as possible
339 * relative to 'a'.  (The resulting 'a' is the value of the expression in
340 * the same precision as 'a' and the resulting b is the rounding error.)
341 * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
342 * exponent overflow or underflow must not occur.  This uses a Theorem of
343 * Dekker (1971).  See Knuth (1981) 4.2.2 Theorem C.  The name "TwoSum"
344 * is apparently due to Skewchuk (1997).
345 *
346 * For this to always work, assignment of a + b to 'a' must not retain any
347 * extra precision in a + b.  This is required by C standards but broken
348 * in many compilers.  The brokenness cannot be worked around using
349 * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
350 * algorithm would be destroyed by non-null strict assignments.  (The
351 * compilers are correct to be broken -- the efficiency of all floating
352 * point code calculations would be destroyed similarly if they forced the
353 * conversions.)
354 *
355 * Fortunately, a case that works well can usually be arranged by building
356 * any extra precision into the type of 'a' -- 'a' should have type float_t,
357 * double_t or long double.  b's type should be no larger than 'a's type.
358 * Callers should use these types with scopes as large as possible, to
359 * reduce their own extra-precision and efficiciency problems.  In
360 * particular, they shouldn't convert back and forth just to call here.
361 */
362#ifdef DEBUG
363#define	_2sumF(a, b) do {				\
364	__typeof(a) __w;				\
365	volatile __typeof(a) __ia, __ib, __r, __vw;	\
366							\
367	__ia = (a);					\
368	__ib = (b);					\
369	assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib));	\
370							\
371	__w = (a) + (b);				\
372	(b) = ((a) - __w) + (b);			\
373	(a) = __w;					\
374							\
375	/* The next 2 assertions are weak if (a) is already long double. */ \
376	assert((long double)__ia + __ib == (long double)(a) + (b));	\
377	__vw = __ia + __ib;				\
378	__r = __ia - __vw;				\
379	__r += __ib;					\
380	assert(__vw == (a) && __r == (b));		\
381} while (0)
382#else /* !DEBUG */
383#define	_2sumF(a, b) do {	\
384	__typeof(a) __w;	\
385				\
386	__w = (a) + (b);	\
387	(b) = ((a) - __w) + (b); \
388	(a) = __w;		\
389} while (0)
390#endif /* DEBUG */
391
392/*
393 * Set x += c, where x is represented in extra precision as a + b.
394 * x must be sufficiently normalized and sufficiently larger than c,
395 * and the result is then sufficiently normalized.
396 *
397 * The details of ordering are that |a| must be >= |c| (so that (a, c)
398 * can be normalized without extra work to swap 'a' with c).  The details of
399 * the normalization are that b must be small relative to the normalized 'a'.
400 * Normalization of (a, c) makes the normalized c tiny relative to the
401 * normalized a, so b remains small relative to 'a' in the result.  However,
402 * b need not ever be tiny relative to 'a'.  For example, b might be about
403 * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
404 * That is usually enough, and adding c (which by normalization is about
405 * 2**53 times smaller than a) cannot change b significantly.  However,
406 * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
407 * significantly relative to b.  The caller must ensure that significant
408 * cancellation doesn't occur, either by having c of the same sign as 'a',
409 * or by having |c| a few percent smaller than |a|.  Pre-normalization of
410 * (a, b) may help.
411 *
412 * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
413 * exercise 19).  We gain considerable efficiency by requiring the terms to
414 * be sufficiently normalized and sufficiently increasing.
415 */
416#define	_3sumF(a, b, c) do {	\
417	__typeof(a) __tmp;	\
418				\
419	__tmp = (c);		\
420	_2sumF(__tmp, (a));	\
421	(b) += (a);		\
422	(a) = __tmp;		\
423} while (0)
424
425/*
426 * Common routine to process the arguments to nan(), nanf(), and nanl().
427 */
428void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
429
430#ifdef _COMPLEX_H
431
432/*
433 * C99 specifies that complex numbers have the same representation as
434 * an array of two elements, where the first element is the real part
435 * and the second element is the imaginary part.
436 */
437typedef union {
438	float complex f;
439	float a[2];
440} float_complex;
441typedef union {
442	double complex f;
443	double a[2];
444} double_complex;
445typedef union {
446	long double complex f;
447	long double a[2];
448} long_double_complex;
449#define	REALPART(z)	((z).a[0])
450#define	IMAGPART(z)	((z).a[1])
451
452/*
453 * Inline functions that can be used to construct complex values.
454 *
455 * The C99 standard intends x+I*y to be used for this, but x+I*y is
456 * currently unusable in general since gcc introduces many overflow,
457 * underflow, sign and efficiency bugs by rewriting I*y as
458 * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
459 * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
460 * to -0.0+I*0.0.
