1/*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements.  See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License.  You may obtain a copy of the License at
8 *
9 *      http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18package org.apache.commons.math.ode.nonstiff;
19
20import org.apache.commons.math.linear.Array2DRowRealMatrix;
21import org.apache.commons.math.ode.DerivativeException;
22import org.apache.commons.math.ode.FirstOrderDifferentialEquations;
23import org.apache.commons.math.ode.IntegratorException;
24import org.apache.commons.math.ode.sampling.NordsieckStepInterpolator;
25import org.apache.commons.math.ode.sampling.StepHandler;
26import org.apache.commons.math.util.FastMath;
27
28
29/**
30 * This class implements explicit Adams-Bashforth integrators for Ordinary
31 * Differential Equations.
32 *
33 * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
34 * multistep ODE solvers. This implementation is a variation of the classical
35 * one: it uses adaptive stepsize to implement error control, whereas
36 * classical implementations are fixed step size. The value of state vector
37 * at step n+1 is a simple combination of the value at step n and of the
38 * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
39 * steps one wants to use for computing the next value, different formulas
40 * are available:</p>
41 * <ul>
42 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
43 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
44 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
45 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
46 *   <li>...</li>
47 * </ul>
48 *
49 * <p>A k-steps Adams-Bashforth method is of order k.</p>
50 *
51 * <h3>Implementation details</h3>
52 *
53 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
54 * <pre>
55 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
56 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
57 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
58 * ...
59 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y(k)<sub>n</sub> for k<sup>th</sup> derivative
60 * </pre></p>
61 *
62 * <p>The definitions above use the classical representation with several previous first
63 * derivatives. Lets define
64 * <pre>
65 *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
66 * </pre>
67 * (we omit the k index in the notation for clarity). With these definitions,
68 * Adams-Bashforth methods can be written:
69 * <ul>
70 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li>
71 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li>
72 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li>
73 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li>
74 *   <li>...</li>
75 * </ul></p>
76 *
77 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
78 * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
79 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
80 * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
81 * <pre>
82 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
83 * </pre>
84 * (here again we omit the k index in the notation for clarity)
85 * </p>
86 *
87 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
88 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
89 * for degree k polynomials.
90 * <pre>
91 * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n)
92 * </pre>
93 * The previous formula can be used with several values for i to compute the transform between
94 * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
95 * and q<sub>n</sub> resulting from the Taylor series formulas above is:
96 * <pre>
97 * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
98 * </pre>
99 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
100 * with the j (-i)<sup>j-1</sup> terms:
101 * <pre>
102 *        [  -2   3   -4    5  ... ]
103 *        [  -4  12  -32   80  ... ]
104 *   P =  [  -6  27 -108  405  ... ]
105 *        [  -8  48 -256 1280  ... ]
106 *        [          ...           ]
107 * </pre></p>
108 *
109 * <p>Using the Nordsieck vector has several advantages:
110 * <ul>
111 *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
112 *   Taylor series formulas,</li>
113 *   <li>it simplifies step changes that occur when discrete events that truncate
114 *   the step are triggered,</li>
115 *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
116 * </ul></p>
117 *
118 * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
119 * <ul>
120 *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
121 *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
122 *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
123 * </ul>
124 * where A is a rows shifting matrix (the lower left part is an identity matrix):
125 * <pre>
126 *        [ 0 0   ...  0 0 | 0 ]
127 *        [ ---------------+---]
128 *        [ 1 0   ...  0 0 | 0 ]
129 *    A = [ 0 1   ...  0 0 | 0 ]
130 *        [       ...      | 0 ]
131 *        [ 0 0   ...  1 0 | 0 ]
132 *        [ 0 0   ...  0 1 | 0 ]
133 * </pre></p>
134 *
135 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
136 * they only depend on k and therefore are precomputed once for all.</p>
137 *
138 * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
139 * @since 2.0
140 */
141public class AdamsBashforthIntegrator extends AdamsIntegrator {
142
143    /** Integrator method name. */
144    private static final String METHOD_NAME = "Adams-Bashforth";
145
146    /**
147     * Build an Adams-Bashforth integrator with the given order and step control parameters.
148     * @param nSteps number of steps of the method excluding the one being computed
149     * @param minStep minimal step (must be positive even for backward
150     * integration), the last step can be smaller than this
151     * @param maxStep maximal step (must be positive even for backward
152     * integration)
153     * @param scalAbsoluteTolerance allowed absolute error
154     * @param scalRelativeTolerance allowed relative error
155     * @exception IllegalArgumentException if order is 1 or less
156     */
157    public AdamsBashforthIntegrator(final int nSteps,
158                                    final double minStep, final double maxStep,
159                                    final double scalAbsoluteTolerance,
160                                    final double scalRelativeTolerance)
161        throws IllegalArgumentException {
162        super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
163              scalAbsoluteTolerance, scalRelativeTolerance);
164    }
165
166    /**
167     * Build an Adams-Bashforth integrator with the given order and step control parameters.
