1/*
2 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <arch_helpers.h>
9#include <assert.h>
10#include <debug.h>
11#include <gicv3.h>
12#include <interrupt_props.h>
13#include <spinlock.h>
14#include "gicv3_private.h"
15
16const gicv3_driver_data_t *gicv3_driver_data;
17static unsigned int gicv2_compat;
18
19/*
20 * Spinlock to guard registers needing read-modify-write. APIs protected by this
21 * spinlock are used either at boot time (when only a single CPU is active), or
22 * when the system is fully coherent.
23 */
24spinlock_t gic_lock;
25
26/*
27 * Redistributor power operations are weakly bound so that they can be
28 * overridden
29 */
30#pragma weak gicv3_rdistif_off
31#pragma weak gicv3_rdistif_on
32
33
34/* Helper macros to save and restore GICD registers to and from the context */
35#define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
36	do {								\
37		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
38				int_id += (1 << REG##_SHIFT)) {		\
39			gicd_write_##reg(base, int_id,			\
40				ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
41		}							\
42	} while (0)
43
44#define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
45	do {								\
46		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
47				int_id += (1 << REG##_SHIFT)) {		\
48			ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
49					gicd_read_##reg(base, int_id);	\
50		}							\
51	} while (0)
52
53
54/*******************************************************************************
55 * This function initialises the ARM GICv3 driver in EL3 with provided platform
56 * inputs.
57 ******************************************************************************/
58void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
59{
60	unsigned int gic_version;
61
62	assert(plat_driver_data);
63	assert(plat_driver_data->gicd_base);
64	assert(plat_driver_data->gicr_base);
65	assert(plat_driver_data->rdistif_num);
66	assert(plat_driver_data->rdistif_base_addrs);
67
68	assert(IS_IN_EL3());
69
70#if !ERROR_DEPRECATED
71	if (plat_driver_data->interrupt_props == NULL) {
72		/* Interrupt properties array size must be 0 */
73		assert(plat_driver_data->interrupt_props_num == 0);
74
75		/*
76		 * The platform should provide a list of at least one type of
77		 * interrupt.
78		 */
79		assert(plat_driver_data->g0_interrupt_array ||
80				plat_driver_data->g1s_interrupt_array);
81
82		/*
83		 * If there are no interrupts of a particular type, then the
84		 * number of interrupts of that type should be 0 and vice-versa.
85		 */
86		assert(plat_driver_data->g0_interrupt_array ?
87				plat_driver_data->g0_interrupt_num :
88				plat_driver_data->g0_interrupt_num == 0);
89		assert(plat_driver_data->g1s_interrupt_array ?
90				plat_driver_data->g1s_interrupt_num :
91				plat_driver_data->g1s_interrupt_num == 0);
92	}
93#else
94	assert(plat_driver_data->interrupt_props != NULL);
95	assert(plat_driver_data->interrupt_props_num > 0);
96#endif
97
98	/* Check for system register support */
99#ifdef AARCH32
100	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
101#else
102	assert(read_id_aa64pfr0_el1() &
103			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
104#endif /* AARCH32 */
105
106	/* The GIC version should be 3.0 */
107	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
108	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
109	gic_version &= PIDR2_ARCH_REV_MASK;
110	assert(gic_version == ARCH_REV_GICV3);
111
112	/*
113	 * Find out whether the GIC supports the GICv2 compatibility mode. The
114	 * ARE_S bit resets to 0 if supported
115	 */
116	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
117	gicv2_compat >>= CTLR_ARE_S_SHIFT;
118	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
119
120	/*
121	 * Find the base address of each implemented Redistributor interface.
122	 * The number of interfaces should be equal to the number of CPUs in the
123	 * system. The memory for saving these addresses has to be allocated by
124	 * the platform port
125	 */
126	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
127					   plat_driver_data->rdistif_num,
128					   plat_driver_data->gicr_base,
129					   plat_driver_data->mpidr_to_core_pos);
130
131	gicv3_driver_data = plat_driver_data;
132
133	/*
134	 * The GIC driver data is initialized by the primary CPU with caches
135	 * enabled. When the secondary CPU boots up, it initializes the
136	 * GICC/GICR interface with the caches disabled. Hence flush the
137	 * driver data to ensure coherency. This is not required if the
138	 * platform has HW_ASSISTED_COHERENCY enabled.
