1/*
2 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <arch_helpers.h>
9#include <assert.h>
10#include <common_def.h>
11#include <debug.h>
12#include <errno.h>
13#include <platform_def.h>
14#include <string.h>
15#include <types.h>
16#include <utils.h>
17#include <xlat_tables_arch_private.h>
18#include <xlat_tables_defs.h>
19#include <xlat_tables_v2.h>
20
21#include "xlat_tables_private.h"
22
23/*
24 * Each platform can define the size of its physical and virtual address spaces.
25 * If the platform hasn't defined one or both of them, default to
26 * ADDR_SPACE_SIZE. The latter is deprecated, though.
27 */
28#if ERROR_DEPRECATED
29# ifdef ADDR_SPACE_SIZE
30#  error "ADDR_SPACE_SIZE is deprecated. Use PLAT_xxx_ADDR_SPACE_SIZE instead."
31# endif
32#elif defined(ADDR_SPACE_SIZE)
33# ifndef PLAT_PHY_ADDR_SPACE_SIZE
34#  define PLAT_PHY_ADDR_SPACE_SIZE	ADDR_SPACE_SIZE
35# endif
36# ifndef PLAT_VIRT_ADDR_SPACE_SIZE
37#  define PLAT_VIRT_ADDR_SPACE_SIZE	ADDR_SPACE_SIZE
38# endif
39#endif
40
41/*
42 * Allocate and initialise the default translation context for the BL image
43 * currently executing.
44 */
45REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
46		PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
47
48#if PLAT_XLAT_TABLES_DYNAMIC
49
50/*
51 * The following functions assume that they will be called using subtables only.
52 * The base table can't be unmapped, so it is not needed to do any special
53 * handling for it.
54 */
55
56/*
57 * Returns the index of the array corresponding to the specified translation
58 * table.
59 */
60static int xlat_table_get_index(xlat_ctx_t *ctx, const uint64_t *table)
61{
62	for (unsigned int i = 0; i < ctx->tables_num; i++)
63		if (ctx->tables[i] == table)
64			return i;
65
66	/*
67	 * Maybe we were asked to get the index of the base level table, which
68	 * should never happen.
69	 */
70	assert(0);
71
72	return -1;
73}
74
75/* Returns a pointer to an empty translation table. */
76static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx)
77{
78	for (unsigned int i = 0; i < ctx->tables_num; i++)
79		if (ctx->tables_mapped_regions[i] == 0)
80			return ctx->tables[i];
81
82	return NULL;
83}
84
85/* Increments region count for a given table. */
86static void xlat_table_inc_regions_count(xlat_ctx_t *ctx, const uint64_t *table)
87{
88	ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]++;
89}
90
91/* Decrements region count for a given table. */
92static void xlat_table_dec_regions_count(xlat_ctx_t *ctx, const uint64_t *table)
93{
94	ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)]--;
95}
96
97/* Returns 0 if the speficied table isn't empty, otherwise 1. */
98static int xlat_table_is_empty(xlat_ctx_t *ctx, const uint64_t *table)
99{
100	return !ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)];
101}
102
103#else /* PLAT_XLAT_TABLES_DYNAMIC */
104
105/* Returns a pointer to the first empty translation table. */
106static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx)
107{
108	assert(ctx->next_table < ctx->tables_num);
109
110	return ctx->tables[ctx->next_table++];
111}
112
113#endif /* PLAT_XLAT_TABLES_DYNAMIC */
114
115/*
116 * Returns a block/page table descriptor for the given level and attributes.
117 */
118uint64_t xlat_desc(const xlat_ctx_t *ctx, mmap_attr_t attr,
119		   unsigned long long addr_pa, int level)
120{
121	uint64_t desc;
122	int mem_type;
123
124	/* Make sure that the granularity is fine enough to map this address. */
125	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);
126
127	desc = addr_pa;
128	/*
129	 * There are different translation table descriptors for level 3 and the
130	 * rest.
131	 */
132	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
133	/*
134	 * Always set the access flag, as TF doesn't manage access flag faults.
135	 * Deduce other fields of the descriptor based on the MT_NS and MT_RW
136	 * memory region attributes.
137	 */
138	desc |= LOWER_ATTRS(ACCESS_FLAG);
139
140	desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
141	desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
142
143	/*
144	 * Do not allow unprivileged access when the mapping is for a privileged
145	 * EL. For translation regimes that do not have mappings for access for
146	 * lower exception levels, set AP[2] to AP_NO_ACCESS_UNPRIVILEGED.
147	 */
148	if (ctx->xlat_regime == EL1_EL0_REGIME) {
149		if (attr & MT_USER) {
150			/* EL0 mapping requested, so we give User access */
151			desc |= LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED);
152		} else {
153			/* EL1 mapping requested, no User access granted */
154			desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED);
155		}
156	} else {
157		assert(ctx->xlat_regime == EL3_REGIME);
158		desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED);
159	}
160
161	/*
162	 * Deduce shareability domain and executability of the memory region
163	 * from the memory type of the attributes (MT_TYPE).
164	 *
165	 * Data accesses to device memory and non-cacheable normal memory are
166	 * coherent for all observers in the system, and correspondingly are
167	 * always treated as being Outer Shareable. Therefore, for these 2 types
168	 * of memory, it is not strictly needed to set the shareability field
169	 * in the translation tables.
170	 */
171	mem_type = MT_TYPE(attr);
172	if (mem_type == MT_DEVICE) {
173		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
174		/*
175		 * Always map device memory as execute-never.
176		 * This is to avoid the possibility of a speculative instruction
177		 * fetch, which could be an issue if this memory region
178		 * corresponds to a read-sensitive peripheral.
179		 */
180		desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
181
182	} else { /* Normal memory */
183		/*
184		 * Always map read-write normal memory as execute-never.
185		 * (Trusted Firmware doesn't self-modify its code, therefore
186		 * R/W memory is reserved for data storage, which must not be
187		 * executable.)
188		 * Note that setting the XN bit here is for consistency only.
189		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
190		 * which makes any writable memory region to be treated as
191		 * execute-never, regardless of the value of the XN bit in the
192		 * translation table.
193		 *
194		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
195		 * attribute to figure out the value of the XN bit.  The actual
196		 * XN bit(s) to set in the descriptor depends on the context's
197		 * translation regime and the policy applied in
198		 * xlat_arch_regime_get_xn_desc().
199		 */
200		if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
201			desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
202		}
203
204		if (mem_type == MT_MEMORY) {
205			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
206		} else {
207			assert(mem_type == MT_NON_CACHEABLE);
208			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
209		}
210	}
211
212	return desc;
213}
214
215/*
216 * Enumeration of actions that can be made when mapping table entries depending
217 * on the previous value in that entry and information about the region being
218 * mapped.
219 */
220typedef enum {
221
222	/* Do nothing */
223	ACTION_NONE,
224
225	/* Write a block (or page, if in level 3) entry. */
226	ACTION_WRITE_BLOCK_ENTRY,
227
228	/*
229	 * Create a new table and write a table entry pointing to it. Recurse
230	 * into it for further processing.