168     * @param nSteps number of steps of the method excluding the one being computed
169     * @param minStep minimal step (must be positive even for backward
170     * integration), the last step can be smaller than this
171     * @param maxStep maximal step (must be positive even for backward
172     * integration)
173     * @param vecAbsoluteTolerance allowed absolute error
174     * @param vecRelativeTolerance allowed relative error
175     * @exception IllegalArgumentException if order is 1 or less
176     */
177    public AdamsBashforthIntegrator(final int nSteps,
178                                    final double minStep, final double maxStep,
179                                    final double[] vecAbsoluteTolerance,
180                                    final double[] vecRelativeTolerance)
181        throws IllegalArgumentException {
182        super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
183              vecAbsoluteTolerance, vecRelativeTolerance);
184    }
185
186    /** {@inheritDoc} */
187    @Override
188    public double integrate(final FirstOrderDifferentialEquations equations,
189                            final double t0, final double[] y0,
190                            final double t, final double[] y)
191        throws DerivativeException, IntegratorException {
192
193        final int n = y0.length;
194        sanityChecks(equations, t0, y0, t, y);
195        setEquations(equations);
196        resetEvaluations();
197        final boolean forward = t > t0;
198
199        // initialize working arrays
200        if (y != y0) {
201            System.arraycopy(y0, 0, y, 0, n);
202        }
203        final double[] yDot = new double[n];
204
205        // set up an interpolator sharing the integrator arrays
206        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
207        interpolator.reinitialize(y, forward);
208
209        // set up integration control objects
210        for (StepHandler handler : stepHandlers) {
211            handler.reset();
212        }
213        setStateInitialized(false);
214
215        // compute the initial Nordsieck vector using the configured starter integrator
216        start(t0, y, t);
217        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
218        interpolator.storeTime(stepStart);
219        final int lastRow = nordsieck.getRowDimension() - 1;
220
221        // reuse the step that was chosen by the starter integrator
222        double hNew = stepSize;
223        interpolator.rescale(hNew);
224
225        // main integration loop
226        isLastStep = false;
227        do {
228
229            double error = 10;
230            while (error >= 1.0) {
231
232                stepSize = hNew;
233
234                // evaluate error using the last term of the Taylor expansion
235                error = 0;
236                for (int i = 0; i < mainSetDimension; ++i) {
237                    final double yScale = FastMath.abs(y[i]);
238                    final double tol = (vecAbsoluteTolerance == null) ?
239                                       (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
240                                       (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
241                    final double ratio  = nordsieck.getEntry(lastRow, i) / tol;
242                    error += ratio * ratio;
243                }
244                error = FastMath.sqrt(error / mainSetDimension);
245
246                if (error >= 1.0) {
247                    // reject the step and attempt to reduce error by stepsize control
248                    final double factor = computeStepGrowShrinkFactor(error);
249                    hNew = filterStep(stepSize * factor, forward, false);
250                    interpolator.rescale(hNew);
251
252                }
253            }
254
255            // predict a first estimate of the state at step end
256            final double stepEnd = stepStart + stepSize;
257            interpolator.shift();
258            interpolator.setInterpolatedTime(stepEnd);
259            System.arraycopy(interpolator.getInterpolatedState(), 0, y, 0, y0.length);
260
261            // evaluate the derivative
262            computeDerivatives(stepEnd, y, yDot);
263
264            // update Nordsieck vector
265            final double[] predictedScaled = new double[y0.length];
266            for (int j = 0; j < y0.length; ++j) {
267                predictedScaled[j] = stepSize * yDot[j];
268            }
269            final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
270            updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
271            interpolator.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp);
272
273            // discrete events handling
274            interpolator.storeTime(stepEnd);
275            stepStart = acceptStep(interpolator, y, yDot, t);
276            scaled    = predictedScaled;
277            nordsieck = nordsieckTmp;
278            interpolator.reinitialize(stepEnd, stepSize, scaled, nordsieck);
279
280            if (!isLastStep) {
281
282                // prepare next step
283                interpolator.storeTime(stepStart);
284
285                if (resetOccurred) {
286                    // some events handler has triggered changes that
287                    // invalidate the derivatives, we need to restart from scratch
288                    start(stepStart, y, t);
289                    interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
290                }
291
292                // stepsize control for next step
293                final double  factor     = computeStepGrowShrinkFactor(error);
294                final double  scaledH    = stepSize * factor;
295                final double  nextT      = stepStart + scaledH;
296                final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
297                hNew = filterStep(scaledH, forward, nextIsLast);
298
299                final double  filteredNextT      = stepStart + hNew;
300                final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
301                if (filteredNextIsLast) {
302                    hNew = t - stepStart;
303                }
304
305                interpolator.rescale(hNew);
306
307            }
308
309        } while (!isLastStep);
310
311        final double stopTime = stepStart;
312        resetInternalState();
313        return stopTime;
314
315    }
316
317}
318