139	 */
140#if !HW_ASSISTED_COHERENCY
141	flush_dcache_range((uintptr_t) &gicv3_driver_data,
142			sizeof(gicv3_driver_data));
143	flush_dcache_range((uintptr_t) gicv3_driver_data,
144			sizeof(*gicv3_driver_data));
145#endif
146
147	INFO("GICv3 %s legacy support detected."
148			" ARM GICV3 driver initialized in EL3\n",
149			gicv2_compat ? "with" : "without");
150}
151
152/*******************************************************************************
153 * This function initialises the GIC distributor interface based upon the data
154 * provided by the platform while initialising the driver.
155 ******************************************************************************/
156void gicv3_distif_init(void)
157{
158	unsigned int bitmap = 0;
159
160	assert(gicv3_driver_data);
161	assert(gicv3_driver_data->gicd_base);
162
163	assert(IS_IN_EL3());
164
165	/*
166	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
167	 * the ARE_S bit. The Distributor might generate a system error
168	 * otherwise.
169	 */
170	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
171		      CTLR_ENABLE_G0_BIT |
172		      CTLR_ENABLE_G1S_BIT |
173		      CTLR_ENABLE_G1NS_BIT,
174		      RWP_TRUE);
175
176	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
177	gicd_set_ctlr(gicv3_driver_data->gicd_base,
178			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
179
180	/* Set the default attribute of all SPIs */
181	gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base);
182
183#if !ERROR_DEPRECATED
184	if (gicv3_driver_data->interrupt_props != NULL) {
185#endif
186		bitmap = gicv3_secure_spis_configure_props(
187				gicv3_driver_data->gicd_base,
188				gicv3_driver_data->interrupt_props,
189				gicv3_driver_data->interrupt_props_num);
190#if !ERROR_DEPRECATED
191	} else {
192		assert(gicv3_driver_data->g1s_interrupt_array ||
193				gicv3_driver_data->g0_interrupt_array);
194
195		/* Configure the G1S SPIs */
196		if (gicv3_driver_data->g1s_interrupt_array) {
197			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
198					gicv3_driver_data->g1s_interrupt_num,
199					gicv3_driver_data->g1s_interrupt_array,
200					INTR_GROUP1S);
201			bitmap |= CTLR_ENABLE_G1S_BIT;
202		}
203
204		/* Configure the G0 SPIs */
205		if (gicv3_driver_data->g0_interrupt_array) {
206			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
207					gicv3_driver_data->g0_interrupt_num,
208					gicv3_driver_data->g0_interrupt_array,
209					INTR_GROUP0);
210			bitmap |= CTLR_ENABLE_G0_BIT;
211		}
212	}
213#endif
214
215	/* Enable the secure SPIs now that they have been configured */
216	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
217}
218
219/*******************************************************************************
220 * This function initialises the GIC Redistributor interface of the calling CPU
221 * (identified by the 'proc_num' parameter) based upon the data provided by the
222 * platform while initialising the driver.
223 ******************************************************************************/
224void gicv3_rdistif_init(unsigned int proc_num)
225{
226	uintptr_t gicr_base;
227
228	assert(gicv3_driver_data);
229	assert(proc_num < gicv3_driver_data->rdistif_num);
230	assert(gicv3_driver_data->rdistif_base_addrs);
231	assert(gicv3_driver_data->gicd_base);
232	assert(gicd_read_ctlr(gicv3_driver_data->gicd_base) & CTLR_ARE_S_BIT);
233
234	assert(IS_IN_EL3());
235
236	/* Power on redistributor */
237	gicv3_rdistif_on(proc_num);
238
239	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
240
241	/* Set the default attribute of all SGIs and PPIs */
242	gicv3_ppi_sgi_configure_defaults(gicr_base);
243
244#if !ERROR_DEPRECATED
245	if (gicv3_driver_data->interrupt_props != NULL) {
246#endif
247		gicv3_secure_ppi_sgi_configure_props(gicr_base,
248				gicv3_driver_data->interrupt_props,
249				gicv3_driver_data->interrupt_props_num);
250#if !ERROR_DEPRECATED
251	} else {
252		assert(gicv3_driver_data->g1s_interrupt_array ||
253		       gicv3_driver_data->g0_interrupt_array);
254
255		/* Configure the G1S SGIs/PPIs */
256		if (gicv3_driver_data->g1s_interrupt_array) {
257			gicv3_secure_ppi_sgi_configure(gicr_base,
258					gicv3_driver_data->g1s_interrupt_num,
259					gicv3_driver_data->g1s_interrupt_array,
260					INTR_GROUP1S);
261		}
262
263		/* Configure the G0 SGIs/PPIs */
264		if (gicv3_driver_data->g0_interrupt_array) {
265			gicv3_secure_ppi_sgi_configure(gicr_base,
266					gicv3_driver_data->g0_interrupt_num,
267					gicv3_driver_data->g0_interrupt_array,
268					INTR_GROUP0);
269		}
270	}
271#endif
272}
273
274/*******************************************************************************
275 * Functions to perform power operations on GIC Redistributor
276 ******************************************************************************/
277void gicv3_rdistif_off(unsigned int proc_num)
278{
279	return;
280}
281
282void gicv3_rdistif_on(unsigned int proc_num)
283{
284	return;
285}
286
287/*******************************************************************************
288 * This function enables the GIC CPU interface of the calling CPU using only
289 * system register accesses.