231	 */
232	ACTION_CREATE_NEW_TABLE,
233
234	/*
235	 * There is a table descriptor in this entry, read it and recurse into
236	 * that table for further processing.
237	 */
238	ACTION_RECURSE_INTO_TABLE,
239
240} action_t;
241
242#if PLAT_XLAT_TABLES_DYNAMIC
243
244/*
245 * Recursive function that writes to the translation tables and unmaps the
246 * specified region.
247 */
248static void xlat_tables_unmap_region(xlat_ctx_t *ctx, mmap_region_t *mm,
249				     const uintptr_t table_base_va,
250				     uint64_t *const table_base,
251				     const int table_entries,
252				     const unsigned int level)
253{
254	assert(level >= ctx->base_level && level <= XLAT_TABLE_LEVEL_MAX);
255
256	uint64_t *subtable;
257	uint64_t desc;
258
259	uintptr_t table_idx_va;
260	uintptr_t table_idx_end_va; /* End VA of this entry */
261
262	uintptr_t region_end_va = mm->base_va + mm->size - 1;
263
264	int table_idx;
265
266	if (mm->base_va > table_base_va) {
267		/* Find the first index of the table affected by the region. */
268		table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level);
269
270		table_idx = (table_idx_va - table_base_va) >>
271			    XLAT_ADDR_SHIFT(level);
272
273		assert(table_idx < table_entries);
274	} else {
275		/* Start from the beginning of the table. */
276		table_idx_va = table_base_va;
277		table_idx = 0;
278	}
279
280	while (table_idx < table_entries) {
281
282		table_idx_end_va = table_idx_va + XLAT_BLOCK_SIZE(level) - 1;
283
284		desc = table_base[table_idx];
285		uint64_t desc_type = desc & DESC_MASK;
286
287		action_t action = ACTION_NONE;
288
289		if ((mm->base_va <= table_idx_va) &&
290		    (region_end_va >= table_idx_end_va)) {
291
292			/* Region covers all block */
293
294			if (level == 3) {
295				/*
296				 * Last level, only page descriptors allowed,
297				 * erase it.
298				 */
299				assert(desc_type == PAGE_DESC);
300
301				action = ACTION_WRITE_BLOCK_ENTRY;
302			} else {
303				/*
304				 * Other levels can have table descriptors. If
305				 * so, recurse into it and erase descriptors
306				 * inside it as needed. If there is a block
307				 * descriptor, just erase it. If an invalid
308				 * descriptor is found, this table isn't
309				 * actually mapped, which shouldn't happen.
310				 */
311				if (desc_type == TABLE_DESC) {
312					action = ACTION_RECURSE_INTO_TABLE;
313				} else {
314					assert(desc_type == BLOCK_DESC);
315					action = ACTION_WRITE_BLOCK_ENTRY;
316				}
317			}
318
319		} else if ((mm->base_va <= table_idx_end_va) ||
320			   (region_end_va >= table_idx_va)) {
321
322			/*
323			 * Region partially covers block.
324			 *
325			 * It can't happen in level 3.
326			 *
327			 * There must be a table descriptor here, if not there
328			 * was a problem when mapping the region.
329			 */
330
331			assert(level < 3);
332
333			assert(desc_type == TABLE_DESC);
334
335			action = ACTION_RECURSE_INTO_TABLE;
336		}
337
338		if (action == ACTION_WRITE_BLOCK_ENTRY) {
339
340			table_base[table_idx] = INVALID_DESC;
341			xlat_arch_tlbi_va_regime(table_idx_va, ctx->xlat_regime);
342
343		} else if (action == ACTION_RECURSE_INTO_TABLE) {
344
345			subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
346
347			/* Recurse to write into subtable */
348			xlat_tables_unmap_region(ctx, mm, table_idx_va,
349						 subtable, XLAT_TABLE_ENTRIES,
350						 level + 1);
351
352			/*
353			 * If the subtable is now empty, remove its reference.
354			 */
355			if (xlat_table_is_empty(ctx, subtable)) {
356				table_base[table_idx] = INVALID_DESC;
357				xlat_arch_tlbi_va_regime(table_idx_va,
358						ctx->xlat_regime);
359			}
360
361		} else {
362			assert(action == ACTION_NONE);
363		}
364
365		table_idx++;
366		table_idx_va += XLAT_BLOCK_SIZE(level);
367
368		/* If reached the end of the region, exit */
369		if (region_end_va <= table_idx_va)
370			break;
371	}
372
373	if (level > ctx->base_level)
374		xlat_table_dec_regions_count(ctx, table_base);
375}
376
377#endif /* PLAT_XLAT_TABLES_DYNAMIC */
378
379/*
380 * From the given arguments, it decides which action to take when mapping the
381 * specified region.
382 */
383static action_t xlat_tables_map_region_action(const mmap_region_t *mm,
384		const int desc_type, const unsigned long long dest_pa,
385		const uintptr_t table_entry_base_va, const unsigned int level)
386{
387	uintptr_t mm_end_va = mm->base_va + mm->size - 1;
388	uintptr_t table_entry_end_va =
389			table_entry_base_va + XLAT_BLOCK_SIZE(level) - 1;
390
391	/*
392	 * The descriptor types allowed depend on the current table level.
393	 */
394
395	if ((mm->base_va <= table_entry_base_va) &&
396	    (mm_end_va >= table_entry_end_va)) {
397
398		/*
399		 * Table entry is covered by region
400		 * --------------------------------
401		 *
402		 * This means that this table entry can describe the whole
403		 * translation with this granularity in principle.
404		 */
405
406		if (level == 3) {
407			/*
408			 * Last level, only page descriptors are allowed.
409			 */
410			if (desc_type == PAGE_DESC) {
411				/*
412				 * There's another region mapped here, don't
413				 * overwrite.
414				 */
415				return ACTION_NONE;
416			} else {
417				assert(desc_type == INVALID_DESC);
418				return ACTION_WRITE_BLOCK_ENTRY;
419			}
420
421		} else {
422
423			/*
424			 * Other levels. Table descriptors are allowed. Block
425			 * descriptors too, but they have some limitations.
426			 */
427
428			if (desc_type == TABLE_DESC) {
429				/* There's already a table, recurse into it. */
430				return ACTION_RECURSE_INTO_TABLE;
431
432			} else if (desc_type == INVALID_DESC) {
433				/*
434				 * There's nothing mapped here, create a new
435				 * entry.
436				 *
437				 * Check if the destination granularity allows
438				 * us to use a block descriptor or we need a
439				 * finer table for it.
440				 *
441				 * Also, check if the current level allows block
442				 * descriptors. If not, create a table instead.
443				 */
444				if ((dest_pa & XLAT_BLOCK_MASK(level)) ||
445				    (level < MIN_LVL_BLOCK_DESC) ||
446				    (mm->granularity < XLAT_BLOCK_SIZE(level)))
447					return ACTION_CREATE_NEW_TABLE;
448				else
449					return ACTION_WRITE_BLOCK_ENTRY;
450
451			} else {
452				/*
453				 * There's another region mapped here, don't
454				 * overwrite.