461 */
462static __inline float complex
463cpackf(float x, float y)
464{
465	float_complex z;
466
467	REALPART(z) = x;
468	IMAGPART(z) = y;
469	return (z.f);
470}
471
472static __inline double complex
473cpack(double x, double y)
474{
475	double_complex z;
476
477	REALPART(z) = x;
478	IMAGPART(z) = y;
479	return (z.f);
480}
481
482static __inline long double complex
483cpackl(long double x, long double y)
484{
485	long_double_complex z;
486
487	REALPART(z) = x;
488	IMAGPART(z) = y;
489	return (z.f);
490}
491#endif /* _COMPLEX_H */
492
493#ifdef __GNUCLIKE_ASM
494
495/* Asm versions of some functions. */
496
497#ifdef __amd64__
498static __inline int
499irint(double x)
500{
501	int n;
502
503	asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
504	return (n);
505}
506#define	HAVE_EFFICIENT_IRINT
507#endif
508
509#ifdef __i386__
510static __inline int
511irint(double x)
512{
513	int n;
514
515	asm("fistl %0" : "=m" (n) : "t" (x));
516	return (n);
517}
518#define	HAVE_EFFICIENT_IRINT
519#endif
520
521#if defined(__amd64__) || defined(__i386__)
522static __inline int
523irintl(long double x)
524{
525	int n;
526
527	asm("fistl %0" : "=m" (n) : "t" (x));
528	return (n);
529}
530#define	HAVE_EFFICIENT_IRINTL
531#endif
532
533#endif /* __GNUCLIKE_ASM */
534
535#ifdef DEBUG
536#if defined(__amd64__) || defined(__i386__)
537#define	breakpoint()	asm("int $3")
538#else
539#include <signal.h>
540
541#define	breakpoint()	raise(SIGTRAP)
542#endif
543#endif
544
545/* Write a pari script to test things externally. */
546#ifdef DOPRINT
547#include <stdio.h>
548
549#ifndef DOPRINT_SWIZZLE
550#define	DOPRINT_SWIZZLE		0
551#endif
552
553#ifdef DOPRINT_LD80
554
555#define	DOPRINT_START(xp) do {						\
556	uint64_t __lx;							\
557	uint16_t __hx;							\
558									\
559	/* Hack to give more-problematic args. */			\
560	EXTRACT_LDBL80_WORDS(__hx, __lx, *xp);				\
561	__lx ^= DOPRINT_SWIZZLE;					\
562	INSERT_LDBL80_WORDS(*xp, __hx, __lx);				\
563	printf("x = %.21Lg; ", (long double)*xp);			\
564} while (0)
565#define	DOPRINT_END1(v)							\
566	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
567#define	DOPRINT_END2(hi, lo)						\
568	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
569	    (long double)(hi), (long double)(lo))
570
571#elif defined(DOPRINT_D64)
572
573#define	DOPRINT_START(xp) do {						\
574	uint32_t __hx, __lx;						\
575									\
576	EXTRACT_WORDS(__hx, __lx, *xp);					\
577	__lx ^= DOPRINT_SWIZZLE;					\
578	INSERT_WORDS(*xp, __hx, __lx);					\
579	printf("x = %.21Lg; ", (long double)*xp);			\
580} while (0)
581#define	DOPRINT_END1(v)							\
582	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
583#define	DOPRINT_END2(hi, lo)						\
584	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
585	    (long double)(hi), (long double)(lo))
586
587#elif defined(DOPRINT_F32)
588
589#define	DOPRINT_START(xp) do {						\
590	uint32_t __hx;							\
591									\
592	GET_FLOAT_WORD(__hx, *xp);					\
593	__hx ^= DOPRINT_SWIZZLE;					\
594	SET_FLOAT_WORD(*xp, __hx);					\
595	printf("x = %.21Lg; ", (long double)*xp);			\
596} while (0)
597#define	DOPRINT_END1(v)							\
598	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
599#define	DOPRINT_END2(hi, lo)						\
600	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
601	    (long double)(hi), (long double)(lo))
602
603#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
604
605#ifndef DOPRINT_SWIZZLE_HIGH
606#define	DOPRINT_SWIZZLE_HIGH	0
607#endif
608
609#define	DOPRINT_START(xp) do {						\
610	uint64_t __lx, __llx;						\
611	uint16_t __hx;							\
612									\
613	EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp);			\
614	__llx ^= DOPRINT_SWIZZLE;					\
615	__lx ^= DOPRINT_SWIZZLE_HIGH;					\
616	INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx);			\
617	printf("x = %.36Lg; ", (long double)*xp);					\
618} while (0)
619#define	DOPRINT_END1(v)							\
620	printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
621#define	DOPRINT_END2(hi, lo)						\
622	printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n",		\
623	    (long double)(hi), (long double)(lo))
624
625#endif /* DOPRINT_LD80 */
626
627#else /* !DOPRINT */
628#define	DOPRINT_START(xp)
629#define	DOPRINT_END1(v)
630#define	DOPRINT_END2(hi, lo)
631#endif /* DOPRINT */
632
633#define	RETURNP(x) do {			\
634	DOPRINT_END1(x);		\
635	RETURNF(x);			\
636} while (0)
637#define	RETURNPI(x) do {		\
638	DOPRINT_END1(x);		\
639	RETURNI(x);			\
640} while (0)
641#define	RETURN2P(x, y) do {		\
642	DOPRINT_END2((x), (y));		\
643	RETURNF((x) + (y));		\
644} while (0)
645#define	RETURN2PI(x, y) do {		\
646	DOPRINT_END2((x), (y));		\
647	RETURNI((x) + (y));		\
648} while (0)
649#ifdef STRUCT_RETURN
650#define	RETURNSP(rp) do {		\
651	if (!(rp)->lo_set)		\
652		RETURNP((rp)->hi);	\
653	RETURN2P((rp)->hi, (rp)->lo);	\
654} while (0)
655#define	RETURNSPI(rp) do {		\
656	if (!(rp)->lo_set)		\
657		RETURNPI((rp)->hi);	\
658	RETURN2PI((rp)->hi, (rp)->lo);	\
659} while (0)
660#endif
661#define	SUM2P(x, y) ({			\
662	const __typeof (x) __x = (x);	\
663	const __typeof (y) __y = (y);	\
664					\
665	DOPRINT_END2(__x, __y);		\
666	__x + __y;			\
667})
668
669/*
670 * ieee style elementary functions
671 *
672 * We rename functions here to improve other sources' diffability
673 * against fdlibm.