290 ******************************************************************************/
291void gicv3_cpuif_enable(unsigned int proc_num)
292{
293	uintptr_t gicr_base;
294	unsigned int scr_el3;
295	unsigned int icc_sre_el3;
296
297	assert(gicv3_driver_data);
298	assert(proc_num < gicv3_driver_data->rdistif_num);
299	assert(gicv3_driver_data->rdistif_base_addrs);
300	assert(IS_IN_EL3());
301
302	/* Mark the connected core as awake */
303	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
304	gicv3_rdistif_mark_core_awake(gicr_base);
305
306	/* Disable the legacy interrupt bypass */
307	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
308
309	/*
310	 * Enable system register access for EL3 and allow lower exception
311	 * levels to configure the same for themselves. If the legacy mode is
312	 * not supported, the SRE bit is RAO/WI
313	 */
314	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
315	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
316
317	scr_el3 = read_scr_el3();
318
319	/*
320	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
321	 * ICC_SRE_EL2 registers.
322	 */
323	write_scr_el3(scr_el3 | SCR_NS_BIT);
324	isb();
325
326	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
327	write_icc_sre_el1(ICC_SRE_SRE_BIT);
328	isb();
329
330	/* Switch to secure state. */
331	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
332	isb();
333
334	/* Program the idle priority in the PMR */
335	write_icc_pmr_el1(GIC_PRI_MASK);
336
337	/* Enable Group0 interrupts */
338	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
339
340	/* Enable Group1 Secure interrupts */
341	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
342				IGRPEN1_EL3_ENABLE_G1S_BIT);
343
344	/* Write the secure ICC_SRE_EL1 register */
345	write_icc_sre_el1(ICC_SRE_SRE_BIT);
346	isb();
347}
348
349/*******************************************************************************
350 * This function disables the GIC CPU interface of the calling CPU using
351 * only system register accesses.
352 ******************************************************************************/
353void gicv3_cpuif_disable(unsigned int proc_num)
354{
355	uintptr_t gicr_base;
356
357	assert(gicv3_driver_data);
358	assert(proc_num < gicv3_driver_data->rdistif_num);
359	assert(gicv3_driver_data->rdistif_base_addrs);
360
361	assert(IS_IN_EL3());
362
363	/* Disable legacy interrupt bypass */
364	write_icc_sre_el3(read_icc_sre_el3() |
365			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
366
367	/* Disable Group0 interrupts */
368	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
369			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
370
371	/* Disable Group1 Secure and Non-Secure interrupts */
372	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
373			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
374			      IGRPEN1_EL3_ENABLE_G1S_BIT));
375
376	/* Synchronise accesses to group enable registers */
377	isb();
378
379	/* Mark the connected core as asleep */
380	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
381	gicv3_rdistif_mark_core_asleep(gicr_base);
382}
383
384/*******************************************************************************
385 * This function returns the id of the highest priority pending interrupt at
386 * the GIC cpu interface.
387 ******************************************************************************/
388unsigned int gicv3_get_pending_interrupt_id(void)
389{
390	unsigned int id;
391
392	assert(IS_IN_EL3());
393	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
394
395	/*
396	 * If the ID is special identifier corresponding to G1S or G1NS
397	 * interrupt, then read the highest pending group 1 interrupt.
398	 */
399	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
400		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
401
402	return id;
403}
404
405/*******************************************************************************
406 * This function returns the type of the highest priority pending interrupt at
407 * the GIC cpu interface. The return values can be one of the following :
408 *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
409 *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
410 *   0 - 1019           : The interrupt type is secure Group 0.