455				 */
456				assert(desc_type == BLOCK_DESC);
457
458				return ACTION_NONE;
459			}
460		}
461
462	} else if ((mm->base_va <= table_entry_end_va) ||
463		   (mm_end_va >= table_entry_base_va)) {
464
465		/*
466		 * Region partially covers table entry
467		 * -----------------------------------
468		 *
469		 * This means that this table entry can't describe the whole
470		 * translation, a finer table is needed.
471
472		 * There cannot be partial block overlaps in level 3. If that
473		 * happens, some of the preliminary checks when adding the
474		 * mmap region failed to detect that PA and VA must at least be
475		 * aligned to PAGE_SIZE.
476		 */
477		assert(level < 3);
478
479		if (desc_type == INVALID_DESC) {
480			/*
481			 * The block is not fully covered by the region. Create
482			 * a new table, recurse into it and try to map the
483			 * region with finer granularity.
484			 */
485			return ACTION_CREATE_NEW_TABLE;
486
487		} else {
488			assert(desc_type == TABLE_DESC);
489			/*
490			 * The block is not fully covered by the region, but
491			 * there is already a table here. Recurse into it and
492			 * try to map with finer granularity.
493			 *
494			 * PAGE_DESC for level 3 has the same value as
495			 * TABLE_DESC, but this code can't run on a level 3
496			 * table because there can't be overlaps in level 3.
497			 */
498			return ACTION_RECURSE_INTO_TABLE;
499		}
500	}
501
502	/*
503	 * This table entry is outside of the region specified in the arguments,
504	 * don't write anything to it.
505	 */
506	return ACTION_NONE;
507}
508
509/*
510 * Recursive function that writes to the translation tables and maps the
511 * specified region. On success, it returns the VA of the last byte that was
512 * succesfully mapped. On error, it returns the VA of the next entry that
513 * should have been mapped.
514 */
515static uintptr_t xlat_tables_map_region(xlat_ctx_t *ctx, mmap_region_t *mm,
516				   const uintptr_t table_base_va,
517				   uint64_t *const table_base,
518				   const int table_entries,
519				   const unsigned int level)
520{
521	assert(level >= ctx->base_level && level <= XLAT_TABLE_LEVEL_MAX);
522
523	uintptr_t mm_end_va = mm->base_va + mm->size - 1;
524
525	uintptr_t table_idx_va;
526	unsigned long long table_idx_pa;
527
528	uint64_t *subtable;
529	uint64_t desc;
530
531	int table_idx;
532
533	if (mm->base_va > table_base_va) {
534		/* Find the first index of the table affected by the region. */
535		table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level);
536
537		table_idx = (table_idx_va - table_base_va) >>
538			    XLAT_ADDR_SHIFT(level);
539
540		assert(table_idx < table_entries);
541	} else {
542		/* Start from the beginning of the table. */
543		table_idx_va = table_base_va;
544		table_idx = 0;
545	}
546
547#if PLAT_XLAT_TABLES_DYNAMIC
548	if (level > ctx->base_level)
549		xlat_table_inc_regions_count(ctx, table_base);
550#endif
551
552	while (table_idx < table_entries) {
553
554		desc = table_base[table_idx];
555
556		table_idx_pa = mm->base_pa + table_idx_va - mm->base_va;
557
558		action_t action = xlat_tables_map_region_action(mm,
559			desc & DESC_MASK, table_idx_pa, table_idx_va, level);
560
561		if (action == ACTION_WRITE_BLOCK_ENTRY) {
562
563			table_base[table_idx] =
564				xlat_desc(ctx, mm->attr, table_idx_pa, level);
565
566		} else if (action == ACTION_CREATE_NEW_TABLE) {
567
568			subtable = xlat_table_get_empty(ctx);
569			if (subtable == NULL) {
570				/* Not enough free tables to map this region */
571				return table_idx_va;
572			}
573
574			/* Point to new subtable from this one. */
575			table_base[table_idx] = TABLE_DESC | (unsigned long)subtable;
576
577			/* Recurse to write into subtable */
578			uintptr_t end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
579					       subtable, XLAT_TABLE_ENTRIES,
580					       level + 1);
581			if (end_va != table_idx_va + XLAT_BLOCK_SIZE(level) - 1)
582				return end_va;
583
584		} else if (action == ACTION_RECURSE_INTO_TABLE) {
585
586			subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
587			/* Recurse to write into subtable */
588			uintptr_t end_va =  xlat_tables_map_region(ctx, mm, table_idx_va,
589					       subtable, XLAT_TABLE_ENTRIES,
590					       level + 1);
591			if (end_va != table_idx_va + XLAT_BLOCK_SIZE(level) - 1)
592				return end_va;
593
594		} else {
595
596			assert(action == ACTION_NONE);
597
598		}
599
600		table_idx++;
601		table_idx_va += XLAT_BLOCK_SIZE(level);
602
603		/* If reached the end of the region, exit */
604		if (mm_end_va <= table_idx_va)
605			break;
606	}
607
608	return table_idx_va - 1;
609}
610
611void print_mmap(mmap_region_t *const mmap)
612{
613#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
614	tf_printf("mmap:\n");
615	mmap_region_t *mm = mmap;
616
617	while (mm->size) {
618		tf_printf(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x",
619				(void *)mm->base_va, mm->base_pa,
620				mm->size, mm->attr);
621		tf_printf(" granularity:0x%zx\n", mm->granularity);
622		++mm;
623	};
624	tf_printf("\n");
625#endif
626}
627
628/*
629 * Function that verifies that a region can be mapped.
630 * Returns:
631 *        0: Success, the mapping is allowed.
632 *   EINVAL: Invalid values were used as arguments.
633 *   ERANGE: The memory limits were surpassed.
634 *   ENOMEM: There is not enough memory in the mmap array.
635 *    EPERM: Region overlaps another one in an invalid way.
636 */
637static int mmap_add_region_check(xlat_ctx_t *ctx, const mmap_region_t *mm)
638{
639	unsigned long long base_pa = mm->base_pa;
640	uintptr_t base_va = mm->base_va;
641	size_t size = mm->size;
642	size_t granularity = mm->granularity;
643
644	unsigned long long end_pa = base_pa + size - 1;
645	uintptr_t end_va = base_va + size - 1;
646
647	if (!IS_PAGE_ALIGNED(base_pa) || !IS_PAGE_ALIGNED(base_va) ||
648			!IS_PAGE_ALIGNED(size))
649		return -EINVAL;
650
651	if ((granularity != XLAT_BLOCK_SIZE(1)) &&
652		(granularity != XLAT_BLOCK_SIZE(2)) &&
653		(granularity != XLAT_BLOCK_SIZE(3))) {
654		return -EINVAL;
655	}
656
657	/* Check for overflows */
658	if ((base_pa > end_pa) || (base_va > end_va))
659		return -ERANGE;
660
661	if ((base_va + (uintptr_t)size - (uintptr_t)1) > ctx->va_max_address)
662		return -ERANGE;
663
664	if ((base_pa + (unsigned long long)size - 1ULL) > ctx->pa_max_address)
665		return -ERANGE;
666
667	/* Check that there is space in the ctx->mmap array */
668	if (ctx->mmap[ctx->mmap_num - 1].size != 0)
669		return -ENOMEM;
670
671	/* Check for PAs and VAs overlaps with all other regions */
672	for (mmap_region_t *mm_cursor = ctx->mmap;
673						mm_cursor->size; ++mm_cursor) {
674
675		uintptr_t mm_cursor_end_va = mm_cursor->base_va
676							+ mm_cursor->size - 1;
677
678		/*
679		 * Check if one of the regions is completely inside the other
680		 * one.
