1/* -----------------------------------------------------------------------------
2Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5Forschung e.V. All rights reserved.
6
7 1.    INTRODUCTION
8The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10scheme for digital audio. This FDK AAC Codec software is intended to be used on
11a wide variety of Android devices.
12
13AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14general perceptual audio codecs. AAC-ELD is considered the best-performing
15full-bandwidth communications codec by independent studies and is widely
16deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17specifications.
18
19Patent licenses for necessary patent claims for the FDK AAC Codec (including
20those of Fraunhofer) may be obtained through Via Licensing
21(www.vialicensing.com) or through the respective patent owners individually for
22the purpose of encoding or decoding bit streams in products that are compliant
23with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24Android devices already license these patent claims through Via Licensing or
25directly from the patent owners, and therefore FDK AAC Codec software may
26already be covered under those patent licenses when it is used for those
27licensed purposes only.
28
29Commercially-licensed AAC software libraries, including floating-point versions
30with enhanced sound quality, are also available from Fraunhofer. Users are
31encouraged to check the Fraunhofer website for additional applications
32information and documentation.
33
342.    COPYRIGHT LICENSE
35
36Redistribution and use in source and binary forms, with or without modification,
37are permitted without payment of copyright license fees provided that you
38satisfy the following conditions:
39
40You must retain the complete text of this software license in redistributions of
41the FDK AAC Codec or your modifications thereto in source code form.
42
43You must retain the complete text of this software license in the documentation
44and/or other materials provided with redistributions of the FDK AAC Codec or
45your modifications thereto in binary form. You must make available free of
46charge copies of the complete source code of the FDK AAC Codec and your
47modifications thereto to recipients of copies in binary form.
48
49The name of Fraunhofer may not be used to endorse or promote products derived
50from this library without prior written permission.
51
52You may not charge copyright license fees for anyone to use, copy or distribute
53the FDK AAC Codec software or your modifications thereto.
54
55Your modified versions of the FDK AAC Codec must carry prominent notices stating
56that you changed the software and the date of any change. For modified versions
57of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59AAC Codec Library for Android."
60
613.    NO PATENT LICENSE
62
63NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65Fraunhofer provides no warranty of patent non-infringement with respect to this
66software.
67
68You may use this FDK AAC Codec software or modifications thereto only for
69purposes that are authorized by appropriate patent licenses.
70
714.    DISCLAIMER
72
73This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75including but not limited to the implied warranties of merchantability and
76fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78or consequential damages, including but not limited to procurement of substitute
79goods or services; loss of use, data, or profits, or business interruption,
80however caused and on any theory of liability, whether in contract, strict
81liability, or tort (including negligence), arising in any way out of the use of
82this software, even if advised of the possibility of such damage.
83
845.    CONTACT INFORMATION
85
86Fraunhofer Institute for Integrated Circuits IIS
87Attention: Audio and Multimedia Departments - FDK AAC LL
88Am Wolfsmantel 33
8991058 Erlangen, Germany
90
91www.iis.fraunhofer.de/amm
92amm-info@iis.fraunhofer.de
93----------------------------------------------------------------------------- */
94
95/**************************** AAC decoder library ******************************
96
97   Author(s):   Josef Hoepfl
98
99   Description: perceptual noise substitution tool
100
101*******************************************************************************/
102
103#include "aacdec_pns.h"
104
105#include "aac_ram.h"
106#include "aac_rom.h"
107#include "channelinfo.h"
108#include "block.h"
109#include "FDK_bitstream.h"
110
111#include "genericStds.h"
112
113#define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */
114
115/*!
116  \brief Reset InterChannel and PNS data
117
118  The function resets the InterChannel and PNS data
119*/
120void CPns_ResetData(CPnsData *pPnsData,
121                    CPnsInterChannelData *pPnsInterChannelData) {
122  FDK_ASSERT(pPnsData != NULL);
123  FDK_ASSERT(pPnsInterChannelData != NULL);
124  /* Assign pointer always, since pPnsData is not persistent data */
125  pPnsData->pPnsInterChannelData = pPnsInterChannelData;
126  pPnsData->PnsActive = 0;
127  pPnsData->CurrentEnergy = 0;
128
129  FDKmemclear(pPnsData->pnsUsed, (8 * 16) * sizeof(UCHAR));
130  FDKmemclear(pPnsInterChannelData->correlated, (8 * 16) * sizeof(UCHAR));
131}
132
133/*!