411 *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
412 *                            sufficient priority to be signaled
413 ******************************************************************************/
414unsigned int gicv3_get_pending_interrupt_type(void)
415{
416	assert(IS_IN_EL3());
417	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
418}
419
420/*******************************************************************************
421 * This function returns the type of the interrupt id depending upon the group
422 * this interrupt has been configured under by the interrupt controller i.e.
423 * group0 or group1 Secure / Non Secure. The return value can be one of the
424 * following :
425 *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
426 *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
427 *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
428 *                   interrupt.
429 ******************************************************************************/
430unsigned int gicv3_get_interrupt_type(unsigned int id,
431					  unsigned int proc_num)
432{
433	unsigned int igroup, grpmodr;
434	uintptr_t gicr_base;
435
436	assert(IS_IN_EL3());
437	assert(gicv3_driver_data);
438
439	/* Ensure the parameters are valid */
440	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
441	assert(proc_num < gicv3_driver_data->rdistif_num);
442
443	/* All LPI interrupts are Group 1 non secure */
444	if (id >= MIN_LPI_ID)
445		return INTR_GROUP1NS;
446
447	if (id < MIN_SPI_ID) {
448		assert(gicv3_driver_data->rdistif_base_addrs);
449		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
450		igroup = gicr_get_igroupr0(gicr_base, id);
451		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
452	} else {
453		assert(gicv3_driver_data->gicd_base);
454		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
455		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
456	}
457
458	/*
459	 * If the IGROUP bit is set, then it is a Group 1 Non secure
460	 * interrupt
461	 */
462	if (igroup)
463		return INTR_GROUP1NS;
464
465	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
466	if (grpmodr)
467		return INTR_GROUP1S;
468
469	/* Else it is a Group 0 Secure interrupt */
470	return INTR_GROUP0;
471}
472
473/*****************************************************************************
474 * Function to save and disable the GIC ITS register context. The power
475 * management of GIC ITS is implementation-defined and this function doesn't
476 * save any memory structures required to support ITS. As the sequence to save
477 * this state is implementation defined, it should be executed in platform
478 * specific code. Calling this function alone and then powering down the GIC and
479 * ITS without implementing the aforementioned platform specific code will
480 * corrupt the ITS state.
481 *
482 * This function must be invoked after the GIC CPU interface is disabled.
483 *****************************************************************************/
484void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
485{
486	int i;
487
488	assert(gicv3_driver_data);
489	assert(IS_IN_EL3());
490	assert(its_ctx);
491	assert(gits_base);
492
493	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
494
495	/* Disable the ITS */
496	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
497					(~GITS_CTLR_ENABLED_BIT));
498
499	/* Wait for quiescent state */
500	gits_wait_for_quiescent_bit(gits_base);
501
502	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
503	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
504
505	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
506		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
507}
508
509/*****************************************************************************
510 * Function to restore the GIC ITS register context. The power
511 * management of GIC ITS is implementation defined and this function doesn't
512 * restore any memory structures required to support ITS. The assumption is
513 * that these structures are in memory and are retained during system suspend.
514 *
515 * This must be invoked before the GIC CPU interface is enabled.
516 *****************************************************************************/
517void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
518{
519	int i;
520
521	assert(gicv3_driver_data);
522	assert(IS_IN_EL3());
523	assert(its_ctx);
524	assert(gits_base);
525
526	/* Assert that the GITS is disabled and quiescent */
527	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0);
528	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0);
529
530	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
531	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
532
533	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
534		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
535
536	/* Restore the ITS CTLR but leave the ITS disabled */
537	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
538			(~GITS_CTLR_ENABLED_BIT));
539}
540
541/*****************************************************************************
542 * Function to save the GIC Redistributor register context. This function
543 * must be invoked after CPU interface disable and prior to Distributor save.
544 *****************************************************************************/
545void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
546{
547	uintptr_t gicr_base;
548	unsigned int int_id;
549
550	assert(gicv3_driver_data);
551	assert(proc_num < gicv3_driver_data->rdistif_num);
552	assert(gicv3_driver_data->rdistif_base_addrs);
553	assert(IS_IN_EL3());
554	assert(rdist_ctx);
555
556	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
557
558	/*
559	 * Wait for any write to GICR_CTLR to complete before trying to save any
560	 * state.