681		 */
682		int fully_overlapped_va =
683			((base_va >= mm_cursor->base_va) &&
684					(end_va <= mm_cursor_end_va)) ||
685
686			((mm_cursor->base_va >= base_va) &&
687						(mm_cursor_end_va <= end_va));
688
689		/*
690		 * Full VA overlaps are only allowed if both regions are
691		 * identity mapped (zero offset) or have the same VA to PA
692		 * offset. Also, make sure that it's not the exact same area.
693		 * This can only be done with static regions.
694		 */
695		if (fully_overlapped_va) {
696
697#if PLAT_XLAT_TABLES_DYNAMIC
698			if ((mm->attr & MT_DYNAMIC) ||
699						(mm_cursor->attr & MT_DYNAMIC))
700				return -EPERM;
701#endif /* PLAT_XLAT_TABLES_DYNAMIC */
702			if ((mm_cursor->base_va - mm_cursor->base_pa) !=
703							(base_va - base_pa))
704				return -EPERM;
705
706			if ((base_va == mm_cursor->base_va) &&
707						(size == mm_cursor->size))
708				return -EPERM;
709
710		} else {
711			/*
712			 * If the regions do not have fully overlapping VAs,
713			 * then they must have fully separated VAs and PAs.
714			 * Partial overlaps are not allowed
715			 */
716
717			unsigned long long mm_cursor_end_pa =
718				     mm_cursor->base_pa + mm_cursor->size - 1;
719
720			int separated_pa =
721				(end_pa < mm_cursor->base_pa) ||
722				(base_pa > mm_cursor_end_pa);
723			int separated_va =
724				(end_va < mm_cursor->base_va) ||
725				(base_va > mm_cursor_end_va);
726
727			if (!(separated_va && separated_pa))
728				return -EPERM;
729		}
730	}
731
732	return 0;
733}
734
735void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
736{
737	mmap_region_t *mm_cursor = ctx->mmap;
738	mmap_region_t *mm_last = mm_cursor + ctx->mmap_num;
739	unsigned long long end_pa = mm->base_pa + mm->size - 1;
740	uintptr_t end_va = mm->base_va + mm->size - 1;
741	int ret;
742
743	/* Ignore empty regions */
744	if (!mm->size)
745		return;
746
747	/* Static regions must be added before initializing the xlat tables. */
748	assert(!ctx->initialized);
749
750	ret = mmap_add_region_check(ctx, mm);
751	if (ret != 0) {
752		ERROR("mmap_add_region_check() failed. error %d\n", ret);
753		assert(0);
754		return;
755	}
756
757	/*
758	 * Find correct place in mmap to insert new region.
759	 *
760	 * 1 - Lower region VA end first.
761	 * 2 - Smaller region size first.
762	 *
763	 * VA  0                                   0xFF
764	 *
765	 * 1st |------|
766	 * 2nd |------------|
767	 * 3rd                 |------|
768	 * 4th                            |---|
769	 * 5th                                   |---|
770	 * 6th                            |----------|
771	 * 7th |-------------------------------------|
772	 *
773	 * This is required for overlapping regions only. It simplifies adding
774	 * regions with the loop in xlat_tables_init_internal because the outer
775	 * ones won't overwrite block or page descriptors of regions added
776	 * previously.
777	 *
778	 * Overlapping is only allowed for static regions.
779	 */
780
781	while ((mm_cursor->base_va + mm_cursor->size - 1) < end_va
782	       && mm_cursor->size)
783		++mm_cursor;
784
785	while ((mm_cursor->base_va + mm_cursor->size - 1 == end_va)
786	       && (mm_cursor->size < mm->size))
787		++mm_cursor;
788
789	/* Make room for new region by moving other regions up by one place */
790	memmove(mm_cursor + 1, mm_cursor,
791		(uintptr_t)mm_last - (uintptr_t)mm_cursor);
792
793	/*
794	 * Check we haven't lost the empty sentinel from the end of the array.
795	 * This shouldn't happen as we have checked in mmap_add_region_check
796	 * that there is free space.
797	 */
798	assert(mm_last->size == 0);
799
800	*mm_cursor = *mm;
801
802	if (end_pa > ctx->max_pa)
803		ctx->max_pa = end_pa;
804	if (end_va > ctx->max_va)
805		ctx->max_va = end_va;
806}
807
808void mmap_add_region(unsigned long long base_pa,
809				uintptr_t base_va,
810				size_t size,
811				mmap_attr_t attr)
812{
813	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
814	mmap_add_region_ctx(&tf_xlat_ctx, &mm);
815}
816
817
818void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
819{
820	while (mm->size) {
821		mmap_add_region_ctx(ctx, mm);
822		mm++;
823	}
824}
825
826void mmap_add(const mmap_region_t *mm)
827{
828	mmap_add_ctx(&tf_xlat_ctx, mm);
829}
830
831#if PLAT_XLAT_TABLES_DYNAMIC
832
833int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
834{
835	mmap_region_t *mm_cursor = ctx->mmap;
836	mmap_region_t *mm_last = mm_cursor + ctx->mmap_num;
837	unsigned long long end_pa = mm->base_pa + mm->size - 1;
838	uintptr_t end_va = mm->base_va + mm->size - 1;
839	int ret;
840
841	/* Nothing to do */
842	if (!mm->size)
843		return 0;
844
845	/* Now this region is a dynamic one */
846	mm->attr |= MT_DYNAMIC;
847
848	ret = mmap_add_region_check(ctx, mm);
849	if (ret != 0)
850		return ret;
851
852	/*
853	 * Find the adequate entry in the mmap array in the same way done for
854	 * static regions in mmap_add_region_ctx().
855	 */
856
857	while ((mm_cursor->base_va + mm_cursor->size - 1)
858					< end_va && mm_cursor->size)
859		++mm_cursor;
860
861	while ((mm_cursor->base_va + mm_cursor->size - 1 == end_va)
862				&& (mm_cursor->size < mm->size))
863		++mm_cursor;
864
865	/* Make room for new region by moving other regions up by one place */
866	memmove(mm_cursor + 1, mm_cursor,
867		     (uintptr_t)mm_last - (uintptr_t)mm_cursor);
868
869	/*
870	 * Check we haven't lost the empty sentinal from the end of the array.