134  \brief Update PNS noise generator state.
135
136  The function sets the seed for PNS noise generation.
137  It can be used to link two or more channels in terms of PNS.
138*/
139void CPns_UpdateNoiseState(CPnsData *pPnsData, INT *currentSeed,
140                           INT *randomSeed) {
141  /* use pointer because seed has to be
142     same, left and right channel ! */
143  pPnsData->currentSeed = currentSeed;
144  pPnsData->randomSeed = randomSeed;
145}
146
147/*!
148  \brief Indicates if PNS is used
149
150  The function returns a value indicating whether PNS is used or not
151  acordding to the noise energy
152
153  \return  PNS used
154*/
155int CPns_IsPnsUsed(const CPnsData *pPnsData, const int group, const int band) {
156  unsigned pns_band = group * 16 + band;
157
158  return pPnsData->pnsUsed[pns_band] & (UCHAR)1;
159}
160
161/*!
162  \brief Set correlation
163
164  The function activates the noise correlation between the channel pair
165*/
166void CPns_SetCorrelation(CPnsData *pPnsData, const int group, const int band,
167                         const int outofphase) {
168  CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
169  unsigned pns_band = group * 16 + band;
170
171  pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1;
172}
173
174/*!
175  \brief Indicates if correlation is used
176
177  The function indicates if the noise correlation between the channel pair
178  is activated
179
180  \return  PNS is correlated
181*/
182static int CPns_IsCorrelated(const CPnsData *pPnsData, const int group,
183                             const int band) {
184  CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
185  unsigned pns_band = group * 16 + band;
186
187  return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0;
188}
189
190/*!
191  \brief Indicates if correlated out of phase mode is used.
192
193  The function indicates if the noise correlation between the channel pair
194  is activated in out-of-phase mode.
195
196  \return  PNS is out-of-phase
197*/
198static int CPns_IsOutOfPhase(const CPnsData *pPnsData, const int group,
199                             const int band) {
200  CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
201  unsigned pns_band = group * 16 + band;
202
203  return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0;
204}
205
206/*!
207  \brief Read PNS information
208
209  The function reads the PNS information from the bitstream
210*/
211void CPns_Read(CPnsData *pPnsData, HANDLE_FDK_BITSTREAM bs,
212               const CodeBookDescription *hcb, SHORT *pScaleFactor,
213               UCHAR global_gain, int band, int group /* = 0 */) {
214  int delta;
215  UINT pns_band = group * 16 + band;
216
217  if (pPnsData->PnsActive) {
218    /* Next PNS band case */
219    delta = CBlock_DecodeHuffmanWord(bs, hcb) - 60;
220  } else {
221    /* First PNS band case */
222    int noiseStartValue = FDKreadBits(bs, 9);
223
224    delta = noiseStartValue - 256;
225    pPnsData->PnsActive = 1;
226    pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET;
227  }
228
229  pPnsData->CurrentEnergy += delta;
230  pScaleFactor[pns_band] = pPnsData->CurrentEnergy;
231
232  pPnsData->pnsUsed[pns_band] = 1;
233}
234
235/**
236 * \brief Generate a vector of noise of given length. The noise values are
237 *        scaled in order to yield a noise energy of 1.0
238 * \param spec pointer to were the noise values will be written to.
239 * \param size amount of noise values to be generated.
240 * \param pRandomState pointer to the state of the random generator being used.
241 * \return exponent of generated noise vector.