561	 */
562	gicr_wait_for_pending_write(gicr_base);
563
564	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
565
566	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
567	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
568
569	rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
570	rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
571	rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
572	rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
573	rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
574	rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
575	rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
576	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
577	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
578			int_id += (1 << IPRIORITYR_SHIFT)) {
579		rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
580				gicr_read_ipriorityr(gicr_base, int_id);
581	}
582
583
584	/*
585	 * Call the pre-save hook that implements the IMP DEF sequence that may
586	 * be required on some GIC implementations. As this may need to access
587	 * the Redistributor registers, we pass it proc_num.
588	 */
589	gicv3_distif_pre_save(proc_num);
590}
591
592/*****************************************************************************
593 * Function to restore the GIC Redistributor register context. We disable
594 * LPI and per-cpu interrupts before we start restore of the Redistributor.
595 * This function must be invoked after Distributor restore but prior to
596 * CPU interface enable. The pending and active interrupts are restored
597 * after the interrupts are fully configured and enabled.
598 *****************************************************************************/
599void gicv3_rdistif_init_restore(unsigned int proc_num,
600				const gicv3_redist_ctx_t * const rdist_ctx)
601{
602	uintptr_t gicr_base;
603	unsigned int int_id;
604
605	assert(gicv3_driver_data);
606	assert(proc_num < gicv3_driver_data->rdistif_num);
607	assert(gicv3_driver_data->rdistif_base_addrs);
608	assert(IS_IN_EL3());
609	assert(rdist_ctx);
610
611	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
612
613	/* Power on redistributor */
614	gicv3_rdistif_on(proc_num);
615
616	/*
617	 * Call the post-restore hook that implements the IMP DEF sequence that
618	 * may be required on some GIC implementations. As this may need to
619	 * access the Redistributor registers, we pass it proc_num.
620	 */
621	gicv3_distif_post_restore(proc_num);
622
623	/*
624	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
625	 * more scalable approach as it avoids clearing the enable bits in the
626	 * GICD_CTLR
627	 */
628	gicr_write_icenabler0(gicr_base, ~0);
629	/* Wait for pending writes to GICR_ICENABLER */
630	gicr_wait_for_pending_write(gicr_base);
631
632	/*
633	 * Disable the LPIs to avoid unpredictable behavior when writing to
634	 * GICR_PROPBASER and GICR_PENDBASER.
635	 */
636	gicr_write_ctlr(gicr_base,
637			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
638
639	/* Restore registers' content */
640	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
641	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
642
643	gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);
644
645	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
646			int_id += (1 << IPRIORITYR_SHIFT)) {
647		gicr_write_ipriorityr(gicr_base, int_id,
648		rdist_ctx->gicr_ipriorityr[
649				(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
650	}
651
652	gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
653	gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
654	gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
655	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
656
657	/* Restore after group and priorities are set */
658	gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
659	gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);
660
661	/*
662	 * Wait for all writes to the Distributor to complete before enabling
663	 * the SGI and PPIs.
664	 */
665	gicr_wait_for_upstream_pending_write(gicr_base);
666	gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);
667
668	/*
669	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
670	 * the first write to GICR_CTLR was still in flight (this write only
671	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
672	 * bit).
673	 */
674	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
675	gicr_wait_for_pending_write(gicr_base);
676}
677
678/*****************************************************************************
679 * Function to save the GIC Distributor register context. This function
680 * must be invoked after CPU interface disable and Redistributor save.
681 *****************************************************************************/
682void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
683{
684	unsigned int num_ints;
685
686	assert(gicv3_driver_data);
687	assert(gicv3_driver_data->gicd_base);
688	assert(IS_IN_EL3());
689	assert(dist_ctx);
690
691	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
692
693	num_ints = gicd_read_typer(gicd_base);
694	num_ints &= TYPER_IT_LINES_NO_MASK;
695	num_ints = (num_ints + 1) << 5;
696
697	assert(num_ints <= MAX_SPI_ID + 1);
698
699	/* Wait for pending write to complete */
700	gicd_wait_for_pending_write(gicd_base);
701
702	/* Save the GICD_CTLR */
703	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
704
705	/* Save GICD_IGROUPR for INTIDs 32 - 1020 */
706	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
707
708	/* Save GICD_ISENABLER for INT_IDs 32 - 1020 */
709	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
710
711	/* Save GICD_ISPENDR for INTIDs 32 - 1020 */
712	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
713
714	/* Save GICD_ISACTIVER for INTIDs 32 - 1020 */
715	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
716
717	/* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */
718	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
719
720	/* Save GICD_ICFGR for INTIDs 32 - 1020 */
721	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
722
723	/* Save GICD_IGRPMODR for INTIDs 32 - 1020 */
724	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
725
726	/* Save GICD_NSACR for INTIDs 32 - 1020 */
727	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
728
729	/* Save GICD_IROUTER for INTIDs 32 - 1024 */
730	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
731
732	/*
733	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
734	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
735	 * driver.