871	 * This shouldn't happen as we have checked in mmap_add_region_check
872	 * that there is free space.
873	 */
874	assert(mm_last->size == 0);
875
876	*mm_cursor = *mm;
877
878	/*
879	 * Update the translation tables if the xlat tables are initialized. If
880	 * not, this region will be mapped when they are initialized.
881	 */
882	if (ctx->initialized) {
883		uintptr_t end_va = xlat_tables_map_region(ctx, mm_cursor,
884				0, ctx->base_table, ctx->base_table_entries,
885				ctx->base_level);
886
887		/* Failed to map, remove mmap entry, unmap and return error. */
888		if (end_va != mm_cursor->base_va + mm_cursor->size - 1) {
889			memmove(mm_cursor, mm_cursor + 1,
890				(uintptr_t)mm_last - (uintptr_t)mm_cursor);
891
892			/*
893			 * Check if the mapping function actually managed to map
894			 * anything. If not, just return now.
895			 */
896			if (mm_cursor->base_va >= end_va)
897				return -ENOMEM;
898
899			/*
900			 * Something went wrong after mapping some table
901			 * entries, undo every change done up to this point.
902			 */
903			mmap_region_t unmap_mm = {
904					.base_pa = 0,
905					.base_va = mm->base_va,
906					.size = end_va - mm->base_va,
907					.attr = 0
908			};
909			xlat_tables_unmap_region(ctx, &unmap_mm, 0, ctx->base_table,
910							ctx->base_table_entries, ctx->base_level);
911
912			return -ENOMEM;
913		}
914
915		/*
916		 * Make sure that all entries are written to the memory. There
917		 * is no need to invalidate entries when mapping dynamic regions
918		 * because new table/block/page descriptors only replace old
919		 * invalid descriptors, that aren't TLB cached.
920		 */
921		dsbishst();
922	}
923
924	if (end_pa > ctx->max_pa)
925		ctx->max_pa = end_pa;
926	if (end_va > ctx->max_va)
927		ctx->max_va = end_va;
928
929	return 0;
930}
931
932int mmap_add_dynamic_region(unsigned long long base_pa,
933			    uintptr_t base_va, size_t size, mmap_attr_t attr)
934{
935	mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
936	return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
937}
938
939/*
940 * Removes the region with given base Virtual Address and size from the given
941 * context.
942 *
943 * Returns:
944 *        0: Success.
945 *   EINVAL: Invalid values were used as arguments (region not found).
946 *    EPERM: Tried to remove a static region.
947 */
948int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va,
949				   size_t size)
950{
951	mmap_region_t *mm = ctx->mmap;
952	mmap_region_t *mm_last = mm + ctx->mmap_num;
953	int update_max_va_needed = 0;
954	int update_max_pa_needed = 0;
955
956	/* Check sanity of mmap array. */
957	assert(mm[ctx->mmap_num].size == 0);
958
959	while (mm->size) {
960		if ((mm->base_va == base_va) && (mm->size == size))
961			break;
962		++mm;
963	}
964
965	/* Check that the region was found */
966	if (mm->size == 0)
967		return -EINVAL;
968
969	/* If the region is static it can't be removed */
970	if (!(mm->attr & MT_DYNAMIC))
971		return -EPERM;
972
973	/* Check if this region is using the top VAs or PAs. */
974	if ((mm->base_va + mm->size - 1) == ctx->max_va)
975		update_max_va_needed = 1;
976	if ((mm->base_pa + mm->size - 1) == ctx->max_pa)
977		update_max_pa_needed = 1;
978
979	/* Update the translation tables if needed */
980	if (ctx->initialized) {
981		xlat_tables_unmap_region(ctx, mm, 0, ctx->base_table,
982					 ctx->base_table_entries,
983					 ctx->base_level);
984		xlat_arch_tlbi_va_sync();
985	}
986
987	/* Remove this region by moving the rest down by one place. */
988	memmove(mm, mm + 1, (uintptr_t)mm_last - (uintptr_t)mm);
989
990	/* Check if we need to update the max VAs and PAs */
991	if (update_max_va_needed) {
992		ctx->max_va = 0;
993		mm = ctx->mmap;
994		while (mm->size) {
995			if ((mm->base_va + mm->size - 1) > ctx->max_va)
996				ctx->max_va = mm->base_va + mm->size - 1;
997			++mm;
998		}
999	}
1000
1001	if (update_max_pa_needed) {
1002		ctx->max_pa = 0;
1003		mm = ctx->mmap;
1004		while (mm->size) {
1005			if ((mm->base_pa + mm->size - 1) > ctx->max_pa)
1006				ctx->max_pa = mm->base_pa + mm->size - 1;
1007			++mm;
1008		}
1009	}
1010
1011	return 0;
1012}
1013
1014int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
1015{
1016	return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
1017					base_va, size);
1018}
1019
1020#endif /* PLAT_XLAT_TABLES_DYNAMIC */
1021
1022#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
1023
1024/* Print the attributes of the specified block descriptor. */
1025static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc)
1026{
1027	int mem_type_index = ATTR_INDEX_GET(desc);
1028	xlat_regime_t xlat_regime = ctx->xlat_regime;
1029
1030	if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
1031		tf_printf("MEM");
1032	} else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) {
1033		tf_printf("NC");
1034	} else {
1035		assert(mem_type_index == ATTR_DEVICE_INDEX);
1036		tf_printf("DEV");
1037	}
1038
1039	const char *priv_str = "(PRIV)";
1040	const char *user_str = "(USER)";
1041
1042	/*
1043	 * Showing Privileged vs Unprivileged only makes sense for EL1&0
1044	 * mappings
1045	 */
1046	const char *ro_str = "-RO";
1047	const char *rw_str = "-RW";
1048	const char *no_access_str = "-NOACCESS";
1049
1050	if (xlat_regime == EL3_REGIME) {
1051		/* For EL3, the AP[2] bit is all what matters */
1052		tf_printf((desc & LOWER_ATTRS(AP_RO)) ? ro_str : rw_str);
1053	} else {
1054		const char *ap_str = (desc & LOWER_ATTRS(AP_RO)) ? ro_str : rw_str;
1055		tf_printf(ap_str);
1056		tf_printf(priv_str);
1057		/*
1058		 * EL0 can only have the same permissions as EL1 or no
1059		 * permissions at all.