674 */
675#define	__ieee754_sqrt	sqrt
676#define	__ieee754_acos	acos
677#define	__ieee754_acosh	acosh
678#define	__ieee754_log	log
679#define	__ieee754_log2	log2
680#define	__ieee754_atanh	atanh
681#define	__ieee754_asin	asin
682#define	__ieee754_atan2	atan2
683#define	__ieee754_exp	exp
684#define	__ieee754_cosh	cosh
685#define	__ieee754_fmod	fmod
686#define	__ieee754_pow	pow
687#define	__ieee754_lgamma lgamma
688#define	__ieee754_gamma	gamma
689#define	__ieee754_lgamma_r lgamma_r
690#define	__ieee754_gamma_r gamma_r
691#define	__ieee754_log10	log10
692#define	__ieee754_sinh	sinh
693#define	__ieee754_hypot	hypot
694#define	__ieee754_j0	j0
695#define	__ieee754_j1	j1
696#define	__ieee754_y0	y0
697#define	__ieee754_y1	y1
698#define	__ieee754_jn	jn
699#define	__ieee754_yn	yn
700#define	__ieee754_remainder remainder
701#define	__ieee754_scalb	scalb
702#define	__ieee754_sqrtf	sqrtf
703#define	__ieee754_acosf	acosf
704#define	__ieee754_acoshf acoshf
705#define	__ieee754_logf	logf
706#define	__ieee754_atanhf atanhf
707#define	__ieee754_asinf	asinf
708#define	__ieee754_atan2f atan2f
709#define	__ieee754_expf	expf
710#define	__ieee754_coshf	coshf
711#define	__ieee754_fmodf	fmodf
712#define	__ieee754_powf	powf
713#define	__ieee754_lgammaf lgammaf
714#define	__ieee754_gammaf gammaf
715#define	__ieee754_lgammaf_r lgammaf_r
716#define	__ieee754_gammaf_r gammaf_r
717#define	__ieee754_log10f log10f
718#define	__ieee754_log2f log2f
719#define	__ieee754_sinhf	sinhf
720#define	__ieee754_hypotf hypotf
721#define	__ieee754_j0f	j0f
722#define	__ieee754_j1f	j1f
723#define	__ieee754_y0f	y0f
724#define	__ieee754_y1f	y1f
725#define	__ieee754_jnf	jnf
726#define	__ieee754_ynf	ynf
727#define	__ieee754_remainderf remainderf
728#define	__ieee754_scalbf scalbf
729
730/* fdlibm kernel function */
731int	__kernel_rem_pio2(double*,double*,int,int,int);
732
733/* double precision kernel functions */
734#ifndef INLINE_REM_PIO2
735int	__ieee754_rem_pio2(double,double*);
736#endif
737double	__kernel_sin(double,double,int);
738double	__kernel_cos(double,double);
739double	__kernel_tan(double,double,int);
740double	__ldexp_exp(double,int);
741#ifdef _COMPLEX_H
742double complex __ldexp_cexp(double complex,int);
743#endif
744
745/* float precision kernel functions */
746#ifndef INLINE_REM_PIO2F
747int	__ieee754_rem_pio2f(float,double*);
748#endif
749#ifndef INLINE_KERNEL_SINDF
750float	__kernel_sindf(double);
751#endif
752#ifndef INLINE_KERNEL_COSDF
753float	__kernel_cosdf(double);
754#endif
755#ifndef INLINE_KERNEL_TANDF
756float	__kernel_tandf(double,int);
757#endif
758float	__ldexp_expf(float,int);
759#ifdef _COMPLEX_H
760float complex __ldexp_cexpf(float complex,int);
761#endif
762
763/* long double precision kernel functions */
764long double __kernel_sinl(long double, long double, int);
765long double __kernel_cosl(long double, long double);
766long double __kernel_tanl(long double, long double, int);
767
768#endif /* !_MATH_PRIVATE_H_ */
769