736	 */
737}
738
739/*****************************************************************************
740 * Function to restore the GIC Distributor register context. We disable G0, G1S
741 * and G1NS interrupt groups before we start restore of the Distributor. This
742 * function must be invoked prior to Redistributor restore and CPU interface
743 * enable. The pending and active interrupts are restored after the interrupts
744 * are fully configured and enabled.
745 *****************************************************************************/
746void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
747{
748	unsigned int num_ints = 0;
749
750	assert(gicv3_driver_data);
751	assert(gicv3_driver_data->gicd_base);
752	assert(IS_IN_EL3());
753	assert(dist_ctx);
754
755	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
756
757	/*
758	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
759	 * the ARE_S bit. The Distributor might generate a system error
760	 * otherwise.
761	 */
762	gicd_clr_ctlr(gicd_base,
763		      CTLR_ENABLE_G0_BIT |
764		      CTLR_ENABLE_G1S_BIT |
765		      CTLR_ENABLE_G1NS_BIT,
766		      RWP_TRUE);
767
768	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
769	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
770
771	num_ints = gicd_read_typer(gicd_base);
772	num_ints &= TYPER_IT_LINES_NO_MASK;
773	num_ints = (num_ints + 1) << 5;
774
775	assert(num_ints <= MAX_SPI_ID + 1);
776
777	/* Restore GICD_IGROUPR for INTIDs 32 - 1020 */
778	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
779
780	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */
781	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
782
783	/* Restore GICD_ICFGR for INTIDs 32 - 1020 */
784	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
785
786	/* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */
787	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
788
789	/* Restore GICD_NSACR for INTIDs 32 - 1020 */
790	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
791
792	/* Restore GICD_IROUTER for INTIDs 32 - 1020 */
793	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
794
795	/*
796	 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
797	 * configured.
798	 */
799
800	/* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */
801	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
802
803	/* Restore GICD_ISPENDR for INTIDs 32 - 1020 */
804	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
805
806	/* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */
807	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
808
809	/* Restore the GICD_CTLR */
810	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
811	gicd_wait_for_pending_write(gicd_base);
812
813}
814
815/*******************************************************************************
816 * This function gets the priority of the interrupt the processor is currently
817 * servicing.
818 ******************************************************************************/
819unsigned int gicv3_get_running_priority(void)
820{
821	return read_icc_rpr_el1();
822}
823
824/*******************************************************************************
825 * This function checks if the interrupt identified by id is active (whether the
826 * state is either active, or active and pending). The proc_num is used if the
827 * interrupt is SGI or PPI and programs the corresponding Redistributor
828 * interface.
829 ******************************************************************************/
830unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
831{
832	unsigned int value;
833
834	assert(gicv3_driver_data);
835	assert(gicv3_driver_data->gicd_base);
836	assert(proc_num < gicv3_driver_data->rdistif_num);
837	assert(gicv3_driver_data->rdistif_base_addrs);
838	assert(id <= MAX_SPI_ID);
839
840	if (id < MIN_SPI_ID) {
841		/* For SGIs and PPIs */
842		value = gicr_get_isactiver0(
843				gicv3_driver_data->rdistif_base_addrs[proc_num], id);
844	} else {
845		value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
846	}
847
848	return value;
849}
850
851/*******************************************************************************
852 * This function enables the interrupt identified by id. The proc_num
853 * is used if the interrupt is SGI or PPI, and programs the corresponding
854 * Redistributor interface.
855 ******************************************************************************/
856void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
857{
858	assert(gicv3_driver_data);
859	assert(gicv3_driver_data->gicd_base);
860	assert(proc_num < gicv3_driver_data->rdistif_num);
861	assert(gicv3_driver_data->rdistif_base_addrs);
862	assert(id <= MAX_SPI_ID);
863
864	/*
865	 * Ensure that any shared variable updates depending on out of band
866	 * interrupt trigger are observed before enabling interrupt.