1060		 */
1061		tf_printf((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED))
1062			  ? ap_str : no_access_str);
1063		tf_printf(user_str);
1064	}
1065
1066	const char *xn_str = "-XN";
1067	const char *exec_str = "-EXEC";
1068
1069	if (xlat_regime == EL3_REGIME) {
1070		/* For EL3, the XN bit is all what matters */
1071		tf_printf(LOWER_ATTRS(XN) & desc ? xn_str : exec_str);
1072	} else {
1073		/* For EL0 and EL1, we need to know who has which rights */
1074		tf_printf(LOWER_ATTRS(PXN) & desc ? xn_str : exec_str);
1075		tf_printf(priv_str);
1076
1077		tf_printf(LOWER_ATTRS(UXN) & desc ? xn_str : exec_str);
1078		tf_printf(user_str);
1079	}
1080
1081	tf_printf(LOWER_ATTRS(NS) & desc ? "-NS" : "-S");
1082}
1083
1084static const char * const level_spacers[] = {
1085	"[LV0] ",
1086	"  [LV1] ",
1087	"    [LV2] ",
1088	"      [LV3] "
1089};
1090
1091static const char *invalid_descriptors_ommited =
1092		"%s(%d invalid descriptors omitted)\n";
1093
1094/*
1095 * Recursive function that reads the translation tables passed as an argument
1096 * and prints their status.
1097 */
1098static void xlat_tables_print_internal(xlat_ctx_t *ctx,
1099		const uintptr_t table_base_va,
1100		uint64_t *const table_base, const int table_entries,
1101		const unsigned int level)
1102{
1103	assert(level <= XLAT_TABLE_LEVEL_MAX);
1104
1105	uint64_t desc;
1106	uintptr_t table_idx_va = table_base_va;
1107	int table_idx = 0;
1108
1109	size_t level_size = XLAT_BLOCK_SIZE(level);
1110
1111	/*
1112	 * Keep track of how many invalid descriptors are counted in a row.
1113	 * Whenever multiple invalid descriptors are found, only the first one
1114	 * is printed, and a line is added to inform about how many descriptors
1115	 * have been omitted.
1116	 */
1117	int invalid_row_count = 0;
1118
1119	while (table_idx < table_entries) {
1120
1121		desc = table_base[table_idx];
1122
1123		if ((desc & DESC_MASK) == INVALID_DESC) {
1124
1125			if (invalid_row_count == 0) {
1126				tf_printf("%sVA:%p size:0x%zx\n",
1127					  level_spacers[level],
1128					  (void *)table_idx_va, level_size);
1129			}
1130			invalid_row_count++;
1131
1132		} else {
1133
1134			if (invalid_row_count > 1) {
1135				tf_printf(invalid_descriptors_ommited,
1136					  level_spacers[level],
1137					  invalid_row_count - 1);
1138			}
1139			invalid_row_count = 0;
1140
1141			/*
1142			 * Check if this is a table or a block. Tables are only
1143			 * allowed in levels other than 3, but DESC_PAGE has the
1144			 * same value as DESC_TABLE, so we need to check.
1145			 */
1146			if (((desc & DESC_MASK) == TABLE_DESC) &&
1147					(level < XLAT_TABLE_LEVEL_MAX)) {
1148				/*
1149				 * Do not print any PA for a table descriptor,
1150				 * as it doesn't directly map physical memory
1151				 * but instead points to the next translation
1152				 * table in the translation table walk.
1153				 */
1154				tf_printf("%sVA:%p size:0x%zx\n",
1155					  level_spacers[level],
1156					  (void *)table_idx_va, level_size);
1157
1158				uintptr_t addr_inner = desc & TABLE_ADDR_MASK;
1159
1160				xlat_tables_print_internal(ctx, table_idx_va,
1161					(uint64_t *)addr_inner,
1162					XLAT_TABLE_ENTRIES, level + 1);
1163			} else {
1164				tf_printf("%sVA:%p PA:0x%llx size:0x%zx ",
1165					  level_spacers[level],
1166					  (void *)table_idx_va,
1167					  (unsigned long long)(desc & TABLE_ADDR_MASK),
1168					  level_size);
1169				xlat_desc_print(ctx, desc);
1170				tf_printf("\n");
1171			}
1172		}
1173
1174		table_idx++;
1175		table_idx_va += level_size;
1176	}
1177
1178	if (invalid_row_count > 1) {
1179		tf_printf(invalid_descriptors_ommited,
1180			  level_spacers[level], invalid_row_count - 1);
1181	}
1182}
1183
1184#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
1185
1186void xlat_tables_print(xlat_ctx_t *ctx)
1187{
1188#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
1189	const char *xlat_regime_str;
1190	if (ctx->xlat_regime == EL1_EL0_REGIME) {
1191		xlat_regime_str = "1&0";
1192	} else {
1193		assert(ctx->xlat_regime == EL3_REGIME);
1194		xlat_regime_str = "3";
1195	}
1196	VERBOSE("Translation tables state:\n");
1197	VERBOSE("  Xlat regime:     EL%s\n", xlat_regime_str);
1198	VERBOSE("  Max allowed PA:  0x%llx\n", ctx->pa_max_address);
1199	VERBOSE("  Max allowed VA:  %p\n", (void *) ctx->va_max_address);
1200	VERBOSE("  Max mapped PA:   0x%llx\n", ctx->max_pa);
1201	VERBOSE("  Max mapped VA:   %p\n", (void *) ctx->max_va);
1202
1203	VERBOSE("  Initial lookup level: %i\n", ctx->base_level);
1204	VERBOSE("  Entries @initial lookup level: %i\n",
1205		ctx->base_table_entries);
1206
1207	int used_page_tables;
1208#if PLAT_XLAT_TABLES_DYNAMIC
1209	used_page_tables = 0;
1210	for (unsigned int i = 0; i < ctx->tables_num; ++i) {
1211		if (ctx->tables_mapped_regions[i] != 0)
1212			++used_page_tables;
1213	}
1214#else
1215	used_page_tables = ctx->next_table;
1216#endif
1217	VERBOSE("  Used %i sub-tables out of %i (spare: %i)\n",
1218		used_page_tables, ctx->tables_num,
1219		ctx->tables_num - used_page_tables);
1220
1221	xlat_tables_print_internal(ctx, 0, ctx->base_table,
1222				   ctx->base_table_entries, ctx->base_level);
1223#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
1224}
1225
1226void init_xlat_tables_ctx(xlat_ctx_t *ctx)
1227{
1228	assert(ctx != NULL);
1229	assert(!ctx->initialized);
1230	assert(ctx->xlat_regime == EL3_REGIME || ctx->xlat_regime == EL1_EL0_REGIME);
1231	assert(!is_mmu_enabled_ctx(ctx));
1232
1233	mmap_region_t *mm = ctx->mmap;
1234
1235	print_mmap(mm);
1236
1237	/* All tables must be zeroed before mapping any region. */
1238
1239	for (unsigned int i = 0; i < ctx->base_table_entries; i++)
1240		ctx->base_table[i] = INVALID_DESC;
1241
1242	for (unsigned int j = 0; j < ctx->tables_num; j++) {
1243#if PLAT_XLAT_TABLES_DYNAMIC
1244		ctx->tables_mapped_regions[j] = 0;
1245#endif
1246		for (unsigned int i = 0; i < XLAT_TABLE_ENTRIES; i++)
1247			ctx->tables[j][i] = INVALID_DESC;
1248	}
1249
1250	while (mm->size) {
1251		uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0, ctx->base_table,
1252				ctx->base_table_entries, ctx->base_level);
1253
1254		if (end_va != mm->base_va + mm->size - 1) {
1255			ERROR("Not enough memory to map region:\n"
1256			      " VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
1257			      (void *)mm->base_va, mm->base_pa, mm->size, mm->attr);
1258			panic();
1259		}
1260
1261		mm++;
1262	}
1263
1264	assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa());
1265	assert(ctx->max_va <= ctx->va_max_address);
1266	assert(ctx->max_pa <= ctx->pa_max_address);
1267
1268	ctx->initialized = 1;
1269
1270	xlat_tables_print(ctx);
1271}
1272
1273void init_xlat_tables(void)
1274{
1275	init_xlat_tables_ctx(&tf_xlat_ctx);
1276}
1277
1278/*
1279 * If dynamic allocation of new regions is disabled then by the time we call the
1280 * function enabling the MMU, we'll have registered all the memory regions to
1281 * map for the system's lifetime. Therefore, at this point we know the maximum
1282 * physical address that will ever be mapped.