242 */
243static int GenerateRandomVector(FIXP_DBL *RESTRICT spec, int size,
244                                int *pRandomState) {
245  int i, invNrg_e = 0, nrg_e = 0;
246  FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f);
247  FIXP_DBL *RESTRICT ptr = spec;
248  int randomState = *pRandomState;
249
250#define GEN_NOISE_NRG_SCALE 7
251
252  /* Generate noise and calculate energy. */
253  for (i = 0; i < size; i++) {
254    randomState =
255        (((INT64)1664525 * randomState) + (INT64)1013904223) & 0xFFFFFFFF;
256    nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState >> GEN_NOISE_NRG_SCALE);
257    *ptr++ = (FIXP_DBL)randomState;
258  }
259  nrg_e = GEN_NOISE_NRG_SCALE * 2 + 1;
260
261  /* weight noise with = 1 / sqrt_nrg; */
262  invNrg_m = invSqrtNorm2(nrg_m << 1, &invNrg_e);
263  invNrg_e += -((nrg_e - 1) >> 1);
264
265  for (i = size; i--;) {
266    spec[i] = fMult(spec[i], invNrg_m);
267  }
268
269  /* Store random state */
270  *pRandomState = randomState;
271
272  return invNrg_e;
273}
274
275static void ScaleBand(FIXP_DBL *RESTRICT spec, int size, int scaleFactor,
276                      int specScale, int noise_e, int out_of_phase) {
277  int i, shift, sfExponent;
278  FIXP_DBL sfMatissa;
279
280  /* Get gain from scale factor value = 2^(scaleFactor * 0.25) */
281  sfMatissa = MantissaTable[scaleFactor & 0x03][0];
282  /* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */
283  /* Note:  ExponentTable[scaleFactor & 0x03][0] is always 1. */
284  sfExponent = (scaleFactor >> 2) + 1;
285
286  if (out_of_phase != 0) {
287    sfMatissa = -sfMatissa;
288  }
289
290  /* +1 because of fMultDiv2 below. */
291  shift = sfExponent - specScale + 1 + noise_e;
292
293  /* Apply gain to noise values */
294  if (shift >= 0) {
295    shift = fixMin(shift, DFRACT_BITS - 1);
296    for (i = size; i-- != 0;) {
297      spec[i] = fMultDiv2(spec[i], sfMatissa) << shift;
298    }
299  } else {
300    shift = fixMin(-shift, DFRACT_BITS - 1);
301    for (i = size; i-- != 0;) {
302      spec[i] = fMultDiv2(spec[i], sfMatissa) >> shift;
303    }
304  }
305}
306
307/*!
308  \brief Apply PNS
309
310  The function applies PNS (i.e. it generates noise) on the bands
311  flagged as noisy bands
312
313*/
314void CPns_Apply(const CPnsData *pPnsData, const CIcsInfo *pIcsInfo,
315                SPECTRAL_PTR pSpectrum, const SHORT *pSpecScale,
316                const SHORT *pScaleFactor,
317                const SamplingRateInfo *pSamplingRateInfo,
318                const INT granuleLength, const int channel) {
319  if (pPnsData->PnsActive) {
320    const short *BandOffsets =
321        GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo);
322
323    int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo);
324
325    for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo);
326         group++) {
327      for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group);
328           groupwin++, window++) {
329        FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength);
330
331        for (int band = 0; band < ScaleFactorBandsTransmitted; band++) {
332          if (CPns_IsPnsUsed(pPnsData, group, band)) {
333            UINT pns_band = window * 16 + band;
334
335            int bandWidth = BandOffsets[band + 1] - BandOffsets[band];
336            int noise_e;
337
338            FDK_ASSERT(bandWidth >= 0);
339
340            if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band)) {
341              noise_e =
342                  GenerateRandomVector(spectrum + BandOffsets[band], bandWidth,
343                                       &pPnsData->randomSeed[pns_band]);
344            } else {
345              pPnsData->randomSeed[pns_band] = *pPnsData->currentSeed;
346
347              noise_e = GenerateRandomVector(spectrum + BandOffsets[band],
348                                             bandWidth, pPnsData->currentSeed);
349            }
350
351            int outOfPhase = CPns_IsOutOfPhase(pPnsData, group, band);
352
353            ScaleBand(spectrum + BandOffsets[band], bandWidth,
354                      pScaleFactor[group * 16 + band], pSpecScale[window],
355                      noise_e, outOfPhase);
356          }
357        }
358      }
359    }
360  }
361}
362