867	 */
868	dsbishst();
869	if (id < MIN_SPI_ID) {
870		/* For SGIs and PPIs */
871		gicr_set_isenabler0(
872				gicv3_driver_data->rdistif_base_addrs[proc_num],
873				id);
874	} else {
875		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
876	}
877}
878
879/*******************************************************************************
880 * This function disables the interrupt identified by id. The proc_num
881 * is used if the interrupt is SGI or PPI, and programs the corresponding
882 * Redistributor interface.
883 ******************************************************************************/
884void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
885{
886	assert(gicv3_driver_data);
887	assert(gicv3_driver_data->gicd_base);
888	assert(proc_num < gicv3_driver_data->rdistif_num);
889	assert(gicv3_driver_data->rdistif_base_addrs);
890	assert(id <= MAX_SPI_ID);
891
892	/*
893	 * Disable interrupt, and ensure that any shared variable updates
894	 * depending on out of band interrupt trigger are observed afterwards.
895	 */
896	if (id < MIN_SPI_ID) {
897		/* For SGIs and PPIs */
898		gicr_set_icenabler0(
899				gicv3_driver_data->rdistif_base_addrs[proc_num],
900				id);
901
902		/* Write to clear enable requires waiting for pending writes */
903		gicr_wait_for_pending_write(
904				gicv3_driver_data->rdistif_base_addrs[proc_num]);
905	} else {
906		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
907
908		/* Write to clear enable requires waiting for pending writes */
909		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
910	}
911
912	dsbishst();
913}
914
915/*******************************************************************************
916 * This function sets the interrupt priority as supplied for the given interrupt
917 * id.
918 ******************************************************************************/
919void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
920		unsigned int priority)
921{
922	uintptr_t gicr_base;
923
924	assert(gicv3_driver_data);
925	assert(gicv3_driver_data->gicd_base);
926	assert(proc_num < gicv3_driver_data->rdistif_num);
927	assert(gicv3_driver_data->rdistif_base_addrs);
928	assert(id <= MAX_SPI_ID);
929
930	if (id < MIN_SPI_ID) {
931		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
932		gicr_set_ipriorityr(gicr_base, id, priority);
933	} else {
934		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
935	}
936}
937
938/*******************************************************************************
939 * This function assigns group for the interrupt identified by id. The proc_num
940 * is used if the interrupt is SGI or PPI, and programs the corresponding
941 * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
942 ******************************************************************************/
943void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
944		unsigned int type)
945{
946	unsigned int igroup = 0, grpmod = 0;
947	uintptr_t gicr_base;
948
949	assert(gicv3_driver_data);
950	assert(gicv3_driver_data->gicd_base);
951	assert(proc_num < gicv3_driver_data->rdistif_num);
952	assert(gicv3_driver_data->rdistif_base_addrs);
953
954	switch (type) {
955	case INTR_GROUP1S:
956		igroup = 0;
957		grpmod = 1;
958		break;
959	case INTR_GROUP0:
960		igroup = 0;
961		grpmod = 0;
962		break;
963	case INTR_GROUP1NS:
964		igroup = 1;
965		grpmod = 0;
966		break;
967	default:
968		assert(0);
969	}
970
971	if (id < MIN_SPI_ID) {
972		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
973		if (igroup)
974			gicr_set_igroupr0(gicr_base, id);
975		else
976			gicr_clr_igroupr0(gicr_base, id);
977
978		if (grpmod)
979			gicr_set_igrpmodr0(gicr_base, id);
980		else
981			gicr_clr_igrpmodr0(gicr_base, id);
982	} else {
983		/* Serialize read-modify-write to Distributor registers */
984		spin_lock(&gic_lock);
985		if (igroup)
986			gicd_set_igroupr(gicv3_driver_data->gicd_base, id);
987		else
988			gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
989
990		if (grpmod)
991			gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id);
992		else
993			gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
994		spin_unlock(&gic_lock);
995	}
996}
997
998/*******************************************************************************
999 * This function raises the specified Secure Group 0 SGI.
1000 *
1001 * The target parameter must be a valid MPIDR in the system.