1283 *
1284 * If dynamic allocation is enabled then we can't make any such assumption
1285 * because the maximum physical address could get pushed while adding a new
1286 * region. Therefore, in this case we have to assume that the whole address
1287 * space size might be mapped.
1288 */
1289#ifdef PLAT_XLAT_TABLES_DYNAMIC
1290#define MAX_PHYS_ADDR	tf_xlat_ctx.pa_max_address
1291#else
1292#define MAX_PHYS_ADDR	tf_xlat_ctx.max_pa
1293#endif
1294
1295#ifdef AARCH32
1296
1297void enable_mmu_secure(unsigned int flags)
1298{
1299	enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
1300			tf_xlat_ctx.va_max_address);
1301}
1302
1303#else
1304
1305void enable_mmu_el1(unsigned int flags)
1306{
1307	enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
1308			tf_xlat_ctx.va_max_address);
1309}
1310
1311void enable_mmu_el3(unsigned int flags)
1312{
1313	enable_mmu_arch(flags, tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
1314			tf_xlat_ctx.va_max_address);
1315}
1316
1317#endif /* AARCH32 */
1318
1319/*
1320 * Do a translation table walk to find the block or page descriptor that maps
1321 * virtual_addr.
1322 *
1323 * On success, return the address of the descriptor within the translation
1324 * table. Its lookup level is stored in '*out_level'.
1325 * On error, return NULL.
1326 *
1327 * xlat_table_base
1328 *   Base address for the initial lookup level.
1329 * xlat_table_base_entries
1330 *   Number of entries in the translation table for the initial lookup level.
1331 * virt_addr_space_size
1332 *   Size in bytes of the virtual address space.
1333 */
1334static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr,
1335				       void *xlat_table_base,
1336				       int xlat_table_base_entries,
1337				       unsigned long long virt_addr_space_size,
1338				       int *out_level)
1339{
1340	unsigned int start_level;
1341	uint64_t *table;
1342	int entries;
1343
1344	VERBOSE("%s(%p)\n", __func__, (void *)virtual_addr);
1345
1346	start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size);
1347	VERBOSE("Starting translation table walk from level %i\n", start_level);
1348
1349	table = xlat_table_base;
1350	entries = xlat_table_base_entries;
1351
1352	for (unsigned int level = start_level;
1353	     level <= XLAT_TABLE_LEVEL_MAX;
1354	     ++level) {
1355		int idx;
1356		uint64_t desc;
1357		uint64_t desc_type;
1358
1359		VERBOSE("Table address: %p\n", (void *)table);
1360
1361		idx = XLAT_TABLE_IDX(virtual_addr, level);
1362		VERBOSE("Index into level %i table: %i\n", level, idx);
1363		if (idx >= entries) {
1364			VERBOSE("Invalid address\n");
1365			return NULL;
1366		}
1367
1368		desc = table[idx];
1369		desc_type = desc & DESC_MASK;
1370		VERBOSE("Descriptor at level %i: 0x%llx\n", level,
1371				(unsigned long long)desc);
1372
1373		if (desc_type == INVALID_DESC) {
1374			VERBOSE("Invalid entry (memory not mapped)\n");
1375			return NULL;
1376		}
1377
1378		if (level == XLAT_TABLE_LEVEL_MAX) {
1379			/*
1380			 * There can't be table entries at the final lookup
1381			 * level.
1382			 */
1383			assert(desc_type == PAGE_DESC);
1384			VERBOSE("Descriptor mapping a memory page (size: 0x%llx)\n",
1385				(unsigned long long)XLAT_BLOCK_SIZE(XLAT_TABLE_LEVEL_MAX));
1386			*out_level = level;
1387			return &table[idx];
1388		}
1389
1390		if (desc_type == BLOCK_DESC) {
1391			VERBOSE("Descriptor mapping a memory block (size: 0x%llx)\n",
1392				(unsigned long long)XLAT_BLOCK_SIZE(level));
1393			*out_level = level;
1394			return &table[idx];
1395		}
1396
1397		assert(desc_type == TABLE_DESC);
1398		VERBOSE("Table descriptor, continuing xlat table walk...\n");
1399		table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
1400		entries = XLAT_TABLE_ENTRIES;
1401	}
1402
1403	/*
1404	 * This shouldn't be reached, the translation table walk should end at
1405	 * most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop.
1406	 */
1407	assert(0);
1408
1409	return NULL;
1410}
1411
1412
1413static int get_mem_attributes_internal(const xlat_ctx_t *ctx, uintptr_t base_va,
1414		mmap_attr_t *attributes, uint64_t **table_entry,
1415		unsigned long long *addr_pa, int *table_level)
1416{
1417	uint64_t *entry;
1418	uint64_t desc;
1419	int level;
1420	unsigned long long virt_addr_space_size;
1421
1422	/*
1423	 * Sanity-check arguments.
1424	 */
1425	assert(ctx != NULL);
1426	assert(ctx->initialized);
1427	assert(ctx->xlat_regime == EL1_EL0_REGIME || ctx->xlat_regime == EL3_REGIME);
1428
1429	virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1;
1430	assert(virt_addr_space_size > 0);
1431
1432	entry = find_xlat_table_entry(base_va,
1433				ctx->base_table,
1434				ctx->base_table_entries,
1435				virt_addr_space_size,
1436				&level);
1437	if (entry == NULL) {
1438		WARN("Address %p is not mapped.\n", (void *)base_va);
1439		return -EINVAL;
1440	}
1441
1442	if (addr_pa != NULL) {
1443		*addr_pa = *entry & TABLE_ADDR_MASK;
1444	}
1445
1446	if (table_entry != NULL) {
1447		*table_entry = entry;
1448	}
1449
1450	if (table_level != NULL) {
1451		*table_level = level;
1452	}
1453
1454	desc = *entry;
1455
1456#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
1457	VERBOSE("Attributes: ");
1458	xlat_desc_print(ctx, desc);
1459	tf_printf("\n");
1460#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
1461
1462	assert(attributes != NULL);
1463	*attributes = 0;
1464
1465	int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
1466
1467	if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
1468		*attributes |= MT_MEMORY;
1469	} else if (attr_index == ATTR_NON_CACHEABLE_INDEX) {
1470		*attributes |= MT_NON_CACHEABLE;
1471	} else {
1472		assert(attr_index == ATTR_DEVICE_INDEX);
1473		*attributes |= MT_DEVICE;
1474	}
1475
1476	int ap2_bit = (desc >> AP2_SHIFT) & 1;
1477
1478	if (ap2_bit == AP2_RW)
1479		*attributes |= MT_RW;
1480
1481	if (ctx->xlat_regime == EL1_EL0_REGIME) {
1482		int ap1_bit = (desc >> AP1_SHIFT) & 1;
1483		if (ap1_bit == AP1_ACCESS_UNPRIVILEGED)
1484			*attributes |= MT_USER;
1485	}
1486
1487	int ns_bit = (desc >> NS_SHIFT) & 1;
1488
1489	if (ns_bit == 1)
1490		*attributes |= MT_NS;
1491
1492	uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
1493
1494	if ((desc & xn_mask) == xn_mask) {
1495		*attributes |= MT_EXECUTE_NEVER;
1496	} else {
1497		assert((desc & xn_mask) == 0);
1498	}
1499
1500	return 0;
1501}
1502
1503
1504int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va,
1505		mmap_attr_t *attributes)
1506{
1507	return get_mem_attributes_internal(ctx, base_va, attributes,
1508					   NULL, NULL, NULL);
1509}
1510
1511
1512int change_mem_attributes(xlat_ctx_t *ctx,
1513			uintptr_t base_va,
1514			size_t size,
1515			mmap_attr_t attr)
1516{
1517	/* Note: This implementation isn't optimized. */
1518
1519	assert(ctx != NULL);
1520	assert(ctx->initialized);
1521
1522	unsigned long long virt_addr_space_size =
1523		(unsigned long long)ctx->va_max_address + 1;
1524	assert(virt_addr_space_size > 0);
1525
1526	if (!IS_PAGE_ALIGNED(base_va)) {
1527		WARN("%s: Address %p is not aligned on a page boundary.\n",
1528		     __func__, (void *)base_va);
1529		return -EINVAL;
1530	}
1531
1532	if (size == 0) {
1533		WARN("%s: Size is 0.\n", __func__);
1534		return -EINVAL;
1535	}
1536
1537	if ((size % PAGE_SIZE) != 0) {
1538		WARN("%s: Size 0x%zx is not a multiple of a page size.\n",
1539		     __func__, size);
1540		return -EINVAL;
1541	}
1542
1543	if (((attr & MT_EXECUTE_NEVER) == 0) && ((attr & MT_RW) != 0)) {
1544		WARN("%s() doesn't allow to remap memory as read-write and executable.\n",
1545		     __func__);
1546		return -EINVAL;
1547	}
1548
1549	int pages_count = size / PAGE_SIZE;
1550
1551	VERBOSE("Changing memory attributes of %i pages starting from address %p...\n",
1552		pages_count, (void *)base_va);
1553
1554	uintptr_t base_va_original = base_va;
1555
1556	/*
1557	 * Sanity checks.
1558	 */
1559	for (int i = 0; i < pages_count; ++i) {
1560		uint64_t *entry;
1561		uint64_t desc;
1562		int level;
1563
1564		entry = find_xlat_table_entry(base_va,
1565					      ctx->base_table,
1566					      ctx->base_table_entries,
1567					      virt_addr_space_size,
1568					      &level);
1569		if (entry == NULL) {
1570			WARN("Address %p is not mapped.\n", (void *)base_va);
1571			return -EINVAL;
1572		}
1573
1574		desc = *entry;
1575
1576		/*
1577		 * Check that all the required pages are mapped at page
1578		 * granularity.
1579		 */
1580		if (((desc & DESC_MASK) != PAGE_DESC) ||
1581			(level != XLAT_TABLE_LEVEL_MAX)) {
1582			WARN("Address %p is not mapped at the right granularity.\n",
1583			     (void *)base_va);
1584			WARN("Granularity is 0x%llx, should be 0x%x.\n",
1585			     (unsigned long long)XLAT_BLOCK_SIZE(level), PAGE_SIZE);
1586			return -EINVAL;
1587		}
1588
1589		/*
1590		 * If the region type is device, it shouldn't be executable.
1591		 */
1592		int attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
1593		if (attr_index == ATTR_DEVICE_INDEX) {
1594			if ((attr & MT_EXECUTE_NEVER) == 0) {
1595				WARN("Setting device memory as executable at address %p.",
1596				     (void *)base_va);
1597				return -EINVAL;
1598			}
1599		}
1600
1601		base_va += PAGE_SIZE;
1602	}
1603
1604	/* Restore original value. */
1605	base_va = base_va_original;
1606
1607	VERBOSE("%s: All pages are mapped, now changing their attributes...\n",
1608		__func__);
1609
1610	for (int i = 0; i < pages_count; ++i) {
1611
1612		mmap_attr_t old_attr, new_attr;
1613		uint64_t *entry;
1614		int level;
1615		unsigned long long addr_pa;
1616
1617		get_mem_attributes_internal(ctx, base_va, &old_attr,
1618					    &entry, &addr_pa, &level);
1619
1620		VERBOSE("Old attributes: 0x%x\n", old_attr);
1621
1622		/*
1623		 * From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and
1624		 * MT_USER/MT_PRIVILEGED are taken into account. Any other
1625		 * information is ignored.
1626		 */
1627
1628		/* Clean the old attributes so that they can be rebuilt. */
1629		new_attr = old_attr & ~(MT_RW|MT_EXECUTE_NEVER|MT_USER);
1630
1631		/*
1632		 * Update attributes, but filter out the ones this function
1633		 * isn't allowed to change.
1634		 */
1635		new_attr |= attr & (MT_RW|MT_EXECUTE_NEVER|MT_USER);
1636
1637		VERBOSE("New attributes: 0x%x\n", new_attr);
1638
1639		/*
1640		 * The break-before-make sequence requires writing an invalid
1641		 * descriptor and making sure that the system sees the change
1642		 * before writing the new descriptor.
1643		 */
1644		*entry = INVALID_DESC;
1645
1646		/* Invalidate any cached copy of this mapping in the TLBs. */
1647		xlat_arch_tlbi_va_regime(base_va, ctx->xlat_regime);
1648
1649		/* Ensure completion of the invalidation. */
1650		xlat_arch_tlbi_va_sync();
1651
1652		/* Write new descriptor */
1653		*entry = xlat_desc(ctx, new_attr, addr_pa, level);
1654
1655		base_va += PAGE_SIZE;
1656	}
1657
1658	/* Ensure that the last descriptor writen is seen by the system. */
1659	dsbish();
1660
1661	return 0;
1662}
1663