1002 ******************************************************************************/
1003void gicv3_raise_secure_g0_sgi(int sgi_num, u_register_t target)
1004{
1005	unsigned int tgt, aff3, aff2, aff1, aff0;
1006	uint64_t sgi_val;
1007
1008	/* Verify interrupt number is in the SGI range */
1009	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1010
1011	/* Extract affinity fields from target */
1012	aff0 = MPIDR_AFFLVL0_VAL(target);
1013	aff1 = MPIDR_AFFLVL1_VAL(target);
1014	aff2 = MPIDR_AFFLVL2_VAL(target);
1015	aff3 = MPIDR_AFFLVL3_VAL(target);
1016
1017	/*
1018	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1019	 * this PE.
1020	 */
1021	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1022	tgt = BIT(aff0);
1023
1024	/* Raise SGI to PE specified by its affinity */
1025	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1026			tgt);
1027
1028	/*
1029	 * Ensure that any shared variable updates depending on out of band
1030	 * interrupt trigger are observed before raising SGI.
1031	 */
1032	dsbishst();
1033	write_icc_sgi0r_el1(sgi_val);
1034	isb();
1035}
1036
1037/*******************************************************************************
1038 * This function sets the interrupt routing for the given SPI interrupt id.
1039 * The interrupt routing is specified in routing mode and mpidr.
1040 *
1041 * The routing mode can be either of:
1042 *  - GICV3_IRM_ANY
1043 *  - GICV3_IRM_PE
1044 *
1045 * The mpidr is the affinity of the PE to which the interrupt will be routed,
1046 * and is ignored for routing mode GICV3_IRM_ANY.
1047 ******************************************************************************/
1048void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1049{
1050	unsigned long long aff;
1051	uint64_t router;
1052
1053	assert(gicv3_driver_data);
1054	assert(gicv3_driver_data->gicd_base);
1055
1056	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1057	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);
1058
1059	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1060	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1061
1062	/*
1063	 * In implementations that do not require 1 of N distribution of SPIs,
1064	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1065	 */
1066	if (irm == GICV3_IRM_ANY) {
1067		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1068		if (!((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK)) {
1069			ERROR("GICv3 implementation doesn't support routing ANY\n");
1070			panic();
1071		}
1072	}
1073}
1074
1075/*******************************************************************************
1076 * This function clears the pending status of an interrupt identified by id.
1077 * The proc_num is used if the interrupt is SGI or PPI, and programs the
1078 * corresponding Redistributor interface.
1079 ******************************************************************************/
1080void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1081{
1082	assert(gicv3_driver_data);
1083	assert(gicv3_driver_data->gicd_base);
1084	assert(proc_num < gicv3_driver_data->rdistif_num);
1085	assert(gicv3_driver_data->rdistif_base_addrs);
1086
1087	/*
1088	 * Clear pending interrupt, and ensure that any shared variable updates
1089	 * depending on out of band interrupt trigger are observed afterwards.
1090	 */
1091	if (id < MIN_SPI_ID) {
1092		/* For SGIs and PPIs */
1093		gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1094				id);
1095	} else {
1096		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1097	}
1098	dsbishst();
1099}
1100
1101/*******************************************************************************
1102 * This function sets the pending status of an interrupt identified by id.
1103 * The proc_num is used if the interrupt is SGI or PPI and programs the
1104 * corresponding Redistributor interface.
1105 ******************************************************************************/
1106void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1107{
1108	assert(gicv3_driver_data);
1109	assert(gicv3_driver_data->gicd_base);
1110	assert(proc_num < gicv3_driver_data->rdistif_num);
1111	assert(gicv3_driver_data->rdistif_base_addrs);
1112
1113	/*
1114	 * Ensure that any shared variable updates depending on out of band
1115	 * interrupt trigger are observed before setting interrupt pending.
1116	 */
1117	dsbishst();
1118	if (id < MIN_SPI_ID) {
1119		/* For SGIs and PPIs */
1120		gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1121				id);
1122	} else {
1123		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1124	}
1125}
1126
1127/*******************************************************************************
1128 * This function sets the PMR register with the supplied value. Returns the
1129 * original PMR.
1130 ******************************************************************************/
1131unsigned int gicv3_set_pmr(unsigned int mask)
1132{
1133	unsigned int old_mask;
1134
1135	old_mask = read_icc_pmr_el1();
1136
1137	/*
1138	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1139	 * before potential out of band interrupt trigger because of PMR update.
1140	 * PMR system register writes are self-synchronizing, so no ISB required
1141	 * thereafter.
1142	 */
1143	dsbishst();
1144	write_icc_pmr_el1(mask);
1145
1146	return old_mask;
1147}
1148